source: mainline/uspace/lib/c/generic/malloc.c@ 44e8541

topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 44e8541 was 44e8541, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 20 months ago

Move stdlib.h and some of its function into /common

  • Property mode set to 100644
File size: 25.6 KB
Line 
1/*
2 * Copyright (c) 2009 Martin Decky
3 * Copyright (c) 2009 Petr Tuma
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libc
31 * @{
32 */
33/** @file
34 */
35
36#include <stdlib.h>
37#include <stdalign.h>
38#include <stdbool.h>
39#include <stddef.h>
40#include <as.h>
41#include <align.h>
42#include <macros.h>
43#include <assert.h>
44#include <errno.h>
45#include <bitops.h>
46#include <mem.h>
47#include <stdlib.h>
48#include <adt/gcdlcm.h>
49#include <malloc.h>
50
51#include "private/malloc.h"
52#include "private/fibril.h"
53
54/** Magic used in heap headers. */
55#define HEAP_BLOCK_HEAD_MAGIC UINT32_C(0xBEEF0101)
56
57/** Magic used in heap footers. */
58#define HEAP_BLOCK_FOOT_MAGIC UINT32_C(0xBEEF0202)
59
60/** Magic used in heap descriptor. */
61#define HEAP_AREA_MAGIC UINT32_C(0xBEEFCAFE)
62
63/** Allocation alignment.
64 *
65 * This also covers the alignment of fields
66 * in the heap header and footer.
67 *
68 */
69#define BASE_ALIGN 16
70
71/** Heap shrink granularity
72 *
73 * Try not to pump and stress the heap too much
74 * by shrinking and enlarging it too often.
75 * A heap area won't shrink if the released
76 * free block is smaller than this constant.
77 *
78 */
79#define SHRINK_GRANULARITY (64 * PAGE_SIZE)
80
81/** Overhead of each heap block. */
82#define STRUCT_OVERHEAD \
83 (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t))
84
85/** Calculate real size of a heap block.
86 *
87 * Add header and footer size.
88 *
89 */
90#define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD)
91
92/** Calculate net size of a heap block.
93 *
94 * Subtract header and footer size.
95 *
96 */
97#define NET_SIZE(size) ((size) - STRUCT_OVERHEAD)
98
99/** Overhead of each area. */
100#define AREA_OVERHEAD(size) \
101 (ALIGN_UP(GROSS_SIZE(size) + sizeof(heap_area_t), BASE_ALIGN))
102
103/** Get first block in heap area.
104 *
105 */
106#define AREA_FIRST_BLOCK_HEAD(area) \
107 (ALIGN_UP(((uintptr_t) (area)) + sizeof(heap_area_t), BASE_ALIGN))
108
109/** Get last block in heap area.
110 *
111 */
112#define AREA_LAST_BLOCK_FOOT(area) \
113 (((uintptr_t) (area)->end) - sizeof(heap_block_foot_t))
114
115#define AREA_LAST_BLOCK_HEAD(area) \
116 ((uintptr_t) BLOCK_HEAD(((heap_block_foot_t *) AREA_LAST_BLOCK_FOOT(area))))
117
118/** Get header in heap block.
119 *
120 */
121#define BLOCK_HEAD(foot) \
122 ((heap_block_head_t *) \
123 (((uintptr_t) (foot)) + sizeof(heap_block_foot_t) - (foot)->size))
124
125/** Get footer in heap block.
126 *
127 */
128#define BLOCK_FOOT(head) \
129 ((heap_block_foot_t *) \
130 (((uintptr_t) (head)) + (head)->size - sizeof(heap_block_foot_t)))
131
132/** Heap area.
133 *
134 * The memory managed by the heap allocator is divided into
135 * multiple discontinuous heaps. Each heap is represented
136 * by a separate address space area which has this structure
137 * at its very beginning.
138 *
139 */
140typedef struct heap_area {
141 /** Start of the heap area (including this structure)
142 *
143 * Aligned on page boundary.
