source: mainline/uspace/lib/c/generic/double_to_str.c@ d73d992

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d73d992 was 7c3fb9b, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Fix block comment formatting (ccheck).

  • Property mode set to 100644
File size: 25.1 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <double_to_str.h>
30
31#include "private/power_of_ten.h"
32#include <ieee_double.h>
33
34#include <limits.h>
35#include <stdint.h>
36#include <stdbool.h>
37#include <stddef.h>
38#include <assert.h>
39
40/*
41 * Floating point numbers are converted from their binary representation
42 * into a decimal string using the algorithm described in:
43 * Printing floating-point numbers quickly and accurately with integers
44 * Loitsch, 2010
45 */
46
47/** The computation assumes a significand of 64 bits. */
48static const int significand_width = 64;
49
50/* Scale exponents to interval [alpha, gamma] to simplify conversion. */
51static const int alpha = -59;
52static const int gamma = -32;
53
54
55/** Returns true if the most-significant bit of num.significand is set. */
56static bool is_normalized(fp_num_t num)
57{
58 assert(8 * sizeof(num.significand) == significand_width);
59
60 /* Normalized == most significant bit of the significand is set. */
61 return (num.significand & (1ULL << (significand_width - 1))) != 0;
62}
63
64/** Returns a normalized num with the MSbit set. */
65static fp_num_t normalize(fp_num_t num)
66{
67 const uint64_t top10bits = 0xffc0000000000000ULL;
68
69 /* num usually comes from ieee_double with top 10 bits zero. */
70 while (0 == (num.significand & top10bits)) {
71 num.significand <<= 10;
72 num.exponent -= 10;
73 }
74
75 while (!is_normalized(num)) {
76 num.significand <<= 1;
77 --num.exponent;
78 }
79
80 return num;
81}
82
83
84/** Returns x * y with an error of less than 0.5 ulp. */
85static fp_num_t multiply(fp_num_t x, fp_num_t y)
86{
87 assert(/* is_normalized(x) && */ is_normalized(y));
88
89 const uint32_t low_bits = -1;
90
91 uint64_t a, b, c, d;
92 a = x.significand >> 32;
93 b = x.significand & low_bits;
94 c = y.significand >> 32;
95 d = y.significand & low_bits;
96
97 uint64_t bd, ad, bc, ac;
98 bd = b * d;
99 ad = a * d;
100
101 bc = b * c;
102 ac = a * c;
103
104 /*
105 * Denote 32 bit parts of x a y as: x == a b, y == c d. Then:
106 * a b
107 * * c d
108 * ----------
109 * ad bd .. multiplication of 32bit parts results in 64bit parts
110 * + ac bc
111 * ----------
112 * [b|d] .. Depicts 64 bit intermediate results and how
113 * [a|d] the 32 bit parts of these results overlap and
114 * [b|c] contribute to the final result.
115 * +[a|c]
116 * ----------
117 * [ret]
118 * [tmp]
119 */
120 uint64_t tmp = (bd >> 32) + (ad & low_bits) + (bc & low_bits);
121
122 /* Round upwards. */
123 tmp += 1U << 31;
124
125 fp_num_t ret;
126 ret.significand = ac + (bc >> 32) + (ad >> 32) + (tmp >> 32);
127 ret.exponent = x.exponent + y.exponent + significand_width;
128
129 return ret;
130}
131
132
133/** Returns a - b. Both must have the same exponent. */
134static fp_num_t subtract(fp_num_t a, fp_num_t b)
135{
136 assert(a.exponent == b.exponent);
137 assert(a.significand >= b.significand);
138
139 fp_num_t result;
140
141 result.significand = a.significand - b.significand;
142 result.exponent = a.exponent;
143
144 return result;
145}
146
147
148/** Returns the interval [low, high] of numbers that convert to binary val. */
149static void get_normalized_bounds(ieee_double_t val, fp_num_t *high,
150 fp_num_t *low, fp_num_t *val_dist)
151{
152 /*
153 * Only works if val comes directly from extract_ieee_double without
154 * being manipulated in any way (eg it must not be normalized).
