source: mainline/uspace/lib/c/generic/str.c@ 8610c2c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 8610c2c was 38d150e, checked in by Jiri Svoboda <jiri@…>, 8 years ago

Prefer to get memory allocation functions through the standard stdlib header.

  • Property mode set to 100644
File size: 44.6 KB
Line 
1/*
2 * Copyright (c) 2005 Martin Decky
3 * Copyright (c) 2008 Jiri Svoboda
4 * Copyright (c) 2011 Martin Sucha
5 * Copyright (c) 2011 Oleg Romanenko
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * - Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * - Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * - The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/** @addtogroup libc
33 * @{
34 */
35/** @file
36 */
37
38#include <str.h>
39#include <stddef.h>
40#include <stdint.h>
41#include <stdlib.h>
42#include <assert.h>
43#include <ctype.h>
44#include <errno.h>
45#include <align.h>
46#include <mem.h>
47#include <limits.h>
48
49/** Check the condition if wchar_t is signed */
50#ifdef __WCHAR_UNSIGNED__
51 #define WCHAR_SIGNED_CHECK(cond) (true)
52#else
53 #define WCHAR_SIGNED_CHECK(cond) (cond)
54#endif
55
56/** Byte mask consisting of lowest @n bits (out of 8) */
57#define LO_MASK_8(n) ((uint8_t) ((1 << (n)) - 1))
58
59/** Byte mask consisting of lowest @n bits (out of 32) */
60#define LO_MASK_32(n) ((uint32_t) ((1 << (n)) - 1))
61
62/** Byte mask consisting of highest @n bits (out of 8) */
63#define HI_MASK_8(n) (~LO_MASK_8(8 - (n)))
64
65/** Number of data bits in a UTF-8 continuation byte */
66#define CONT_BITS 6
67
68/** Decode a single character from a string.
69 *
70 * Decode a single character from a string of size @a size. Decoding starts
71 * at @a offset and this offset is moved to the beginning of the next
72 * character. In case of decoding error, offset generally advances at least
73 * by one. However, offset is never moved beyond size.
74 *
75 * @param str String (not necessarily NULL-terminated).
76 * @param offset Byte offset in string where to start decoding.
77 * @param size Size of the string (in bytes).
78 *
79 * @return Value of decoded character, U_SPECIAL on decoding error or
80 * NULL if attempt to decode beyond @a size.
81 *
82 */
83wchar_t str_decode(const char *str, size_t *offset, size_t size)
84{
85 if (*offset + 1 > size)
86 return 0;
87
88 /* First byte read from string */
89 uint8_t b0 = (uint8_t) str[(*offset)++];
90
91 /* Determine code length */
92
93 unsigned int b0_bits; /* Data bits in first byte */
94 unsigned int cbytes; /* Number of continuation bytes */
95
96 if ((b0 & 0x80) == 0) {
97 /* 0xxxxxxx (Plain ASCII) */
98 b0_bits = 7;
99 cbytes = 0;
100 } else if ((b0 & 0xe0) == 0xc0) {
101 /* 110xxxxx 10xxxxxx */
102 b0_bits = 5;
103 cbytes = 1;
104 } else if ((b0 & 0xf0) == 0xe0) {
105 /* 1110xxxx 10xxxxxx 10xxxxxx */
106 b0_bits = 4;
107 cbytes = 2;
108 } else if ((b0 & 0xf8) == 0xf0) {
109 /* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
110 b0_bits = 3;
111 cbytes = 3;
112 } else {
113 /* 10xxxxxx -- unexpected continuation byte */
114 return U_SPECIAL;
115 }
116
117 if (*offset + cbytes > size)
118 return U_SPECIAL;
119
120 wchar_t ch = b0 & LO_MASK_8(b0_bits);
121
122 /* Decode continuation bytes */
123 while (cbytes > 0) {
124 uint8_t b = (uint8_t) str[(*offset)++];
125
126 /* Must be 10xxxxxx */
127 if ((b & 0xc0) != 0x80)
128 return U_SPECIAL;
129
130 /* Shift data bits to ch */
131 ch = (ch << CONT_BITS) | (wchar_t) (b & LO_MASK_8(CONT_BITS));
132 cbytes--;
133 }
134
135 return ch;
136}
137
138/** Decode a single character from a string to the left.
139 *
140 * Decode a single character from a string of size @a size. Decoding starts
141 * at @a offset and this offset is moved to the beginning of the previous
142 * character. In case of decoding error, offset generally decreases at least
143 * by one. However, offset is never moved before 0.
144 *
145 * @param str String (not necessarily NULL-terminated).
146 * @param offset Byte offset in string where to start decoding.
147 * @param size Size of the string (in bytes).
148 *
149 * @return Value of decoded character, U_SPECIAL on decoding error or
150 * NULL if attempt to decode beyond @a start of str.
151 *
152 */
153wchar_t str_decode_reverse(const char *str, size_t *offset, size_t size)
154{
155 if (*offset == 0)
156 return 0;
157
158 size_t processed = 0;
159 /* Continue while continuation bytes found */
160 while (*offset > 0 && processed < 4) {
161 uint8_t b = (uint8_t) str[--(*offset)];
162
163 if (processed == 0 && (b & 0x80) == 0) {
164 /* 0xxxxxxx (Plain ASCII) */
165 return b & 0x7f;
166 }
167 else if ((b & 0xe0) == 0xc0 || (b & 0xf0) == 0xe0 ||
168 (b & 0xf8) == 0xf0) {
169 /* Start byte */
170 size_t start_offset = *offset;
171 return str_decode(str, &start_offset, size);
172 }
173 else if ((b & 0xc0) != 0x80) {
174 /* Not a continuation byte */
175 return U_SPECIAL;
176 }
177 processed++;
178 }
179 /* Too many continuation bytes */
180 return U_SPECIAL;
181}
182
183/** Encode a single character to string representation.
184 *
185 * Encode a single character to string representation (i.e. UTF-8) and store
186 * it into a buffer at @a offset. Encoding starts at @a offset and this offset
187 * is moved to the position where the next character can be written to.
188 *
189 * @param ch Input character.
190 * @param str Output buffer.
191 * @param offset Byte offset where to start writing.
192 * @param size Size of the output buffer (in bytes).
193 *
194 * @return EOK if the character was encoded successfully, EOVERFLOW if there
195 * was not enough space in the output buffer or EINVAL if the character
196 * code was invalid.
