source: mainline/uspace/lib/c/generic/double_to_str.c@ 34b9299

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 34b9299 was 34b9299, checked in by Jakub Jermar <jakub@…>, 13 years ago

printf() full floating point support.
(Thanks to Adam Hraska.)

  • Property mode set to 100644
File size: 25.1 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28#include <double_to_str.h>
29
30#include "private/power_of_ten.h"
31#include <ieee_double.h>
32
33#include <stdint.h>
34#include <assert.h>
35#include <bool.h>
36
37/*
38 * Floating point numbers are converted from their binary representation
39 * into a decimal string using the algorithm described in:
40 * Printing floating-point numbers quickly and accurately with integers
41 * Loitsch, 2010
42 */
43
44/** The computation assumes a significand of 64 bits. */
45static const int significand_width = 64;
46
47/* Scale exponents to interval [alpha, gamma] to simplify conversion. */
48static const int alpha = -59;
49static const int gamma = -32;
50
51
52/** Returns true if the most-significant bit of num.significand is set. */
53static bool is_normalized(fp_num_t num)
54{
55 assert(8*sizeof(num.significand) == significand_width);
56
57 /* Normalized == most significant bit of the significand is set. */
58 return (num.significand & (1ULL << (significand_width - 1))) != 0;
59}
60
61/** Returns a normalized num with the MSbit set. */
62static fp_num_t normalize(fp_num_t num)
63{
64 const uint64_t top10bits = 0xffc0000000000000ULL;
65
66 /* num usually comes from ieee_double with top 10 bits zero. */
67 while (0 == (num.significand & top10bits)) {
68 num.significand <<= 10;
69 num.exponent -= 10;
70 }
71
72 while (!is_normalized(num)) {
73 num.significand <<= 1;
74 --num.exponent;
75 }
76
77 return num;
78}
79
80
81/** Returns x * y with an error of less than 0.5 ulp. */
82static fp_num_t multiply(fp_num_t x, fp_num_t y)
83{
84 assert(/* is_normalized(x) && */ is_normalized(y));
85
86 const uint32_t low_bits = -1;
87
88 uint64_t a, b, c, d;
89 a = x.significand >> 32;
90 b = x.significand & low_bits;
91 c = y.significand >> 32;
92 d = y.significand & low_bits;
93
94 uint64_t bd, ad, bc, ac;
95 bd = b * d;
96 ad = a * d;
97
98 bc = b * c;
99 ac = a * c;
100
101 /* Denote 32 bit parts of x a y as: x == a b, y == c d. Then:
102 * a b
103 * * c d
104 * ----------
105 * ad bd .. multiplication of 32bit parts results in 64bit parts
106 * + ac bc
107 * ----------
108 * [b|d] .. Depicts 64 bit intermediate results and how
109 * [a|d] the 32 bit parts of these results overlap and
110 * [b|c] contribute to the final result.
111 * +[a|c]
112 * ----------
113 * [ret]
114 * [tmp]
115 */
116 uint64_t tmp = (bd >> 32) + (ad & low_bits) + (bc & low_bits);
117
118 /* Round upwards. */
119 tmp += 1U << 31;
120
121 fp_num_t ret;
122 ret.significand = ac + (bc >> 32) + (ad >> 32) + (tmp >> 32);
123 ret.exponent = x.exponent + y.exponent + significand_width;
124
125 return ret;
126}
127
128
129/** Returns a - b. Both must have the same exponent. */
130static fp_num_t subtract(fp_num_t a, fp_num_t b)
131{
132 assert(a.exponent == b.exponent);
133 assert(a.significand >= b.significand);
134
135 fp_num_t result;
136
137 result.significand = a.significand - b.significand;
138 result.exponent = a.exponent;
139
140 return result;
141}
142
143
144/** Returns the interval [low, high] of numbers that convert to binary val. */
145static void get_normalized_bounds(ieee_double_t val, fp_num_t *high,
146 fp_num_t *low, fp_num_t *val_dist)
147{
148 /*
149 * Only works if val comes directly from extract_ieee_double without
150 * being manipulated in any way (eg it must not be normalized).