155 */
156 assert(!is_normalized(val.pos_val));
157
158 high->significand = (val.pos_val.significand << 1) + 1;
159 high->exponent = val.pos_val.exponent - 1;
160
161 /* val_dist = high - val */
162 val_dist->significand = 1;
163 val_dist->exponent = val.pos_val.exponent - 1;
164
165 /* Distance from both lower and upper bound is the same. */
166 if (!val.is_accuracy_step) {
167 low->significand = (val.pos_val.significand << 1) - 1;
168 low->exponent = val.pos_val.exponent - 1;
169 } else {
170 low->significand = (val.pos_val.significand << 2) - 1;
171 low->exponent = val.pos_val.exponent - 2;
172 }
173
174 *high = normalize(*high);
175
176 /*
177 * Lower bound may not be normalized if subtracting 1 unit
178 * reset the most-significant bit to 0.
179 */
180 low->significand = low->significand << (low->exponent - high->exponent);
181 low->exponent = high->exponent;
182
183 val_dist->significand =
184 val_dist->significand << (val_dist->exponent - high->exponent);
185 val_dist->exponent = high->exponent;
186}
187
188/** Determines the interval of numbers that have the binary representation
189 * of val.
190 *
191 * Numbers in the range [scaled_upper_bound - bounds_delta, scaled_upper_bound]
192 * have the same double binary representation as val.
193 *
194 * Bounds are scaled by 10^scale so that alpha <= exponent <= gamma.
195 * Moreover, scaled_upper_bound is normalized.
196 *
197 * val_dist is the scaled distance from val to the upper bound, ie
198 * val_dist == (upper_bound - val) * 10^scale
199 */
200static void calc_scaled_bounds(ieee_double_t val, fp_num_t *scaled_upper_bound,
201 fp_num_t *bounds_delta, fp_num_t *val_dist, int *scale)
202{
203 fp_num_t upper_bound, lower_bound;
204
205 get_normalized_bounds(val, &upper_bound, &lower_bound, val_dist);
206
207 assert(upper_bound.exponent == lower_bound.exponent);
208 assert(is_normalized(upper_bound));
209 assert(normalize(val.pos_val).exponent == upper_bound.exponent);
210
211 /*
212 * Find such a cached normalized power of 10 that if multiplied
213 * by upper_bound the binary exponent of upper_bound almost vanishes,
214 * ie:
215 * upper_scaled := upper_bound * 10^scale
216 * alpha <= upper_scaled.exponent <= gamma
217 * alpha <= upper_bound.exponent + pow_10.exponent + 64 <= gamma
218 */
219 fp_num_t scaling_power_of_10;
220 int lower_bin_exp = alpha - upper_bound.exponent - significand_width;
221
222 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, scale);
223
224 int scale_exp = scaling_power_of_10.exponent;
225 assert(alpha <= upper_bound.exponent + scale_exp + significand_width);
226 assert(upper_bound.exponent + scale_exp + significand_width <= gamma);
227
228 fp_num_t upper_scaled = multiply(upper_bound, scaling_power_of_10);
229 fp_num_t lower_scaled = multiply(lower_bound, scaling_power_of_10);
230 *val_dist = multiply(*val_dist, scaling_power_of_10);
231
232 assert(alpha <= upper_scaled.exponent && upper_scaled.exponent <= gamma);
233
234 /*
235 * Any value between lower and upper bound would be represented
236 * in binary as the double val originated from. The bounds were
237 * however scaled by an imprecise power of 10 (error less than
238 * 1 ulp) so the scaled bounds have an error of less than 1 ulp.
239 * Conservatively round the lower bound up and the upper bound
240 * down by 1 ulp just to be on the safe side. It avoids pronouncing
241 * produced decimal digits as correct if such a decimal number
242 * is close to the bounds to within 1 ulp.
