source: mainline/uspace/lib/c/generic/double_to_str.c@ 1cf26ab

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 1cf26ab was 1cf26ab, checked in by Jakub Jermar <jakub@…>, 9 years ago

Use static assert instead of regular ones

  • Property mode set to 100644
File size: 25.1 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <double_to_str.h>
30
31#include "private/power_of_ten.h"
32#include <ieee_double.h>
33
34#include <stdint.h>
35#include <assert.h>
36#include <stdbool.h>
37
38/*
39 * Floating point numbers are converted from their binary representation
40 * into a decimal string using the algorithm described in:
41 * Printing floating-point numbers quickly and accurately with integers
42 * Loitsch, 2010
43 */
44
45/** The computation assumes a significand of 64 bits. */
46static const int significand_width = 64;
47
48/* Scale exponents to interval [alpha, gamma] to simplify conversion. */
49static const int alpha = -59;
50static const int gamma = -32;
51
52
53/** Returns true if the most-significant bit of num.significand is set. */
54static bool is_normalized(fp_num_t num)
55{
56 assert(8*sizeof(num.significand) == significand_width);
57
58 /* Normalized == most significant bit of the significand is set. */
59 return (num.significand & (1ULL << (significand_width - 1))) != 0;
60}
61
62/** Returns a normalized num with the MSbit set. */
63static fp_num_t normalize(fp_num_t num)
64{
65 const uint64_t top10bits = 0xffc0000000000000ULL;
66
67 /* num usually comes from ieee_double with top 10 bits zero. */
68 while (0 == (num.significand & top10bits)) {
69 num.significand <<= 10;
70 num.exponent -= 10;
71 }
72
73 while (!is_normalized(num)) {
74 num.significand <<= 1;
75 --num.exponent;
76 }
77
78 return num;
79}
80
81
82/** Returns x * y with an error of less than 0.5 ulp. */
83static fp_num_t multiply(fp_num_t x, fp_num_t y)
84{
85 assert(/* is_normalized(x) && */ is_normalized(y));
86
87 const uint32_t low_bits = -1;
88
89 uint64_t a, b, c, d;
90 a = x.significand >> 32;
91 b = x.significand & low_bits;
92 c = y.significand >> 32;
93 d = y.significand & low_bits;
94
95 uint64_t bd, ad, bc, ac;
96 bd = b * d;
97 ad = a * d;
98
99 bc = b * c;
100 ac = a * c;
101
102 /* Denote 32 bit parts of x a y as: x == a b, y == c d. Then:
103 * a b
104 * * c d
105 * ----------
106 * ad bd .. multiplication of 32bit parts results in 64bit parts
107 * + ac bc
108 * ----------
109 * [b|d] .. Depicts 64 bit intermediate results and how
110 * [a|d] the 32 bit parts of these results overlap and
111 * [b|c] contribute to the final result.
112 * +[a|c]
113 * ----------
114 * [ret]
115 * [tmp]
116 */
117 uint64_t tmp = (bd >> 32) + (ad & low_bits) + (bc & low_bits);
118
119 /* Round upwards. */
120 tmp += 1U << 31;
121
122 fp_num_t ret;
123 ret.significand = ac + (bc >> 32) + (ad >> 32) + (tmp >> 32);
124 ret.exponent = x.exponent + y.exponent + significand_width;
125
126 return ret;
127}
128
129
130/** Returns a - b. Both must have the same exponent. */
131static fp_num_t subtract(fp_num_t a, fp_num_t b)
132{
133 assert(a.exponent == b.exponent);
134 assert(a.significand >= b.significand);
135
136 fp_num_t result;
137
138 result.significand = a.significand - b.significand;
139 result.exponent = a.exponent;
140
141 return result;
142}
143
144
145/** Returns the interval [low, high] of numbers that convert to binary val. */
146static void get_normalized_bounds(ieee_double_t val, fp_num_t *high,
147 fp_num_t *low, fp_num_t *val_dist)
148{
149 /*
150 * Only works if val comes directly from extract_ieee_double without
151 * being manipulated in any way (eg it must not be normalized).