151 */
152 assert(!is_normalized(val.pos_val));
153
154 high->significand = (val.pos_val.significand << 1) + 1;
155 high->exponent = val.pos_val.exponent - 1;
156
157 /* val_dist = high - val */
158 val_dist->significand = 1;
159 val_dist->exponent = val.pos_val.exponent - 1;
160
161 /* Distance from both lower and upper bound is the same. */
162 if (!val.is_accuracy_step) {
163 low->significand = (val.pos_val.significand << 1) - 1;
164 low->exponent = val.pos_val.exponent - 1;
165 } else {
166 low->significand = (val.pos_val.significand << 2) - 1;
167 low->exponent = val.pos_val.exponent - 2;
168 }
169
170 *high = normalize(*high);
171
172 /*
173 * Lower bound may not be normalized if subtracting 1 unit
174 * reset the most-significant bit to 0.
175 */
176 low->significand = low->significand << (low->exponent - high->exponent);
177 low->exponent = high->exponent;
178
179 val_dist->significand =
180 val_dist->significand << (val_dist->exponent - high->exponent);
181 val_dist->exponent = high->exponent;
182}
183
184/** Determines the interval of numbers that have the binary representation
185 * of val.
186 *
187 * Numbers in the range [scaled_upper_bound - bounds_delta, scaled_upper_bound]
188 * have the same double binary representation as val.
189 *
190 * Bounds are scaled by 10^scale so that alpha <= exponent <= gamma.
191 * Moreover, scaled_upper_bound is normalized.
192 *
193 * val_dist is the scaled distance from val to the upper bound, ie
194 * val_dist == (upper_bound - val) * 10^scale
195 */
196static void calc_scaled_bounds(ieee_double_t val, fp_num_t *scaled_upper_bound,
197 fp_num_t *bounds_delta, fp_num_t *val_dist, int *scale)
198{
199 fp_num_t upper_bound, lower_bound;
200
201 get_normalized_bounds(val, &upper_bound, &lower_bound, val_dist);
202
203 assert(upper_bound.exponent == lower_bound.exponent);
204 assert(is_normalized(upper_bound));
205 assert(normalize(val.pos_val).exponent == upper_bound.exponent);
206
207 /*
208 * Find such a cached normalized power of 10 that if multiplied
209 * by upper_bound the binary exponent of upper_bound almost vanishes,
210 * ie:
211 * upper_scaled := upper_bound * 10^scale
212 * alpha <= upper_scaled.exponent <= gamma
213 * alpha <= upper_bound.exponent + pow_10.exponent + 64 <= gamma
214 */
215 fp_num_t scaling_power_of_10;
216 int lower_bin_exp = alpha - upper_bound.exponent - significand_width;
217
218 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, scale);
219
220 int scale_exp = scaling_power_of_10.exponent;
221 assert(alpha <= upper_bound.exponent + scale_exp + significand_width);
222 assert(upper_bound.exponent + scale_exp + significand_width <= gamma);
223
224 fp_num_t upper_scaled = multiply(upper_bound, scaling_power_of_10);
225 fp_num_t lower_scaled = multiply(lower_bound, scaling_power_of_10);
226 *val_dist = multiply(*val_dist, scaling_power_of_10);
227
228 assert(alpha <= upper_scaled.exponent && upper_scaled.exponent <= gamma);
229
230 /*
231 * Any value between lower and upper bound would be represented
232 * in binary as the double val originated from. The bounds were
233 * however scaled by an imprecise power of 10 (error less than
234 * 1 ulp) so the scaled bounds have an error of less than 1 ulp.
235 * Conservatively round the lower bound up and the upper bound
236 * down by 1 ulp just to be on the safe side. It avoids pronouncing
237 * produced decimal digits as correct if such a decimal number
238 * is close to the bounds to within 1 ulp.
