source: mainline/uspace/lib/c/generic/malloc.c@ 889cdb1

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 889cdb1 was f787c8e, checked in by Jiří Zárevúcky <jiri.zarevucky@…>, 7 years ago

Move some internal interfaces to private headers.

  • Property mode set to 100644
File size: 25.6 KB
Line 
1/*
2 * Copyright (c) 2009 Martin Decky
3 * Copyright (c) 2009 Petr Tuma
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libc
31 * @{
32 */
33/** @file
34 */
35
36#include <malloc.h>
37#include <stdbool.h>
38#include <stddef.h>
39#include <as.h>
40#include <align.h>
41#include <macros.h>
42#include <assert.h>
43#include <errno.h>
44#include <bitops.h>
45#include <mem.h>
46#include <stdlib.h>
47#include <adt/gcdlcm.h>
48
49#include "private/malloc.h"
50#include "private/fibril.h"
51
52/** Magic used in heap headers. */
53#define HEAP_BLOCK_HEAD_MAGIC UINT32_C(0xBEEF0101)
54
55/** Magic used in heap footers. */
56#define HEAP_BLOCK_FOOT_MAGIC UINT32_C(0xBEEF0202)
57
58/** Magic used in heap descriptor. */
59#define HEAP_AREA_MAGIC UINT32_C(0xBEEFCAFE)
60
61/** Allocation alignment.
62 *
63 * This also covers the alignment of fields
64 * in the heap header and footer.
65 *
66 */
67#define BASE_ALIGN 16
68
69/** Heap shrink granularity
70 *
71 * Try not to pump and stress the heap too much
72 * by shrinking and enlarging it too often.
73 * A heap area won't shrink if the released
74 * free block is smaller than this constant.
75 *
76 */
77#define SHRINK_GRANULARITY (64 * PAGE_SIZE)
78
79/** Overhead of each heap block. */
80#define STRUCT_OVERHEAD \
81 (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t))
82
83/** Overhead of each area. */
84#define AREA_OVERHEAD(size) \
85 (ALIGN_UP(size + sizeof(heap_area_t), BASE_ALIGN))
86
87/** Calculate real size of a heap block.
88 *
89 * Add header and footer size.
90 *
91 */
92#define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD)
93
94/** Calculate net size of a heap block.
95 *
96 * Subtract header and footer size.
97 *
98 */
99#define NET_SIZE(size) ((size) - STRUCT_OVERHEAD)
100
101/** Get first block in heap area.
102 *
103 */
104#define AREA_FIRST_BLOCK_HEAD(area) \
105 (ALIGN_UP(((uintptr_t) (area)) + sizeof(heap_area_t), BASE_ALIGN))
106
107/** Get last block in heap area.
108 *
109 */
110#define AREA_LAST_BLOCK_FOOT(area) \
111 (((uintptr_t) (area)->end) - sizeof(heap_block_foot_t))
112
113#define AREA_LAST_BLOCK_HEAD(area) \
114 ((uintptr_t) BLOCK_HEAD(((heap_block_foot_t *) AREA_LAST_BLOCK_FOOT(area))))
115
116/** Get header in heap block.
117 *
118 */
119#define BLOCK_HEAD(foot) \
120 ((heap_block_head_t *) \
121 (((uintptr_t) (foot)) + sizeof(heap_block_foot_t) - (foot)->size))
122
123/** Get footer in heap block.
124 *
125 */
126#define BLOCK_FOOT(head) \
127 ((heap_block_foot_t *) \
128 (((uintptr_t) (head)) + (head)->size - sizeof(heap_block_foot_t)))
129
130/** Heap area.
131 *
132 * The memory managed by the heap allocator is divided into
133 * multiple discontinuous heaps. Each heap is represented
134 * by a separate address space area which has this structure
135 * at its very beginning.
136 *
137 */
138typedef struct heap_area {
139 /** Start of the heap area (including this structure)
140 *
141 * Aligned on page boundary.