152 */
153 assert(!is_normalized(val.pos_val));
154
155 high->significand = (val.pos_val.significand << 1) + 1;
156 high->exponent = val.pos_val.exponent - 1;
157
158 /* val_dist = high - val */
159 val_dist->significand = 1;
160 val_dist->exponent = val.pos_val.exponent - 1;
161
162 /* Distance from both lower and upper bound is the same. */
163 if (!val.is_accuracy_step) {
164 low->significand = (val.pos_val.significand << 1) - 1;
165 low->exponent = val.pos_val.exponent - 1;
166 } else {
167 low->significand = (val.pos_val.significand << 2) - 1;
168 low->exponent = val.pos_val.exponent - 2;
169 }
170
171 *high = normalize(*high);
172
173 /*
174 * Lower bound may not be normalized if subtracting 1 unit
175 * reset the most-significant bit to 0.
176 */
177 low->significand = low->significand << (low->exponent - high->exponent);
178 low->exponent = high->exponent;
179
180 val_dist->significand =
181 val_dist->significand << (val_dist->exponent - high->exponent);
182 val_dist->exponent = high->exponent;
183}
184
185/** Determines the interval of numbers that have the binary representation
186 * of val.
187 *
188 * Numbers in the range [scaled_upper_bound - bounds_delta, scaled_upper_bound]
189 * have the same double binary representation as val.
190 *
191 * Bounds are scaled by 10^scale so that alpha <= exponent <= gamma.
192 * Moreover, scaled_upper_bound is normalized.
193 *
194 * val_dist is the scaled distance from val to the upper bound, ie
195 * val_dist == (upper_bound - val) * 10^scale
196 */
197static void calc_scaled_bounds(ieee_double_t val, fp_num_t *scaled_upper_bound,
198 fp_num_t *bounds_delta, fp_num_t *val_dist, int *scale)
199{
200 fp_num_t upper_bound, lower_bound;
201
202 get_normalized_bounds(val, &upper_bound, &lower_bound, val_dist);
203
204 assert(upper_bound.exponent == lower_bound.exponent);
205 assert(is_normalized(upper_bound));
206 assert(normalize(val.pos_val).exponent == upper_bound.exponent);
207
208 /*
209 * Find such a cached normalized power of 10 that if multiplied
210 * by upper_bound the binary exponent of upper_bound almost vanishes,
211 * ie:
212 * upper_scaled := upper_bound * 10^scale
213 * alpha <= upper_scaled.exponent <= gamma
214 * alpha <= upper_bound.exponent + pow_10.exponent + 64 <= gamma
215 */
216 fp_num_t scaling_power_of_10;
217 int lower_bin_exp = alpha - upper_bound.exponent - significand_width;
218
219 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, scale);
220
221 int scale_exp = scaling_power_of_10.exponent;
222 assert(alpha <= upper_bound.exponent + scale_exp + significand_width);
223 assert(upper_bound.exponent + scale_exp + significand_width <= gamma);
224
225 fp_num_t upper_scaled = multiply(upper_bound, scaling_power_of_10);
226 fp_num_t lower_scaled = multiply(lower_bound, scaling_power_of_10);
227 *val_dist = multiply(*val_dist, scaling_power_of_10);
228
229 assert(alpha <= upper_scaled.exponent && upper_scaled.exponent <= gamma);
230
231 /*
232 * Any value between lower and upper bound would be represented
233 * in binary as the double val originated from. The bounds were
234 * however scaled by an imprecise power of 10 (error less than
235 * 1 ulp) so the scaled bounds have an error of less than 1 ulp.
236 * Conservatively round the lower bound up and the upper bound
237 * down by 1 ulp just to be on the safe side. It avoids pronouncing
238 * produced decimal digits as correct if such a decimal number
239 * is close to the bounds to within 1 ulp.
