source: mainline/uspace/lib/c/generic/double_to_str.c@ 1b20da0

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 1b20da0 was 1b20da0, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 7 years ago

style: Remove trailing whitespace on non-empty lines, in certain file types.

Command used: tools/srepl '\([^[:space:]]\)\s\+$' '\1' -- *.c *.h *.py *.sh *.s *.S *.ag

  • Property mode set to 100644
File size: 25.0 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <double_to_str.h>
30
31#include "private/power_of_ten.h"
32#include <ieee_double.h>
33
34#include <limits.h>
35#include <stdint.h>
36#include <stdbool.h>
37#include <stddef.h>
38#include <assert.h>
39
40/*
41 * Floating point numbers are converted from their binary representation
42 * into a decimal string using the algorithm described in:
43 * Printing floating-point numbers quickly and accurately with integers
44 * Loitsch, 2010
45 */
46
47/** The computation assumes a significand of 64 bits. */
48static const int significand_width = 64;
49
50/* Scale exponents to interval [alpha, gamma] to simplify conversion. */
51static const int alpha = -59;
52static const int gamma = -32;
53
54
55/** Returns true if the most-significant bit of num.significand is set. */
56static bool is_normalized(fp_num_t num)
57{
58 assert(8*sizeof(num.significand) == significand_width);
59
60 /* Normalized == most significant bit of the significand is set. */
61 return (num.significand & (1ULL << (significand_width - 1))) != 0;
62}
63
64/** Returns a normalized num with the MSbit set. */
65static fp_num_t normalize(fp_num_t num)
66{
67 const uint64_t top10bits = 0xffc0000000000000ULL;
68
69 /* num usually comes from ieee_double with top 10 bits zero. */
70 while (0 == (num.significand & top10bits)) {
71 num.significand <<= 10;
72 num.exponent -= 10;
73 }
74
75 while (!is_normalized(num)) {
76 num.significand <<= 1;
77 --num.exponent;
78 }
79
80 return num;
81}
82
83
84/** Returns x * y with an error of less than 0.5 ulp. */
85static fp_num_t multiply(fp_num_t x, fp_num_t y)
86{
87 assert(/* is_normalized(x) && */ is_normalized(y));
88
89 const uint32_t low_bits = -1;
90
91 uint64_t a, b, c, d;
92 a = x.significand >> 32;
93 b = x.significand & low_bits;
94 c = y.significand >> 32;
95 d = y.significand & low_bits;
96
97 uint64_t bd, ad, bc, ac;
98 bd = b * d;
99 ad = a * d;
100
101 bc = b * c;
102 ac = a * c;
103
104 /* Denote 32 bit parts of x a y as: x == a b, y == c d. Then:
105 * a b
106 * * c d
107 * ----------
108 * ad bd .. multiplication of 32bit parts results in 64bit parts
109 * + ac bc
110 * ----------
111 * [b|d] .. Depicts 64 bit intermediate results and how
112 * [a|d] the 32 bit parts of these results overlap and
113 * [b|c] contribute to the final result.
114 * +[a|c]
115 * ----------
116 * [ret]
117 * [tmp]
118 */
119 uint64_t tmp = (bd >> 32) + (ad & low_bits) + (bc & low_bits);
120
121 /* Round upwards. */
122 tmp += 1U << 31;
123
124 fp_num_t ret;
125 ret.significand = ac + (bc >> 32) + (ad >> 32) + (tmp >> 32);
126 ret.exponent = x.exponent + y.exponent + significand_width;
127
128 return ret;
129}
130
131
132/** Returns a - b. Both must have the same exponent. */
133static fp_num_t subtract(fp_num_t a, fp_num_t b)
134{
135 assert(a.exponent == b.exponent);
136 assert(a.significand >= b.significand);
137
138 fp_num_t result;
139
140 result.significand = a.significand - b.significand;
141 result.exponent = a.exponent;
142
143 return result;
144}
145
146
147/** Returns the interval [low, high] of numbers that convert to binary val. */
148static void get_normalized_bounds(ieee_double_t val, fp_num_t *high,
