source: mainline/uspace/lib/c/generic/str.c@ 948222e4

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 948222e4 was 948222e4, checked in by Jiri Svoboda <jiri@…>, 7 years ago

A few more cases of for loops without iteration expression (which isn't really a for loop).

  • Property mode set to 100644
File size: 40.9 KB
RevLine 
[936351c1]1/*
[df4ed85]2 * Copyright (c) 2005 Martin Decky
[576845ec]3 * Copyright (c) 2008 Jiri Svoboda
[22cf42d9]4 * Copyright (c) 2011 Martin Sucha
[c4bbca8]5 * Copyright (c) 2011 Oleg Romanenko
[936351c1]6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * - Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * - Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * - The name of the author may not be used to endorse or promote products
18 * derived from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
[a46da63]32/** @addtogroup libc
[b2951e2]33 * @{
34 */
35/** @file
36 */
37
[19f857a]38#include <str.h>
[582a0b8]39#include <stddef.h>
[9539be6]40#include <stdint.h>
[38d150e]41#include <stdlib.h>
42#include <assert.h>
[e64c4b2]43#include <ctype.h>
[171f9a1]44#include <errno.h>
[f2b8cdc]45#include <align.h>
[095003a8]46#include <mem.h>
[16bfcd3]47#include <limits.h>
[171f9a1]48
[8e893ae]49/** Check the condition if wchar_t is signed */
[002fd5f]50#ifdef __WCHAR_UNSIGNED__
[8e893ae]51 #define WCHAR_SIGNED_CHECK(cond) (true)
52#else
53 #define WCHAR_SIGNED_CHECK(cond) (cond)
54#endif
55
[171f9a1]56/** Byte mask consisting of lowest @n bits (out of 8) */
57#define LO_MASK_8(n) ((uint8_t) ((1 << (n)) - 1))
58
59/** Byte mask consisting of lowest @n bits (out of 32) */
60#define LO_MASK_32(n) ((uint32_t) ((1 << (n)) - 1))
61
62/** Byte mask consisting of highest @n bits (out of 8) */
63#define HI_MASK_8(n) (~LO_MASK_8(8 - (n)))
64
65/** Number of data bits in a UTF-8 continuation byte */
66#define CONT_BITS 6
67
68/** Decode a single character from a string.
69 *
70 * Decode a single character from a string of size @a size. Decoding starts
71 * at @a offset and this offset is moved to the beginning of the next
72 * character. In case of decoding error, offset generally advances at least
73 * by one. However, offset is never moved beyond size.
74 *
75 * @param str String (not necessarily NULL-terminated).
76 * @param offset Byte offset in string where to start decoding.
77 * @param size Size of the string (in bytes).
78 *
79 * @return Value of decoded character, U_SPECIAL on decoding error or
80 * NULL if attempt to decode beyond @a size.
81 *
82 */
83wchar_t str_decode(const char *str, size_t *offset, size_t size)
84{
85 if (*offset + 1 > size)
86 return 0;
[a35b458]87
[171f9a1]88 /* First byte read from string */
89 uint8_t b0 = (uint8_t) str[(*offset)++];
[a35b458]90
[171f9a1]91 /* Determine code length */
[a35b458]92
[171f9a1]93 unsigned int b0_bits; /* Data bits in first byte */
94 unsigned int cbytes; /* Number of continuation bytes */
[a35b458]95
[171f9a1]96 if ((b0 & 0x80) == 0) {
97 /* 0xxxxxxx (Plain ASCII) */
98 b0_bits = 7;
99 cbytes = 0;
100 } else if ((b0 & 0xe0) == 0xc0) {
101 /* 110xxxxx 10xxxxxx */
102 b0_bits = 5;
103 cbytes = 1;
104 } else if ((b0 & 0xf0) == 0xe0) {
105 /* 1110xxxx 10xxxxxx 10xxxxxx */
106 b0_bits = 4;
107 cbytes = 2;
108 } else if ((b0 & 0xf8) == 0xf0) {
109 /* 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx */
110 b0_bits = 3;
111 cbytes = 3;
112 } else {
113 /* 10xxxxxx -- unexpected continuation byte */
114 return U_SPECIAL;
115 }
[a35b458]116
[171f9a1]117 if (*offset + cbytes > size)
118 return U_SPECIAL;
[a35b458]119
[171f9a1]120 wchar_t ch = b0 & LO_MASK_8(b0_bits);
[a35b458]121
[171f9a1]122 /* Decode continuation bytes */
123 while (cbytes > 0) {
124 uint8_t b = (uint8_t) str[(*offset)++];
[a35b458]125
[171f9a1]126 /* Must be 10xxxxxx */
127 if ((b & 0xc0) != 0x80)
128 return U_SPECIAL;
[a35b458]129
[171f9a1]130 /* Shift data bits to ch */
131 ch = (ch << CONT_BITS) | (wchar_t) (b & LO_MASK_8(CONT_BITS));
132 cbytes--;
133 }
[a35b458]134
[171f9a1]135 return ch;
136}
137
[568693b]138/** Decode a single character from a string to the left.
139 *
140 * Decode a single character from a string of size @a size. Decoding starts
141 * at @a offset and this offset is moved to the beginning of the previous
142 * character. In case of decoding error, offset generally decreases at least
143 * by one. However, offset is never moved before 0.
144 *
145 * @param str String (not necessarily NULL-terminated).
146 * @param offset Byte offset in string where to start decoding.
147 * @param size Size of the string (in bytes).
148 *
149 * @return Value of decoded character, U_SPECIAL on decoding error or
150 * NULL if attempt to decode beyond @a start of str.
151 *
152 */
153wchar_t str_decode_reverse(const char *str, size_t *offset, size_t size)
154{
155 if (*offset == 0)
156 return 0;
[a35b458]157
[568693b]158 size_t processed = 0;
159 /* Continue while continuation bytes found */
160 while (*offset > 0 && processed < 4) {
161 uint8_t b = (uint8_t) str[--(*offset)];
[a35b458]162
[568693b]163 if (processed == 0 && (b & 0x80) == 0) {
164 /* 0xxxxxxx (Plain ASCII) */
165 return b & 0x7f;
166 }
167 else if ((b & 0xe0) == 0xc0 || (b & 0xf0) == 0xe0 ||
168 (b & 0xf8) == 0xf0) {
169 /* Start byte */
170 size_t start_offset = *offset;
171 return str_decode(str, &start_offset, size);
172 }
173 else if ((b & 0xc0) != 0x80) {
174 /* Not a continuation byte */
175 return U_SPECIAL;
176 }
177 processed++;
178 }
179 /* Too many continuation bytes */
180 return U_SPECIAL;
181}
182
[171f9a1]183/** Encode a single character to string representation.
184 *
185 * Encode a single character to string representation (i.e. UTF-8) and store
186 * it into a buffer at @a offset. Encoding starts at @a offset and this offset
187 * is moved to the position where the next character can be written to.
188 *
189 * @param ch Input character.
190 * @param str Output buffer.
191 * @param offset Byte offset where to start writing.
192 * @param size Size of the output buffer (in bytes).
193 *
194 * @return EOK if the character was encoded successfully, EOVERFLOW if there
[d4a3ee5]195 * was not enough space in the output buffer or EINVAL if the character
196 * code was invalid.
