/* * Copyright (c) 2006 Ondrej Palkovsky * Copyright (c) 2011 Petr Koupy * Copyright (c) 2011 Jiri Zarevucky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup libc * @{ */ /** @file */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ASCTIME_BUF_LEN 26 /** Pointer to kernel shared variables with time */ struct { volatile sysarg_t seconds1; volatile sysarg_t useconds; volatile sysarg_t seconds2; } *ktime = NULL; /* Helper functions ***********************************************************/ #define HOURS_PER_DAY (24) #define MINS_PER_HOUR (60) #define SECS_PER_MIN (60) #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY) #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR) #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY) /** * Checks whether the year is a leap year. * * @param year Year since 1900 (e.g. for 1970, the value is 70). * @return true if year is a leap year, false otherwise */ static bool _is_leap_year(time_t year) { year += 1900; if (year % 400 == 0) return true; if (year % 100 == 0) return false; if (year % 4 == 0) return true; return false; } /** * Returns how many days there are in the given month of the given year. * Note that year is only taken into account if month is February. * * @param year Year since 1900 (can be negative). * @param mon Month of the year. 0 for January, 11 for December. * @return Number of days in the specified month. */ static int _days_in_month(time_t year, time_t mon) { assert(mon >= 0 && mon <= 11); static int month_days[] = { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; if (mon == 1) { year += 1900; /* february */ return _is_leap_year(year) ? 29 : 28; } else { return month_days[mon]; } } /** * For specified year, month and day of month, returns which day of that year * it is. * * For example, given date 2011-01-03, the corresponding expression is: * _day_of_year(111, 0, 3) == 2 * * @param year Year (year 1900 = 0, can be negative). * @param mon Month (January = 0). * @param mday Day of month (First day is 1). * @return Day of year (First day is 0). */ static int _day_of_year(time_t year, time_t mon, time_t mday) { static int mdays[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; static int leap_mdays[] = { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 }; return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1; } /** * Integer division that rounds to negative infinity. * Used by some functions in this file. * * @param op1 Dividend. * @param op2 Divisor. * @return Rounded quotient. */ static time_t _floor_div(time_t op1, time_t op2) { if (op1 >= 0 || op1 % op2 == 0) { return op1 / op2; } else { return op1 / op2 - 1; } } /** * Modulo that rounds to negative infinity. * Used by some functions in this file. * * @param op1 Dividend. * @param op2 Divisor. * @return Remainder. */ static time_t _floor_mod(time_t op1, time_t op2) { int div = _floor_div(op1, op2); /* (a / b) * b + a % b == a */ /* thus, a % b == a - (a / b) * b */ int result = op1 - div * op2; /* Some paranoid checking to ensure I didn't make a mistake here. */ assert(result >= 0); assert(result < op2); assert(div * op2 + result == op1); return result; } /** * Number of days since the Epoch. * Epoch is 1970-01-01, which is also equal to day 0. * * @param year Year (year 1900 = 0, may be negative). * @param mon Month (January = 0). * @param mday Day of month (first day = 1). * @return Number of days since the Epoch. */ static time_t _days_since_epoch(time_t year, time_t mon, time_t mday) { return (year - 70) * 365 + _floor_div(year - 69, 4) - _floor_div(year - 1, 100) + _floor_div(year + 299, 400) + _day_of_year(year, mon, mday); } /** * Seconds since the Epoch. see also _days_since_epoch(). * * @param tm Normalized broken-down time. * @return Number of seconds since the epoch, not counting leap seconds. */ static time_t _secs_since_epoch(const struct tm *tm) { return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) * SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR + tm->tm_min * SECS_PER_MIN + tm->tm_sec; } /** * Which day of week the specified