239 */
240 upper_scaled.significand -= 1;
241 lower_scaled.significand += 1;
242
243 *bounds_delta = subtract(upper_scaled, lower_scaled);
244 *scaled_upper_bound = upper_scaled;
245}
246
247
248/** Rounds the last digit of buf so that it is closest to the converted number.*/
249static void round_last_digit(uint64_t rest, uint64_t w_dist, uint64_t delta,
250 uint64_t digit_val_diff, char *buf, int len)
251{
252 /*
253 * | <------- delta -------> |
254 * | | <---- w_dist ----> |
255 * | | | <- rest -> |
256 * | | | |
257 * | | ` buffer |
258 * | ` w ` upper
259 * ` lower
260 *
261 * delta = upper - lower .. conservative/safe interval
262 * w_dist = upper - w
263 * upper = "number represented by digits in buf" + rest
264 *
265 * Changing buf[len - 1] changes the value represented by buf
266 * by digit_val_diff * scaling, where scaling is shared by
267 * all parameters.
268 *
269 */
270
271 /* Current number in buf is greater than the double being converted */
272 bool cur_greater_w = rest < w_dist;
273 /* Rounding down by one would keep buf in between bounds (in safe rng). */
274 bool next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
275 /* Rounding down by one would bring buf closer to the processed number. */
276 bool next_closer = next_in_val_rng
277 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
278
279 /* Of the shortest strings pick the one that is closest to the actual
280 floating point number. */
281 while (next_closer) {
282 assert('0' < buf[len - 1]);
283 assert(0 < digit_val_diff);
284
285 --buf[len - 1];
286 rest += digit_val_diff;
287
288 cur_greater_w = rest < w_dist;
289 next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
290 next_closer = next_in_val_rng
291 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
292 }
293}
294
295
296/** Generates the shortest accurate decimal string representation.
297 *
298 * Outputs (mostly) the shortest accurate string representation
299 * for the number scaled_upper - val_dist. Numbers in the interval
300 * [scaled_upper - delta, scaled_upper] have the same binary
301 * floating point representation and will therefore share the
302 * shortest string representation (up to the rounding of the last
303 * digit to bring the shortest string also the closest to the
304 * actual number).
305 *
306 * @param scaled_upper Scaled upper bound of numbers that have the
307 * same binary representation as the converted number.
308 * Scaled by 10^-scale so that alpha <= exponent <= gamma.
309 * @param delta scaled_upper - delta is the lower bound of numbers
310 * that share the same binary representation in double.
311 * @param val_dist scaled_upper - val_dist is the number whose
312 * decimal string we're generating.
313 * @param scale Decimal scaling of the value to convert (ie scaled_upper).
314 * @param buf Buffer to store the string representation. Must be large
315 * enough to store all digits and a null terminator. At most
316 * MAX_DOUBLE_STR_LEN digits will be written (not counting
317 * the null terminator).
318 * @param buf_size Size of buf in bytes.
319 * @param dec_exponent Will be set to the decimal exponent of the number
320 * string in buf.
321 *
322 * @return Number of digits; negative on failure (eg buffer too small).
323 */
324static int gen_dec_digits(fp_num_t scaled_upper, fp_num_t delta,
325 fp_num_t val_dist, int scale, char *buf, size_t buf_size, int *dec_exponent)
326{
327 /*
328 * The integral part of scaled_upper is 5 to 32 bits long while
329 * the remaining fractional part is 59 to 32 bits long because:
330 * -59 == alpha <= scaled_upper.e <= gamma == -32
331 *
332 * | <------- delta -------> |
333 * | | <--- val_dist ---> |
334 * | | |<- remainder ->|
335 * | | | |
336 * | | ` buffer |
337 * | ` val ` upper
338 * ` lower
339 *
340 */
341 assert(scaled_upper.significand != 0);
342 assert(alpha <= scaled_upper.exponent && scaled_upper.exponent <= gamma);
343 assert(scaled_upper.exponent == delta.exponent);
344 assert(scaled_upper.exponent == val_dist.exponent);
345 assert(val_dist.significand <= delta.significand);
346
347 /* We'll produce at least one digit and a null terminator. */
348 if (buf_size < 2) {
349 return -1;
350 }
351
352 /* one is number 1 encoded with the same exponent as scaled_upper */
353 fp_num_t one;
354 one.significand = ((uint64_t) 1) << (-scaled_upper.exponent);
355 one.exponent = scaled_upper.exponent;
356
357 /*
358 * Extract the integral part of scaled_upper.