144 *
145 */
146 void *start;
147
148 /** End of the heap area (aligned on page boundary) */
149 void *end;
150
151 /** Previous heap area */
152 struct heap_area *prev;
153
154 /** Next heap area */
155 struct heap_area *next;
156
157 /** A magic value */
158 uint32_t magic;
159} heap_area_t;
160
161/** Header of a heap block
162 *
163 */
164typedef struct {
165 /* Size of the block (including header and footer) */
166 size_t size;
167
168 /* Indication of a free block */
169 bool free;
170
171 /** Heap area this block belongs to */
172 heap_area_t *area;
173
174 /* A magic value to detect overwrite of heap header */
175 uint32_t magic;
176} heap_block_head_t;
177
178/** Footer of a heap block
179 *
180 */
181typedef struct {
182 /* Size of the block (including header and footer) */
183 size_t size;
184
185 /* A magic value to detect overwrite of heap footer */
186 uint32_t magic;
187} heap_block_foot_t;
188
189/** First heap area */
190static heap_area_t *first_heap_area = NULL;
191
192/** Last heap area */
193static heap_area_t *last_heap_area = NULL;
194
195/** Next heap block to examine (next fit algorithm) */
196static heap_block_head_t *next_fit = NULL;
197
198/** Futex for thread-safe heap manipulation */
199static fibril_rmutex_t malloc_mutex;
200
201#define malloc_assert(expr) safe_assert(expr)
202
203/*
204 * Make sure the base alignment is sufficient.
205 */
206static_assert(BASE_ALIGN >= alignof(heap_area_t), "");
207static_assert(BASE_ALIGN >= alignof(heap_block_head_t), "");
208static_assert(BASE_ALIGN >= alignof(heap_block_foot_t), "");
209static_assert(BASE_ALIGN >= alignof(max_align_t), "");
210
211/** Serializes access to the heap from multiple threads. */
212static inline void heap_lock(void)
213{
214 fibril_rmutex_lock(&malloc_mutex);
215}
216
217/** Serializes access to the heap from multiple threads. */
218static inline void heap_unlock(void)
219{
220 fibril_rmutex_unlock(&malloc_mutex);
221}
222
223/** Initialize a heap block
224 *
225 * Fill in the structures related to a heap block.
226 * Should be called only inside the critical section.
227 *
228 * @param addr Address of the block.
229 * @param size Size of the block including the header and the footer.
230 * @param free Indication of a free block.
231 * @param area Heap area the block belongs to.
232 *
233 */
234static void block_init(void *addr, size_t size, bool free, heap_area_t *area)
235{
236 /* Calculate the position of the header and the footer */
237 heap_block_head_t *head = (heap_block_head_t *) addr;
238
239 head->size = size;
240 head->free = free;
241 head->area = area;
242 head->magic = HEAP_BLOCK_HEAD_MAGIC;
243
244 heap_block_foot_t *foot = BLOCK_FOOT(head);
245
246 foot->size = size;
247 foot->magic = HEAP_BLOCK_FOOT_MAGIC;
248}
249
250/** Check a heap block
251 *
252 * Verifies that the structures related to a heap block still contain
253 * the magic constants. This helps detect heap corruption early on.
254 * Should be called only inside the critical section.
255 *
256 * @param addr Address of the block.
257 *
258 */
259static void block_check(void *addr)
260{
261 heap_block_head_t *head = (heap_block_head_t *) addr;
262
263 malloc_assert(head->magic == HEAP_BLOCK_HEAD_MAGIC);
264
265 heap_block_foot_t *foot = BLOCK_FOOT(head);
266
267 malloc_assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC);
268 malloc_assert(head->size == foot->size);
269}
270
271/** Check a heap area structure
272 *
273 * Should be called only inside the critical section.
274 *
275 * @param addr Address of the heap area.
276 *
277 */
278static void area_check(void *addr)
279{
280 heap_area_t *area = (heap_area_t *) addr;
281
282 malloc_assert(area->magic == HEAP_AREA_MAGIC);
283 malloc_assert(addr == area->start);
284 malloc_assert(area->start < area->end);
285 malloc_assert(((uintptr_t) area->start % PAGE_SIZE) == 0);
286 malloc_assert(((uintptr_t) area->end % PAGE_SIZE) == 0);
287}
288
289/** Create new heap area
290 *
291 * Should be called only inside the critical section.
292 *
293 * @param size Size of the area.