197 */
198int chr_encode(const wchar_t ch, char *str, size_t *offset, size_t size)
199{
200 if (*offset >= size)
201 return EOVERFLOW;
202
203 if (!chr_check(ch))
204 return EINVAL;
205
206 /* Unsigned version of ch (bit operations should only be done
207 on unsigned types). */
208 uint32_t cc = (uint32_t) ch;
209
210 /* Determine how many continuation bytes are needed */
211
212 unsigned int b0_bits; /* Data bits in first byte */
213 unsigned int cbytes; /* Number of continuation bytes */
214
215 if ((cc & ~LO_MASK_32(7)) == 0) {
216 b0_bits = 7;
217 cbytes = 0;
218 } else if ((cc & ~LO_MASK_32(11)) == 0) {
219 b0_bits = 5;
220 cbytes = 1;
221 } else if ((cc & ~LO_MASK_32(16)) == 0) {
222 b0_bits = 4;
223 cbytes = 2;
224 } else if ((cc & ~LO_MASK_32(21)) == 0) {
225 b0_bits = 3;
226 cbytes = 3;
227 } else {
228 /* Codes longer than 21 bits are not supported */
229 return EINVAL;
230 }
231
232 /* Check for available space in buffer */
233 if (*offset + cbytes >= size)
234 return EOVERFLOW;
235
236 /* Encode continuation bytes */
237 unsigned int i;
238 for (i = cbytes; i > 0; i--) {
239 str[*offset + i] = 0x80 | (cc & LO_MASK_32(CONT_BITS));
240 cc = cc >> CONT_BITS;
241 }
242
243 /* Encode first byte */
244 str[*offset] = (cc & LO_MASK_32(b0_bits)) | HI_MASK_8(8 - b0_bits - 1);
245
246 /* Advance offset */
247 *offset += cbytes + 1;
248
249 return EOK;
250}
251
252/** Get size of string.
253 *
254 * Get the number of bytes which are used by the string @a str (excluding the
255 * NULL-terminator).
256 *
257 * @param str String to consider.
258 *
259 * @return Number of bytes used by the string
260 *
261 */
262size_t str_size(const char *str)
263{
264 size_t size = 0;
265
266 while (*str++ != 0)
267 size++;
268
269 return size;
270}
271
272/** Get size of wide string.
273 *
274 * Get the number of bytes which are used by the wide string @a str (excluding the
275 * NULL-terminator).
276 *
277 * @param str Wide string to consider.
278 *
279 * @return Number of bytes used by the wide string
280 *
281 */
282size_t wstr_size(const wchar_t *str)
283{
284 return (wstr_length(str) * sizeof(wchar_t));
285}
286
287/** Get size of string with length limit.
288 *
289 * Get the number of bytes which are used by up to @a max_len first
290 * characters in the string @a str. If @a max_len is greater than
291 * the length of @a str, the entire string is measured (excluding the
292 * NULL-terminator).
293 *
294 * @param str String to consider.
295 * @param max_len Maximum number of characters to measure.
296 *
297 * @return Number of bytes used by the characters.
298 *
299 */
300size_t str_lsize(const char *str, size_t max_len)
301{
302 size_t len = 0;
303 size_t offset = 0;
304
305 while (len < max_len) {
306 if (str_decode(str, &offset, STR_NO_LIMIT) == 0)
307 break;
308
309 len++;
310 }
311
312 return offset;
313}
314
315/** Get size of string with size limit.
316 *
317 * Get the number of bytes which are used by the string @a str
318 * (excluding the NULL-terminator), but no more than @max_size bytes.
319 *
320 * @param str String to consider.
321 * @param max_size Maximum number of bytes to measure.
322 *
323 * @return Number of bytes used by the string
324 *
325 */
326size_t str_nsize(const char *str, size_t max_size)
327{
328 size_t size = 0;
329
330 while ((*str++ != 0) && (size < max_size))
331 size++;
332
333 return size;
334}
335
336/** Get size of wide string with size limit.
337 *
338 * Get the number of bytes which are used by the wide string @a str
339 * (excluding the NULL-terminator), but no more than @max_size bytes.
340 *
341 * @param str Wide string to consider.
342 * @param max_size Maximum number of bytes to measure.
343 *
344 * @return Number of bytes used by the wide string
345 *
346 */
347size_t wstr_nsize(const wchar_t *str, size_t max_size)
348{
349 return (wstr_nlength(str, max_size) * sizeof(wchar_t));
350}
351
352/** Get size of wide string with length limit.
353 *
354 * Get the number of bytes which are used by up to @a max_len first
355 * wide characters in the wide string @a str. If @a max_len is greater than
356 * the length of @a str, the entire wide string is measured (excluding the
357 * NULL-terminator).
358 *
359 * @param str Wide string to consider.
360 * @param max_len Maximum number of wide characters to measure.
361 *
362 * @return Number of bytes used by the wide characters.
363 *
364 */
365size_t wstr_lsize(const wchar_t *str, size_t max_len)
366{
367 return (wstr_nlength(str, max_len * sizeof(wchar_t)) * sizeof(wchar_t));
368}
369
370/** Get number of characters in a string.
371 *
372 * @param str NULL-terminated string.
373 *
374 * @return Number of characters in string.
375 *
376 */
377size_t str_length(const char *str)
378{
379 size_t len = 0;
380 size_t offset = 0;
381
382 while (str_decode(str, &offset, STR_NO_LIMIT) != 0)
383 len++;
384
385 return len;
386}
387
388/** Get number of characters in a wide string.
389 *
390 * @param str NULL-terminated wide string.
391 *
392 * @return Number of characters in @a str.
393 *
394 */
395size_t wstr_length(const wchar_t *wstr)
396{
397 size_t len = 0;
398
399 while (*wstr++ != 0)
400 len++;
401
402 return len;
403}
404
405/** Get number of characters in a string with size limit.
406 *
407 * @param str NULL-terminated string.
408 * @param size Maximum number of bytes to consider.
409 *
410 * @return Number of characters in string.
411 *
412 */
413size_t str_nlength(const char *str, size_t size)
414{
415 size_t len = 0;
416 size_t offset = 0;
417
418 while (str_decode(str, &offset, size) != 0)
419 len++;
420
421 return len;
422}
423
424/** Get number of characters in a string with size limit.
425 *
426 * @param str NULL-terminated string.
427 * @param size Maximum number of bytes to consider.
428 *
429 * @return Number of characters in string.
430 *
431 */
432size_t wstr_nlength(const wchar_t *str, size_t size)
433{
434 size_t len = 0;
435 size_t limit = ALIGN_DOWN(size, sizeof(wchar_t));
436 size_t offset = 0;
437
438 while ((offset < limit) && (*str++ != 0)) {
439 len++;
440 offset += sizeof(wchar_t);
441 }
442
443 return len;
444}
445
446/** Get character display width on a character cell display.
447 *
448 * @param ch Character
449 * @return Width of character in cells.
450 */
451size_t chr_width(wchar_t ch)
452{
453 return 1;
454}
455
456/** Get string display width on a character cell display.
457 *
458 * @param str String
459 * @return Width of string in cells.
460 */
461size_t str_width(const char *str)
462{
463 size_t width = 0;
464 size_t offset = 0;
465 wchar_t ch;
466
467 while ((ch = str_decode(str, &offset, STR_NO_LIMIT)) != 0)
468 width += chr_width(ch);
469
470 return width;
471}
472
473/** Check whether character is plain ASCII.
474 *
475 * @return True if character is plain ASCII.
476 *
477 */
478bool ascii_check(wchar_t ch)
479{
480 if (WCHAR_SIGNED_CHECK(ch >= 0) && (ch <= 127))
481 return true;
482
483 return false;
484}
485
486/** Check whether character is valid
487 *
488 * @return True if character is a valid Unicode code point.