240 */
241 upper_scaled.significand -= 1;
242 lower_scaled.significand += 1;
243
244 *bounds_delta = subtract(upper_scaled, lower_scaled);
245 *scaled_upper_bound = upper_scaled;
246}
247
248
249/** Rounds the last digit of buf so that it is closest to the converted number.*/
250static void round_last_digit(uint64_t rest, uint64_t w_dist, uint64_t delta,
251 uint64_t digit_val_diff, char *buf, int len)
252{
253 /*
254 * | <------- delta -------> |
255 * | | <---- w_dist ----> |
256 * | | | <- rest -> |
257 * | | | |
258 * | | ` buffer |
259 * | ` w ` upper
260 * ` lower
261 *
262 * delta = upper - lower .. conservative/safe interval
263 * w_dist = upper - w
264 * upper = "number represented by digits in buf" + rest
265 *
266 * Changing buf[len - 1] changes the value represented by buf
267 * by digit_val_diff * scaling, where scaling is shared by
268 * all parameters.
269 *
270 */
271
272 /* Current number in buf is greater than the double being converted */
273 bool cur_greater_w = rest < w_dist;
274 /* Rounding down by one would keep buf in between bounds (in safe rng). */
275 bool next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
276 /* Rounding down by one would bring buf closer to the processed number. */
277 bool next_closer = next_in_val_rng
278 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
279
280 /* Of the shortest strings pick the one that is closest to the actual
281 floating point number. */
282 while (next_closer) {
283 assert('0' < buf[len - 1]);
284 assert(0 < digit_val_diff);
285
286 --buf[len - 1];
287 rest += digit_val_diff;
288
289 cur_greater_w = rest < w_dist;
290 next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
291 next_closer = next_in_val_rng
292 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
293 }
294}
295
296
297/** Generates the shortest accurate decimal string representation.
298 *
299 * Outputs (mostly) the shortest accurate string representation
300 * for the number scaled_upper - val_dist. Numbers in the interval
301 * [scaled_upper - delta, scaled_upper] have the same binary
302 * floating point representation and will therefore share the
303 * shortest string representation (up to the rounding of the last
304 * digit to bring the shortest string also the closest to the
305 * actual number).
306 *
307 * @param scaled_upper Scaled upper bound of numbers that have the
308 * same binary representation as the converted number.
309 * Scaled by 10^-scale so that alpha <= exponent <= gamma.
310 * @param delta scaled_upper - delta is the lower bound of numbers
311 * that share the same binary representation in double.
312 * @param val_dist scaled_upper - val_dist is the number whose
313 * decimal string we're generating.
314 * @param scale Decimal scaling of the value to convert (ie scaled_upper).
315 * @param buf Buffer to store the string representation. Must be large
316 * enough to store all digits and a null terminator. At most
317 * MAX_DOUBLE_STR_LEN digits will be written (not counting
318 * the null terminator).
319 * @param buf_size Size of buf in bytes.
320 * @param dec_exponent Will be set to the decimal exponent of the number
321 * string in buf.
322 *
323 * @return Number of digits; negative on failure (eg buffer too small).
324 */
325static int gen_dec_digits(fp_num_t scaled_upper, fp_num_t delta,
326 fp_num_t val_dist, int scale, char *buf, size_t buf_size, int *dec_exponent)
327{
328 /*
329 * The integral part of scaled_upper is 5 to 32 bits long while
330 * the remaining fractional part is 59 to 32 bits long because:
331 * -59 == alpha <= scaled_upper.e <= gamma == -32
332 *
333 * | <------- delta -------> |
334 * | | <--- val_dist ---> |
335 * | | |<- remainder ->|
336 * | | | |
337 * | | ` buffer |
338 * | ` val ` upper
339 * ` lower
340 *
341 */
342 assert(scaled_upper.significand != 0);
343 assert(alpha <= scaled_upper.exponent && scaled_upper.exponent <= gamma);
344 assert(scaled_upper.exponent == delta.exponent);
345 assert(scaled_upper.exponent == val_dist.exponent);
346 assert(val_dist.significand <= delta.significand);
347
348 /* We'll produce at least one digit and a null terminator. */
349 if (buf_size < 2) {
350 return -1;
351 }
352
353 /* one is number 1 encoded with the same exponent as scaled_upper */
354 fp_num_t one;
355 one.significand = ((uint64_t) 1) << (-scaled_upper.exponent);
356 one.exponent = scaled_upper.exponent;
357
358 /*
359 * Extract the integral part of scaled_upper.