[171f9a1]197 */
[b7fd2a0]198errno_t chr_encode(const wchar_t ch, char *str, size_t *offset, size_t size)
[171f9a1]199{
200 if (*offset >= size)
201 return EOVERFLOW;
[a35b458]202
[171f9a1]203 if (!chr_check(ch))
204 return EINVAL;
[a35b458]205
[171f9a1]206 /* Unsigned version of ch (bit operations should only be done
207 on unsigned types). */
208 uint32_t cc = (uint32_t) ch;
[a35b458]209
[171f9a1]210 /* Determine how many continuation bytes are needed */
[a35b458]211
[171f9a1]212 unsigned int b0_bits; /* Data bits in first byte */
213 unsigned int cbytes; /* Number of continuation bytes */
[a35b458]214
[171f9a1]215 if ((cc & ~LO_MASK_32(7)) == 0) {
216 b0_bits = 7;
217 cbytes = 0;
218 } else if ((cc & ~LO_MASK_32(11)) == 0) {
219 b0_bits = 5;
220 cbytes = 1;
221 } else if ((cc & ~LO_MASK_32(16)) == 0) {
222 b0_bits = 4;
223 cbytes = 2;
224 } else if ((cc & ~LO_MASK_32(21)) == 0) {
225 b0_bits = 3;
226 cbytes = 3;
227 } else {
228 /* Codes longer than 21 bits are not supported */
229 return EINVAL;
230 }
[a35b458]231
[171f9a1]232 /* Check for available space in buffer */
233 if (*offset + cbytes >= size)
234 return EOVERFLOW;
[a35b458]235
[171f9a1]236 /* Encode continuation bytes */
237 unsigned int i;
238 for (i = cbytes; i > 0; i--) {
239 str[*offset + i] = 0x80 | (cc & LO_MASK_32(CONT_BITS));
240 cc = cc >> CONT_BITS;
241 }
[a35b458]242
[171f9a1]243 /* Encode first byte */
244 str[*offset] = (cc & LO_MASK_32(b0_bits)) | HI_MASK_8(8 - b0_bits - 1);
[a35b458]245
[171f9a1]246 /* Advance offset */
247 *offset += cbytes + 1;
[a35b458]248
[171f9a1]249 return EOK;
250}
251
[f2b8cdc]252/** Get size of string.
253 *
254 * Get the number of bytes which are used by the string @a str (excluding the
255 * NULL-terminator).
256 *
257 * @param str String to consider.
258 *
259 * @return Number of bytes used by the string
260 *
261 */
262size_t str_size(const char *str)
263{
264 size_t size = 0;
[a35b458]265
[f2b8cdc]266 while (*str++ != 0)
267 size++;
[a35b458]268
[f2b8cdc]269 return size;
270}
271
272/** Get size of wide string.
273 *
274 * Get the number of bytes which are used by the wide string @a str (excluding the
275 * NULL-terminator).
276 *
277 * @param str Wide string to consider.
278 *
279 * @return Number of bytes used by the wide string
280 *
281 */
282size_t wstr_size(const wchar_t *str)
283{
284 return (wstr_length(str) * sizeof(wchar_t));
285}
286
287/** Get size of string with length limit.
288 *
289 * Get the number of bytes which are used by up to @a max_len first
290 * characters in the string @a str. If @a max_len is greater than
291 * the length of @a str, the entire string is measured (excluding the
292 * NULL-terminator).
293 *
294 * @param str String to consider.
295 * @param max_len Maximum number of characters to measure.
296 *
297 * @return Number of bytes used by the characters.
298 *
299 */
[d4a3ee5]300size_t str_lsize(const char *str, size_t max_len)
[f2b8cdc]301{
[d4a3ee5]302 size_t len = 0;
[f2b8cdc]303 size_t offset = 0;
[a35b458]304
[f2b8cdc]305 while (len < max_len) {
306 if (str_decode(str, &offset, STR_NO_LIMIT) == 0)
307 break;
[a35b458]308
[f2b8cdc]309 len++;
310 }
[a35b458]311
[f2b8cdc]312 return offset;
313}
314
[560d79f]315/** Get size of string with size limit.
316 *
317 * Get the number of bytes which are used by the string @a str
318 * (excluding the NULL-terminator), but no more than @max_size bytes.
319 *
320 * @param str String to consider.
321 * @param max_size Maximum number of bytes to measure.
322 *
323 * @return Number of bytes used by the string
324 *
325 */
326size_t str_nsize(const char *str, size_t max_size)
327{
328 size_t size = 0;
[a35b458]329
[560d79f]330 while ((*str++ != 0) && (size < max_size))
331 size++;
[a35b458]332
[560d79f]333 return size;
334}
335
336/** Get size of wide string with size limit.
337 *
338 * Get the number of bytes which are used by the wide string @a str
339 * (excluding the NULL-terminator), but no more than @max_size bytes.
340 *
341 * @param str Wide string to consider.
342 * @param max_size Maximum number of bytes to measure.
343 *
344 * @return Number of bytes used by the wide string
345 *
346 */
347size_t wstr_nsize(const wchar_t *str, size_t max_size)
348{
349 return (wstr_nlength(str, max_size) * sizeof(wchar_t));
350}
351
[f2b8cdc]352/** Get size of wide string with length limit.
353 *
354 * Get the number of bytes which are used by up to @a max_len first
355 * wide characters in the wide string @a str. If @a max_len is greater than
356 * the length of @a str, the entire wide string is measured (excluding the
357 * NULL-terminator).
358 *
359 * @param str Wide string to consider.
360 * @param max_len Maximum number of wide characters to measure.
361 *
362 * @return Number of bytes used by the wide characters.
363 *
364 */
[d4a3ee5]365size_t wstr_lsize(const wchar_t *str, size_t max_len)
[f2b8cdc]366{
367 return (wstr_nlength(str, max_len * sizeof(wchar_t)) * sizeof(wchar_t));
368}
369
370/** Get number of characters in a string.
371 *
372 * @param str NULL-terminated string.
373 *
374 * @return Number of characters in string.
375 *
376 */
[d4a3ee5]377size_t str_length(const char *str)
[f2b8cdc]378{
[d4a3ee5]379 size_t len = 0;
[f2b8cdc]380 size_t offset = 0;
[a35b458]381
[f2b8cdc]382 while (str_decode(str, &offset, STR_NO_LIMIT) != 0)
383 len++;
[a35b458]384
[f2b8cdc]385 return len;
386}
387
388/** Get number of characters in a wide string.
389 *
390 * @param str NULL-terminated wide string.
391 *
392 * @return Number of characters in @a str.
393 *
394 */
[d4a3ee5]395size_t wstr_length(const wchar_t *wstr)
[f2b8cdc]396{
[d4a3ee5]397 size_t len = 0;
[a35b458]398
[f2b8cdc]399 while (*wstr++ != 0)
400 len++;
[a35b458]401
[f2b8cdc]402 return len;
403}
404
405/** Get number of characters in a string with size limit.
406 *
407 * @param str NULL-terminated string.
408 * @param size Maximum number of bytes to consider.
409 *
410 * @return Number of characters in string.
411 *
412 */
[d4a3ee5]413size_t str_nlength(const char *str, size_t size)
[f2b8cdc]414{
[d4a3ee5]415 size_t len = 0;
[f2b8cdc]416 size_t offset = 0;
[a35b458]417
[f2b8cdc]418 while (str_decode(str, &offset, size) != 0)
419 len++;
[a35b458]420
[f2b8cdc]421 return len;
422}
423
424/** Get number of characters in a string with size limit.
425 *
426 * @param str NULL-terminated string.
427 * @param size Maximum number of bytes to consider.
428 *
429 * @return Number of characters in string.
430 *
431 */
[d4a3ee5]432size_t wstr_nlength(const wchar_t *str, size_t size)
[f2b8cdc]433{
[d4a3ee5]434 size_t len = 0;
435 size_t limit = ALIGN_DOWN(size, sizeof(wchar_t));
436 size_t offset = 0;
[a35b458]437
[f2b8cdc]438 while ((offset < limit) && (*str++ != 0)) {
439 len++;
440 offset += sizeof(wchar_t);
441 }
[a35b458]442
[f2b8cdc]443 return len;
444}
445
[be2a38ad]446/** Get character display width on a character cell display.