243 */
244 upper_scaled.significand -= 1;
245 lower_scaled.significand += 1;
246
247 *bounds_delta = subtract(upper_scaled, lower_scaled);
248 *scaled_upper_bound = upper_scaled;
249}
250
251
252/** Rounds the last digit of buf so that it is closest to the converted number.*/
253static void round_last_digit(uint64_t rest, uint64_t w_dist, uint64_t delta,
254 uint64_t digit_val_diff, char *buf, int len)
255{
256 /*
257 * | <------- delta -------> |
258 * | | <---- w_dist ----> |
259 * | | | <- rest -> |
260 * | | | |
261 * | | ` buffer |
262 * | ` w ` upper
263 * ` lower
264 *
265 * delta = upper - lower .. conservative/safe interval
266 * w_dist = upper - w
267 * upper = "number represented by digits in buf" + rest
268 *
269 * Changing buf[len - 1] changes the value represented by buf
270 * by digit_val_diff * scaling, where scaling is shared by
271 * all parameters.
272 *
273 */
274
275 /* Current number in buf is greater than the double being converted */
276 bool cur_greater_w = rest < w_dist;
277 /* Rounding down by one would keep buf in between bounds (in safe rng). */
278 bool next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
279 /* Rounding down by one would bring buf closer to the processed number. */
280 bool next_closer = next_in_val_rng &&
281 (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
282
283 /*
284 * Of the shortest strings pick the one that is closest to the actual
285 * floating point number.
286 */
287 while (next_closer) {
288 assert('0' < buf[len - 1]);
289 assert(0 < digit_val_diff);
290
291 --buf[len - 1];
292 rest += digit_val_diff;
293
294 cur_greater_w = rest < w_dist;
295 next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
296 next_closer = next_in_val_rng &&
297 (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
298 }
299}
300
301
302/** Generates the shortest accurate decimal string representation.
303 *
304 * Outputs (mostly) the shortest accurate string representation
305 * for the number scaled_upper - val_dist. Numbers in the interval
306 * [scaled_upper - delta, scaled_upper] have the same binary
307 * floating point representation and will therefore share the
308 * shortest string representation (up to the rounding of the last
309 * digit to bring the shortest string also the closest to the
310 * actual number).
311 *
312 * @param scaled_upper Scaled upper bound of numbers that have the
313 * same binary representation as the converted number.
314 * Scaled by 10^-scale so that alpha <= exponent <= gamma.
315 * @param delta scaled_upper - delta is the lower bound of numbers
316 * that share the same binary representation in double.
317 * @param val_dist scaled_upper - val_dist is the number whose
318 * decimal string we're generating.
319 * @param scale Decimal scaling of the value to convert (ie scaled_upper).
320 * @param buf Buffer to store the string representation. Must be large
321 * enough to store all digits and a null terminator. At most
322 * MAX_DOUBLE_STR_LEN digits will be written (not counting
323 * the null terminator).
324 * @param buf_size Size of buf in bytes.
325 * @param dec_exponent Will be set to the decimal exponent of the number
326 * string in buf.
327 *
328 * @return Number of digits; negative on failure (eg buffer too small).
329 */
330static int gen_dec_digits(fp_num_t scaled_upper, fp_num_t delta,
331 fp_num_t val_dist, int scale, char *buf, size_t buf_size, int *dec_exponent)
332{
333 /*
334 * The integral part of scaled_upper is 5 to 32 bits long while
335 * the remaining fractional part is 59 to 32 bits long because:
336 * -59 == alpha <= scaled_upper.e <= gamma == -32
337 *
338 * | <------- delta -------> |
339 * | | <--- val_dist ---> |
340 * | | |<- remainder ->|
341 * | | | |
342 * | | ` buffer |
343 * | ` val ` upper
344 * ` lower
345 *
346 */
347 assert(scaled_upper.significand != 0);
348 assert(alpha <= scaled_upper.exponent && scaled_upper.exponent <= gamma);
349 assert(scaled_upper.exponent == delta.exponent);
350 assert(scaled_upper.exponent == val_dist.exponent);
351 assert(val_dist.significand <= delta.significand);
352
353 /* We'll produce at least one digit and a null terminator. */
354 if (buf_size < 2) {
355 return -1;
356 }
357
358 /* one is number 1 encoded with the same exponent as scaled_upper */
359 fp_num_t one;
360 one.significand = ((uint64_t) 1) << (-scaled_upper.exponent);
361 one.exponent = scaled_upper.exponent;
362
363 /*
364 * Extract the integral part of scaled_upper.