489 *
490 */
491bool chr_check(wchar_t ch)
492{
493 if (WCHAR_SIGNED_CHECK(ch >= 0) && (ch <= 1114111))
494 return true;
495
496 return false;
497}
498
499/** Compare two NULL terminated strings.
500 *
501 * Do a char-by-char comparison of two NULL-terminated strings.
502 * The strings are considered equal iff their length is equal
503 * and both strings consist of the same sequence of characters.
504 *
505 * A string S1 is less than another string S2 if it has a character with
506 * lower value at the first character position where the strings differ.
507 * If the strings differ in length, the shorter one is treated as if
508 * padded by characters with a value of zero.
509 *
510 * @param s1 First string to compare.
511 * @param s2 Second string to compare.
512 *
513 * @return 0 if the strings are equal, -1 if the first is less than the second,
514 * 1 if the second is less than the first.
515 *
516 */
517int str_cmp(const char *s1, const char *s2)
518{
519 wchar_t c1 = 0;
520 wchar_t c2 = 0;
521
522 size_t off1 = 0;
523 size_t off2 = 0;
524
525 while (true) {
526 c1 = str_decode(s1, &off1, STR_NO_LIMIT);
527 c2 = str_decode(s2, &off2, STR_NO_LIMIT);
528
529 if (c1 < c2)
530 return -1;
531
532 if (c1 > c2)
533 return 1;
534
535 if (c1 == 0 || c2 == 0)
536 break;
537 }
538
539 return 0;
540}
541
542/** Compare two NULL terminated strings with length limit.
543 *
544 * Do a char-by-char comparison of two NULL-terminated strings.
545 * The strings are considered equal iff
546 * min(str_length(s1), max_len) == min(str_length(s2), max_len)
547 * and both strings consist of the same sequence of characters,
548 * up to max_len characters.
549 *
550 * A string S1 is less than another string S2 if it has a character with
551 * lower value at the first character position where the strings differ.
552 * If the strings differ in length, the shorter one is treated as if
553 * padded by characters with a value of zero. Only the first max_len
554 * characters are considered.
555 *
556 * @param s1 First string to compare.
557 * @param s2 Second string to compare.
558 * @param max_len Maximum number of characters to consider.
559 *
560 * @return 0 if the strings are equal, -1 if the first is less than the second,
561 * 1 if the second is less than the first.
562 *
563 */
564int str_lcmp(const char *s1, const char *s2, size_t max_len)
565{
566 wchar_t c1 = 0;
567 wchar_t c2 = 0;
568
569 size_t off1 = 0;
570 size_t off2 = 0;
571
572 size_t len = 0;
573
574 while (true) {
575 if (len >= max_len)
576 break;
577
578 c1 = str_decode(s1, &off1, STR_NO_LIMIT);
579 c2 = str_decode(s2, &off2, STR_NO_LIMIT);
580
581 if (c1 < c2)
582 return -1;
583
584 if (c1 > c2)
585 return 1;
586
587 if (c1 == 0 || c2 == 0)
588 break;
589
590 ++len;
591 }
592
593 return 0;
594
595}
596
597/** Compare two NULL terminated strings in case-insensitive manner.
598 *
599 * Do a char-by-char comparison of two NULL-terminated strings.
600 * The strings are considered equal iff their length is equal
601 * and both strings consist of the same sequence of characters
602 * when converted to lower case.
603 *
604 * A string S1 is less than another string S2 if it has a character with
605 * lower value at the first character position where the strings differ.
606 * If the strings differ in length, the shorter one is treated as if
607 * padded by characters with a value of zero.
608 *
609 * @param s1 First string to compare.
610 * @param s2 Second string to compare.
611 *
612 * @return 0 if the strings are equal, -1 if the first is less than the second,
613 * 1 if the second is less than the first.
614 *
615 */
616int str_casecmp(const char *s1, const char *s2)
617{
618 wchar_t c1 = 0;
619 wchar_t c2 = 0;
620
621 size_t off1 = 0;
622 size_t off2 = 0;
623
624 while (true) {
625 c1 = tolower(str_decode(s1, &off1, STR_NO_LIMIT));
626 c2 = tolower(str_decode(s2, &off2, STR_NO_LIMIT));
627
628 if (c1 < c2)
629 return -1;
630
631 if (c1 > c2)
632 return 1;
633
634 if (c1 == 0 || c2 == 0)
635 break;
636 }
637
638 return 0;
639}
640
641/** Compare two NULL terminated strings with length limit in case-insensitive
642 * manner.
643 *
644 * Do a char-by-char comparison of two NULL-terminated strings.
645 * The strings are considered equal iff
646 * min(str_length(s1), max_len) == min(str_length(s2), max_len)
647 * and both strings consist of the same sequence of characters,
648 * up to max_len characters.
649 *
650 * A string S1 is less than another string S2 if it has a character with
651 * lower value at the first character position where the strings differ.
652 * If the strings differ in length, the shorter one is treated as if
653 * padded by characters with a value of zero. Only the first max_len
654 * characters are considered.
655 *
656 * @param s1 First string to compare.
657 * @param s2 Second string to compare.
658 * @param max_len Maximum number of characters to consider.
659 *
660 * @return 0 if the strings are equal, -1 if the first is less than the second,
661 * 1 if the second is less than the first.
662 *
663 */
664int str_lcasecmp(const char *s1, const char *s2, size_t max_len)
665{
666 wchar_t c1 = 0;
667 wchar_t c2 = 0;
668
669 size_t off1 = 0;
670 size_t off2 = 0;
671
672 size_t len = 0;
673
674 while (true) {
675 if (len >= max_len)
676 break;
677
678 c1 = tolower(str_decode(s1, &off1, STR_NO_LIMIT));
679 c2 = tolower(str_decode(s2, &off2, STR_NO_LIMIT));
680
681 if (c1 < c2)
682 return -1;
683
684 if (c1 > c2)
685 return 1;
686
687 if (c1 == 0 || c2 == 0)
688 break;
689
690 ++len;
691 }
692
693 return 0;
694
695}
696
697/** Test whether p is a prefix of s.
698 *
699 * Do a char-by-char comparison of two NULL-terminated strings
700 * and determine if p is a prefix of s.
701 *
702 * @param s The string in which to look
703 * @param p The string to check if it is a prefix of s
704 *
705 * @return true iff p is prefix of s else false
706 *
707 */
708bool str_test_prefix(const char *s, const char *p)
709{
710 wchar_t c1 = 0;
711 wchar_t c2 = 0;
712
713 size_t off1 = 0;
714 size_t off2 = 0;
715
716 while (true) {
717 c1 = str_decode(s, &off1, STR_NO_LIMIT);
718 c2 = str_decode(p, &off2, STR_NO_LIMIT);
719
720 if (c2 == 0)
721 return true;
722
723 if (c1 != c2)
724 return false;
725
726 if (c1 == 0)
727 break;
728 }
729
730 return false;
731}
732
733/** Copy string.
734 *
735 * Copy source string @a src to destination buffer @a dest.
736 * No more than @a size bytes are written. If the size of the output buffer
737 * is at least one byte, the output string will always be well-formed, i.e.
738 * null-terminated and containing only complete characters.
739 *
740 * @param dest Destination buffer.
741 * @param count Size of the destination buffer (must be > 0).