359 * upper / one == upper >> -one.e
360 */
361 uint32_t int_part = (uint32_t)(scaled_upper.significand >> (-one.exponent));
362
363 /*
364 * Fractional part of scaled_upper.
365 * upper % one == upper & (one.f - 1)
366 */
367 uint64_t frac_part = scaled_upper.significand & (one.significand - 1);
368
369 /*
370 * The integral part of upper has at least 5 bits (64 + alpha) and
371 * at most 32 bits (64 + gamma). The integral part has at most 10
372 * decimal digits, so kappa <= 10.
373 */
374 int kappa = 10;
375 uint32_t div = 1000000000;
376 size_t len = 0;
377
378 /* Produce decimal digits for the integral part of upper. */
379 while (kappa > 0) {
380 int digit = int_part / div;
381 int_part %= div;
382
383 --kappa;
384
385 /* Skip leading zeros. */
386 if (digit != 0 || len != 0) {
387 /* Current length + new digit + null terminator <= buf_size */
388 if (len + 2 <= buf_size) {
389 buf[len] = '0' + digit;
390 ++len;
391 } else {
392 return -1;
393 }
394 }
395
396 /*
397 * Difference between the so far produced decimal number and upper
398 * is calculated as: remaining_int_part * one + frac_part
399 */
400 uint64_t remainder = (((uint64_t)int_part) << -one.exponent) + frac_part;
401
402 /* The produced decimal number would convert back to upper. */
403 if (remainder <= delta.significand) {
404 assert(0 < len && len < buf_size);
405 *dec_exponent = kappa - scale;
406 buf[len] = '\0';
407
408 /* Of the shortest representations choose the numerically closest. */
409 round_last_digit(remainder, val_dist.significand, delta.significand,
410 (uint64_t)div << (-one.exponent), buf, len);
411 return len;
412 }
413
414 div /= 10;
415 }
416
417 /* Generate decimal digits for the fractional part of upper. */
418 do {
419 /*
420 * Does not overflow because at least 5 upper bits were
421 * taken by the integral part and are now unused in frac_part.
422 */
423 frac_part *= 10;
424 delta.significand *= 10;
425 val_dist.significand *= 10;
426
427 /* frac_part / one */
428 int digit = (int)(frac_part >> (-one.exponent));
429
430 /* frac_part %= one */
431 frac_part &= one.significand - 1;
432
433 --kappa;
434
435 /* Skip leading zeros. */
436 if (digit == 0 && len == 0) {
437 continue;
438 }
439
440 /* Current length + new digit + null terminator <= buf_size */
441 if (len + 2 <= buf_size) {
442 buf[len] = '0' + digit;
443 ++len;
444 } else {
445 return -1;
446 }
447 } while (frac_part > delta.significand);
448
449 assert(0 < len && len < buf_size);
450
451 *dec_exponent = kappa - scale;
452 buf[len] = '\0';
453
454 /* Of the shortest representations choose the numerically closest one. */
455 round_last_digit(frac_part, val_dist.significand, delta.significand,
456 one.significand, buf, len);
457
458 return len;
459}
460
461/** Produce a string for 0.0 */
462static int zero_to_str(char *buf, size_t buf_size, int *dec_exponent)
463{
464 if (2 <= buf_size) {
465 buf[0] = '0';
466 buf[1] = '\0';
467 *dec_exponent = 0;
468 return 1;
469 } else {
470 return -1;
471 }
472}
473
474
475/** Converts a non-special double into its shortest accurate string
476 * representation.