447 *
448 * @param ch Character
449 * @return Width of character in cells.
450 */
451size_t chr_width(wchar_t ch)
452{
453 return 1;
454}
455
456/** Get string display width on a character cell display.
457 *
458 * @param str String
459 * @return Width of string in cells.
460 */
461size_t str_width(const char *str)
462{
463 size_t width = 0;
464 size_t offset = 0;
465 wchar_t ch;
[a35b458]466
[be2a38ad]467 while ((ch = str_decode(str, &offset, STR_NO_LIMIT)) != 0)
468 width += chr_width(ch);
[a35b458]469
[be2a38ad]470 return width;
471}
472
[f2b8cdc]473/** Check whether character is plain ASCII.
474 *
475 * @return True if character is plain ASCII.
476 *
477 */
478bool ascii_check(wchar_t ch)
479{
[8e893ae]480 if (WCHAR_SIGNED_CHECK(ch >= 0) && (ch <= 127))
[f2b8cdc]481 return true;
[a35b458]482
[f2b8cdc]483 return false;
484}
485
[171f9a1]486/** Check whether character is valid
487 *
488 * @return True if character is a valid Unicode code point.
489 *
490 */
[f2b8cdc]491bool chr_check(wchar_t ch)
[171f9a1]492{
[8e893ae]493 if (WCHAR_SIGNED_CHECK(ch >= 0) && (ch <= 1114111))
[171f9a1]494 return true;
[a35b458]495
[171f9a1]496 return false;
497}
[936351c1]498
[f2b8cdc]499/** Compare two NULL terminated strings.
500 *
501 * Do a char-by-char comparison of two NULL-terminated strings.
[4efeab5]502 * The strings are considered equal iff their length is equal
503 * and both strings consist of the same sequence of characters.
504 *
[1772e6d]505 * A string S1 is less than another string S2 if it has a character with
506 * lower value at the first character position where the strings differ.
507 * If the strings differ in length, the shorter one is treated as if
508 * padded by characters with a value of zero.
[f2b8cdc]509 *
510 * @param s1 First string to compare.
511 * @param s2 Second string to compare.
512 *
[1772e6d]513 * @return 0 if the strings are equal, -1 if the first is less than the second,
514 * 1 if the second is less than the first.
[f2b8cdc]515 *
516 */
517int str_cmp(const char *s1, const char *s2)
518{
519 wchar_t c1 = 0;
520 wchar_t c2 = 0;
[8227d63]521
[f2b8cdc]522 size_t off1 = 0;
523 size_t off2 = 0;
524
525 while (true) {
526 c1 = str_decode(s1, &off1, STR_NO_LIMIT);
527 c2 = str_decode(s2, &off2, STR_NO_LIMIT);
528
529 if (c1 < c2)
530 return -1;
[8227d63]531
[f2b8cdc]532 if (c1 > c2)
533 return 1;
534
535 if (c1 == 0 || c2 == 0)
[8227d63]536 break;
[f2b8cdc]537 }
538
539 return 0;
540}
541
542/** Compare two NULL terminated strings with length limit.
543 *
544 * Do a char-by-char comparison of two NULL-terminated strings.
[4efeab5]545 * The strings are considered equal iff
546 * min(str_length(s1), max_len) == min(str_length(s2), max_len)
547 * and both strings consist of the same sequence of characters,
548 * up to max_len characters.
549 *
[1772e6d]550 * A string S1 is less than another string S2 if it has a character with
551 * lower value at the first character position where the strings differ.
552 * If the strings differ in length, the shorter one is treated as if
553 * padded by characters with a value of zero. Only the first max_len
554 * characters are considered.
[f2b8cdc]555 *
556 * @param s1 First string to compare.
557 * @param s2 Second string to compare.
558 * @param max_len Maximum number of characters to consider.
559 *
[1772e6d]560 * @return 0 if the strings are equal, -1 if the first is less than the second,
561 * 1 if the second is less than the first.
[f2b8cdc]562 *
563 */
[d4a3ee5]564int str_lcmp(const char *s1, const char *s2, size_t max_len)
[f2b8cdc]565{
566 wchar_t c1 = 0;
567 wchar_t c2 = 0;
[8227d63]568
[f2b8cdc]569 size_t off1 = 0;
570 size_t off2 = 0;
[8227d63]571
[d4a3ee5]572 size_t len = 0;
[f2b8cdc]573
574 while (true) {
575 if (len >= max_len)
576 break;
577
578 c1 = str_decode(s1, &off1, STR_NO_LIMIT);
579 c2 = str_decode(s2, &off2, STR_NO_LIMIT);
580
[8227d63]581 if (c1 < c2)
582 return -1;
583
584 if (c1 > c2)
585 return 1;
586
587 if (c1 == 0 || c2 == 0)
588 break;
589
590 ++len;
591 }
592
593 return 0;
594
595}
596
597/** Compare two NULL terminated strings in case-insensitive manner.
598 *
599 * Do a char-by-char comparison of two NULL-terminated strings.
600 * The strings are considered equal iff their length is equal
601 * and both strings consist of the same sequence of characters
602 * when converted to lower case.
603 *
604 * A string S1 is less than another string S2 if it has a character with
605 * lower value at the first character position where the strings differ.
606 * If the strings differ in length, the shorter one is treated as if
607 * padded by characters with a value of zero.
608 *
609 * @param s1 First string to compare.
610 * @param s2 Second string to compare.
611 *
612 * @return 0 if the strings are equal, -1 if the first is less than the second,
613 * 1 if the second is less than the first.
614 *
615 */
616int str_casecmp(const char *s1, const char *s2)
617{
618 wchar_t c1 = 0;
619 wchar_t c2 = 0;
620
621 size_t off1 = 0;
622 size_t off2 = 0;
623
624 while (true) {
625 c1 = tolower(str_decode(s1, &off1, STR_NO_LIMIT));
626 c2 = tolower(str_decode(s2, &off2, STR_NO_LIMIT));
627
628 if (c1 < c2)
629 return -1;
630
631 if (c1 > c2)
632 return 1;
633
634 if (c1 == 0 || c2 == 0)
635 break;
636 }
637
638 return 0;
639}
640
641/** Compare two NULL terminated strings with length limit in case-insensitive
642 * manner.
643 *
644 * Do a char-by-char comparison of two NULL-terminated strings.
645 * The strings are considered equal iff
646 * min(str_length(s1), max_len) == min(str_length(s2), max_len)
647 * and both strings consist of the same sequence of characters,
648 * up to max_len characters.
649 *
650 * A string S1 is less than another string S2 if it has a character with
651 * lower value at the first character position where the strings differ.
652 * If the strings differ in length, the shorter one is treated as if
653 * padded by characters with a value of zero. Only the first max_len
654 * characters are considered.
655 *
656 * @param s1 First string to compare.
657 * @param s2 Second string to compare.
658 * @param max_len Maximum number of characters to consider.
659 *
660 * @return 0 if the strings are equal, -1 if the first is less than the second,
661 * 1 if the second is less than the first.
662 *
663 */
664int str_lcasecmp(const char *s1, const char *s2, size_t max_len)
665{
666 wchar_t c1 = 0;
667 wchar_t c2 = 0;
[a35b458]668
[8227d63]669 size_t off1 = 0;
670 size_t off2 = 0;
[a35b458]671
[8227d63]672 size_t len = 0;
673
674 while (true) {
675 if (len >= max_len)
676 break;
677
678 c1 = tolower(str_decode(s1, &off1, STR_NO_LIMIT));
679 c2 = tolower(str_decode(s2, &off2, STR_NO_LIMIT));
680
[f2b8cdc]681 if (c1 < c2)
682 return -1;
683
684 if (c1 > c2)
685 return 1;
686
687 if (c1 == 0 || c2 == 0)
688 break;
689
[1b20da0]690 ++len;
[f2b8cdc]691 }
692
693 return 0;
694
695}
696
[dce39b4]697/** Test whether p is a prefix of s.