360 * upper / one == upper >> -one.e
361 */
362 uint32_t int_part = (uint32_t)(scaled_upper.significand >> (-one.exponent));
363
364 /*
365 * Fractional part of scaled_upper.
366 * upper % one == upper & (one.f - 1)
367 */
368 uint64_t frac_part = scaled_upper.significand & (one.significand - 1);
369
370 /*
371 * The integral part of upper has at least 5 bits (64 + alpha) and
372 * at most 32 bits (64 + gamma). The integral part has at most 10
373 * decimal digits, so kappa <= 10.
374 */
375 int kappa = 10;
376 uint32_t div = 1000000000;
377 size_t len = 0;
378
379 /* Produce decimal digits for the integral part of upper. */
380 while (kappa > 0) {
381 int digit = int_part / div;
382 int_part %= div;
383
384 --kappa;
385
386 /* Skip leading zeros. */
387 if (digit != 0 || len != 0) {
388 /* Current length + new digit + null terminator <= buf_size */
389 if (len + 2 <= buf_size) {
390 buf[len] = '0' + digit;
391 ++len;
392 } else {
393 return -1;
394 }
395 }
396
397 /*
398 * Difference between the so far produced decimal number and upper
399 * is calculated as: remaining_int_part * one + frac_part
400 */
401 uint64_t remainder = (((uint64_t)int_part) << -one.exponent) + frac_part;
402
403 /* The produced decimal number would convert back to upper. */
404 if (remainder <= delta.significand) {
405 assert(0 < len && len < buf_size);
406 *dec_exponent = kappa - scale;
407 buf[len] = '\0';
408
409 /* Of the shortest representations choose the numerically closest. */
410 round_last_digit(remainder, val_dist.significand, delta.significand,
411 (uint64_t)div << (-one.exponent), buf, len);
412 return len;
413 }
414
415 div /= 10;
416 }
417
418 /* Generate decimal digits for the fractional part of upper. */
419 do {
420 /*
421 * Does not overflow because at least 5 upper bits were
422 * taken by the integral part and are now unused in frac_part.
423 */
424 frac_part *= 10;
425 delta.significand *= 10;
426 val_dist.significand *= 10;
427
428 /* frac_part / one */
429 int digit = (int)(frac_part >> (-one.exponent));
430
431 /* frac_part %= one */
432 frac_part &= one.significand - 1;
433
434 --kappa;
435
436 /* Skip leading zeros. */
437 if (digit == 0 && len == 0) {
438 continue;
439 }
440
441 /* Current length + new digit + null terminator <= buf_size */
442 if (len + 2 <= buf_size) {
443 buf[len] = '0' + digit;
444 ++len;
445 } else {
446 return -1;
447 }
448 } while (frac_part > delta.significand);
449
450 assert(0 < len && len < buf_size);
451
452 *dec_exponent = kappa - scale;
453 buf[len] = '\0';
454
455 /* Of the shortest representations choose the numerically closest one. */
456 round_last_digit(frac_part, val_dist.significand, delta.significand,
457 one.significand, buf, len);
458
459 return len;
460}
461
462/** Produce a string for 0.0 */
463static int zero_to_str(char *buf, size_t buf_size, int *dec_exponent)
464{
465 if (2 <= buf_size) {
466 buf[0] = '0';
467 buf[1] = '\0';
468 *dec_exponent = 0;
469 return 1;
470 } else {
471 return -1;
472 }
473}
474
475
476/** Converts a non-special double into its shortest accurate string
477 * representation.