477 *
478 * Produces an accurate string representation, ie the string will
479 * convert back to the same binary double (eg via strtod). In the
480 * vast majority of cases (99%) the string will be the shortest such
481 * string that is also the closest to the value of any shortest
482 * string representations. Therefore, no trailing zeros are ever
483 * produced.
484 *
485 * Conceptually, the value is: buf * 10^dec_exponent
486 *
487 * Never outputs trailing zeros.
488 *
489 * @param ieee_val Binary double description to convert. Must be the product
490 * of extract_ieee_double and it must not be a special number.
491 * @param buf Buffer to store the string representation. Must be large
492 * enough to store all digits and a null terminator. At most
493 * MAX_DOUBLE_STR_LEN digits will be written (not counting
494 * the null terminator).
495 * @param buf_size Size of buf in bytes.
496 * @param dec_exponent Will be set to the decimal exponent of the number
497 * string in buf.
498 *
499 * @return The number of printed digits. A negative value indicates
500 * an error: buf too small (or ieee_val.is_special).
501 */
502int double_to_short_str(ieee_double_t ieee_val, char *buf, size_t buf_size,
503 int *dec_exponent)
504{
505 /* The whole computation assumes 64bit significand. */
506 assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
507
508 if (ieee_val.is_special) {
509 return -1;
510 }
511
512 /* Zero cannot be normalized. Handle it here. */
513 if (0 == ieee_val.pos_val.significand) {
514 return zero_to_str(buf, buf_size, dec_exponent);
515 }
516
517 fp_num_t scaled_upper_bound;
518 fp_num_t delta;
519 fp_num_t val_dist;
520 int scale;
521
522 calc_scaled_bounds(ieee_val, &scaled_upper_bound,
523 &delta, &val_dist, &scale);
524
525 int len = gen_dec_digits(scaled_upper_bound, delta, val_dist, scale,
526 buf, buf_size, dec_exponent);
527
528 assert(len <= MAX_DOUBLE_STR_LEN);
529 return len;
530}
531
532/** Generates a fixed number of decimal digits of w_scaled.
533 *
534 * double == w_scaled * 10^-scale, where alpha <= w_scaled.e <= gamma
535 *
536 * @param w_scaled Scaled number by 10^-scale so that
537 * alpha <= exponent <= gamma
538 * @param scale Decimal scaling of the value to convert (ie w_scaled).
539 * @param signif_d_cnt Maximum number of significant digits to output.
540 * Negative if as many as possible are requested.
541 * @param frac_d_cnt Maximum number of fractional digits to output.
542 * Negative if as many as possible are requested.
543 * Eg. if 2 then 1.234 -> "1.23"; if 2 then 3e-9 -> "0".
544 * @param buf Buffer to store the string representation. Must be large
545 * enough to store all digits and a null terminator. At most
546 * MAX_DOUBLE_STR_LEN digits will be written (not counting
547 * the null terminator).
548 * @param buf_size Size of buf in bytes.
549 *
550 * @return Number of digits; negative on failure (eg buffer too small).
551 */
552static int gen_fixed_dec_digits(fp_num_t w_scaled, int scale, int signif_d_cnt,
553 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
554{
555 /* We'll produce at least one digit and a null terminator. */
556 if (0 == signif_d_cnt || buf_size < 2) {
557 return -1;
558 }
559
560 /*
561 * The integral part of w_scaled is 5 to 32 bits long while the
562 * remaining fractional part is 59 to 32 bits long because:
563 * -59 == alpha <= w_scaled.e <= gamma == -32
564 *
565 * Therefore:
566 * | 5..32 bits | 32..59 bits | == w_scaled == w * 10^scale
567 * | int_part | frac_part |
568 * |0 0 .. 0 1|0 0 .. 0 0| == one == 1.0
569 * | 0 |0 0 .. 0 1| == w_err == 1 * 2^w_scaled.e
570 */
571 assert(alpha <= w_scaled.exponent && w_scaled.exponent <= gamma);
572 assert(0 != w_scaled.significand);
573
574 /*
575 * Scaling the number being converted by 10^scale introduced
576 * an error of less that 1 ulp. The actual value of w_scaled
577 * could lie anywhere between w_scaled.signif +/- w_err.