142 *
143 */
144 void *start;
145
146 /** End of the heap area (aligned on page boundary) */
147 void *end;
148
149 /** Previous heap area */
150 struct heap_area *prev;
151
152 /** Next heap area */
153 struct heap_area *next;
154
155 /** A magic value */
156 uint32_t magic;
157} heap_area_t;
158
159/** Header of a heap block
160 *
161 */
162typedef struct {
163 /* Size of the block (including header and footer) */
164 size_t size;
165
166 /* Indication of a free block */
167 bool free;
168
169 /** Heap area this block belongs to */
170 heap_area_t *area;
171
172 /* A magic value to detect overwrite of heap header */
173 uint32_t magic;
174} heap_block_head_t;
175
176/** Footer of a heap block
177 *
178 */
179typedef struct {
180 /* Size of the block (including header and footer) */
181 size_t size;
182
183 /* A magic value to detect overwrite of heap footer */
184 uint32_t magic;
185} heap_block_foot_t;
186
187/** First heap area */
188static heap_area_t *first_heap_area = NULL;
189
190/** Last heap area */
191static heap_area_t *last_heap_area = NULL;
192
193/** Next heap block to examine (next fit algorithm) */
194static heap_block_head_t *next_fit = NULL;
195
196/** Futex for thread-safe heap manipulation */
197static FIBRIL_RMUTEX_INITIALIZE(malloc_mutex);
198
199#define malloc_assert(expr) safe_assert(expr)
200
201/** Serializes access to the heap from multiple threads. */
202static inline void heap_lock(void)
203{
204 fibril_rmutex_lock(&malloc_mutex);
205}
206
207/** Serializes access to the heap from multiple threads. */
208static inline void heap_unlock(void)
209{
210 fibril_rmutex_unlock(&malloc_mutex);
211}
212
213/** Initialize a heap block
214 *
215 * Fill in the structures related to a heap block.
216 * Should be called only inside the critical section.
217 *
218 * @param addr Address of the block.
219 * @param size Size of the block including the header and the footer.
220 * @param free Indication of a free block.
221 * @param area Heap area the block belongs to.
222 *
223 */
224static void block_init(void *addr, size_t size, bool free, heap_area_t *area)
225{
226 /* Calculate the position of the header and the footer */
227 heap_block_head_t *head = (heap_block_head_t *) addr;
228
229 head->size = size;
230 head->free = free;
231 head->area = area;
232 head->magic = HEAP_BLOCK_HEAD_MAGIC;
233
234 heap_block_foot_t *foot = BLOCK_FOOT(head);
235
236 foot->size = size;
237 foot->magic = HEAP_BLOCK_FOOT_MAGIC;
238}
239
240/** Check a heap block
241 *
242 * Verifies that the structures related to a heap block still contain
243 * the magic constants. This helps detect heap corruption early on.
244 * Should be called only inside the critical section.
245 *
246 * @param addr Address of the block.
247 *
248 */
249static void block_check(void *addr)
250{
251 heap_block_head_t *head = (heap_block_head_t *) addr;
252
253 malloc_assert(head->magic == HEAP_BLOCK_HEAD_MAGIC);
254
255 heap_block_foot_t *foot = BLOCK_FOOT(head);
256
257 malloc_assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC);
258 malloc_assert(head->size == foot->size);
259}
260
261/** Check a heap area structure
262 *
263 * Should be called only inside the critical section.
264 *
265 * @param addr Address of the heap area.
266 *
267 */
268static void area_check(void *addr)
269{
270 heap_area_t *area = (heap_area_t *) addr;
271
272 malloc_assert(area->magic == HEAP_AREA_MAGIC);
273 malloc_assert(addr == area->start);
274 malloc_assert(area->start < area->end);
275 malloc_assert(((uintptr_t) area->start % PAGE_SIZE) == 0);
276 malloc_assert(((uintptr_t) area->end % PAGE_SIZE) == 0);
277}
278
279/** Create new heap area
280 *
281 * Should be called only inside the critical section.
282 *
283 * @param size Size of the area.