742 * @param src Source string.
743 *
744 */
745void str_cpy(char *dest, size_t size, const char *src)
746{
747 /* There must be space for a null terminator in the buffer. */
748 assert(size > 0);
749
750 size_t src_off = 0;
751 size_t dest_off = 0;
752
753 wchar_t ch;
754 while ((ch = str_decode(src, &src_off, STR_NO_LIMIT)) != 0) {
755 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
756 break;
757 }
758
759 dest[dest_off] = '\0';
760}
761
762/** Copy size-limited substring.
763 *
764 * Copy prefix of string @a src of max. size @a size to destination buffer
765 * @a dest. No more than @a size bytes are written. The output string will
766 * always be well-formed, i.e. null-terminated and containing only complete
767 * characters.
768 *
769 * No more than @a n bytes are read from the input string, so it does not
770 * have to be null-terminated.
771 *
772 * @param dest Destination buffer.
773 * @param count Size of the destination buffer (must be > 0).
774 * @param src Source string.
775 * @param n Maximum number of bytes to read from @a src.
776 *
777 */
778void str_ncpy(char *dest, size_t size, const char *src, size_t n)
779{
780 /* There must be space for a null terminator in the buffer. */
781 assert(size > 0);
782
783 size_t src_off = 0;
784 size_t dest_off = 0;
785
786 wchar_t ch;
787 while ((ch = str_decode(src, &src_off, n)) != 0) {
788 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
789 break;
790 }
791
792 dest[dest_off] = '\0';
793}
794
795/** Append one string to another.
796 *
797 * Append source string @a src to string in destination buffer @a dest.
798 * Size of the destination buffer is @a dest. If the size of the output buffer
799 * is at least one byte, the output string will always be well-formed, i.e.
800 * null-terminated and containing only complete characters.
801 *
802 * @param dest Destination buffer.
803 * @param count Size of the destination buffer.
804 * @param src Source string.
805 */
806void str_append(char *dest, size_t size, const char *src)
807{
808 size_t dstr_size;
809
810 dstr_size = str_size(dest);
811 if (dstr_size >= size)
812 return;
813
814 str_cpy(dest + dstr_size, size - dstr_size, src);
815}
816
817/** Convert space-padded ASCII to string.
818 *
819 * Common legacy text encoding in hardware is 7-bit ASCII fitted into
820 * a fixed-width byte buffer (bit 7 always zero), right-padded with spaces
821 * (ASCII 0x20). Convert space-padded ascii to string representation.
822 *
823 * If the text does not fit into the destination buffer, the function converts
824 * as many characters as possible and returns EOVERFLOW.
825 *
826 * If the text contains non-ASCII bytes (with bit 7 set), the whole string is
827 * converted anyway and invalid characters are replaced with question marks
828 * (U_SPECIAL) and the function returns EIO.
829 *
830 * Regardless of return value upon return @a dest will always be well-formed.
831 *
832 * @param dest Destination buffer
833 * @param size Size of destination buffer
834 * @param src Space-padded ASCII.
835 * @param n Size of the source buffer in bytes.
836 *
837 * @return EOK on success, EOVERFLOW if the text does not fit
838 * destination buffer, EIO if the text contains
839 * non-ASCII bytes.
840 */
841int spascii_to_str(char *dest, size_t size, const uint8_t *src, size_t n)
842{
843 size_t sidx;
844 size_t didx;
845 size_t dlast;
846 uint8_t byte;
847 int rc;
848 int result;
849
850 /* There must be space for a null terminator in the buffer. */
851 assert(size > 0);
852 result = EOK;
853
854 didx = 0;
855 dlast = 0;
856 for (sidx = 0; sidx < n; ++sidx) {
857 byte = src[sidx];
858 if (!ascii_check(byte)) {
859 byte = U_SPECIAL;
860 result = EIO;
861 }
862
863 rc = chr_encode(byte, dest, &didx, size - 1);
864 if (rc != EOK) {
865 assert(rc == EOVERFLOW);
866 dest[didx] = '\0';
867 return rc;
868 }
869
870 /* Remember dest index after last non-empty character */
871 if (byte != 0x20)
872 dlast = didx;
873 }
874
875 /* Terminate string after last non-empty character */
876 dest[dlast] = '\0';
877 return result;
878}
879
880/** Convert wide string to string.
881 *
882 * Convert wide string @a src to string. The output is written to the buffer
883 * specified by @a dest and @a size. @a size must be non-zero and the string
884 * written will always be well-formed.
885 *
886 * @param dest Destination buffer.
887 * @param size Size of the destination buffer.
888 * @param src Source wide string.
889 */
890void wstr_to_str(char *dest, size_t size, const wchar_t *src)
891{
892 wchar_t ch;
893 size_t src_idx;
894 size_t dest_off;
895
896 /* There must be space for a null terminator in the buffer. */
897 assert(size > 0);
898
899 src_idx = 0;
900 dest_off = 0;
901
902 while ((ch = src[src_idx++]) != 0) {
903 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
904 break;
905 }
906
907 dest[dest_off] = '\0';
908}
909
910/** Convert UTF16 string to string.
911 *
912 * Convert utf16 string @a src to string. The output is written to the buffer
913 * specified by @a dest and @a size. @a size must be non-zero and the string
914 * written will always be well-formed. Surrogate pairs also supported.
915 *
916 * @param dest Destination buffer.
917 * @param size Size of the destination buffer.
918 * @param src Source utf16 string.
919 *
920 * @return EOK, if success, negative otherwise.
921 */
922int utf16_to_str(char *dest, size_t size, const uint16_t *src)
923{
924 size_t idx = 0, dest_off = 0;
925 wchar_t ch;
926 int rc = EOK;
927
928 /* There must be space for a null terminator in the buffer. */
929 assert(size > 0);
930
931 while (src[idx]) {
932 if ((src[idx] & 0xfc00) == 0xd800) {
933 if (src[idx + 1] && (src[idx + 1] & 0xfc00) == 0xdc00) {
934 ch = 0x10000;
935 ch += (src[idx] & 0x03FF) << 10;
936 ch += (src[idx + 1] & 0x03FF);
937 idx += 2;
938 }
939 else
940 break;
941 } else {
942 ch = src[idx];
943 idx++;
944 }
945 rc = chr_encode(ch, dest, &dest_off, size - 1);
946 if (rc != EOK)
947 break;
948 }
949 dest[dest_off] = '\0';
950 return rc;
951}
952
953/** Convert string to UTF16 string.
954 *
955 * Convert string @a src to utf16 string. The output is written to the buffer
956 * specified by @a dest and @a dlen. @a dlen must be non-zero and the string
957 * written will always be well-formed. Surrogate pairs also supported.
958 *
959 * @param dest Destination buffer.
960 * @param dlen Number of utf16 characters that fit in the destination buffer.
961 * @param src Source string.
962 *
963 * @return EOK, if success, negative otherwise.