294 *
295 */
296static bool area_create(size_t size)
297{
298 /* Align the heap area size on page boundary */
299 size_t asize = ALIGN_UP(size, PAGE_SIZE);
300 void *astart = as_area_create(AS_AREA_ANY, asize,
301 AS_AREA_WRITE | AS_AREA_READ | AS_AREA_CACHEABLE, AS_AREA_UNPAGED);
302 if (astart == AS_MAP_FAILED)
303 return false;
304
305 heap_area_t *area = (heap_area_t *) astart;
306
307 area->start = astart;
308 area->end = (void *) ((uintptr_t) astart + asize);
309 area->prev = NULL;
310 area->next = NULL;
311 area->magic = HEAP_AREA_MAGIC;
312
313 void *block = (void *) AREA_FIRST_BLOCK_HEAD(area);
314 size_t bsize = (size_t) (area->end - block);
315
316 block_init(block, bsize, true, area);
317
318 if (last_heap_area == NULL) {
319 first_heap_area = area;
320 last_heap_area = area;
321 } else {
322 area->prev = last_heap_area;
323 last_heap_area->next = area;
324 last_heap_area = area;
325 }
326
327 return true;
328}
329
330/** Try to enlarge a heap area
331 *
332 * Should be called only inside the critical section.
333 *
334 * @param area Heap area to grow.
335 * @param size Gross size to grow (bytes).
336 *
337 * @return True if successful.
338 *
339 */
340static bool area_grow(heap_area_t *area, size_t size)
341{
342 if (size == 0)
343 return true;
344
345 area_check(area);
346
347 /* New heap area size */
348 size_t gross_size = (size_t) (area->end - area->start) + size;
349 size_t asize = ALIGN_UP(gross_size, PAGE_SIZE);
350 void *end = (void *) ((uintptr_t) area->start + asize);
351
352 /* Check for overflow */
353 if (end < area->start)
354 return false;
355
356 /* Resize the address space area */
357 errno_t ret = as_area_resize(area->start, asize, 0);
358 if (ret != EOK)
359 return false;
360
361 heap_block_head_t *last_head =
362 (heap_block_head_t *) AREA_LAST_BLOCK_HEAD(area);
363
364 if (last_head->free) {
365 /* Add the new space to the last block. */
366 size_t net_size = (size_t) (end - area->end) + last_head->size;
367 malloc_assert(net_size > 0);
368 block_init(last_head, net_size, true, area);
369 } else {
370 /* Add new free block */
371 size_t net_size = (size_t) (end - area->end);
372 if (net_size > 0)
373 block_init(area->end, net_size, true, area);
374 }
375
376 /* Update heap area parameters */
377 area->end = end;
378
379 return true;
380}
381
382/** Try to shrink heap
383 *
384 * Should be called only inside the critical section.
385 * In all cases the next pointer is reset.
386 *
387 * @param area Last modified heap area.
388 *
389 */
390static void heap_shrink(heap_area_t *area)
391{
392 area_check(area);
393
394 heap_block_foot_t *last_foot =
395 (heap_block_foot_t *) AREA_LAST_BLOCK_FOOT(area);
396 heap_block_head_t *last_head = BLOCK_HEAD(last_foot);
397
398 block_check((void *) last_head);
399 malloc_assert(last_head->area == area);
400
401 if (last_head->free) {
402 /*
403 * The last block of the heap area is
404 * unused. The area might be potentially
405 * shrunk.
406 */
407
408 heap_block_head_t *first_head =
409 (heap_block_head_t *) AREA_FIRST_BLOCK_HEAD(area);
410
411 block_check((void *) first_head);
412 malloc_assert(first_head->area == area);
413
414 size_t shrink_size = ALIGN_DOWN(last_head->size, PAGE_SIZE);
415
416 if (first_head == last_head) {
417 /*
418 * The entire heap area consists of a single
419 * free heap block. This means we can get rid
420 * of it entirely.
421 */
422
423 heap_area_t *prev = area->prev;
424 heap_area_t *next = area->next;
425
426 if (prev != NULL) {
427 area_check(prev);
428 prev->next = next;
429 } else
430 first_heap_area = next;
431
432 if (next != NULL) {
433 area_check(next);
434 next->prev = prev;
435 } else
436 last_heap_area = prev;
437
438 as_area_destroy(area->start);
439 } else if (shrink_size >= SHRINK_GRANULARITY) {
440 /*
441 * Make sure that we always shrink the area
442 * by a multiple of page size and update
443 * the block layout accordingly.