284 *
285 */
286static bool area_create(size_t size)
287{
288 /* Align the heap area size on page boundary */
289 size_t asize = ALIGN_UP(size, PAGE_SIZE);
290 void *astart = as_area_create(AS_AREA_ANY, asize,
291 AS_AREA_WRITE | AS_AREA_READ | AS_AREA_CACHEABLE, AS_AREA_UNPAGED);
292 if (astart == AS_MAP_FAILED)
293 return false;
294
295 heap_area_t *area = (heap_area_t *) astart;
296
297 area->start = astart;
298 area->end = (void *) ((uintptr_t) astart + asize);
299 area->prev = NULL;
300 area->next = NULL;
301 area->magic = HEAP_AREA_MAGIC;
302
303 void *block = (void *) AREA_FIRST_BLOCK_HEAD(area);
304 size_t bsize = (size_t) (area->end - block);
305
306 block_init(block, bsize, true, area);
307
308 if (last_heap_area == NULL) {
309 first_heap_area = area;
310 last_heap_area = area;
311 } else {
312 area->prev = last_heap_area;
313 last_heap_area->next = area;
314 last_heap_area = area;
315 }
316
317 return true;
318}
319
320/** Try to enlarge a heap area
321 *
322 * Should be called only inside the critical section.
323 *
324 * @param area Heap area to grow.
325 * @param size Gross size to grow (bytes).
326 *
327 * @return True if successful.
328 *
329 */
330static bool area_grow(heap_area_t *area, size_t size)
331{
332 if (size == 0)
333 return true;
334
335 area_check(area);
336
337 /* New heap area size */
338 size_t gross_size = (size_t) (area->end - area->start) + size;
339 size_t asize = ALIGN_UP(gross_size, PAGE_SIZE);
340 void *end = (void *) ((uintptr_t) area->start + asize);
341
342 /* Check for overflow */
343 if (end < area->start)
344 return false;
345
346 /* Resize the address space area */
347 errno_t ret = as_area_resize(area->start, asize, 0);
348 if (ret != EOK)
349 return false;
350
351 heap_block_head_t *last_head =
352 (heap_block_head_t *) AREA_LAST_BLOCK_HEAD(area);
353
354 if (last_head->free) {
355 /* Add the new space to the last block. */
356 size_t net_size = (size_t) (end - area->end) + last_head->size;
357 malloc_assert(net_size > 0);
358 block_init(last_head, net_size, true, area);
359 } else {
360 /* Add new free block */
361 size_t net_size = (size_t) (end - area->end);
362 if (net_size > 0)
363 block_init(area->end, net_size, true, area);
364 }
365
366 /* Update heap area parameters */
367 area->end = end;
368
369 return true;
370}
371
372/** Try to shrink heap
373 *
374 * Should be called only inside the critical section.
375 * In all cases the next pointer is reset.
376 *
377 * @param area Last modified heap area.
378 *
379 */
380static void heap_shrink(heap_area_t *area)
381{
382 area_check(area);
383
384 heap_block_foot_t *last_foot =
385 (heap_block_foot_t *) AREA_LAST_BLOCK_FOOT(area);
386 heap_block_head_t *last_head = BLOCK_HEAD(last_foot);
387
388 block_check((void *) last_head);
389 malloc_assert(last_head->area == area);
390
391 if (last_head->free) {
392 /*
393 * The last block of the heap area is
394 * unused. The area might be potentially
395 * shrunk.
396 */
397
398 heap_block_head_t *first_head =
399 (heap_block_head_t *) AREA_FIRST_BLOCK_HEAD(area);
400
401 block_check((void *) first_head);
402 malloc_assert(first_head->area == area);
403
404 size_t shrink_size = ALIGN_DOWN(last_head->size, PAGE_SIZE);
405
406 if (first_head == last_head) {
407 /*
408 * The entire heap area consists of a single
409 * free heap block. This means we can get rid
410 * of it entirely.
411 */
412
413 heap_area_t *prev = area->prev;
414 heap_area_t *next = area->next;
415
416 if (prev != NULL) {
417 area_check(prev);
418 prev->next = next;
419 } else
420 first_heap_area = next;
421
422 if (next != NULL) {
423 area_check(next);
424 next->prev = prev;
425 } else
426 last_heap_area = prev;
427
428 as_area_destroy(area->start);
429 } else if (shrink_size >= SHRINK_GRANULARITY) {
430 /*
431 * Make sure that we always shrink the area
432 * by a multiple of page size and update
433 * the block layout accordingly.
434 */
435
436 size_t asize = (size_t) (area->end - area->start) - shrink_size;
437 void *end = (void *) ((uintptr_t) area->start + asize);
438
439 /* Resize the address space area */
440 errno_t ret = as_area_resize(area->start, asize, 0);
441 if (ret != EOK)
442 abort();
443
444 /* Update heap area parameters */
445 area->end = end;
446 size_t excess = ((size_t) area->end) - ((size_t) last_head);
447
448 if (excess > 0) {
449 if (excess >= STRUCT_OVERHEAD) {
450 /*
451 * The previous block cannot be free and there
452 * is enough free space left in the area to
453 * create a new free block.