478 *
479 * Produces an accurate string representation, ie the string will
480 * convert back to the same binary double (eg via strtod). In the
481 * vast majority of cases (99%) the string will be the shortest such
482 * string that is also the closest to the value of any shortest
483 * string representations. Therefore, no trailing zeros are ever
484 * produced.
485 *
486 * Conceptually, the value is: buf * 10^dec_exponent
487 *
488 * Never outputs trailing zeros.
489 *
490 * @param ieee_val Binary double description to convert. Must be the product
491 * of extract_ieee_double and it must not be a special number.
492 * @param buf Buffer to store the string representation. Must be large
493 * enough to store all digits and a null terminator. At most
494 * MAX_DOUBLE_STR_LEN digits will be written (not counting
495 * the null terminator).
496 * @param buf_size Size of buf in bytes.
497 * @param dec_exponent Will be set to the decimal exponent of the number
498 * string in buf.
499 *
500 * @return The number of printed digits. A negative value indicates
501 * an error: buf too small (or ieee_val.is_special).
502 */
503int double_to_short_str(ieee_double_t ieee_val, char *buf, size_t buf_size,
504 int *dec_exponent)
505{
506 /* The whole computation assumes 64bit significand. */
507 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
508
509 if (ieee_val.is_special) {
510 return -1;
511 }
512
513 /* Zero cannot be normalized. Handle it here. */
514 if (0 == ieee_val.pos_val.significand) {
515 return zero_to_str(buf, buf_size, dec_exponent);
516 }
517
518 fp_num_t scaled_upper_bound;
519 fp_num_t delta;
520 fp_num_t val_dist;
521 int scale;
522
523 calc_scaled_bounds(ieee_val, &scaled_upper_bound,
524 &delta, &val_dist, &scale);
525
526 int len = gen_dec_digits(scaled_upper_bound, delta, val_dist, scale,
527 buf, buf_size, dec_exponent);
528
529 assert(len <= MAX_DOUBLE_STR_LEN);
530 return len;
531}
532
533/** Generates a fixed number of decimal digits of w_scaled.
534 *
535 * double == w_scaled * 10^-scale, where alpha <= w_scaled.e <= gamma
536 *
537 * @param w_scaled Scaled number by 10^-scale so that
538 * alpha <= exponent <= gamma
539 * @param scale Decimal scaling of the value to convert (ie w_scaled).
540 * @param signif_d_cnt Maximum number of significant digits to output.
541 * Negative if as many as possible are requested.
542 * @param frac_d_cnt Maximum number of fractional digits to output.
543 * Negative if as many as possible are requested.
544 * Eg. if 2 then 1.234 -> "1.23"; if 2 then 3e-9 -> "0".
545 * @param buf Buffer to store the string representation. Must be large
546 * enough to store all digits and a null terminator. At most
547 * MAX_DOUBLE_STR_LEN digits will be written (not counting
548 * the null terminator).
549 * @param buf_size Size of buf in bytes.
550 *
551 * @return Number of digits; negative on failure (eg buffer too small).
552 */
553static int gen_fixed_dec_digits(fp_num_t w_scaled, int scale, int signif_d_cnt,
554 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
555{
556 /* We'll produce at least one digit and a null terminator. */
557 if (0 == signif_d_cnt || buf_size < 2) {
558 return -1;
559 }
560
561 /*
562 * The integral part of w_scaled is 5 to 32 bits long while the
563 * remaining fractional part is 59 to 32 bits long because:
564 * -59 == alpha <= w_scaled.e <= gamma == -32
565 *
566 * Therefore:
567 * | 5..32 bits | 32..59 bits | == w_scaled == w * 10^scale
568 * | int_part | frac_part |
569 * |0 0 .. 0 1|0 0 .. 0 0| == one == 1.0
570 * | 0 |0 0 .. 0 1| == w_err == 1 * 2^w_scaled.e
571 */
572 assert(alpha <= w_scaled.exponent && w_scaled.exponent <= gamma);
573 assert(0 != w_scaled.significand);
574
575 /*
576 * Scaling the number being converted by 10^scale introduced
577 * an error of less that 1 ulp. The actual value of w_scaled
578 * could lie anywhere between w_scaled.signif +/- w_err.