444 */
445
446 size_t asize = (size_t) (area->end - area->start) - shrink_size;
447 void *end = (void *) ((uintptr_t) area->start + asize);
448
449 /* Resize the address space area */
450 errno_t ret = as_area_resize(area->start, asize, 0);
451 if (ret != EOK)
452 abort();
453
454 /* Update heap area parameters */
455 area->end = end;
456 size_t excess = ((size_t) area->end) - ((size_t) last_head);
457
458 if (excess > 0) {
459 if (excess >= STRUCT_OVERHEAD) {
460 /*
461 * The previous block cannot be free and there
462 * is enough free space left in the area to
463 * create a new free block.
464 */
465 block_init((void *) last_head, excess, true, area);
466 } else {
467 /*
468 * The excess is small. Therefore just enlarge
469 * the previous block.
470 */
471 heap_block_foot_t *prev_foot = (heap_block_foot_t *)
472 (((uintptr_t) last_head) - sizeof(heap_block_foot_t));
473 heap_block_head_t *prev_head = BLOCK_HEAD(prev_foot);
474
475 block_check((void *) prev_head);
476
477 block_init(prev_head, prev_head->size + excess,
478 prev_head->free, area);
479 }
480 }
481 }
482 }
483
484 next_fit = NULL;
485}
486
487/** Initialize the heap allocator
488 *
489 * Create initial heap memory area. This routine is
490 * only called from libc initialization, thus we do not
491 * take any locks.
492 *
493 */
494void __malloc_init(void)
495{
496 if (fibril_rmutex_initialize(&malloc_mutex) != EOK)
497 abort();
498
499 if (!area_create(PAGE_SIZE))
500 abort();
501}
502
503void __malloc_fini(void)
504{
505 fibril_rmutex_destroy(&malloc_mutex);
506}
507
508/** Split heap block and mark it as used.
509 *
510 * Should be called only inside the critical section.
511 *
512 * @param cur Heap block to split.
513 * @param size Number of bytes to split and mark from the beginning
514 * of the block.
515 *
516 */
517static void split_mark(heap_block_head_t *cur, const size_t size)
518{
519 malloc_assert(cur->size >= size);
520
521 /* See if we should split the block. */
522 size_t split_limit = GROSS_SIZE(size);
523
524 if (cur->size > split_limit) {
525 /* Block big enough -> split. */
526 void *next = ((void *) cur) + size;
527 block_init(next, cur->size - size, true, cur->area);
528 block_init(cur, size, false, cur->area);
529 } else {
530 /* Block too small -> use as is. */
531 cur->free = false;
532 }
533}
534
535/** Allocate memory from heap area starting from given block
536 *
537 * Should be called only inside the critical section.
538 * As a side effect this function also sets the current
539 * pointer on successful allocation.
540 *
541 * @param area Heap area where to allocate from.
542 * @param first_block Starting heap block.
543 * @param final_block Heap block where to finish the search
544 * (may be NULL).
545 * @param real_size Gross number of bytes to allocate.
546 * @param falign Physical alignment of the block.
547 *
548 * @return Address of the allocated block or NULL on not enough memory.
549 *
550 */
551static void *malloc_area(heap_area_t *area, heap_block_head_t *first_block,
552 heap_block_head_t *final_block, size_t real_size, size_t falign)
553{
554 area_check((void *) area);
555 malloc_assert((void *) first_block >= (void *) AREA_FIRST_BLOCK_HEAD(area));
556 malloc_assert((void *) first_block < area->end);
557
558 for (heap_block_head_t *cur = first_block; (void *) cur < area->end;
559 cur = (heap_block_head_t *) (((void *) cur) + cur->size)) {
560 block_check(cur);
561
562 /* Finish searching on the final block */
563 if ((final_block != NULL) && (cur == final_block))
564 break;
565
566 /* Try to find a block that is free and large enough. */
567 if ((cur->free) && (cur->size >= real_size)) {
568 /*
569 * We have found a suitable block.
570 * Check for alignment properties.
571 */
572 void *addr = (void *)
573 ((uintptr_t) cur + sizeof(heap_block_head_t));
574 void *aligned = (void *)
575 ALIGN_UP((uintptr_t) addr, falign);
576
577 if (addr == aligned) {
578 /* Exact block start including alignment. */
579 split_mark(cur, real_size);
580
581 next_fit = cur;
582 return addr;
583 } else {
584 /* Block start has to be aligned */
585 size_t excess = (size_t) (aligned - addr);
586
587 if (cur->size >= real_size + excess) {
588 /*
589 * The current block is large enough to fit
590 * data in (including alignment).