964 */
965int str_to_utf16(uint16_t *dest, size_t dlen, const char *src)
966{
967 int rc = EOK;
968 size_t offset = 0;
969 size_t idx = 0;
970 wchar_t c;
971
972 assert(dlen > 0);
973
974 while ((c = str_decode(src, &offset, STR_NO_LIMIT)) != 0) {
975 if (c > 0x10000) {
976 if (idx + 2 >= dlen - 1) {
977 rc = EOVERFLOW;
978 break;
979 }
980 c = (c - 0x10000);
981 dest[idx] = 0xD800 | (c >> 10);
982 dest[idx + 1] = 0xDC00 | (c & 0x3FF);
983 idx++;
984 } else {
985 dest[idx] = c;
986 }
987
988 idx++;
989 if (idx >= dlen - 1) {
990 rc = EOVERFLOW;
991 break;
992 }
993 }
994
995 dest[idx] = '\0';
996 return rc;
997}
998
999/** Get size of UTF-16 string.
1000 *
1001 * Get the number of words which are used by the UTF-16 string @a ustr
1002 * (excluding the NULL-terminator).
1003 *
1004 * @param ustr UTF-16 string to consider.
1005 *
1006 * @return Number of words used by the UTF-16 string
1007 *
1008 */
1009size_t utf16_wsize(const uint16_t *ustr)
1010{
1011 size_t wsize = 0;
1012
1013 while (*ustr++ != 0)
1014 wsize++;
1015
1016 return wsize;
1017}
1018
1019
1020/** Convert wide string to new string.
1021 *
1022 * Convert wide string @a src to string. Space for the new string is allocated
1023 * on the heap.
1024 *
1025 * @param src Source wide string.
1026 * @return New string.
1027 */
1028char *wstr_to_astr(const wchar_t *src)
1029{
1030 char dbuf[STR_BOUNDS(1)];
1031 char *str;
1032 wchar_t ch;
1033
1034 size_t src_idx;
1035 size_t dest_off;
1036 size_t dest_size;
1037
1038 /* Compute size of encoded string. */
1039
1040 src_idx = 0;
1041 dest_size = 0;
1042
1043 while ((ch = src[src_idx++]) != 0) {
1044 dest_off = 0;
1045 if (chr_encode(ch, dbuf, &dest_off, STR_BOUNDS(1)) != EOK)
1046 break;
1047 dest_size += dest_off;
1048 }
1049
1050 str = malloc(dest_size + 1);
1051 if (str == NULL)
1052 return NULL;
1053
1054 /* Encode string. */
1055
1056 src_idx = 0;
1057 dest_off = 0;
1058
1059 while ((ch = src[src_idx++]) != 0) {
1060 if (chr_encode(ch, str, &dest_off, dest_size) != EOK)
1061 break;
1062 }
1063
1064 str[dest_size] = '\0';
1065 return str;
1066}
1067
1068
1069/** Convert string to wide string.
1070 *
1071 * Convert string @a src to wide string. The output is written to the
1072 * buffer specified by @a dest and @a dlen. @a dlen must be non-zero
1073 * and the wide string written will always be null-terminated.
1074 *
1075 * @param dest Destination buffer.
1076 * @param dlen Length of destination buffer (number of wchars).
1077 * @param src Source string.
1078 */
1079void str_to_wstr(wchar_t *dest, size_t dlen, const char *src)
1080{
1081 size_t offset;
1082 size_t di;
1083 wchar_t c;
1084
1085 assert(dlen > 0);
1086
1087 offset = 0;
1088 di = 0;
1089
1090 do {
1091 if (di >= dlen - 1)
1092 break;
1093
1094 c = str_decode(src, &offset, STR_NO_LIMIT);
1095 dest[di++] = c;
1096 } while (c != '\0');
1097
1098 dest[dlen - 1] = '\0';
1099}
1100
1101/** Convert string to wide string.
1102 *
1103 * Convert string @a src to wide string. A new wide NULL-terminated
1104 * string will be allocated on the heap.
1105 *
1106 * @param src Source string.
1107 */
1108wchar_t *str_to_awstr(const char *str)
1109{
1110 size_t len = str_length(str);
1111
1112 wchar_t *wstr = calloc(len+1, sizeof(wchar_t));
1113 if (wstr == NULL)
1114 return NULL;
1115
1116 str_to_wstr(wstr, len + 1, str);
1117 return wstr;
1118}
1119
1120/** Find first occurence of character in string.
1121 *
1122 * @param str String to search.
1123 * @param ch Character to look for.
1124 *
1125 * @return Pointer to character in @a str or NULL if not found.
1126 */
1127char *str_chr(const char *str, wchar_t ch)
1128{
1129 wchar_t acc;
1130 size_t off = 0;
1131 size_t last = 0;
1132
1133 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1134 if (acc == ch)
1135 return (char *) (str + last);
1136 last = off;
1137 }
1138
1139 return NULL;
1140}
1141
1142/** Removes specified trailing characters from a string.
1143 *
1144 * @param str String to remove from.
1145 * @param ch Character to remove.
1146 */
1147void str_rtrim(char *str, wchar_t ch)
1148{
1149 size_t off = 0;
1150 size_t pos = 0;
1151 wchar_t c;
1152 bool update_last_chunk = true;
1153 char *last_chunk = NULL;
1154
1155 while ((c = str_decode(str, &off, STR_NO_LIMIT))) {
1156 if (c != ch) {
1157 update_last_chunk = true;
1158 last_chunk = NULL;
1159 } else if (update_last_chunk) {
1160 update_last_chunk = false;
1161 last_chunk = (str + pos);
1162 }
1163 pos = off;
1164 }
1165
1166 if (last_chunk)
1167 *last_chunk = '\0';
1168}
1169
1170/** Removes specified leading characters from a string.
1171 *
1172 * @param str String to remove from.
1173 * @param ch Character to remove.
1174 */
1175void str_ltrim(char *str, wchar_t ch)
1176{
1177 wchar_t acc;
1178 size_t off = 0;
1179 size_t pos = 0;
1180 size_t str_sz = str_size(str);
1181
1182 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1183 if (acc != ch)
1184 break;
1185 else
1186 pos = off;
1187 }
1188
1189 if (pos > 0) {
1190 memmove(str, &str[pos], str_sz - pos);
1191 pos = str_sz - pos;
1192 str[pos] = '\0';
1193 }
1194}
1195
1196/** Find last occurence of character in string.
1197 *
1198 * @param str String to search.
1199 * @param ch Character to look for.
1200 *
1201 * @return Pointer to character in @a str or NULL if not found.
1202 */
1203char *str_rchr(const char *str, wchar_t ch)
1204{
1205 wchar_t acc;
1206 size_t off = 0;
1207 size_t last = 0;
1208 const char *res = NULL;
1209
1210 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1211 if (acc == ch)
1212 res = (str + last);
1213 last = off;
1214 }
1215
1216 return (char *) res;
1217}
1218
1219/** Insert a wide character into a wide string.
1220 *
1221 * Insert a wide character into a wide string at position
1222 * @a pos. The characters after the position are shifted.
1223 *
1224 * @param str String to insert to.
1225 * @param ch Character to insert to.
1226 * @param pos Character index where to insert.
1227 @ @param max_pos Characters in the buffer.
1228 *
1229 * @return True if the insertion was sucessful, false if the position
1230 * is out of bounds.