454 */
455 block_init((void *) last_head, excess, true, area);
456 } else {
457 /*
458 * The excess is small. Therefore just enlarge
459 * the previous block.
460 */
461 heap_block_foot_t *prev_foot = (heap_block_foot_t *)
462 (((uintptr_t) last_head) - sizeof(heap_block_foot_t));
463 heap_block_head_t *prev_head = BLOCK_HEAD(prev_foot);
464
465 block_check((void *) prev_head);
466
467 block_init(prev_head, prev_head->size + excess,
468 prev_head->free, area);
469 }
470 }
471 }
472 }
473
474 next_fit = NULL;
475}
476
477/** Initialize the heap allocator
478 *
479 * Create initial heap memory area. This routine is
480 * only called from libc initialization, thus we do not
481 * take any locks.
482 *
483 */
484void __malloc_init(void)
485{
486 if (!area_create(PAGE_SIZE))
487 abort();
488}
489
490/** Split heap block and mark it as used.
491 *
492 * Should be called only inside the critical section.
493 *
494 * @param cur Heap block to split.
495 * @param size Number of bytes to split and mark from the beginning
496 * of the block.
497 *
498 */
499static void split_mark(heap_block_head_t *cur, const size_t size)
500{
501 malloc_assert(cur->size >= size);
502
503 /* See if we should split the block. */
504 size_t split_limit = GROSS_SIZE(size);
505
506 if (cur->size > split_limit) {
507 /* Block big enough -> split. */
508 void *next = ((void *) cur) + size;
509 block_init(next, cur->size - size, true, cur->area);
510 block_init(cur, size, false, cur->area);
511 } else {
512 /* Block too small -> use as is. */
513 cur->free = false;
514 }
515}
516
517/** Allocate memory from heap area starting from given block
518 *
519 * Should be called only inside the critical section.
520 * As a side effect this function also sets the current
521 * pointer on successful allocation.
522 *
523 * @param area Heap area where to allocate from.
524 * @param first_block Starting heap block.
525 * @param final_block Heap block where to finish the search
526 * (may be NULL).
527 * @param real_size Gross number of bytes to allocate.
528 * @param falign Physical alignment of the block.
529 *
530 * @return Address of the allocated block or NULL on not enough memory.
531 *
532 */
533static void *malloc_area(heap_area_t *area, heap_block_head_t *first_block,
534 heap_block_head_t *final_block, size_t real_size, size_t falign)
535{
536 area_check((void *) area);
537 malloc_assert((void *) first_block >= (void *) AREA_FIRST_BLOCK_HEAD(area));
538 malloc_assert((void *) first_block < area->end);
539
540 for (heap_block_head_t *cur = first_block; (void *) cur < area->end;
541 cur = (heap_block_head_t *) (((void *) cur) + cur->size)) {
542 block_check(cur);
543
544 /* Finish searching on the final block */
545 if ((final_block != NULL) && (cur == final_block))
546 break;
547
548 /* Try to find a block that is free and large enough. */
549 if ((cur->free) && (cur->size >= real_size)) {
550 /*
551 * We have found a suitable block.
552 * Check for alignment properties.
553 */
554 void *addr = (void *)
555 ((uintptr_t) cur + sizeof(heap_block_head_t));
556 void *aligned = (void *)
557 ALIGN_UP((uintptr_t) addr, falign);
558
559 if (addr == aligned) {
560 /* Exact block start including alignment. */
561 split_mark(cur, real_size);
562
563 next_fit = cur;
564 return addr;
565 } else {
566 /* Block start has to be aligned */
567 size_t excess = (size_t) (aligned - addr);
568
569 if (cur->size >= real_size + excess) {
570 /*
571 * The current block is large enough to fit
572 * data in (including alignment).
573 */
574 if ((void *) cur > (void *) AREA_FIRST_BLOCK_HEAD(area)) {
575 /*
576 * There is a block before the current block.
577 * This previous block can be enlarged to
578 * compensate for the alignment excess.