591 */
592 if ((void *) cur > (void *) AREA_FIRST_BLOCK_HEAD(area)) {
593 /*
594 * There is a block before the current block.
595 * This previous block can be enlarged to
596 * compensate for the alignment excess.
597 */
598 heap_block_foot_t *prev_foot = (heap_block_foot_t *)
599 ((void *) cur - sizeof(heap_block_foot_t));
600
601 heap_block_head_t *prev_head = (heap_block_head_t *)
602 ((void *) cur - prev_foot->size);
603
604 block_check(prev_head);
605
606 size_t reduced_size = cur->size - excess;
607 heap_block_head_t *next_head = ((void *) cur) + excess;
608
609 if ((!prev_head->free) &&
610 (excess >= STRUCT_OVERHEAD)) {
611 /*
612 * The previous block is not free and there
613 * is enough free space left to fill in
614 * a new free block between the previous
615 * and current block.
616 */
617 block_init(cur, excess, true, area);
618 } else {
619 /*
620 * The previous block is free (thus there
621 * is no need to induce additional
622 * fragmentation to the heap) or the
623 * excess is small. Therefore just enlarge
624 * the previous block.
625 */
626 block_init(prev_head, prev_head->size + excess,
627 prev_head->free, area);
628 }
629
630 block_init(next_head, reduced_size, true, area);
631 split_mark(next_head, real_size);
632
633 next_fit = next_head;
634 return aligned;
635 } else {
636 /*
637 * The current block is the first block
638 * in the heap area. We have to make sure
639 * that the alignment excess is large enough
640 * to fit a new free block just before the
641 * current block.
642 */
643 while (excess < STRUCT_OVERHEAD) {
644 aligned += falign;
645 excess += falign;
646 }
647
648 /* Check for current block size again */
649 if (cur->size >= real_size + excess) {
650 size_t reduced_size = cur->size - excess;
651 cur = (heap_block_head_t *)
652 (AREA_FIRST_BLOCK_HEAD(area) + excess);
653
654 block_init((void *) AREA_FIRST_BLOCK_HEAD(area),
655 excess, true, area);
656 block_init(cur, reduced_size, true, area);
657 split_mark(cur, real_size);
658
659 next_fit = cur;
660 return aligned;
661 }
662 }
663 }
664 }
665 }
666 }
667
668 return NULL;
669}
670
671/** Try to enlarge any of the heap areas.
672 *
673 * If successful, allocate block of the given size in the area.
674 * Should be called only inside the critical section.
675 *
676 * @param size Gross size of item to allocate (bytes).
677 * @param align Memory address alignment.
678 *
679 * @return Allocated block.
680 * @return NULL on failure.
681 *
682 */
683static void *heap_grow_and_alloc(size_t size, size_t align)
684{
685 if (size == 0)
686 return NULL;
687
688 /* First try to enlarge some existing area */
689 for (heap_area_t *area = first_heap_area; area != NULL;
690 area = area->next) {
691
692 if (area_grow(area, size + align)) {
693 heap_block_head_t *first =
694 (heap_block_head_t *) AREA_LAST_BLOCK_HEAD(area);
695
696 void *addr =
697 malloc_area(area, first, NULL, size, align);
698 malloc_assert(addr != NULL);
699 return addr;
700 }
701 }
702
703 /* Eventually try to create a new area */
704 if (area_create(AREA_OVERHEAD(size + align))) {
705 heap_block_head_t *first =
706 (heap_block_head_t *) AREA_FIRST_BLOCK_HEAD(last_heap_area);
707
708 void *addr =
709 malloc_area(last_heap_area, first, NULL, size, align);
710 malloc_assert(addr != NULL);
711 return addr;
712 }
713
714 return NULL;
715}
716
717/** Allocate a memory block
718 *
719 * Should be called only inside the critical section.
720 *
721 * @param size The size of the block to allocate.
722 * @param align Memory address alignment.
723 *
724 * @return Address of the allocated block or NULL on not enough memory.