698 *
699 * Do a char-by-char comparison of two NULL-terminated strings
700 * and determine if p is a prefix of s.
701 *
702 * @param s The string in which to look
703 * @param p The string to check if it is a prefix of s
704 *
705 * @return true iff p is prefix of s else false
706 *
707 */
708bool str_test_prefix(const char *s, const char *p)
709{
710 wchar_t c1 = 0;
711 wchar_t c2 = 0;
[a35b458]712
[dce39b4]713 size_t off1 = 0;
714 size_t off2 = 0;
715
716 while (true) {
717 c1 = str_decode(s, &off1, STR_NO_LIMIT);
718 c2 = str_decode(p, &off2, STR_NO_LIMIT);
[a35b458]719
[dce39b4]720 if (c2 == 0)
721 return true;
722
723 if (c1 != c2)
724 return false;
[a35b458]725
[dce39b4]726 if (c1 == 0)
727 break;
728 }
729
730 return false;
731}
732
[6eb2e96]733/** Copy string.
[f2b8cdc]734 *
[6eb2e96]735 * Copy source string @a src to destination buffer @a dest.
736 * No more than @a size bytes are written. If the size of the output buffer
737 * is at least one byte, the output string will always be well-formed, i.e.
738 * null-terminated and containing only complete characters.
[f2b8cdc]739 *
[abf09311]740 * @param dest Destination buffer.
[6700ee2]741 * @param count Size of the destination buffer (must be > 0).
[6eb2e96]742 * @param src Source string.
[8e893ae]743 *
[f2b8cdc]744 */
[6eb2e96]745void str_cpy(char *dest, size_t size, const char *src)
[f2b8cdc]746{
[6700ee2]747 /* There must be space for a null terminator in the buffer. */
748 assert(size > 0);
[a35b458]749
[abf09311]750 size_t src_off = 0;
751 size_t dest_off = 0;
[a35b458]752
[abf09311]753 wchar_t ch;
[6eb2e96]754 while ((ch = str_decode(src, &src_off, STR_NO_LIMIT)) != 0) {
755 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
756 break;
757 }
[a35b458]758
[6eb2e96]759 dest[dest_off] = '\0';
760}
761
762/** Copy size-limited substring.
763 *
[6700ee2]764 * Copy prefix of string @a src of max. size @a size to destination buffer
765 * @a dest. No more than @a size bytes are written. The output string will
766 * always be well-formed, i.e. null-terminated and containing only complete
767 * characters.
[6eb2e96]768 *
769 * No more than @a n bytes are read from the input string, so it does not
770 * have to be null-terminated.
771 *
[abf09311]772 * @param dest Destination buffer.
[6700ee2]773 * @param count Size of the destination buffer (must be > 0).
[6eb2e96]774 * @param src Source string.
[abf09311]775 * @param n Maximum number of bytes to read from @a src.
[8e893ae]776 *
[6eb2e96]777 */
778void str_ncpy(char *dest, size_t size, const char *src, size_t n)
779{
[6700ee2]780 /* There must be space for a null terminator in the buffer. */
781 assert(size > 0);
[a35b458]782
[abf09311]783 size_t src_off = 0;
784 size_t dest_off = 0;
[a35b458]785
[abf09311]786 wchar_t ch;
[6eb2e96]787 while ((ch = str_decode(src, &src_off, n)) != 0) {
788 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
[f2b8cdc]789 break;
790 }
[a35b458]791
[6eb2e96]792 dest[dest_off] = '\0';
[f2b8cdc]793}
794
[4482bc7]795/** Append one string to another.
796 *
797 * Append source string @a src to string in destination buffer @a dest.
798 * Size of the destination buffer is @a dest. If the size of the output buffer
799 * is at least one byte, the output string will always be well-formed, i.e.
800 * null-terminated and containing only complete characters.
801 *
[0f06dbc]802 * @param dest Destination buffer.
[4482bc7]803 * @param count Size of the destination buffer.
804 * @param src Source string.
805 */
806void str_append(char *dest, size_t size, const char *src)
807{
808 size_t dstr_size;
809
810 dstr_size = str_size(dest);
[3815efb]811 if (dstr_size >= size)
[a8bc7f8]812 return;
[a35b458]813
[4482bc7]814 str_cpy(dest + dstr_size, size - dstr_size, src);
815}
816
[dcb74c0a]817/** Convert space-padded ASCII to string.
818 *
819 * Common legacy text encoding in hardware is 7-bit ASCII fitted into
[c3d19ac]820 * a fixed-width byte buffer (bit 7 always zero), right-padded with spaces
[dcb74c0a]821 * (ASCII 0x20). Convert space-padded ascii to string representation.
822 *
823 * If the text does not fit into the destination buffer, the function converts
824 * as many characters as possible and returns EOVERFLOW.
825 *
826 * If the text contains non-ASCII bytes (with bit 7 set), the whole string is
827 * converted anyway and invalid characters are replaced with question marks
828 * (U_SPECIAL) and the function returns EIO.
829 *
830 * Regardless of return value upon return @a dest will always be well-formed.
831 *
832 * @param dest Destination buffer
833 * @param size Size of destination buffer
834 * @param src Space-padded ASCII.
835 * @param n Size of the source buffer in bytes.
836 *
837 * @return EOK on success, EOVERFLOW if the text does not fit
838 * destination buffer, EIO if the text contains
839 * non-ASCII bytes.
840 */
[b7fd2a0]841errno_t spascii_to_str(char *dest, size_t size, const uint8_t *src, size_t n)
[dcb74c0a]842{
843 size_t sidx;
844 size_t didx;
845 size_t dlast;
846 uint8_t byte;
[b7fd2a0]847 errno_t rc;
848 errno_t result;
[dcb74c0a]849
850 /* There must be space for a null terminator in the buffer. */
851 assert(size > 0);
852 result = EOK;
853
854 didx = 0;
855 dlast = 0;
856 for (sidx = 0; sidx < n; ++sidx) {
857 byte = src[sidx];
858 if (!ascii_check(byte)) {
859 byte = U_SPECIAL;
860 result = EIO;
861 }
862
863 rc = chr_encode(byte, dest, &didx, size - 1);
864 if (rc != EOK) {
865 assert(rc == EOVERFLOW);
866 dest[didx] = '\0';
867 return rc;
868 }
869
870 /* Remember dest index after last non-empty character */
871 if (byte != 0x20)
872 dlast = didx;
873 }
874
875 /* Terminate string after last non-empty character */
876 dest[dlast] = '\0';
877 return result;
878}
879
[0f06dbc]880/** Convert wide string to string.
[f2b8cdc]881 *
[0f06dbc]882 * Convert wide string @a src to string. The output is written to the buffer
883 * specified by @a dest and @a size. @a size must be non-zero and the string
884 * written will always be well-formed.
[f2b8cdc]885 *
[0f06dbc]886 * @param dest Destination buffer.
887 * @param size Size of the destination buffer.
888 * @param src Source wide string.
[f2b8cdc]889 */
[81e9cb3]890void wstr_to_str(char *dest, size_t size, const wchar_t *src)
[f2b8cdc]891{
892 wchar_t ch;
[0f06dbc]893 size_t src_idx;
894 size_t dest_off;
895
896 /* There must be space for a null terminator in the buffer. */
897 assert(size > 0);
[a35b458]898
[0f06dbc]899 src_idx = 0;
900 dest_off = 0;
901
[f2b8cdc]902 while ((ch = src[src_idx++]) != 0) {
[81e9cb3]903 if (chr_encode(ch, dest, &dest_off, size - 1) != EOK)
[f2b8cdc]904 break;
905 }
[0f06dbc]906
907 dest[dest_off] = '\0';
[f2b8cdc]908}
909
[82374b2]910/** Convert UTF16 string to string.