579 */
580 heap_block_foot_t *prev_foot = (heap_block_foot_t *)
581 ((void *) cur - sizeof(heap_block_foot_t));
582
583 heap_block_head_t *prev_head = (heap_block_head_t *)
584 ((void *) cur - prev_foot->size);
585
586 block_check(prev_head);
587
588 size_t reduced_size = cur->size - excess;
589 heap_block_head_t *next_head = ((void *) cur) + excess;
590
591 if ((!prev_head->free) &&
592 (excess >= STRUCT_OVERHEAD)) {
593 /*
594 * The previous block is not free and there
595 * is enough free space left to fill in
596 * a new free block between the previous
597 * and current block.
598 */
599 block_init(cur, excess, true, area);
600 } else {
601 /*
602 * The previous block is free (thus there
603 * is no need to induce additional
604 * fragmentation to the heap) or the
605 * excess is small. Therefore just enlarge
606 * the previous block.
607 */
608 block_init(prev_head, prev_head->size + excess,
609 prev_head->free, area);
610 }
611
612 block_init(next_head, reduced_size, true, area);
613 split_mark(next_head, real_size);
614
615 next_fit = next_head;
616 return aligned;
617 } else {
618 /*
619 * The current block is the first block
620 * in the heap area. We have to make sure
621 * that the alignment excess is large enough
622 * to fit a new free block just before the
623 * current block.
624 */
625 while (excess < STRUCT_OVERHEAD) {
626 aligned += falign;
627 excess += falign;
628 }
629
630 /* Check for current block size again */
631 if (cur->size >= real_size + excess) {
632 size_t reduced_size = cur->size - excess;
633 cur = (heap_block_head_t *)
634 (AREA_FIRST_BLOCK_HEAD(area) + excess);
635
636 block_init((void *) AREA_FIRST_BLOCK_HEAD(area),
637 excess, true, area);
638 block_init(cur, reduced_size, true, area);
639 split_mark(cur, real_size);
640
641 next_fit = cur;
642 return aligned;
643 }
644 }
645 }
646 }
647 }
648 }
649
650 return NULL;
651}
652
653/** Try to enlarge any of the heap areas.
654 *
655 * If successful, allocate block of the given size in the area.
656 * Should be called only inside the critical section.
657 *
658 * @param size Gross size of item to allocate (bytes).
659 * @param align Memory address alignment.
660 *
661 * @return Allocated block.
662 * @return NULL on failure.
663 *
664 */
665static void *heap_grow_and_alloc(size_t size, size_t align)
666{
667 if (size == 0)
668 return NULL;
669
670 /* First try to enlarge some existing area */
671 for (heap_area_t *area = first_heap_area; area != NULL;
672 area = area->next) {
673
674 if (area_grow(area, size + align)) {
675 heap_block_head_t *first =
676 (heap_block_head_t *) AREA_LAST_BLOCK_HEAD(area);
677
678 void *addr =
679 malloc_area(area, first, NULL, size, align);
680 malloc_assert(addr != NULL);
681 return addr;
682 }
683 }
684
685 /* Eventually try to create a new area */
686 if (area_create(AREA_OVERHEAD(size + align))) {
687 heap_block_head_t *first =
688 (heap_block_head_t *) AREA_FIRST_BLOCK_HEAD(last_heap_area);
689
690 void *addr =
691 malloc_area(last_heap_area, first, NULL, size, align);
692 malloc_assert(addr != NULL);
693 return addr;
694 }
695
696 return NULL;
697}
698
699/** Allocate a memory block
700 *
701 * Should be called only inside the critical section.
702 *
703 * @param size The size of the block to allocate.
704 * @param align Memory address alignment.
705 *
706 * @return Address of the allocated block or NULL on not enough memory.
707 *
708 */
709static void *malloc_internal(const size_t size, const size_t align)
710{
711 malloc_assert(first_heap_area != NULL);
712
713 if (align == 0)
714 return NULL;
715
716 size_t falign = lcm(align, BASE_ALIGN);
717
718 /* Check for integer overflow. */
719 if (falign < align)
720 return NULL;
721
722 /*
723 * The size of the allocated block needs to be naturally
724 * aligned, because the footer structure also needs to reside
725 * on a naturally aligned address in order to avoid unaligned
726 * memory accesses.