725 *
726 */
727static void *malloc_internal(const size_t size, const size_t align)
728{
729 malloc_assert(first_heap_area != NULL);
730
731 if (align == 0)
732 return NULL;
733
734 size_t falign = lcm(align, BASE_ALIGN);
735
736 /* Check for integer overflow. */
737 if (falign < align)
738 return NULL;
739
740 /*
741 * The size of the allocated block needs to be naturally
742 * aligned, because the footer structure also needs to reside
743 * on a naturally aligned address in order to avoid unaligned
744 * memory accesses.
745 */
746 size_t gross_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN));
747
748 /* Try the next fit approach */
749 heap_block_head_t *split = next_fit;
750
751 if (split != NULL) {
752 void *addr = malloc_area(split->area, split, NULL, gross_size,
753 falign);
754
755 if (addr != NULL)
756 return addr;
757 }
758
759 /* Search the entire heap */
760 for (heap_area_t *area = first_heap_area; area != NULL;
761 area = area->next) {
762 heap_block_head_t *first = (heap_block_head_t *)
763 AREA_FIRST_BLOCK_HEAD(area);
764
765 void *addr = malloc_area(area, first, split, gross_size,
766 falign);
767
768 if (addr != NULL)
769 return addr;
770 }
771
772 /* Finally, try to grow heap space and allocate in the new area. */
773 return heap_grow_and_alloc(gross_size, falign);
774}
775
776/** Allocate memory
777 *
778 * @param size Number of bytes to allocate.
779 *
780 * @return Allocated memory or NULL.
781 *
782 */
783void *malloc(const size_t size)
784{
785 heap_lock();
786 void *block = malloc_internal(size, BASE_ALIGN);
787 heap_unlock();
788
789 return block;
790}
791
792/** Allocate memory with specified alignment
793 *
794 * @param align Alignment in byes.
795 * @param size Number of bytes to allocate.
796 *
797 * @return Allocated memory or NULL.
798 *
799 */
800void *memalign(const size_t align, const size_t size)
801{
802 if (align == 0)
803 return NULL;
804
805 size_t palign =
806 1 << (fnzb(max(sizeof(void *), align) - 1) + 1);
807
808 heap_lock();
809 void *block = malloc_internal(size, palign);
810 heap_unlock();
811
812 return block;
813}
814
815/** Reallocate memory block
816 *
817 * @param addr Already allocated memory or NULL.
818 * @param size New size of the memory block.
819 *
820 * @return Reallocated memory or NULL.
821 *
822 */
823void *realloc(void *const addr, const size_t size)
824{
825 if (size == 0) {
826 free(addr);
827 return NULL;
828 }
829
830 if (addr == NULL)
831 return malloc(size);
832
833 heap_lock();
834
835 /* Calculate the position of the header. */
836 heap_block_head_t *head =
837 (heap_block_head_t *) (addr - sizeof(heap_block_head_t));
838
839 block_check(head);
840 malloc_assert(!head->free);
841
842 heap_area_t *area = head->area;
843
844 area_check(area);
845 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area));
846 malloc_assert((void *) head < area->end);
847
848 void *ptr = NULL;
849 bool reloc = false;
850 size_t real_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN));
851 size_t orig_size = head->size;
852
853 if (orig_size > real_size) {
854 /* Shrink */
855 if (orig_size - real_size >= STRUCT_OVERHEAD) {
856 /*
857 * Split the original block to a full block
858 * and a trailing free block.
859 */
860 block_init((void *) head, real_size, false, area);
861 block_init((void *) head + real_size,
862 orig_size - real_size, true, area);
863 heap_shrink(area);
864 }
865
866 ptr = ((void *) head) + sizeof(heap_block_head_t);
867 } else {
868 heap_block_head_t *next_head =
869 (heap_block_head_t *) (((void *) head) + head->size);
870 bool have_next = ((void *) next_head < area->end);
871
872 if (((void *) head) + real_size > area->end) {
873 /*
874 * The current area is too small to hold the resized
875 * block. Make sure there are no used blocks standing
876 * in our way and try to grow the area using real_size
877 * as a safe upper bound.
878 */
879
880 bool have_next_next;
881
882 if (have_next) {
883 have_next_next = (((void *) next_head) +
884 next_head->size < area->end);
885 }
886 if (!have_next || (next_head->free && !have_next_next)) {
887 /*
888 * There is no next block in this area or
889 * it is a free block and there is no used
890 * block following it. There can't be any
891 * free block following it either as
892 * two free blocks would be merged.