911 *
912 * Convert utf16 string @a src to string. The output is written to the buffer
913 * specified by @a dest and @a size. @a size must be non-zero and the string
914 * written will always be well-formed. Surrogate pairs also supported.
915 *
916 * @param dest Destination buffer.
917 * @param size Size of the destination buffer.
918 * @param src Source utf16 string.
919 *
[cde999a]920 * @return EOK, if success, an error code otherwise.
[82374b2]921 */
[b7fd2a0]922errno_t utf16_to_str(char *dest, size_t size, const uint16_t *src)
[82374b2]923{
[abb7491c]924 size_t idx = 0, dest_off = 0;
[82374b2]925 wchar_t ch;
[b7fd2a0]926 errno_t rc = EOK;
[82374b2]927
928 /* There must be space for a null terminator in the buffer. */
929 assert(size > 0);
930
931 while (src[idx]) {
932 if ((src[idx] & 0xfc00) == 0xd800) {
[abb7491c]933 if (src[idx + 1] && (src[idx + 1] & 0xfc00) == 0xdc00) {
[82374b2]934 ch = 0x10000;
935 ch += (src[idx] & 0x03FF) << 10;
[abb7491c]936 ch += (src[idx + 1] & 0x03FF);
[82374b2]937 idx += 2;
938 }
939 else
940 break;
941 } else {
942 ch = src[idx];
943 idx++;
944 }
[abb7491c]945 rc = chr_encode(ch, dest, &dest_off, size - 1);
[82374b2]946 if (rc != EOK)
947 break;
948 }
949 dest[dest_off] = '\0';
950 return rc;
951}
952
[b06414f]953/** Convert string to UTF16 string.
954 *
955 * Convert string @a src to utf16 string. The output is written to the buffer
956 * specified by @a dest and @a dlen. @a dlen must be non-zero and the string
957 * written will always be well-formed. Surrogate pairs also supported.
958 *
959 * @param dest Destination buffer.
960 * @param dlen Number of utf16 characters that fit in the destination buffer.
961 * @param src Source string.
962 *
[cde999a]963 * @return EOK, if success, an error code otherwise.
[b06414f]964 */
[b7fd2a0]965errno_t str_to_utf16(uint16_t *dest, size_t dlen, const char *src)
[fc97128]966{
[b7fd2a0]967 errno_t rc = EOK;
[abb7491c]968 size_t offset = 0;
969 size_t idx = 0;
[fc97128]970 wchar_t c;
971
[b06414f]972 assert(dlen > 0);
[a35b458]973
[fc97128]974 while ((c = str_decode(src, &offset, STR_NO_LIMIT)) != 0) {
975 if (c > 0x10000) {
[b06414f]976 if (idx + 2 >= dlen - 1) {
[abb7491c]977 rc = EOVERFLOW;
[fc97128]978 break;
979 }
980 c = (c - 0x10000);
981 dest[idx] = 0xD800 | (c >> 10);
[abb7491c]982 dest[idx + 1] = 0xDC00 | (c & 0x3FF);
[fc97128]983 idx++;
984 } else {
985 dest[idx] = c;
986 }
987
988 idx++;
[b06414f]989 if (idx >= dlen - 1) {
[abb7491c]990 rc = EOVERFLOW;
[fc97128]991 break;
992 }
993 }
994
995 dest[idx] = '\0';
996 return rc;
[f2b8cdc]997}
998
[b2906c0]999/** Get size of UTF-16 string.
1000 *
1001 * Get the number of words which are used by the UTF-16 string @a ustr
1002 * (excluding the NULL-terminator).
1003 *
1004 * @param ustr UTF-16 string to consider.
1005 *
1006 * @return Number of words used by the UTF-16 string
1007 *
1008 */
1009size_t utf16_wsize(const uint16_t *ustr)
1010{
1011 size_t wsize = 0;
1012
1013 while (*ustr++ != 0)
1014 wsize++;
1015
1016 return wsize;
1017}
1018
[fc97128]1019
[b67c7d64]1020/** Convert wide string to new string.
1021 *
1022 * Convert wide string @a src to string. Space for the new string is allocated
1023 * on the heap.
1024 *
1025 * @param src Source wide string.
1026 * @return New string.
1027 */
1028char *wstr_to_astr(const wchar_t *src)
1029{
1030 char dbuf[STR_BOUNDS(1)];
1031 char *str;
1032 wchar_t ch;
1033
1034 size_t src_idx;
1035 size_t dest_off;
1036 size_t dest_size;
1037
1038 /* Compute size of encoded string. */
1039
1040 src_idx = 0;
1041 dest_size = 0;
1042
1043 while ((ch = src[src_idx++]) != 0) {
1044 dest_off = 0;
1045 if (chr_encode(ch, dbuf, &dest_off, STR_BOUNDS(1)) != EOK)
1046 break;
1047 dest_size += dest_off;
1048 }
1049
1050 str = malloc(dest_size + 1);
1051 if (str == NULL)
1052 return NULL;
1053
1054 /* Encode string. */
1055
1056 src_idx = 0;
1057 dest_off = 0;
1058
1059 while ((ch = src[src_idx++]) != 0) {
1060 if (chr_encode(ch, str, &dest_off, dest_size) != EOK)
1061 break;
1062 }
1063
1064 str[dest_size] = '\0';
1065 return str;
1066}
1067
1068
[da2bd08]1069/** Convert string to wide string.
1070 *
1071 * Convert string @a src to wide string. The output is written to the
[0f06dbc]1072 * buffer specified by @a dest and @a dlen. @a dlen must be non-zero
1073 * and the wide string written will always be null-terminated.
[da2bd08]1074 *
1075 * @param dest Destination buffer.
1076 * @param dlen Length of destination buffer (number of wchars).
1077 * @param src Source string.
1078 */
[81e9cb3]1079void str_to_wstr(wchar_t *dest, size_t dlen, const char *src)
[da2bd08]1080{
1081 size_t offset;
1082 size_t di;
1083 wchar_t c;
1084
1085 assert(dlen > 0);
1086
1087 offset = 0;
1088 di = 0;
1089
1090 do {
[81e9cb3]1091 if (di >= dlen - 1)
[da2bd08]1092 break;
1093
1094 c = str_decode(src, &offset, STR_NO_LIMIT);
1095 dest[di++] = c;
1096 } while (c != '\0');
1097
1098 dest[dlen - 1] = '\0';
1099}
1100
[22cf42d9]1101/** Convert string to wide string.
1102 *
1103 * Convert string @a src to wide string. A new wide NULL-terminated
1104 * string will be allocated on the heap.
1105 *
1106 * @param src Source string.
1107 */
1108wchar_t *str_to_awstr(const char *str)
1109{
1110 size_t len = str_length(str);
[a35b458]1111
[b48d046]1112 wchar_t *wstr = calloc(len+1, sizeof(wchar_t));
1113 if (wstr == NULL)
1114 return NULL;
[a35b458]1115
[b48d046]1116 str_to_wstr(wstr, len + 1, str);
[22cf42d9]1117 return wstr;
1118}
1119
[f2b8cdc]1120/** Find first occurence of character in string.
1121 *
1122 * @param str String to search.
1123 * @param ch Character to look for.
1124 *
1125 * @return Pointer to character in @a str or NULL if not found.