727 */
728 size_t gross_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN));
729
730 /* Try the next fit approach */
731 heap_block_head_t *split = next_fit;
732
733 if (split != NULL) {
734 void *addr = malloc_area(split->area, split, NULL, gross_size,
735 falign);
736
737 if (addr != NULL)
738 return addr;
739 }
740
741 /* Search the entire heap */
742 for (heap_area_t *area = first_heap_area; area != NULL;
743 area = area->next) {
744 heap_block_head_t *first = (heap_block_head_t *)
745 AREA_FIRST_BLOCK_HEAD(area);
746
747 void *addr = malloc_area(area, first, split, gross_size,
748 falign);
749
750 if (addr != NULL)
751 return addr;
752 }
753
754 /* Finally, try to grow heap space and allocate in the new area. */
755 return heap_grow_and_alloc(gross_size, falign);
756}
757
758/** Allocate memory by number of elements
759 *
760 * @param nmemb Number of members to allocate.
761 * @param size Size of one member in bytes.
762 *
763 * @return Allocated memory or NULL.
764 *
765 */
766void *calloc(const size_t nmemb, const size_t size)
767{
768 // FIXME: Check for overflow
769
770 void *block = malloc(nmemb * size);
771 if (block == NULL)
772 return NULL;
773
774 memset(block, 0, nmemb * size);
775 return block;
776}
777
778/** Allocate memory
779 *
780 * @param size Number of bytes to allocate.
781 *
782 * @return Allocated memory or NULL.
783 *
784 */
785void *malloc(const size_t size)
786{
787 heap_lock();
788 void *block = malloc_internal(size, BASE_ALIGN);
789 heap_unlock();
790
791 return block;
792}
793
794/** Allocate memory with specified alignment
795 *
796 * @param align Alignment in byes.
797 * @param size Number of bytes to allocate.
798 *
799 * @return Allocated memory or NULL.
800 *
801 */
802void *memalign(const size_t align, const size_t size)
803{
804 if (align == 0)
805 return NULL;
806
807 size_t palign =
808 1 << (fnzb(max(sizeof(void *), align) - 1) + 1);
809
810 heap_lock();
811 void *block = malloc_internal(size, palign);
812 heap_unlock();
813
814 return block;
815}
816
817/** Reallocate memory block
818 *
819 * @param addr Already allocated memory or NULL.
820 * @param size New size of the memory block.
821 *
822 * @return Reallocated memory or NULL.
823 *
824 */
825void *realloc(void *const addr, const size_t size)
826{
827 if (size == 0) {
828 free(addr);
829 return NULL;
830 }
831
832 if (addr == NULL)
833 return malloc(size);
834
835 heap_lock();
836
837 /* Calculate the position of the header. */
838 heap_block_head_t *head =
839 (heap_block_head_t *) (addr - sizeof(heap_block_head_t));
840
841 block_check(head);
842 malloc_assert(!head->free);
843
844 heap_area_t *area = head->area;
845
846 area_check(area);
847 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area));
848 malloc_assert((void *) head < area->end);
849
850 void *ptr = NULL;
851 bool reloc = false;
852 size_t real_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN));
853 size_t orig_size = head->size;
854
855 if (orig_size > real_size) {
856 /* Shrink */
857 if (orig_size - real_size >= STRUCT_OVERHEAD) {
858 /*
859 * Split the original block to a full block
860 * and a trailing free block.
861 */
862 block_init((void *) head, real_size, false, area);
863 block_init((void *) head + real_size,
864 orig_size - real_size, true, area);
865 heap_shrink(area);
866 }
867
868 ptr = ((void *) head) + sizeof(heap_block_head_t);
869 } else {
870 heap_block_head_t *next_head =
871 (heap_block_head_t *) (((void *) head) + head->size);
872 bool have_next = ((void *) next_head < area->end);
873
874 if (((void *) head) + real_size > area->end) {
875 /*
876 * The current area is too small to hold the resized
877 * block. Make sure there are no used blocks standing
878 * in our way and try to grow the area using real_size
879 * as a safe upper bound.
880 */
881
882 bool have_next_next;
883
884 if (have_next) {
885 have_next_next = (((void *) next_head) +
886 next_head->size < area->end);
887 }
888 if (!have_next || (next_head->free && !have_next_next)) {
889 /*
890 * There is no next block in this area or
891 * it is a free block and there is no used
892 * block following it. There can't be any
893 * free block following it either as
894 * two free blocks would be merged.