365 * upper / one == upper >> -one.e
366 */
367 uint32_t int_part = (uint32_t)(scaled_upper.significand >> (-one.exponent));
368
369 /*
370 * Fractional part of scaled_upper.
371 * upper % one == upper & (one.f - 1)
372 */
373 uint64_t frac_part = scaled_upper.significand & (one.significand - 1);
374
375 /*
376 * The integral part of upper has at least 5 bits (64 + alpha) and
377 * at most 32 bits (64 + gamma). The integral part has at most 10
378 * decimal digits, so kappa <= 10.
379 */
380 int kappa = 10;
381 uint32_t div = 1000000000;
382 size_t len = 0;
383
384 /* Produce decimal digits for the integral part of upper. */
385 while (kappa > 0) {
386 int digit = int_part / div;
387 int_part %= div;
388
389 --kappa;
390
391 /* Skip leading zeros. */
392 if (digit != 0 || len != 0) {
393 /* Current length + new digit + null terminator <= buf_size */
394 if (len + 2 <= buf_size) {
395 buf[len] = '0' + digit;
396 ++len;
397 } else {
398 return -1;
399 }
400 }
401
402 /*
403 * Difference between the so far produced decimal number and upper
404 * is calculated as: remaining_int_part * one + frac_part
405 */
406 uint64_t remainder = (((uint64_t)int_part) << -one.exponent) + frac_part;
407
408 /* The produced decimal number would convert back to upper. */
409 if (remainder <= delta.significand) {
410 assert(0 < len && len < buf_size);
411 *dec_exponent = kappa - scale;
412 buf[len] = '\0';
413
414 /* Of the shortest representations choose the numerically closest. */
415 round_last_digit(remainder, val_dist.significand, delta.significand,
416 (uint64_t)div << (-one.exponent), buf, len);
417 return len;
418 }
419
420 div /= 10;
421 }
422
423 /* Generate decimal digits for the fractional part of upper. */
424 do {
425 /*
426 * Does not overflow because at least 5 upper bits were
427 * taken by the integral part and are now unused in frac_part.
428 */
429 frac_part *= 10;
430 delta.significand *= 10;
431 val_dist.significand *= 10;
432
433 /* frac_part / one */
434 int digit = (int)(frac_part >> (-one.exponent));
435
436 /* frac_part %= one */
437 frac_part &= one.significand - 1;
438
439 --kappa;
440
441 /* Skip leading zeros. */
442 if (digit == 0 && len == 0) {
443 continue;
444 }
445
446 /* Current length + new digit + null terminator <= buf_size */
447 if (len + 2 <= buf_size) {
448 buf[len] = '0' + digit;
449 ++len;
450 } else {
451 return -1;
452 }
453 } while (frac_part > delta.significand);
454
455 assert(0 < len && len < buf_size);
456
457 *dec_exponent = kappa - scale;
458 buf[len] = '\0';
459
460 /* Of the shortest representations choose the numerically closest one. */
461 round_last_digit(frac_part, val_dist.significand, delta.significand,
462 one.significand, buf, len);
463
464 return len;
465}
466
467/** Produce a string for 0.0 */
468static int zero_to_str(char *buf, size_t buf_size, int *dec_exponent)
469{
470 if (2 <= buf_size) {
471 buf[0] = '0';
472 buf[1] = '\0';
473 *dec_exponent = 0;
474 return 1;
475 } else {
476 return -1;
477 }
478}
479
480
481/** Converts a non-special double into its shortest accurate string
482 * representation.