1126 */
[dd2cfa7]1127char *str_chr(const char *str, wchar_t ch)
[f2b8cdc]1128{
1129 wchar_t acc;
1130 size_t off = 0;
[f2d2c7ba]1131 size_t last = 0;
[a35b458]1132
[f2b8cdc]1133 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1134 if (acc == ch)
[dd2cfa7]1135 return (char *) (str + last);
[f2d2c7ba]1136 last = off;
[f2b8cdc]1137 }
[a35b458]1138
[f2b8cdc]1139 return NULL;
1140}
1141
[1737bfb]1142/** Removes specified trailing characters from a string.
1143 *
1144 * @param str String to remove from.
1145 * @param ch Character to remove.
1146 */
1147void str_rtrim(char *str, wchar_t ch)
1148{
1149 size_t off = 0;
1150 size_t pos = 0;
1151 wchar_t c;
1152 bool update_last_chunk = true;
1153 char *last_chunk = NULL;
1154
1155 while ((c = str_decode(str, &off, STR_NO_LIMIT))) {
1156 if (c != ch) {
1157 update_last_chunk = true;
1158 last_chunk = NULL;
1159 } else if (update_last_chunk) {
1160 update_last_chunk = false;
1161 last_chunk = (str + pos);
1162 }
1163 pos = off;
1164 }
1165
1166 if (last_chunk)
1167 *last_chunk = '\0';
1168}
1169
1170/** Removes specified leading characters from a string.
1171 *
1172 * @param str String to remove from.
1173 * @param ch Character to remove.
1174 */
1175void str_ltrim(char *str, wchar_t ch)
1176{
1177 wchar_t acc;
1178 size_t off = 0;
1179 size_t pos = 0;
1180 size_t str_sz = str_size(str);
1181
1182 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1183 if (acc != ch)
1184 break;
1185 else
1186 pos = off;
1187 }
1188
1189 if (pos > 0) {
1190 memmove(str, &str[pos], str_sz - pos);
1191 pos = str_sz - pos;
[a18a8b9]1192 str[pos] = '\0';
[1737bfb]1193 }
1194}
1195
[7afb4a5]1196/** Find last occurence of character in string.
1197 *
1198 * @param str String to search.
1199 * @param ch Character to look for.
1200 *
1201 * @return Pointer to character in @a str or NULL if not found.
1202 */
[dd2cfa7]1203char *str_rchr(const char *str, wchar_t ch)
[7afb4a5]1204{
1205 wchar_t acc;
1206 size_t off = 0;
[f2d2c7ba]1207 size_t last = 0;
[d4a3ee5]1208 const char *res = NULL;
[a35b458]1209
[7afb4a5]1210 while ((acc = str_decode(str, &off, STR_NO_LIMIT)) != 0) {
1211 if (acc == ch)
[f2d2c7ba]1212 res = (str + last);
1213 last = off;
[7afb4a5]1214 }
[a35b458]1215
[dd2cfa7]1216 return (char *) res;
[7afb4a5]1217}
1218
[f2b8cdc]1219/** Insert a wide character into a wide string.
1220 *
1221 * Insert a wide character into a wide string at position
1222 * @a pos. The characters after the position are shifted.
1223 *
1224 * @param str String to insert to.
1225 * @param ch Character to insert to.
1226 * @param pos Character index where to insert.
1227 @ @param max_pos Characters in the buffer.
1228 *
1229 * @return True if the insertion was sucessful, false if the position
1230 * is out of bounds.
1231 *
1232 */
[d4a3ee5]1233bool wstr_linsert(wchar_t *str, wchar_t ch, size_t pos, size_t max_pos)
[f2b8cdc]1234{
[d4a3ee5]1235 size_t len = wstr_length(str);
[a35b458]1236
[f2b8cdc]1237 if ((pos > len) || (pos + 1 > max_pos))
1238 return false;
[a35b458]1239
[d4a3ee5]1240 size_t i;
[f2b8cdc]1241 for (i = len; i + 1 > pos; i--)
1242 str[i + 1] = str[i];
[a35b458]1243
[f2b8cdc]1244 str[pos] = ch;
[a35b458]1245
[f2b8cdc]1246 return true;
1247}
1248
1249/** Remove a wide character from a wide string.
1250 *
1251 * Remove a wide character from a wide string at position
1252 * @a pos. The characters after the position are shifted.
1253 *
1254 * @param str String to remove from.
1255 * @param pos Character index to remove.
1256 *
1257 * @return True if the removal was sucessful, false if the position
1258 * is out of bounds.
1259 *
1260 */
[d4a3ee5]1261bool wstr_remove(wchar_t *str, size_t pos)
[f2b8cdc]1262{
[d4a3ee5]1263 size_t len = wstr_length(str);
[a35b458]1264
[f2b8cdc]1265 if (pos >= len)
1266 return false;
[a35b458]1267
[d4a3ee5]1268 size_t i;
[f2b8cdc]1269 for (i = pos + 1; i <= len; i++)
1270 str[i - 1] = str[i];
[a35b458]1271
[f2b8cdc]1272 return true;
1273}
1274
[672a24d]1275
[abf09311]1276/** Duplicate string.
1277 *
1278 * Allocate a new string and copy characters from the source
1279 * string into it. The duplicate string is allocated via sleeping
1280 * malloc(), thus this function can sleep in no memory conditions.
1281 *
1282 * The allocation cannot fail and the return value is always
1283 * a valid pointer. The duplicate string is always a well-formed
1284 * null-terminated UTF-8 string, but it can differ from the source
1285 * string on the byte level.
1286 *
1287 * @param src Source string.
1288 *
1289 * @return Duplicate string.
1290 *
1291 */
[fc6dd18]1292char *str_dup(const char *src)
1293{
[abf09311]1294 size_t size = str_size(src) + 1;
1295 char *dest = (char *) malloc(size);
[fc6dd18]1296 if (dest == NULL)
1297 return (char *) NULL;
[a35b458]1298
[abf09311]1299 str_cpy(dest, size, src);
1300 return dest;
[fc6dd18]1301}
1302
[abf09311]1303/** Duplicate string with size limit.
1304 *
1305 * Allocate a new string and copy up to @max_size bytes from the source
1306 * string into it. The duplicate string is allocated via sleeping
1307 * malloc(), thus this function can sleep in no memory conditions.
1308 * No more than @max_size + 1 bytes is allocated, but if the size
1309 * occupied by the source string is smaller than @max_size + 1,
1310 * less is allocated.
1311 *
1312 * The allocation cannot fail and the return value is always
1313 * a valid pointer. The duplicate string is always a well-formed
1314 * null-terminated UTF-8 string, but it can differ from the source
1315 * string on the byte level.
1316 *
1317 * @param src Source string.
1318 * @param n Maximum number of bytes to duplicate.
1319 *
1320 * @return Duplicate string.
1321 *
1322 */
1323char *str_ndup(const char *src, size_t n)
[fc6dd18]1324{
1325 size_t size = str_size(src);
[abf09311]1326 if (size > n)
1327 size = n;
[a35b458]1328
[fc6dd18]1329 char *dest = (char *) malloc(size + 1);
1330 if (dest == NULL)
1331 return (char *) NULL;
[a35b458]1332
[abf09311]1333 str_ncpy(dest, size + 1, src, size);
[fc6dd18]1334 return dest;
1335}
1336
[ee3f6f6]1337/** Split string by delimiters.
1338 *
1339 * @param s String to be tokenized. May not be NULL.
1340 * @param delim String with the delimiters.
1341 * @param next Variable which will receive the pointer to the
1342 * continuation of the string following the first
1343 * occurrence of any of the delimiter characters.
1344 * May be NULL.
1345 * @return Pointer to the prefix of @a s before the first
1346 * delimiter character. NULL if no such prefix
1347 * exists.