date is. * * @param year Year (year 1900 = 0). * @param mon Month (January = 0). * @param mday Day of month (first = 1). * @return Day of week (Sunday = 0). */ static int _day_of_week(time_t year, time_t mon, time_t mday) { /* 1970-01-01 is Thursday */ return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7); } /** * Normalizes the broken-down time and optionally adds specified amount of * seconds. * * @param tm Broken-down time to normalize. * @param sec_add Seconds to add. * @return 0 on success, -1 on overflow */ static int _normalize_time(struct tm *tm, time_t sec_add) { // TODO: DST correction /* Set initial values. */ time_t sec = tm->tm_sec + sec_add; time_t min = tm->tm_min; time_t hour = tm->tm_hour; time_t day = tm->tm_mday - 1; time_t mon = tm->tm_mon; time_t year = tm->tm_year; /* Adjust time. */ min += _floor_div(sec, SECS_PER_MIN); sec = _floor_mod(sec, SECS_PER_MIN); hour += _floor_div(min, MINS_PER_HOUR); min = _floor_mod(min, MINS_PER_HOUR); day += _floor_div(hour, HOURS_PER_DAY); hour = _floor_mod(hour, HOURS_PER_DAY); /* Adjust month. */ year += _floor_div(mon, 12); mon = _floor_mod(mon, 12); /* Now the difficult part - days of month. */ /* First, deal with whole cycles of 400 years = 146097 days. */ year += _floor_div(day, 146097) * 400; day = _floor_mod(day, 146097); /* Then, go in one year steps. */ if (mon <= 1) { /* January and February. */ while (day > 365) { day -= _is_leap_year(year) ? 366 : 365; year++; } } else { /* Rest of the year. */ while (day > 365) { day -= _is_leap_year(year + 1) ? 366 : 365; year++; } } /* Finally, finish it off month per month. */ while (day >= _days_in_month(year, mon)) { day -= _days_in_month(year, mon); mon++; if (mon >= 12) { mon -= 12; year++; } } /* Calculate the remaining two fields. */ tm->tm_yday = _day_of_year(year, mon, day + 1); tm->tm_wday = _day_of_week(year, mon, day + 1); /* And put the values back to the struct. */ tm->tm_sec = (int) sec; tm->tm_min = (int) min; tm->tm_hour = (int) hour; tm->tm_mday = (int) day + 1; tm->tm_mon = (int) mon; /* Casts to work around libc brain-damage. */ if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) { tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX); return -1; } tm->tm_year = (int) year; return 0; } /** * Which day the week-based year starts on, relative to the first calendar day. * E.g. if the year starts on December 31st, the return value is -1. * * @param Year since 1900. * @return Offset of week-based year relative to calendar year. */ static int _wbyear_offset(int year) { int start_wday = _day_of_week(year, 0, 1); return _floor_mod(4 - start_wday, 7) - 3; } /** * Returns week-based year of the specified time. * * @param tm Normalized broken-down time. * @return Week-based year. */ static int _wbyear(const struct tm *tm) { int day = tm->tm_yday - _wbyear_offset(tm->tm_year); if (day < 0) { /* Last week of previous year. */ return tm->tm_year - 1; } if (day > 364 + _is_leap_year(tm->tm_year)) { /* First week of next year. */ return tm->tm_year + 1; } /* All the other days are in the calendar year. */ return tm->tm_year; } /** * Week number of the year, assuming weeks start on sunday. * The first Sunday of January is the first day of week 1; * days in the new year before this are in week 0. * * @param tm Normalized broken-down time. * @return The week number (0 - 53). */ static int _sun_week_number(const struct tm *tm) { int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7; return (tm->tm_yday - first_day + 7) / 7; } /** * Week number of the year, assuming weeks start on monday. * If the week containing January 1st has four or more days in the new year, * then it is considered week 1. Otherwise, it is the last week of the previous * year, and the next week is week 1. Both January 4th and the first Thursday * of January are always in week 1. * * @param tm Normalized broken-down time. * @return The week number (1 - 53). */ static int _iso_week_number(const struct tm *tm) { int day = tm->tm_yday - _wbyear_offset(tm->tm_year); if (day < 0) { /* Last week of previous year. */ return 