579 * Scale the error locally as we scale the fractional part
580 * of w_scaled.
581 */
582 uint64_t w_err = 1;
583
584 /* one is number 1.0 encoded with the same exponent as w_scaled */
585 fp_num_t one;
586 one.significand = ((uint64_t) 1) << (-w_scaled.exponent);
587 one.exponent = w_scaled.exponent;
588
589 /* Extract the integral part of w_scaled.
590 w_scaled / one == w_scaled >> -one.e */
591 uint32_t int_part = (uint32_t)(w_scaled.significand >> (-one.exponent));
592
593 /* Fractional part of w_scaled.
594 w_scaled % one == w_scaled & (one.f - 1) */
595 uint64_t frac_part = w_scaled.significand & (one.significand - 1);
596
597 size_t len = 0;
598 /*
599 * The integral part of w_scaled has at least 5 bits (64 + alpha = 5)
600 * and at most 32 bits (64 + gamma = 32). The integral part has
601 * at most 10 decimal digits, so kappa <= 10.
602 */
603 int kappa = 10;
604 uint32_t div = 1000000000;
605
606 int rem_signif_d_cnt = signif_d_cnt;
607 int rem_frac_d_cnt =
608 (frac_d_cnt >= 0) ? (kappa - scale + frac_d_cnt) : INT_MAX;
609
610 /* Produce decimal digits for the integral part of w_scaled. */
611 while (kappa > 0 && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
612 int digit = int_part / div;
613 int_part %= div;
614
615 div /= 10;
616 --kappa;
617 --rem_frac_d_cnt;
618
619 /* Skip leading zeros. */
620 if (digit == 0 && len == 0) {
621 continue;
622 }
623
624 /* Current length + new digit + null terminator <= buf_size */
625 if (len + 2 <= buf_size) {
626 buf[len] = '0' + digit;
627 ++len;
628 --rem_signif_d_cnt;
629 } else {
630 return -1;
631 }
632 }
633
634 /* Generate decimal digits for the fractional part of w_scaled. */
635 while (w_err <= frac_part && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
636 /*
637 * Does not overflow because at least 5 upper bits were
638 * taken by the integral part and are now unused in frac_part.
639 */
640 frac_part *= 10;
641 w_err *= 10;
642
643 /* frac_part / one */
644 int digit = (int)(frac_part >> (-one.exponent));
645
646 /* frac_part %= one */
647 frac_part &= one.significand - 1;
648
649 --kappa;
650 --rem_frac_d_cnt;
651
652 /* Skip leading zeros. */
653 if (digit == 0 && len == 0) {
654 continue;
655 }
656
657 /* Current length + new digit + null terminator <= buf_size */
658 if (len + 2 <= buf_size) {
659 buf[len] = '0' + digit;
660 ++len;
661 --rem_signif_d_cnt;
662 } else {
663 return -1;
664 }
665 };
666
667 assert(/* 0 <= len && */ len < buf_size);
668
669 if (0 < len) {
670 *dec_exponent = kappa - scale;
671 assert(frac_d_cnt < 0 || -frac_d_cnt <= *dec_exponent);
672 } else {
673 /*
674 * The number of fractional digits was too limiting to produce
675 * any digits.
676 */
677 assert(rem_frac_d_cnt <= 0 || w_scaled.significand == 0);
678 *dec_exponent = 0;
679 buf[0] = '0';
680 len = 1;
681 }
682
683 if (len < buf_size) {
684 buf[len] = '\0';
685 assert(signif_d_cnt < 0 || (int)len <= signif_d_cnt);
686 return len;
687 } else {
688 return -1;
689 }
690}
691
692
693/** Converts a non-special double into its string representation.