1348 */
1349char *str_tok(char *s, const char *delim, char **next)
[576845ec]1350{
1351 char *start, *end;
[69df837f]1352
[ee3f6f6]1353 if (!s)
1354 return NULL;
[a35b458]1355
[ee3f6f6]1356 size_t len = str_size(s);
1357 size_t cur;
1358 size_t tmp;
1359 wchar_t ch;
[69df837f]1360
[576845ec]1361 /* Skip over leading delimiters. */
[948222e4]1362 tmp = 0;
1363 cur = 0;
1364 while ((ch = str_decode(s, &tmp, len)) && str_chr(delim, ch))
[ee3f6f6]1365 cur = tmp;
1366 start = &s[cur];
[69df837f]1367
[576845ec]1368 /* Skip over token characters. */
[948222e4]1369 tmp = cur;
1370 while ((ch = str_decode(s, &tmp, len)) && !str_chr(delim, ch))
[ee3f6f6]1371 cur = tmp;
1372 end = &s[cur];
1373 if (next)
1374 *next = (ch ? &s[tmp] : &s[cur]);
1375
1376 if (start == end)
[576845ec]1377 return NULL; /* No more tokens. */
[69df837f]1378
[576845ec]1379 /* Overwrite delimiter with NULL terminator. */
1380 *end = '\0';
1381 return start;
[69df837f]1382}
1383
[d47279b]1384/** Convert string to uint64_t (internal variant).
1385 *
1386 * @param nptr Pointer to string.
1387 * @param endptr Pointer to the first invalid character is stored here.
1388 * @param base Zero or number between 2 and 36 inclusive.
1389 * @param neg Indication of unary minus is stored here.
1390 * @apram result Result of the conversion.
1391 *
1392 * @return EOK if conversion was successful.
1393 *
1394 */
[b7fd2a0]1395static errno_t str_uint(const char *nptr, char **endptr, unsigned int base,
[d47279b]1396 bool *neg, uint64_t *result)
1397{
1398 assert(endptr != NULL);
1399 assert(neg != NULL);
1400 assert(result != NULL);
[a35b458]1401
[d47279b]1402 *neg = false;
1403 const char *str = nptr;
[a35b458]1404
[d47279b]1405 /* Ignore leading whitespace */
1406 while (isspace(*str))
1407 str++;
[a35b458]1408
[d47279b]1409 if (*str == '-') {
1410 *neg = true;
1411 str++;
1412 } else if (*str == '+')
1413 str++;
[a35b458]1414
[d47279b]1415 if (base == 0) {
1416 /* Decode base if not specified */
1417 base = 10;
[a35b458]1418
[d47279b]1419 if (*str == '0') {
1420 base = 8;
1421 str++;
[a35b458]1422
[d47279b]1423 switch (*str) {
1424 case 'b':
1425 case 'B':
1426 base = 2;
1427 str++;
1428 break;
1429 case 'o':
1430 case 'O':
1431 base = 8;
1432 str++;
1433 break;
1434 case 'd':
1435 case 'D':
1436 case 't':
1437 case 'T':
1438 base = 10;
1439 str++;
1440 break;
1441 case 'x':
1442 case 'X':
1443 base = 16;
1444 str++;
1445 break;
1446 default:
1447 str--;
1448 }
1449 }
1450 } else {
1451 /* Check base range */
1452 if ((base < 2) || (base > 36)) {
1453 *endptr = (char *) str;
1454 return EINVAL;
1455 }
1456 }
[a35b458]1457
[d47279b]1458 *result = 0;
1459 const char *startstr = str;
[a35b458]1460
[d47279b]1461 while (*str != 0) {
1462 unsigned int digit;
[a35b458]1463
[d47279b]1464 if ((*str >= 'a') && (*str <= 'z'))
1465 digit = *str - 'a' + 10;
1466 else if ((*str >= 'A') && (*str <= 'Z'))
1467 digit = *str - 'A' + 10;
1468 else if ((*str >= '0') && (*str <= '9'))
1469 digit = *str - '0';
1470 else
1471 break;
[a35b458]1472
[d47279b]1473 if (digit >= base)
1474 break;
[a35b458]1475
[d47279b]1476 uint64_t prev = *result;
1477 *result = (*result) * base + digit;
[a35b458]1478
[d47279b]1479 if (*result < prev) {
1480 /* Overflow */
1481 *endptr = (char *) str;
1482 return EOVERFLOW;
1483 }
[a35b458]1484
[d47279b]1485 str++;
1486 }
[a35b458]1487
[d47279b]1488 if (str == startstr) {
1489 /*
1490 * No digits were decoded => first invalid character is
1491 * the first character of the string.
1492 */
1493 str = nptr;
1494 }
[a35b458]1495
[d47279b]1496 *endptr = (char *) str;
[a35b458]1497
[d47279b]1498 if (str == nptr)
1499 return EINVAL;
[a35b458]1500
[d47279b]1501 return EOK;
1502}
1503
[d7f6248]1504/** Convert string to uint8_t.
1505 *
1506 * @param nptr Pointer to string.
1507 * @param endptr If not NULL, pointer to the first invalid character
1508 * is stored here.
1509 * @param base Zero or number between 2 and 36 inclusive.
1510 * @param strict Do not allow any trailing characters.
1511 * @param result Result of the conversion.
1512 *
1513 * @return EOK if conversion was successful.
1514 *
1515 */
[b7fd2a0]1516errno_t str_uint8_t(const char *nptr, const char **endptr, unsigned int base,
[d7f6248]1517 bool strict, uint8_t *result)
1518{
1519 assert(result != NULL);
[a35b458]1520
[d7f6248]1521 bool neg;
1522 char *lendptr;
1523 uint64_t res;
[b7fd2a0]1524 errno_t ret = str_uint(nptr, &lendptr, base, &neg, &res);
[a35b458]1525
[d7f6248]1526 if (endptr != NULL)
1527 *endptr = (char *) lendptr;
[a35b458]1528
[d7f6248]1529 if (ret != EOK)
1530 return ret;
[a35b458]1531
[d7f6248]1532 /* Do not allow negative values */
1533 if (neg)
1534 return EINVAL;
[a35b458]1535
[d7f6248]1536 /* Check whether we are at the end of
1537 the string in strict mode */
1538 if ((strict) && (*lendptr != 0))
1539 return EINVAL;
[a35b458]1540
[d7f6248]1541 /* Check for overflow */
1542 uint8_t _res = (uint8_t) res;
1543 if (_res != res)
1544 return EOVERFLOW;
[a35b458]1545
[d7f6248]1546 *result = _res;
[a35b458]1547
[d7f6248]1548 return EOK;
1549}
1550
1551/** Convert string to uint16_t.
1552 *
1553 * @param nptr Pointer to string.
1554 * @param endptr If not NULL, pointer to the first invalid character
1555 * is stored here.
1556 * @param base Zero or number between 2 and 36 inclusive.
1557 * @param strict Do not allow any trailing characters.
1558 * @param result Result of the conversion.
1559 *
1560 * @return EOK if conversion was successful.
1561 *
1562 */
[b7fd2a0]1563errno_t str_uint16_t(const char *nptr, const char **endptr, unsigned int base,
[d7f6248]1564 bool strict, uint16_t *result)
1565{
1566 assert(result != NULL);
[a35b458]1567
[d7f6248]1568 bool neg;
1569 char *lendptr;
1570 uint64_t res;
[b7fd2a0]1571 errno_t ret = str_uint(nptr, &lendptr, base, &neg, &res);
[a35b458]1572
[d7f6248]1573 if (endptr != NULL)
1574 *endptr = (char *) lendptr;
[a35b458]1575
[d7f6248]1576 if (ret != EOK)
1577 return ret;
[a35b458]1578
[d7f6248]1579 /* Do not allow negative values */
1580 if (neg)
1581 return EINVAL;
[a35b458]1582
[d7f6248]1583 /* Check whether we are at the end of
1584 the string in strict mode */
1585 if ((strict) && (*lendptr != 0))
1586 return EINVAL;
[a35b458]1587
[d7f6248]1588 /* Check for overflow */
1589 uint16_t _res = (uint16_t) res;
1590 if (_res != res)
1591 return EOVERFLOW;
[a35b458]1592
[d7f6248]1593 *result = _res;
[a35b458]1594
[d7f6248]1595 return EOK;
1596}
1597
1598/** Convert string to uint32_t.