1231 *
1232 */
1233bool wstr_linsert(wchar_t *str, wchar_t ch, size_t pos, size_t max_pos)
1234{
1235 size_t len = wstr_length(str);
1236
1237 if ((pos > len) || (pos + 1 > max_pos))
1238 return false;
1239
1240 size_t i;
1241 for (i = len; i + 1 > pos; i--)
1242 str[i + 1] = str[i];
1243
1244 str[pos] = ch;
1245
1246 return true;
1247}
1248
1249/** Remove a wide character from a wide string.
1250 *
1251 * Remove a wide character from a wide string at position
1252 * @a pos. The characters after the position are shifted.
1253 *
1254 * @param str String to remove from.
1255 * @param pos Character index to remove.
1256 *
1257 * @return True if the removal was sucessful, false if the position
1258 * is out of bounds.
1259 *
1260 */
1261bool wstr_remove(wchar_t *str, size_t pos)
1262{
1263 size_t len = wstr_length(str);
1264
1265 if (pos >= len)
1266 return false;
1267
1268 size_t i;
1269 for (i = pos + 1; i <= len; i++)
1270 str[i - 1] = str[i];
1271
1272 return true;
1273}
1274
1275/** Convert string to a number.
1276 * Core of strtol and strtoul functions.
1277 *
1278 * @param nptr Pointer to string.
1279 * @param endptr If not NULL, function stores here pointer to the first
1280 * invalid character.
1281 * @param base Zero or number between 2 and 36 inclusive.
1282 * @param sgn It's set to 1 if minus found.
1283 * @return Result of conversion.
1284 */
1285static unsigned long
1286_strtoul(const char *nptr, char **endptr, int base, char *sgn)
1287{
1288 unsigned char c;
1289 unsigned long result = 0;
1290 unsigned long a, b;
1291 const char *str = nptr;
1292 const char *tmpptr;
1293
1294 while (isspace(*str))
1295 str++;
1296
1297 if (*str == '-') {
1298 *sgn = 1;
1299 ++str;
1300 } else if (*str == '+')
1301 ++str;
1302
1303 if (base) {
1304 if ((base == 1) || (base > 36)) {
1305 /* FIXME: set errno to EINVAL */
1306 return 0;
1307 }
1308 if ((base == 16) && (*str == '0') && ((str[1] == 'x') ||
1309 (str[1] == 'X'))) {
1310 str += 2;
1311 }
1312 } else {
1313 base = 10;
1314
1315 if (*str == '0') {
1316 base = 8;
1317 if ((str[1] == 'X') || (str[1] == 'x')) {
1318 base = 16;
1319 str += 2;
1320 }
1321 }
1322 }
1323
1324 tmpptr = str;
1325
1326 while (*str) {
1327 c = *str;
1328 c = (c >= 'a' ? c - 'a' + 10 : (c >= 'A' ? c - 'A' + 10 :
1329 (c <= '9' ? c - '0' : 0xff)));
1330 if (c >= base) {
1331 break;
1332 }
1333
1334 a = (result & 0xff) * base + c;
1335 b = (result >> 8) * base + (a >> 8);
1336
1337 if (b > (ULONG_MAX >> 8)) {
1338 /* overflow */
1339 /* FIXME: errno = ERANGE*/
1340 return ULONG_MAX;
1341 }
1342
1343 result = (b << 8) + (a & 0xff);
1344 ++str;
1345 }
1346
1347 if (str == tmpptr) {
1348 /*
1349 * No number was found => first invalid character is the first
1350 * character of the string.
1351 */
1352 /* FIXME: set errno to EINVAL */
1353 str = nptr;
1354 result = 0;
1355 }
1356
1357 if (endptr)
1358 *endptr = (char *) str;
1359
1360 if (nptr == str) {
1361 /*FIXME: errno = EINVAL*/
1362 return 0;
1363 }
1364
1365 return result;
1366}
1367
1368/** Convert initial part of string to long int according to given base.
1369 * The number may begin with an arbitrary number of whitespaces followed by
1370 * optional sign (`+' or `-'). If the base is 0 or 16, the prefix `0x' may be
1371 * inserted and the number will be taken as hexadecimal one. If the base is 0
1372 * and the number begin with a zero, number will be taken as octal one (as with
1373 * base 8). Otherwise the base 0 is taken as decimal.
1374 *
1375 * @param nptr Pointer to string.
1376 * @param endptr If not NULL, function stores here pointer to the first
1377 * invalid character.
1378 * @param base Zero or number between 2 and 36 inclusive.
1379 * @return Result of conversion.
1380 */
1381long int strtol(const char *nptr, char **endptr, int base)
1382{
1383 char sgn = 0;
1384 unsigned long number = 0;
1385
1386 number = _strtoul(nptr, endptr, base, &sgn);
1387
1388 if (number > LONG_MAX) {
1389 if ((sgn) && (number == (unsigned long) (LONG_MAX) + 1)) {
1390 /* FIXME: set 0 to errno */
1391 return number;
1392 }
1393 /* FIXME: set ERANGE to errno */
1394 return (sgn ? LONG_MIN : LONG_MAX);
1395 }
1396
1397 return (sgn ? -number : number);
1398}
1399
1400/** Duplicate string.
1401 *
1402 * Allocate a new string and copy characters from the source
1403 * string into it. The duplicate string is allocated via sleeping
1404 * malloc(), thus this function can sleep in no memory conditions.
1405 *
1406 * The allocation cannot fail and the return value is always
1407 * a valid pointer. The duplicate string is always a well-formed
1408 * null-terminated UTF-8 string, but it can differ from the source
1409 * string on the byte level.
1410 *
1411 * @param src Source string.
1412 *
1413 * @return Duplicate string.
1414 *
1415 */
1416char *str_dup(const char *src)
1417{
1418 size_t size = str_size(src) + 1;
1419 char *dest = (char *) malloc(size);
1420 if (dest == NULL)
1421 return (char *) NULL;
1422
1423 str_cpy(dest, size, src);
1424 return dest;
1425}
1426
1427/** Duplicate string with size limit.
1428 *
1429 * Allocate a new string and copy up to @max_size bytes from the source
1430 * string into it. The duplicate string is allocated via sleeping
1431 * malloc(), thus this function can sleep in no memory conditions.
1432 * No more than @max_size + 1 bytes is allocated, but if the size
1433 * occupied by the source string is smaller than @max_size + 1,
1434 * less is allocated.
1435 *
1436 * The allocation cannot fail and the return value is always
1437 * a valid pointer. The duplicate string is always a well-formed
1438 * null-terminated UTF-8 string, but it can differ from the source
1439 * string on the byte level.
1440 *
1441 * @param src Source string.
1442 * @param n Maximum number of bytes to duplicate.
1443 *
1444 * @return Duplicate string.
1445 *
1446 */
1447char *str_ndup(const char *src, size_t n)
1448{
1449 size_t size = str_size(src);
1450 if (size > n)
1451 size = n;
1452
1453 char *dest = (char *) malloc(size + 1);
1454 if (dest == NULL)
1455 return (char *) NULL;
1456
1457 str_ncpy(dest, size + 1, src, size);
1458 return dest;
1459}
1460
1461/** Convert initial part of string to unsigned long according to given base.