483 *
484 * Produces an accurate string representation, ie the string will
485 * convert back to the same binary double (eg via strtod). In the
486 * vast majority of cases (99%) the string will be the shortest such
487 * string that is also the closest to the value of any shortest
488 * string representations. Therefore, no trailing zeros are ever
489 * produced.
490 *
491 * Conceptually, the value is: buf * 10^dec_exponent
492 *
493 * Never outputs trailing zeros.
494 *
495 * @param ieee_val Binary double description to convert. Must be the product
496 * of extract_ieee_double and it must not be a special number.
497 * @param buf Buffer to store the string representation. Must be large
498 * enough to store all digits and a null terminator. At most
499 * MAX_DOUBLE_STR_LEN digits will be written (not counting
500 * the null terminator).
501 * @param buf_size Size of buf in bytes.
502 * @param dec_exponent Will be set to the decimal exponent of the number
503 * string in buf.
504 *
505 * @return The number of printed digits. A negative value indicates
506 * an error: buf too small (or ieee_val.is_special).
507 */
508int double_to_short_str(ieee_double_t ieee_val, char *buf, size_t buf_size,
509 int *dec_exponent)
510{
511 /* The whole computation assumes 64bit significand. */
512 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
513
514 if (ieee_val.is_special) {
515 return -1;
516 }
517
518 /* Zero cannot be normalized. Handle it here. */
519 if (0 == ieee_val.pos_val.significand) {
520 return zero_to_str(buf, buf_size, dec_exponent);
521 }
522
523 fp_num_t scaled_upper_bound;
524 fp_num_t delta;
525 fp_num_t val_dist;
526 int scale;
527
528 calc_scaled_bounds(ieee_val, &scaled_upper_bound,
529 &delta, &val_dist, &scale);
530
531 int len = gen_dec_digits(scaled_upper_bound, delta, val_dist, scale,
532 buf, buf_size, dec_exponent);
533
534 assert(len <= MAX_DOUBLE_STR_LEN);
535 return len;
536}
537
538/** Generates a fixed number of decimal digits of w_scaled.
539 *
540 * double == w_scaled * 10^-scale, where alpha <= w_scaled.e <= gamma
541 *
542 * @param w_scaled Scaled number by 10^-scale so that
543 * alpha <= exponent <= gamma
544 * @param scale Decimal scaling of the value to convert (ie w_scaled).
545 * @param signif_d_cnt Maximum number of significant digits to output.
546 * Negative if as many as possible are requested.
547 * @param frac_d_cnt Maximum number of fractional digits to output.
548 * Negative if as many as possible are requested.
549 * Eg. if 2 then 1.234 -> "1.23"; if 2 then 3e-9 -> "0".
550 * @param buf Buffer to store the string representation. Must be large
551 * enough to store all digits and a null terminator. At most
552 * MAX_DOUBLE_STR_LEN digits will be written (not counting
553 * the null terminator).
554 * @param buf_size Size of buf in bytes.
555 *
556 * @return Number of digits; negative on failure (eg buffer too small).
557 */
558static int gen_fixed_dec_digits(fp_num_t w_scaled, int scale, int signif_d_cnt,
559 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
560{
561 /* We'll produce at least one digit and a null terminator. */
562 if (0 == signif_d_cnt || buf_size < 2) {
563 return -1;
564 }
565
566 /*
567 * The integral part of w_scaled is 5 to 32 bits long while the
568 * remaining fractional part is 59 to 32 bits long because:
569 * -59 == alpha <= w_scaled.e <= gamma == -32
570 *
571 * Therefore:
572 * | 5..32 bits | 32..59 bits | == w_scaled == w * 10^scale
573 * | int_part | frac_part |
574 * |0 0 .. 0 1|0 0 .. 0 0| == one == 1.0
575 * | 0 |0 0 .. 0 1| == w_err == 1 * 2^w_scaled.e
576 */
577 assert(alpha <= w_scaled.exponent && w_scaled.exponent <= gamma);
578 assert(0 != w_scaled.significand);
579
580 /*
581 * Scaling the number being converted by 10^scale introduced
582 * an error of less that 1 ulp. The actual value of w_scaled
583 * could lie anywhere between w_scaled.signif +/- w_err.