694 *
695 * Conceptually, the truncated double value is: buf * 10^dec_exponent
696 *
697 * Conversion errors are tracked, so all produced digits except the
698 * last one are accurate. Garbage digits are never produced.
699 * If the requested number of digits cannot be produced accurately
700 * due to conversion errors less digits are produced than requested
701 * and the last digit has an error of +/- 1 (so if '7' is the last
702 * converted digit it might have been converted to any of '6'..'8'
703 * had the conversion been completely precise).
704 *
705 * If no error occurs at least one digit is output.
706 *
707 * The conversion stops once the requested number of significant or
708 * fractional digits is reached or the conversion error is too large
709 * to generate any more digits (whichever happens first).
710 *
711 * Any digits following the first (most-significant) digit (this digit
712 * included) are counted as significant digits; eg:
713 * 1.4, 4 signif -> "1400" * 10^-3, ie 1.400
714 * 1000.3, 1 signif -> "1" * 10^3 ie 1000
715 * 0.003, 2 signif -> "30" * 10^-4 ie 0.003
716 * 9.5 1 signif -> "9" * 10^0, ie 9
717 *
718 * Any digits following the decimal point are counted as fractional digits.
719 * This includes the zeros that would appear between the decimal point
720 * and the first non-zero fractional digit. If fewer fractional digits
721 * are requested than would allow to place the most-significant digit
722 * a "0" is output. Eg:
723 * 1.4, 3 frac -> "1400" * 10^-3, ie 1.400
724 * 12.34 4 frac -> "123400" * 10^-4, ie 12.3400
725 * 3e-99 4 frac -> "0" * 10^0, ie 0
726 * 0.009 2 frac -> "0" * 10^-2, ie 0
727 *
728 * @param ieee_val Binary double description to convert. Must be the product
729 * of extract_ieee_double and it must not be a special number.
730 * @param signif_d_cnt Maximum number of significant digits to produce.
731 * The output is not rounded.
732 * Set to a negative value to generate as many digits
733 * as accurately possible.
734 * @param frac_d_cnt Maximum number of fractional digits to produce including
735 * any zeros immediately trailing the decimal point.
736 * The output is not rounded.
737 * Set to a negative value to generate as many digits
738 * as accurately possible.
739 * @param buf Buffer to store the string representation. Must be large
740 * enough to store all digits and a null terminator. At most
741 * MAX_DOUBLE_STR_LEN digits will be written (not counting
742 * the null terminator).
743 * @param buf_size Size of buf in bytes.
744 * @param dec_exponent Set to the decimal exponent of the number string
745 * in buf.
746 *
747 * @return The number of output digits. A negative value indicates
748 * an error: buf too small (or ieee_val.is_special, or
749 * signif_d_cnt == 0).
750 */
751int double_to_fixed_str(ieee_double_t ieee_val, int signif_d_cnt,
752 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
753{
754 /* The whole computation assumes 64bit significand. */
755 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
756
757 if (ieee_val.is_special) {
758 return -1;
759 }
760
761 /* Zero cannot be normalized. Handle it here. */
762 if (0 == ieee_val.pos_val.significand) {
763 return zero_to_str(buf, buf_size, dec_exponent);
764 }
765
766 /* Normalize and scale. */
767 fp_num_t w = normalize(ieee_val.pos_val);
768
769 int lower_bin_exp = alpha - w.exponent - significand_width;
770
771 int scale;
772 fp_num_t scaling_power_of_10;
773
774 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, &scale);
775
776 fp_num_t w_scaled = multiply(w, scaling_power_of_10);
777
778 /* Produce decimal digits from the scaled number. */
779 int len = gen_fixed_dec_digits(w_scaled, scale, signif_d_cnt, frac_d_cnt,
780 buf, buf_size, dec_exponent);
781
782 assert(len <= MAX_DOUBLE_STR_LEN);
783 return len;
784}
785
Note: See TracBrowser for help on using the repository browser.