1462 * The number may begin with an arbitrary number of whitespaces followed by
1463 * optional sign (`+' or `-'). If the base is 0 or 16, the prefix `0x' may be
1464 * inserted and the number will be taken as hexadecimal one. If the base is 0
1465 * and the number begin with a zero, number will be taken as octal one (as with
1466 * base 8). Otherwise the base 0 is taken as decimal.
1467 *
1468 * @param nptr Pointer to string.
1469 * @param endptr If not NULL, function stores here pointer to the first
1470 * invalid character
1471 * @param base Zero or number between 2 and 36 inclusive.
1472 * @return Result of conversion.
1473 */
1474unsigned long strtoul(const char *nptr, char **endptr, int base)
1475{
1476 char sgn = 0;
1477 unsigned long number = 0;
1478
1479 number = _strtoul(nptr, endptr, base, &sgn);
1480
1481 return (sgn ? -number : number);
1482}
1483
1484/** Split string by delimiters.
1485 *
1486 * @param s String to be tokenized. May not be NULL.
1487 * @param delim String with the delimiters.
1488 * @param next Variable which will receive the pointer to the
1489 * continuation of the string following the first
1490 * occurrence of any of the delimiter characters.
1491 * May be NULL.
1492 * @return Pointer to the prefix of @a s before the first
1493 * delimiter character. NULL if no such prefix
1494 * exists.
1495 */
1496char *str_tok(char *s, const char *delim, char **next)
1497{
1498 char *start, *end;
1499
1500 if (!s)
1501 return NULL;
1502
1503 size_t len = str_size(s);
1504 size_t cur;
1505 size_t tmp;
1506 wchar_t ch;
1507
1508 /* Skip over leading delimiters. */
1509 for (tmp = cur = 0;
1510 (ch = str_decode(s, &tmp, len)) && str_chr(delim, ch); /**/)
1511 cur = tmp;
1512 start = &s[cur];
1513
1514 /* Skip over token characters. */
1515 for (tmp = cur;
1516 (ch = str_decode(s, &tmp, len)) && !str_chr(delim, ch); /**/)
1517 cur = tmp;
1518 end = &s[cur];
1519 if (next)
1520 *next = (ch ? &s[tmp] : &s[cur]);
1521
1522 if (start == end)
1523 return NULL; /* No more tokens. */
1524
1525 /* Overwrite delimiter with NULL terminator. */
1526 *end = '\0';
1527 return start;
1528}
1529
1530/** Convert string to uint64_t (internal variant).
1531 *
1532 * @param nptr Pointer to string.
1533 * @param endptr Pointer to the first invalid character is stored here.
1534 * @param base Zero or number between 2 and 36 inclusive.
1535 * @param neg Indication of unary minus is stored here.
1536 * @apram result Result of the conversion.
1537 *
1538 * @return EOK if conversion was successful.
1539 *
1540 */
1541static int str_uint(const char *nptr, char **endptr, unsigned int base,
1542 bool *neg, uint64_t *result)
1543{
1544 assert(endptr != NULL);
1545 assert(neg != NULL);
1546 assert(result != NULL);
1547
1548 *neg = false;
1549 const char *str = nptr;
1550
1551 /* Ignore leading whitespace */
1552 while (isspace(*str))
1553 str++;
1554
1555 if (*str == '-') {
1556 *neg = true;
1557 str++;
1558 } else if (*str == '+')
1559 str++;
1560
1561 if (base == 0) {
1562 /* Decode base if not specified */
1563 base = 10;
1564
1565 if (*str == '0') {
1566 base = 8;
1567 str++;
1568
1569 switch (*str) {
1570 case 'b':
1571 case 'B':
1572 base = 2;
1573 str++;
1574 break;
1575 case 'o':
1576 case 'O':
1577 base = 8;
1578 str++;
1579 break;
1580 case 'd':
1581 case 'D':
1582 case 't':
1583 case 'T':
1584 base = 10;
1585 str++;
1586 break;
1587 case 'x':
1588 case 'X':
1589 base = 16;
1590 str++;
1591 break;
1592 default:
1593 str--;
1594 }
1595 }
1596 } else {
1597 /* Check base range */
1598 if ((base < 2) || (base > 36)) {
1599 *endptr = (char *) str;
1600 return EINVAL;
1601 }
1602 }
1603
1604 *result = 0;
1605 const char *startstr = str;
1606
1607 while (*str != 0) {
1608 unsigned int digit;
1609
1610 if ((*str >= 'a') && (*str <= 'z'))
1611 digit = *str - 'a' + 10;
1612 else if ((*str >= 'A') && (*str <= 'Z'))
1613 digit = *str - 'A' + 10;
1614 else if ((*str >= '0') && (*str <= '9'))
1615 digit = *str - '0';
1616 else
1617 break;
1618
1619 if (digit >= base)
1620 break;
1621
1622 uint64_t prev = *result;
1623 *result = (*result) * base + digit;
1624
1625 if (*result < prev) {
1626 /* Overflow */
1627 *endptr = (char *) str;
1628 return EOVERFLOW;
1629 }
1630
1631 str++;
1632 }
1633
1634 if (str == startstr) {
1635 /*
1636 * No digits were decoded => first invalid character is
1637 * the first character of the string.
1638 */
1639 str = nptr;
1640 }
1641
1642 *endptr = (char *) str;
1643
1644 if (str == nptr)
1645 return EINVAL;
1646
1647 return EOK;
1648}
1649
1650/** Convert string to uint8_t.
1651 *
1652 * @param nptr Pointer to string.
1653 * @param endptr If not NULL, pointer to the first invalid character
1654 * is stored here.
1655 * @param base Zero or number between 2 and 36 inclusive.
1656 * @param strict Do not allow any trailing characters.
1657 * @param result Result of the conversion.
1658 *
1659 * @return EOK if conversion was successful.
1660 *
1661 */
1662int str_uint8_t(const char *nptr, const char **endptr, unsigned int base,
1663 bool strict, uint8_t *result)
1664{
1665 assert(result != NULL);
1666
1667 bool neg;
1668 char *lendptr;
1669 uint64_t res;
1670 int ret = str_uint(nptr, &lendptr, base, &neg, &res);
1671
1672 if (endptr != NULL)
1673 *endptr = (char *) lendptr;
1674
1675 if (ret != EOK)
1676 return ret;
1677
1678 /* Do not allow negative values */
1679 if (neg)
1680 return EINVAL;
1681
1682 /* Check whether we are at the end of
1683 the string in strict mode */
1684 if ((strict) && (*lendptr != 0))
1685 return EINVAL;
1686
1687 /* Check for overflow */
1688 uint8_t _res = (uint8_t) res;
1689 if (_res != res)
1690 return EOVERFLOW;
1691
1692 *result = _res;
1693
1694 return EOK;
1695}
1696
1697/** Convert string to uint16_t.
1698 *
1699 * @param nptr Pointer to string.
1700 * @param endptr If not NULL, pointer to the first invalid character
1701 * is stored here.
1702 * @param base Zero or number between 2 and 36 inclusive.
1703 * @param strict Do not allow any trailing characters.
1704 * @param result Result of the conversion.
1705 *
1706 * @return EOK if conversion was successful.