584 * Scale the error locally as we scale the fractional part
585 * of w_scaled.
586 */
587 uint64_t w_err = 1;
588
589 /* one is number 1.0 encoded with the same exponent as w_scaled */
590 fp_num_t one;
591 one.significand = ((uint64_t) 1) << (-w_scaled.exponent);
592 one.exponent = w_scaled.exponent;
593
594 /*
595 * Extract the integral part of w_scaled.
596 * w_scaled / one == w_scaled >> -one.e
597 */
598 uint32_t int_part = (uint32_t)(w_scaled.significand >> (-one.exponent));
599
600 /*
601 * Fractional part of w_scaled.
602 * w_scaled % one == w_scaled & (one.f - 1)
603 */
604 uint64_t frac_part = w_scaled.significand & (one.significand - 1);
605
606 size_t len = 0;
607 /*
608 * The integral part of w_scaled has at least 5 bits (64 + alpha = 5)
609 * and at most 32 bits (64 + gamma = 32). The integral part has
610 * at most 10 decimal digits, so kappa <= 10.
611 */
612 int kappa = 10;
613 uint32_t div = 1000000000;
614
615 int rem_signif_d_cnt = signif_d_cnt;
616 int rem_frac_d_cnt =
617 (frac_d_cnt >= 0) ? (kappa - scale + frac_d_cnt) : INT_MAX;
618
619 /* Produce decimal digits for the integral part of w_scaled. */
620 while (kappa > 0 && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
621 int digit = int_part / div;
622 int_part %= div;
623
624 div /= 10;
625 --kappa;
626 --rem_frac_d_cnt;
627
628 /* Skip leading zeros. */
629 if (digit == 0 && len == 0) {
630 continue;
631 }
632
633 /* Current length + new digit + null terminator <= buf_size */
634 if (len + 2 <= buf_size) {
635 buf[len] = '0' + digit;
636 ++len;
637 --rem_signif_d_cnt;
638 } else {
639 return -1;
640 }
641 }
642
643 /* Generate decimal digits for the fractional part of w_scaled. */
644 while (w_err <= frac_part && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
645 /*
646 * Does not overflow because at least 5 upper bits were
647 * taken by the integral part and are now unused in frac_part.
648 */
649 frac_part *= 10;
650 w_err *= 10;
651
652 /* frac_part / one */
653 int digit = (int)(frac_part >> (-one.exponent));
654
655 /* frac_part %= one */
656 frac_part &= one.significand - 1;
657
658 --kappa;
659 --rem_frac_d_cnt;
660
661 /* Skip leading zeros. */
662 if (digit == 0 && len == 0) {
663 continue;
664 }
665
666 /* Current length + new digit + null terminator <= buf_size */
667 if (len + 2 <= buf_size) {
668 buf[len] = '0' + digit;
669 ++len;
670 --rem_signif_d_cnt;
671 } else {
672 return -1;
673 }
674 }
675
676 assert(/* 0 <= len && */ len < buf_size);
677
678 if (0 < len) {
679 *dec_exponent = kappa - scale;
680 assert(frac_d_cnt < 0 || -frac_d_cnt <= *dec_exponent);
681 } else {
682 /*
683 * The number of fractional digits was too limiting to produce
684 * any digits.
685 */
686 assert(rem_frac_d_cnt <= 0 || w_scaled.significand == 0);
687 *dec_exponent = 0;
688 buf[0] = '0';
689 len = 1;
690 }
691
692 if (len < buf_size) {
693 buf[len] = '\0';
694 assert(signif_d_cnt < 0 || (int)len <= signif_d_cnt);
695 return len;
696 } else {
697 return -1;
698 }
699}
700
701
702/** Converts a non-special double into its string representation.