578 * Scale the error locally as we scale the fractional part
579 * of w_scaled.
580 */
581 uint64_t w_err = 1;
582
583 /* one is number 1.0 encoded with the same exponent as w_scaled */
584 fp_num_t one;
585 one.significand = ((uint64_t) 1) << (-w_scaled.exponent);
586 one.exponent = w_scaled.exponent;
587
588 /* Extract the integral part of w_scaled.
589 w_scaled / one == w_scaled >> -one.e */
590 uint32_t int_part = (uint32_t)(w_scaled.significand >> (-one.exponent));
591
592 /* Fractional part of w_scaled.
593 w_scaled % one == w_scaled & (one.f - 1) */
594 uint64_t frac_part = w_scaled.significand & (one.significand - 1);
595
596 size_t len = 0;
597 /*
598 * The integral part of w_scaled has at least 5 bits (64 + alpha = 5)
599 * and at most 32 bits (64 + gamma = 32). The integral part has
600 * at most 10 decimal digits, so kappa <= 10.
601 */
602 int kappa = 10;
603 uint32_t div = 1000000000;
604
605 int rem_signif_d_cnt = signif_d_cnt;
606 int rem_frac_d_cnt =
607 (frac_d_cnt >= 0) ? (kappa - scale + frac_d_cnt) : INT_MAX;
608
609 /* Produce decimal digits for the integral part of w_scaled. */
610 while (kappa > 0 && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
611 int digit = int_part / div;
612 int_part %= div;
613
614 div /= 10;
615 --kappa;
616 --rem_frac_d_cnt;
617
618 /* Skip leading zeros. */
619 if (digit == 0 && len == 0) {
620 continue;
621 }
622
623 /* Current length + new digit + null terminator <= buf_size */
624 if (len + 2 <= buf_size) {
625 buf[len] = '0' + digit;
626 ++len;
627 --rem_signif_d_cnt;
628 } else {
629 return -1;
630 }
631 }
632
633 /* Generate decimal digits for the fractional part of w_scaled. */
634 while (w_err <= frac_part && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
635 /*
636 * Does not overflow because at least 5 upper bits were
637 * taken by the integral part and are now unused in frac_part.
638 */
639 frac_part *= 10;
640 w_err *= 10;
641
642 /* frac_part / one */
643 int digit = (int)(frac_part >> (-one.exponent));
644
645 /* frac_part %= one */
646 frac_part &= one.significand - 1;
647
648 --kappa;
649 --rem_frac_d_cnt;
650
651 /* Skip leading zeros. */
652 if (digit == 0 && len == 0) {
653 continue;
654 }
655
656 /* Current length + new digit + null terminator <= buf_size */
657 if (len + 2 <= buf_size) {
658 buf[len] = '0' + digit;
659 ++len;
660 --rem_signif_d_cnt;
661 } else {
662 return -1;
663 }
664 };
665
666 assert(/* 0 <= len && */ len < buf_size);
667
668 if (0 < len) {
669 *dec_exponent = kappa - scale;
670 assert(frac_d_cnt < 0 || -frac_d_cnt <= *dec_exponent);
671 } else {
672 /*
673 * The number of fractional digits was too limiting to produce
674 * any digits.
675 */
676 assert(rem_frac_d_cnt <= 0 || w_scaled.significand == 0);
677 *dec_exponent = 0;
678 buf[0] = '0';
679 len = 1;
680 }
681
682 if (len < buf_size) {
683 buf[len] = '\0';
684 assert(signif_d_cnt < 0 || (int)len <= signif_d_cnt);
685 return len;
686 } else {
687 return -1;
688 }
689}
690
691
692/** Converts a non-special double into its string representation.