1599 *
1600 * @param nptr Pointer to string.
1601 * @param endptr If not NULL, pointer to the first invalid character
1602 * is stored here.
1603 * @param base Zero or number between 2 and 36 inclusive.
1604 * @param strict Do not allow any trailing characters.
1605 * @param result Result of the conversion.
1606 *
1607 * @return EOK if conversion was successful.
1608 *
1609 */
[b7fd2a0]1610errno_t str_uint32_t(const char *nptr, const char **endptr, unsigned int base,
[d7f6248]1611 bool strict, uint32_t *result)
1612{
1613 assert(result != NULL);
[a35b458]1614
[d7f6248]1615 bool neg;
1616 char *lendptr;
1617 uint64_t res;
[b7fd2a0]1618 errno_t ret = str_uint(nptr, &lendptr, base, &neg, &res);
[a35b458]1619
[d7f6248]1620 if (endptr != NULL)
1621 *endptr = (char *) lendptr;
[a35b458]1622
[d7f6248]1623 if (ret != EOK)
1624 return ret;
[a35b458]1625
[d7f6248]1626 /* Do not allow negative values */
1627 if (neg)
1628 return EINVAL;
[a35b458]1629
[d7f6248]1630 /* Check whether we are at the end of
1631 the string in strict mode */
1632 if ((strict) && (*lendptr != 0))
1633 return EINVAL;
[a35b458]1634
[d7f6248]1635 /* Check for overflow */
1636 uint32_t _res = (uint32_t) res;
1637 if (_res != res)
1638 return EOVERFLOW;
[a35b458]1639
[d7f6248]1640 *result = _res;
[a35b458]1641
[d7f6248]1642 return EOK;
1643}
1644
[d47279b]1645/** Convert string to uint64_t.
1646 *
1647 * @param nptr Pointer to string.
1648 * @param endptr If not NULL, pointer to the first invalid character
1649 * is stored here.
1650 * @param base Zero or number between 2 and 36 inclusive.
1651 * @param strict Do not allow any trailing characters.
1652 * @param result Result of the conversion.
1653 *
1654 * @return EOK if conversion was successful.
1655 *
1656 */
[b7fd2a0]1657errno_t str_uint64_t(const char *nptr, const char **endptr, unsigned int base,
[d47279b]1658 bool strict, uint64_t *result)
1659{
1660 assert(result != NULL);
[a35b458]1661
[d47279b]1662 bool neg;
1663 char *lendptr;
[b7fd2a0]1664 errno_t ret = str_uint(nptr, &lendptr, base, &neg, result);
[a35b458]1665
[d47279b]1666 if (endptr != NULL)
1667 *endptr = (char *) lendptr;
[a35b458]1668
[d47279b]1669 if (ret != EOK)
1670 return ret;
[a35b458]1671
[d47279b]1672 /* Do not allow negative values */
1673 if (neg)
1674 return EINVAL;
[a35b458]1675
[d47279b]1676 /* Check whether we are at the end of
1677 the string in strict mode */
1678 if ((strict) && (*lendptr != 0))
1679 return EINVAL;
[a35b458]1680
[d47279b]1681 return EOK;
1682}
1683
1684/** Convert string to size_t.
1685 *
1686 * @param nptr Pointer to string.
1687 * @param endptr If not NULL, pointer to the first invalid character
1688 * is stored here.
1689 * @param base Zero or number between 2 and 36 inclusive.
1690 * @param strict Do not allow any trailing characters.
1691 * @param result Result of the conversion.
1692 *
1693 * @return EOK if conversion was successful.
1694 *
1695 */
[b7fd2a0]1696errno_t str_size_t(const char *nptr, const char **endptr, unsigned int base,
[d47279b]1697 bool strict, size_t *result)
1698{
1699 assert(result != NULL);
[a35b458]1700
[d47279b]1701 bool neg;
1702 char *lendptr;
1703 uint64_t res;
[b7fd2a0]1704 errno_t ret = str_uint(nptr, &lendptr, base, &neg, &res);
[a35b458]1705
[d47279b]1706 if (endptr != NULL)
1707 *endptr = (char *) lendptr;
[a35b458]1708
[d47279b]1709 if (ret != EOK)
1710 return ret;
[a35b458]1711
[d47279b]1712 /* Do not allow negative values */
1713 if (neg)
1714 return EINVAL;
[a35b458]1715
[d47279b]1716 /* Check whether we are at the end of
1717 the string in strict mode */
1718 if ((strict) && (*lendptr != 0))
1719 return EINVAL;
[a35b458]1720
[d47279b]1721 /* Check for overflow */
1722 size_t _res = (size_t) res;
1723 if (_res != res)
1724 return EOVERFLOW;
[a35b458]1725
[d47279b]1726 *result = _res;
[a35b458]1727
[d47279b]1728 return EOK;
1729}
1730
[e535eeb]1731void order_suffix(const uint64_t val, uint64_t *rv, char *suffix)
1732{
[933cadf]1733 if (val > UINT64_C(10000000000000000000)) {
1734 *rv = val / UINT64_C(1000000000000000000);
[e535eeb]1735 *suffix = 'Z';
[933cadf]1736 } else if (val > UINT64_C(1000000000000000000)) {
1737 *rv = val / UINT64_C(1000000000000000);
[e535eeb]1738 *suffix = 'E';
[933cadf]1739 } else if (val > UINT64_C(1000000000000000)) {
1740 *rv = val / UINT64_C(1000000000000);
[e535eeb]1741 *suffix = 'T';
[933cadf]1742 } else if (val > UINT64_C(1000000000000)) {
1743 *rv = val / UINT64_C(1000000000);
[e535eeb]1744 *suffix = 'G';
[933cadf]1745 } else if (val > UINT64_C(1000000000)) {
1746 *rv = val / UINT64_C(1000000);
[e535eeb]1747 *suffix = 'M';
[933cadf]1748 } else if (val > UINT64_C(1000000)) {
1749 *rv = val / UINT64_C(1000);
[e535eeb]1750 *suffix = 'k';
1751 } else {
1752 *rv = val;
1753 *suffix = ' ';
1754 }
1755}
1756
[933cadf]1757void bin_order_suffix(const uint64_t val, uint64_t *rv, const char **suffix,
1758 bool fixed)
1759{
1760 if (val > UINT64_C(1152921504606846976)) {
1761 *rv = val / UINT64_C(1125899906842624);
1762 *suffix = "EiB";
1763 } else if (val > UINT64_C(1125899906842624)) {
1764 *rv = val / UINT64_C(1099511627776);
1765 *suffix = "TiB";
1766 } else if (val > UINT64_C(1099511627776)) {
1767 *rv = val / UINT64_C(1073741824);
1768 *suffix = "GiB";
1769 } else if (val > UINT64_C(1073741824)) {
1770 *rv = val / UINT64_C(1048576);
1771 *suffix = "MiB";
1772 } else if (val > UINT64_C(1048576)) {
1773 *rv = val / UINT64_C(1024);
1774 *suffix = "KiB";
1775 } else {
1776 *rv = val;
1777 if (fixed)
1778 *suffix = "B ";
1779 else
1780 *suffix = "B";
1781 }
1782}
1783
[a46da63]1784/** @}
[b2951e2]1785 */
Note: See TracBrowser for help on using the repository browser.