1707 *
1708 */
1709int str_uint16_t(const char *nptr, const char **endptr, unsigned int base,
1710 bool strict, uint16_t *result)
1711{
1712 assert(result != NULL);
1713
1714 bool neg;
1715 char *lendptr;
1716 uint64_t res;
1717 int ret = str_uint(nptr, &lendptr, base, &neg, &res);
1718
1719 if (endptr != NULL)
1720 *endptr = (char *) lendptr;
1721
1722 if (ret != EOK)
1723 return ret;
1724
1725 /* Do not allow negative values */
1726 if (neg)
1727 return EINVAL;
1728
1729 /* Check whether we are at the end of
1730 the string in strict mode */
1731 if ((strict) && (*lendptr != 0))
1732 return EINVAL;
1733
1734 /* Check for overflow */
1735 uint16_t _res = (uint16_t) res;
1736 if (_res != res)
1737 return EOVERFLOW;
1738
1739 *result = _res;
1740
1741 return EOK;
1742}
1743
1744/** Convert string to uint32_t.
1745 *
1746 * @param nptr Pointer to string.
1747 * @param endptr If not NULL, pointer to the first invalid character
1748 * is stored here.
1749 * @param base Zero or number between 2 and 36 inclusive.
1750 * @param strict Do not allow any trailing characters.
1751 * @param result Result of the conversion.
1752 *
1753 * @return EOK if conversion was successful.
1754 *
1755 */
1756int str_uint32_t(const char *nptr, const char **endptr, unsigned int base,
1757 bool strict, uint32_t *result)
1758{
1759 assert(result != NULL);
1760
1761 bool neg;
1762 char *lendptr;
1763 uint64_t res;
1764 int ret = str_uint(nptr, &lendptr, base, &neg, &res);
1765
1766 if (endptr != NULL)
1767 *endptr = (char *) lendptr;
1768
1769 if (ret != EOK)
1770 return ret;
1771
1772 /* Do not allow negative values */
1773 if (neg)
1774 return EINVAL;
1775
1776 /* Check whether we are at the end of
1777 the string in strict mode */
1778 if ((strict) && (*lendptr != 0))
1779 return EINVAL;
1780
1781 /* Check for overflow */
1782 uint32_t _res = (uint32_t) res;
1783 if (_res != res)
1784 return EOVERFLOW;
1785
1786 *result = _res;
1787
1788 return EOK;
1789}
1790
1791/** Convert string to uint64_t.
1792 *
1793 * @param nptr Pointer to string.
1794 * @param endptr If not NULL, pointer to the first invalid character
1795 * is stored here.
1796 * @param base Zero or number between 2 and 36 inclusive.
1797 * @param strict Do not allow any trailing characters.
1798 * @param result Result of the conversion.
1799 *
1800 * @return EOK if conversion was successful.
1801 *
1802 */
1803int str_uint64_t(const char *nptr, const char **endptr, unsigned int base,
1804 bool strict, uint64_t *result)
1805{
1806 assert(result != NULL);
1807
1808 bool neg;
1809 char *lendptr;
1810 int ret = str_uint(nptr, &lendptr, base, &neg, result);
1811
1812 if (endptr != NULL)
1813 *endptr = (char *) lendptr;
1814
1815 if (ret != EOK)
1816 return ret;
1817
1818 /* Do not allow negative values */
1819 if (neg)
1820 return EINVAL;
1821
1822 /* Check whether we are at the end of
1823 the string in strict mode */
1824 if ((strict) && (*lendptr != 0))
1825 return EINVAL;
1826
1827 return EOK;
1828}
1829
1830/** Convert string to size_t.
1831 *
1832 * @param nptr Pointer to string.
1833 * @param endptr If not NULL, pointer to the first invalid character
1834 * is stored here.
1835 * @param base Zero or number between 2 and 36 inclusive.
1836 * @param strict Do not allow any trailing characters.
1837 * @param result Result of the conversion.
1838 *
1839 * @return EOK if conversion was successful.
1840 *
1841 */
1842int str_size_t(const char *nptr, const char **endptr, unsigned int base,
1843 bool strict, size_t *result)
1844{
1845 assert(result != NULL);
1846
1847 bool neg;
1848 char *lendptr;
1849 uint64_t res;
1850 int ret = str_uint(nptr, &lendptr, base, &neg, &res);
1851
1852 if (endptr != NULL)
1853 *endptr = (char *) lendptr;
1854
1855 if (ret != EOK)
1856 return ret;
1857
1858 /* Do not allow negative values */
1859 if (neg)
1860 return EINVAL;
1861
1862 /* Check whether we are at the end of
1863 the string in strict mode */
1864 if ((strict) && (*lendptr != 0))
1865 return EINVAL;
1866
1867 /* Check for overflow */
1868 size_t _res = (size_t) res;
1869 if (_res != res)
1870 return EOVERFLOW;
1871
1872 *result = _res;
1873
1874 return EOK;
1875}
1876
1877void order_suffix(const uint64_t val, uint64_t *rv, char *suffix)
1878{
1879 if (val > UINT64_C(10000000000000000000)) {
1880 *rv = val / UINT64_C(1000000000000000000);
1881 *suffix = 'Z';
1882 } else if (val > UINT64_C(1000000000000000000)) {
1883 *rv = val / UINT64_C(1000000000000000);
1884 *suffix = 'E';
1885 } else if (val > UINT64_C(1000000000000000)) {
1886 *rv = val / UINT64_C(1000000000000);
1887 *suffix = 'T';
1888 } else if (val > UINT64_C(1000000000000)) {
1889 *rv = val / UINT64_C(1000000000);
1890 *suffix = 'G';
1891 } else if (val > UINT64_C(1000000000)) {
1892 *rv = val / UINT64_C(1000000);
1893 *suffix = 'M';
1894 } else if (val > UINT64_C(1000000)) {
1895 *rv = val / UINT64_C(1000);
1896 *suffix = 'k';
1897 } else {
1898 *rv = val;
1899 *suffix = ' ';
1900 }
1901}
1902
1903void bin_order_suffix(const uint64_t val, uint64_t *rv, const char **suffix,
1904 bool fixed)
1905{
1906 if (val > UINT64_C(1152921504606846976)) {
1907 *rv = val / UINT64_C(1125899906842624);
1908 *suffix = "EiB";
1909 } else if (val > UINT64_C(1125899906842624)) {
1910 *rv = val / UINT64_C(1099511627776);
1911 *suffix = "TiB";
1912 } else if (val > UINT64_C(1099511627776)) {
1913 *rv = val / UINT64_C(1073741824);
1914 *suffix = "GiB";
1915 } else if (val > UINT64_C(1073741824)) {
1916 *rv = val / UINT64_C(1048576);
1917 *suffix = "MiB";
1918 } else if (val > UINT64_C(1048576)) {
1919 *rv = val / UINT64_C(1024);
1920 *suffix = "KiB";
1921 } else {
1922 *rv = val;
1923 if (fixed)
1924 *suffix = "B ";
1925 else
1926 *suffix = "B";
1927 }
1928}
1929
1930/** @}
1931 */
Note: See TracBrowser for help on using the repository browser.