893 */
894 (void) area_grow(area, real_size);
895 }
896 }
897
898 /*
899 * Look at the next block. If it is free and the size is
900 * sufficient then merge the two. Otherwise just allocate a new
901 * block, copy the original data into it and free the original
902 * block.
903 */
904
905 if (have_next && (head->size + next_head->size >= real_size) &&
906 next_head->free) {
907 block_check(next_head);
908 block_init(head, head->size + next_head->size, false,
909 area);
910 split_mark(head, real_size);
911
912 ptr = ((void *) head) + sizeof(heap_block_head_t);
913 next_fit = NULL;
914 } else {
915 reloc = true;
916 }
917 }
918
919 heap_unlock();
920
921 if (reloc) {
922 ptr = malloc(size);
923 if (ptr != NULL) {
924 memcpy(ptr, addr, NET_SIZE(orig_size));
925 free(addr);
926 }
927 }
928
929 return ptr;
930}
931
932/** Free a memory block
933 *
934 * @param addr The address of the block.
935 *
936 */
937void free(void *const addr)
938{
939 if (addr == NULL)
940 return;
941
942 heap_lock();
943
944 /* Calculate the position of the header. */
945 heap_block_head_t *head =
946 (heap_block_head_t *) (addr - sizeof(heap_block_head_t));
947
948 block_check(head);
949 malloc_assert(!head->free);
950
951 heap_area_t *area = head->area;
952
953 area_check(area);
954 malloc_assert((void *) head >= (void *) AREA_FIRST_BLOCK_HEAD(area));
955 malloc_assert((void *) head < area->end);
956
957 /* Mark the block itself as free. */
958 head->free = true;
959
960 /* Look at the next block. If it is free, merge the two. */
961 heap_block_head_t *next_head =
962 (heap_block_head_t *) (((void *) head) + head->size);
963
964 if ((void *) next_head < area->end) {
965 block_check(next_head);
966 if (next_head->free)
967 block_init(head, head->size + next_head->size, true, area);
968 }
969
970 /* Look at the previous block. If it is free, merge the two. */
971 if ((void *) head > (void *) AREA_FIRST_BLOCK_HEAD(area)) {
972 heap_block_foot_t *prev_foot =
973 (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t));
974
975 heap_block_head_t *prev_head =
976 (heap_block_head_t *) (((void *) head) - prev_foot->size);
977
978 block_check(prev_head);
979
980 if (prev_head->free)
981 block_init(prev_head, prev_head->size + head->size, true,
982 area);
983 }
984
985 heap_shrink(area);
986
987 heap_unlock();
988}
989
990void *heap_check(void)
991{
992 heap_lock();
993
994 if (first_heap_area == NULL) {
995 heap_unlock();
996 return (void *) -1;
997 }
998
999 /* Walk all heap areas */
1000 for (heap_area_t *area = first_heap_area; area != NULL;
1001 area = area->next) {
1002
1003 /* Check heap area consistency */
1004 if ((area->magic != HEAP_AREA_MAGIC) ||
1005 ((void *) area != area->start) ||
1006 (area->start >= area->end) ||
1007 (((uintptr_t) area->start % PAGE_SIZE) != 0) ||
1008 (((uintptr_t) area->end % PAGE_SIZE) != 0)) {
1009 heap_unlock();
1010 return (void *) area;
1011 }
1012
1013 /* Walk all heap blocks */
1014 for (heap_block_head_t *head = (heap_block_head_t *)
1015 AREA_FIRST_BLOCK_HEAD(area); (void *) head < area->end;
1016 head = (heap_block_head_t *) (((void *) head) + head->size)) {
1017
1018 /* Check heap block consistency */
1019 if (head->magic != HEAP_BLOCK_HEAD_MAGIC) {
1020 heap_unlock();
1021 return (void *) head;
1022 }
1023
1024 heap_block_foot_t *foot = BLOCK_FOOT(head);
1025
1026 if ((foot->magic != HEAP_BLOCK_FOOT_MAGIC) ||
1027 (head->size != foot->size)) {
1028 heap_unlock();
1029 return (void *) foot;
1030 }
1031 }
1032 }
1033
1034 heap_unlock();
1035
1036 return NULL;
1037}
1038
1039/** @}
1040 */
Note: See TracBrowser for help on using the repository browser.