895 */
896 (void) area_grow(area, real_size);
897 }
898 }
899
900 /*
901 * Look at the next block. If it is free and the size is
902 * sufficient then merge the two. Otherwise just allocate a new
903 * block, copy the original data into it and free the original
904 * block.
905 */
906
907 if (have_next && (head->size + next_head->size >= real_size) &&
908 next_head->free) {
909 block_check(next_head);
910 block_init(head, head->size + next_head->size, false,
911 area);
912 split_mark(head, real_size);
913
914 ptr = ((void *) head) + sizeof(heap_block_head_t);
915 next_fit = NULL;
916 } else {
917 reloc = true;
918 }
919 }
920
921 heap_unlock();
922
923 if (reloc) {
924 ptr = malloc(size);
925 if (ptr != NULL) {
926 memcpy(ptr, addr, NET_SIZE(orig_size));
927 free(addr);
928 }
929 }
930
931 return ptr;
932}
933
934/** Free a memory block
935 *
936 * @param addr The address of the block.
937 *
938 */
939void free(void *const addr)
940{
941 if (addr == NULL)
942 return;
943
944 heap_lock();
945
946 /* Calculate the position of the header. */
947 heap_block_head_t *head =
948 (heap_block_head_t *) (addr - sizeof(heap_block_head_t));
949
950 block_check(head);
951 malloc_assert(!head->free);
952
953 heap_area_t *area = head->area;
954
955 area_check(area);
956 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area));
957 malloc_assert((void *) head < area->end);
958
959 /* Mark the block itself as free. */
960 head->free = true;
961
962 /* Look at the next block. If it is free, merge the two. */
963 heap_block_head_t *next_head =
964 (heap_block_head_t *) (((void *) head) + head->size);
965
966 if ((void *) next_head < area->end) {
967 block_check(next_head);
968 if (next_head->free)
969 block_init(head, head->size + next_head->size, true, area);
970 }
971
972 /* Look at the previous block. If it is free, merge the two. */
973 if ((void *) head > (void *) AREA_FIRST_BLOCK_HEAD(area)) {
974 heap_block_foot_t *prev_foot =
975 (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t));
976
977 heap_block_head_t *prev_head =
978 (heap_block_head_t *) (((void *) head) - prev_foot->size);
979
980 block_check(prev_head);
981
982 if (prev_head->free)
983 block_init(prev_head, prev_head->size + head->size, true,
984 area);
985 }
986
987 heap_shrink(area);
988
989 heap_unlock();
990}
991
992void *heap_check(void)
993{
994 heap_lock();
995
996 if (first_heap_area == NULL) {
997 heap_unlock();
998 return (void *) -1;
999 }
1000
1001 /* Walk all heap areas */
1002 for (heap_area_t *area = first_heap_area; area != NULL;
1003 area = area->next) {
1004
1005 /* Check heap area consistency */
1006 if ((area->magic != HEAP_AREA_MAGIC) ||
1007 ((void *) area != area->start) ||
1008 (area->start >= area->end) ||
1009 (((uintptr_t) area->start % PAGE_SIZE) != 0) ||
1010 (((uintptr_t) area->end % PAGE_SIZE) != 0)) {
1011 heap_unlock();
1012 return (void *) area;
1013 }
1014
1015 /* Walk all heap blocks */
1016 for (heap_block_head_t *head = (heap_block_head_t *)
1017 AREA_FIRST_BLOCK_HEAD(area); (void *) head < area->end;
1018 head = (heap_block_head_t *) (((void *) head) + head->size)) {
1019
1020 /* Check heap block consistency */
1021 if (head->magic != HEAP_BLOCK_HEAD_MAGIC) {
1022 heap_unlock();
1023 return (void *) head;
1024 }
1025
1026 heap_block_foot_t *foot = BLOCK_FOOT(head);
1027
1028 if ((foot->magic != HEAP_BLOCK_FOOT_MAGIC) ||
1029 (head->size != foot->size)) {
1030 heap_unlock();
1031 return (void *) foot;
1032 }
1033 }
1034 }
1035
1036 heap_unlock();
1037
1038 return NULL;
1039}
1040
1041/** @}
1042 */
Note: See TracBrowser for help on using the repository browser.