53; } if (day > 364 + _is_leap_year(tm->tm_year)) { /* First week of next year. */ return 1; } /* All the other days give correct answer. */ return (day / 7 + 1); } /** * Week number of the year, assuming weeks start on monday. * The first Monday of January is the first day of week 1; * days in the new year before this are in week 0. * * @param tm Normalized broken-down time. * @return The week number (0 - 53). */ static int _mon_week_number(const struct tm *tm) { int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7; return (tm->tm_yday - first_day + 7) / 7; } /******************************************************************************/ /** Add microseconds to given timeval. * * @param tv Destination timeval. * @param usecs Number of microseconds to add. * */ void tv_add(struct timeval *tv, suseconds_t usecs) { tv->tv_sec += usecs / 1000000; tv->tv_usec += usecs % 1000000; if (tv->tv_usec > 1000000) { tv->tv_sec++; tv->tv_usec -= 1000000; } } /** Subtract two timevals. * * @param tv1 First timeval. * @param tv2 Second timeval. * * @return Difference between tv1 and tv2 (tv1 - tv2) in * microseconds. * */ suseconds_t tv_sub(struct timeval *tv1, struct timeval *tv2) { return (tv1->tv_usec - tv2->tv_usec) + ((tv1->tv_sec - tv2->tv_sec) * 1000000); } /** Decide if one timeval is greater than the other. * * @param t1 First timeval. * @param t2 Second timeval. * * @return True if tv1 is greater than tv2. * @return False otherwise. * */ int tv_gt(struct timeval *tv1, struct timeval *tv2) { if (tv1->tv_sec > tv2->tv_sec) return true; if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec > tv2->tv_usec)) return true; return false; } /** Decide if one timeval is greater than or equal to the other. * * @param tv1 First timeval. * @param tv2 Second timeval. * * @return True if tv1 is greater than or equal to tv2. * @return False otherwise. * */ int tv_gteq(struct timeval *tv1, struct timeval *tv2) { if (tv1->tv_sec > tv2->tv_sec) return true; if ((tv1->tv_sec == tv2->tv_sec) && (tv1->tv_usec >= tv2->tv_usec)) return true; return false; } /** Get time of day * * The time variables are memory mapped (read-only) from kernel which * updates them periodically. * * As it is impossible to read 2 values atomically, we use a trick: * First we read the seconds, then we read the microseconds, then we * read the seconds again. If a second elapsed in the meantime, set * the microseconds to zero. * * This assures that the values returned by two subsequent calls * to gettimeofday() are monotonous. * */ int gettimeofday(struct timeval *tv, struct timezone *tz) { int rc; struct tm t; category_id_t cat_id; size_t svc_cnt; service_id_t *svc_ids = NULL; service_id_t svc_id; char *svc_name = NULL; static async_sess_t *clock_conn = NULL; if (tz) { tz->tz_minuteswest = 0; tz->tz_dsttime = DST_NONE; } if (clock_conn == NULL) { rc = loc_category_get_id("clock", &cat_id, IPC_FLAG_BLOCKING); if (rc != EOK) goto ret_uptime; rc = loc_category_get_svcs(cat_id, &svc_ids, &svc_cnt); if (rc != EOK) goto ret_uptime; if (svc_cnt == 0) goto ret_uptime; rc = loc_service_get_name(svc_ids[0], &svc_name); if (rc != EOK) goto ret_uptime; rc = loc_service_get_id(svc_name, &svc_id, 0); if (rc != EOK) goto ret_uptime; clock_conn = loc_service_connect(EXCHANGE_SERIALIZE, svc_id, IPC_FLAG_BLOCKING); if (!clock_conn) goto ret_uptime; } rc = clock_dev_time_get(clock_conn, &t); if (rc != EOK) goto ret_uptime; tv->tv_usec = 0; tv->tv_sec = mktime(&t); free(svc_name); free(svc_ids); return EOK; ret_uptime: free(svc_name); free(svc_ids); return getuptime(tv); } int getuptime(struct timeval *tv) { if (ktime == NULL) { uintptr_t faddr; int rc = sysinfo_get_value("clock.faddr", &faddr); if (rc != EOK) { errno = rc; return -1; } void *addr = AS_AREA_ANY; rc = physmem_map(faddr, 1, AS_AREA_READ | AS_AREA_CACHEABLE, &addr); if (rc != EOK) { as_area_destroy(addr); errno = rc; return -1; } ktime = addr; } sysarg_t s2 = ktime->seconds2; read_barrier(); tv->tv_usec = ktime->useconds; read_barrier(); sysarg_t s1 = ktime->seconds1; if (s1 != s2) { tv->tv_sec = max(s1, s2); tv->tv_usec = 0; } else tv->tv_sec = s1; return 0; } time_t time(time_t *tloc) { struct timeval tv; if (gettimeofday(&tv, NULL)) return (time_t) -1; if (tloc) *tloc = tv.tv_sec; return tv.tv_sec; } /** Wait unconditionally for specified number of microseconds * */ int usleep(useconds_t usec) { (void) __SYSCALL1(SYS_THREAD_USLEEP, usec); return 0; } void udelay(useconds_t time) { (void) __SYSCALL1(SYS_THREAD_UDELAY, (sysarg_t) time); } /** Wait unconditionally for specified number of seconds * */ unsigned int sleep(unsigned int sec) { /* * Sleep in 1000 second steps to support * full argument range */ while (sec > 0) { unsigned int period = (sec > 1000) ? 1000 : sec; usleep(period * 1000000); sec -= period; } return 0; } /** * This function first normalizes the provided broken-down time * (moves all values to their proper bounds) and then tries to * calculate the appropriate time_t representation. * * @param tm Broken-down time. * @return time_t representation of the time, undefined value on overflow. */ time_t mktime(struct tm *tm) { // TODO: take DST flag into account // TODO: detect overflow _normalize_time(tm, 0); return _secs_since_epoch(tm); } /** * Convert time and date to a string, based on a specified format and * current locale. * * @param s Buffer to write string to. * @param maxsize Size of the buffer. * @param format Format of the output. * @param tm Broken-down time to format. * @return Number of bytes written. */ size_t strftime(char *restrict s, size_t maxsize, const char *restrict format, const struct tm *restrict tm) { assert(s != NULL); assert(format != NULL); assert(tm != NULL); // TODO: use locale static const char *wday_abbr[] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; static const char *wday[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; static const char *mon_abbr[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; static const char *mon[] = { "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December" }; if (maxsize < 1) { return 0; } char *ptr = s; size_t consumed; size_t remaining = maxsize; #define append(...) { \ /* FIXME: this requires POSIX-correct snprintf */ \ /* otherwise it won't work with non-ascii chars */ \ consumed = snprintf(ptr, remaining, __VA_ARGS__); \ if (consumed >= remaining) { \ return 0; \ } \ ptr += consumed; \ remaining -= consumed; \ } #define recurse(fmt) { \ consumed = strftime(ptr, remaining, fmt, tm); \ if (consumed == 0) { \ return 0; \ } \ ptr += consumed; \ remaining -= consumed; \ } #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \ (((hour) == 0) ? 12 : (hour))) while (*format != '\0') { if (*format != '%') { append("%c", *format); format++; continue; } format++; if (*format == '0' || *format == '+') { // TODO: padding format++; } while (isdigit(*format)) { // TODO: padding format++; } if (*format == 'O' || *format == 'E') { // TODO: locale's alternative format format++; } switch (*format) { case 'a': append("%s", wday_abbr[tm->tm_wday]); break; case 'A': append("%s", wday[tm->tm_wday]); break; case 'b': append("%s", mon_abbr[tm->tm_mon]); break; case 'B': append("%s", mon[tm->tm_mon]); break; case 'c': // TODO: locale-specific datetime format recurse("%Y-%m-%d %H:%M:%S"); break; case 'C': append("%02d", (1900 + tm->tm_year) / 100); break; case 'd': append("%02d", tm->tm_mday); break; case 'D': recurse("%m/%d/%y"); break; case 'e': append("%2d", tm->tm_mday); break; case 'F': recurse("%+4Y-%m-%d"); break; case 'g': append("%02d", _wbyear(tm) % 100); break; case 'G': append("%d", _wbyear(tm)); break; case 'h': recurse("%b"); break; case 'H': append("%02d", tm->tm_hour); break; case 'I': append("%02d", TO_12H(tm->tm_hour)); break; case 'j': append("%03d", tm->tm_yday); break; case 'k': append("%2d", tm->tm_hour); break; case 'l': append("%2d", TO_12H(tm->tm_hour)); break; case 'm': append("%02d", tm->tm_mon); break; case 'M': append("%02d", tm->tm_min); break; case 'n': append("\n"); break; case 'p': append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break; case 'P': append("%s", tm->tm_hour < 12 ? "am" : "PM"); break; case 'r': recurse("%I:%M:%S %p"); break; case 'R': recurse("%H:%M"); break; case 's': append("%ld", _secs_since_epoch(tm)); break; case 'S': append("%02d", tm->tm_sec); break; case 't': append("\t"); break; case 'T': recurse("%H:%M:%S"); break; case 'u': append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday); break; case 'U': append("%02d", _sun_week_number(tm)); break; case 'V': append("%02d", _iso_week_number(tm)); break; case 'w': append("%d", tm->tm_wday); break; case 'W': append("%02d", _mon_week_number(tm)); break; case 'x': // TODO: locale-specific date format recurse("%Y-%m-%d"); break; case 'X': // TODO: locale-specific time format recurse("%H:%M:%S"); break; case 'y': append("%02d", tm->tm_year % 100); break; case 'Y': append("%d", 1900 + tm->tm_year); break; case 'z': // TODO: timezone break; case 'Z': // TODO: timezone break; case '%': append("%%"); break; default: /* Invalid specifier, print verbatim. */ while (*format != '%') { format--; } append("%%"); break; } format++; } #undef append #undef recurse return maxsize - remaining; } /** Converts a time value to a broken-down UTC time * * @param time Time to convert * @param result Structure to store the result to * * @return EOK or a negative error code */ int time_utc2tm(const time_t time, struct tm *restrict result) { assert(result != NULL); /* Set result to epoch. */ result->tm_sec = 0; result->tm_min = 0; result->tm_hour = 0; result->tm_mday = 1; result->tm_mon = 0; result->tm_year = 70; /* 1970 */ if (_normalize_time(result, time) == -1) return EOVERFLOW; return EOK; } /** Converts a time value to a null terminated string of the form * "Wed Jun 30 21:49:08 1993\n" expressed in UTC. * * @param time Time to convert. * @param buf Buffer to store the string to, must be at least * ASCTIME_BUF_LEN bytes long. * * @return EOK or a negative error code. */ int time_utc2str(const time_t time, char *restrict buf) { struct tm t; int r; if ((r = time_utc2tm(time, &t)) != EOK) return r; time_tm2str(&t, buf); return EOK; } /** * Converts broken-down time to a string in format * "Sun Jan 1 00:00:00 1970\n". (Obsolete) * * @param timeptr Broken-down time structure. * @param buf Buffer to store string to, must be at least ASCTIME_BUF_LEN * bytes long. */ void time_tm2str(const struct tm *restrict timeptr, char *restrict buf) { assert(timeptr != NULL); assert(buf != NULL); static const char *wday[] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" }; static const char *mon[] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n", wday[timeptr->tm_wday], mon[timeptr->tm_mon], timeptr->tm_mday, timeptr->tm_hour, timeptr->tm_min, timeptr->tm_sec, 1900 + timeptr->tm_year); } /** * Converts a time value to a broken-down local time, expressed relative * to the user's specified timezone. * * @param timer Time to convert. * @param result Structure to store the result to. * * @return EOK on success or a negative error code. */ int time_local2tm(const time_t time, struct tm *restrict result) { // TODO: deal with timezone // currently assumes system and all times are in GMT /* Set result to epoch. */ result->tm_sec = 0; result->tm_min = 0; result->tm_hour = 0; result->tm_mday = 1; result->tm_mon = 0; result->tm_year = 70; /* 1970 */ if (_normalize_time(result, time) == -1) return EOVERFLOW; return EOK; } /** * Converts the calendar time to a null terminated string * of the form "Wed Jun 30 21:49:08 1993\n" expressed relative to the * user's specified timezone. * * @param timer Time to convert. * @param buf Buffer to store the string to. Must be at least * ASCTIME_BUF_LEN bytes long. * * @return EOK on success or a negative error code. */ int time_local2str(const time_t time, char *buf) { struct tm loctime; int r; if ((r = time_local2tm(time, &loctime)) != EOK) return r; time_tm2str(&loctime, buf); return EOK; } /** * Calculate the difference between two times, in seconds. * * @param time1 First time. * @param time0 Second time. * @return Time in seconds. */ double difftime(time_t time1, time_t time0) { return (double) (time1 - time0); } /** @} */