703 *
704 * Conceptually, the truncated double value is: buf * 10^dec_exponent
705 *
706 * Conversion errors are tracked, so all produced digits except the
707 * last one are accurate. Garbage digits are never produced.
708 * If the requested number of digits cannot be produced accurately
709 * due to conversion errors less digits are produced than requested
710 * and the last digit has an error of +/- 1 (so if '7' is the last
711 * converted digit it might have been converted to any of '6'..'8'
712 * had the conversion been completely precise).
713 *
714 * If no error occurs at least one digit is output.
715 *
716 * The conversion stops once the requested number of significant or
717 * fractional digits is reached or the conversion error is too large
718 * to generate any more digits (whichever happens first).
719 *
720 * Any digits following the first (most-significant) digit (this digit
721 * included) are counted as significant digits; eg:
722 * 1.4, 4 signif -> "1400" * 10^-3, ie 1.400
723 * 1000.3, 1 signif -> "1" * 10^3 ie 1000
724 * 0.003, 2 signif -> "30" * 10^-4 ie 0.003
725 * 9.5 1 signif -> "9" * 10^0, ie 9
726 *
727 * Any digits following the decimal point are counted as fractional digits.
728 * This includes the zeros that would appear between the decimal point
729 * and the first non-zero fractional digit. If fewer fractional digits
730 * are requested than would allow to place the most-significant digit
731 * a "0" is output. Eg:
732 * 1.4, 3 frac -> "1400" * 10^-3, ie 1.400
733 * 12.34 4 frac -> "123400" * 10^-4, ie 12.3400
734 * 3e-99 4 frac -> "0" * 10^0, ie 0
735 * 0.009 2 frac -> "0" * 10^-2, ie 0
736 *
737 * @param ieee_val Binary double description to convert. Must be the product
738 * of extract_ieee_double and it must not be a special number.
739 * @param signif_d_cnt Maximum number of significant digits to produce.
740 * The output is not rounded.
741 * Set to a negative value to generate as many digits
742 * as accurately possible.
743 * @param frac_d_cnt Maximum number of fractional digits to produce including
744 * any zeros immediately trailing the decimal point.
745 * The output is not rounded.
746 * Set to a negative value to generate as many digits
747 * as accurately possible.
748 * @param buf Buffer to store the string representation. Must be large
749 * enough to store all digits and a null terminator. At most
750 * MAX_DOUBLE_STR_LEN digits will be written (not counting
751 * the null terminator).
752 * @param buf_size Size of buf in bytes.
753 * @param dec_exponent Set to the decimal exponent of the number string
754 * in buf.
755 *
756 * @return The number of output digits. A negative value indicates
757 * an error: buf too small (or ieee_val.is_special, or
758 * signif_d_cnt == 0).
759 */
760int double_to_fixed_str(ieee_double_t ieee_val, int signif_d_cnt,
761 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
762{
763 /* The whole computation assumes 64bit significand. */
764 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
765
766 if (ieee_val.is_special) {
767 return -1;
768 }
769
770 /* Zero cannot be normalized. Handle it here. */
771 if (0 == ieee_val.pos_val.significand) {
772 return zero_to_str(buf, buf_size, dec_exponent);
773 }
774
775 /* Normalize and scale. */
776 fp_num_t w = normalize(ieee_val.pos_val);
777
778 int lower_bin_exp = alpha - w.exponent - significand_width;
779
780 int scale;
781 fp_num_t scaling_power_of_10;
782
783 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, &scale);
784
785 fp_num_t w_scaled = multiply(w, scaling_power_of_10);
786
787 /* Produce decimal digits from the scaled number. */
788 int len = gen_fixed_dec_digits(w_scaled, scale, signif_d_cnt, frac_d_cnt,
789 buf, buf_size, dec_exponent);
790
791 assert(len <= MAX_DOUBLE_STR_LEN);
792 return len;
793}
794
Note: See TracBrowser for help on using the repository browser.