693 *
694 * Conceptually, the truncated double value is: buf * 10^dec_exponent
695 *
696 * Conversion errors are tracked, so all produced digits except the
697 * last one are accurate. Garbage digits are never produced.
698 * If the requested number of digits cannot be produced accurately
699 * due to conversion errors less digits are produced than requested
700 * and the last digit has an error of +/- 1 (so if '7' is the last
701 * converted digit it might have been converted to any of '6'..'8'
702 * had the conversion been completely precise).
703 *
704 * If no error occurs at least one digit is output.
705 *
706 * The conversion stops once the requested number of significant or
707 * fractional digits is reached or the conversion error is too large
708 * to generate any more digits (whichever happens first).
709 *
710 * Any digits following the first (most-significant) digit (this digit
711 * included) are counted as significant digits; eg:
712 * 1.4, 4 signif -> "1400" * 10^-3, ie 1.400
713 * 1000.3, 1 signif -> "1" * 10^3 ie 1000
714 * 0.003, 2 signif -> "30" * 10^-4 ie 0.003
715 * 9.5 1 signif -> "9" * 10^0, ie 9
716 *
717 * Any digits following the decimal point are counted as fractional digits.
718 * This includes the zeros that would appear between the decimal point
719 * and the first non-zero fractional digit. If fewer fractional digits
720 * are requested than would allow to place the most-significant digit
721 * a "0" is output. Eg:
722 * 1.4, 3 frac -> "1400" * 10^-3, ie 1.400
723 * 12.34 4 frac -> "123400" * 10^-4, ie 12.3400
724 * 3e-99 4 frac -> "0" * 10^0, ie 0
725 * 0.009 2 frac -> "0" * 10^-2, ie 0
726 *
727 * @param ieee_val Binary double description to convert. Must be the product
728 * of extract_ieee_double and it must not be a special number.
729 * @param signif_d_cnt Maximum number of significant digits to produce.
730 * The output is not rounded.
731 * Set to a negative value to generate as many digits
732 * as accurately possible.
733 * @param frac_d_cnt Maximum number of fractional digits to produce including
734 * any zeros immediately trailing the decimal point.
735 * The output is not rounded.
736 * Set to a negative value to generate as many digits
737 * as accurately possible.
738 * @param buf Buffer to store the string representation. Must be large
739 * enough to store all digits and a null terminator. At most
740 * MAX_DOUBLE_STR_LEN digits will be written (not counting
741 * the null terminator).
742 * @param buf_size Size of buf in bytes.
743 * @param dec_exponent Set to the decimal exponent of the number string
744 * in buf.
745 *
746 * @return The number of output digits. A negative value indicates
747 * an error: buf too small (or ieee_val.is_special, or
748 * signif_d_cnt == 0).
749 */
750int double_to_fixed_str(ieee_double_t ieee_val, int signif_d_cnt,
751 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
752{
753 /* The whole computation assumes 64bit significand. */
754 assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
755
756 if (ieee_val.is_special) {
757 return -1;
758 }
759
760 /* Zero cannot be normalized. Handle it here. */
761 if (0 == ieee_val.pos_val.significand) {
762 return zero_to_str(buf, buf_size, dec_exponent);
763 }
764
765 /* Normalize and scale. */
766 fp_num_t w = normalize(ieee_val.pos_val);
767
768 int lower_bin_exp = alpha - w.exponent - significand_width;
769
770 int scale;
771 fp_num_t scaling_power_of_10;
772
773 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, &scale);
774
775 fp_num_t w_scaled = multiply(w, scaling_power_of_10);
776
777 /* Produce decimal digits from the scaled number. */
778 int len = gen_fixed_dec_digits(w_scaled, scale, signif_d_cnt, frac_d_cnt,
779 buf, buf_size, dec_exponent);
780
781 assert(len <= MAX_DOUBLE_STR_LEN);
782 return len;
783}
784
Note: See TracBrowser for help on using the repository browser.