149 fp_num_t *low, fp_num_t *val_dist)
150{
151 /*
152 * Only works if val comes directly from extract_ieee_double without
153 * being manipulated in any way (eg it must not be normalized).
154 */
155 assert(!is_normalized(val.pos_val));
156
157 high->significand = (val.pos_val.significand << 1) + 1;
158 high->exponent = val.pos_val.exponent - 1;
159
160 /* val_dist = high - val */
161 val_dist->significand = 1;
162 val_dist->exponent = val.pos_val.exponent - 1;
163
164 /* Distance from both lower and upper bound is the same. */
165 if (!val.is_accuracy_step) {
166 low->significand = (val.pos_val.significand << 1) - 1;
167 low->exponent = val.pos_val.exponent - 1;
168 } else {
169 low->significand = (val.pos_val.significand << 2) - 1;
170 low->exponent = val.pos_val.exponent - 2;
171 }
172
173 *high = normalize(*high);
174
175 /*
176 * Lower bound may not be normalized if subtracting 1 unit
177 * reset the most-significant bit to 0.
178 */
179 low->significand = low->significand << (low->exponent - high->exponent);
180 low->exponent = high->exponent;
181
182 val_dist->significand =
183 val_dist->significand << (val_dist->exponent - high->exponent);
184 val_dist->exponent = high->exponent;
185}
186
187/** Determines the interval of numbers that have the binary representation
188 * of val.
189 *
190 * Numbers in the range [scaled_upper_bound - bounds_delta, scaled_upper_bound]
191 * have the same double binary representation as val.
192 *
193 * Bounds are scaled by 10^scale so that alpha <= exponent <= gamma.
194 * Moreover, scaled_upper_bound is normalized.
195 *
196 * val_dist is the scaled distance from val to the upper bound, ie
197 * val_dist == (upper_bound - val) * 10^scale
198 */
199static void calc_scaled_bounds(ieee_double_t val, fp_num_t *scaled_upper_bound,
200 fp_num_t *bounds_delta, fp_num_t *val_dist, int *scale)
201{
202 fp_num_t upper_bound, lower_bound;
203
204 get_normalized_bounds(val, &upper_bound, &lower_bound, val_dist);
205
206 assert(upper_bound.exponent == lower_bound.exponent);
207 assert(is_normalized(upper_bound));
208 assert(normalize(val.pos_val).exponent == upper_bound.exponent);
209
210 /*
211 * Find such a cached normalized power of 10 that if multiplied
212 * by upper_bound the binary exponent of upper_bound almost vanishes,
213 * ie:
214 * upper_scaled := upper_bound * 10^scale
215 * alpha <= upper_scaled.exponent <= gamma
216 * alpha <= upper_bound.exponent + pow_10.exponent + 64 <= gamma
217 */
218 fp_num_t scaling_power_of_10;
219 int lower_bin_exp = alpha - upper_bound.exponent - significand_width;
220
221 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, scale);
222
223 int scale_exp = scaling_power_of_10.exponent;
224 assert(alpha <= upper_bound.exponent + scale_exp + significand_width);
225 assert(upper_bound.exponent + scale_exp + significand_width <= gamma);
226
227 fp_num_t upper_scaled = multiply(upper_bound, scaling_power_of_10);
228 fp_num_t lower_scaled = multiply(lower_bound, scaling_power_of_10);
229 *val_dist = multiply(*val_dist, scaling_power_of_10);
230
231 assert(alpha <= upper_scaled.exponent && upper_scaled.exponent <= gamma);
232
233 /*
234 * Any value between lower and upper bound would be represented
235 * in binary as the double val originated from. The bounds were
236 * however scaled by an imprecise power of 10 (error less than
237 * 1 ulp) so the scaled bounds have an error of less than 1 ulp.
238 * Conservatively round the lower bound up and the upper bound
239 * down by 1 ulp just to be on the safe side. It avoids pronouncing
240 * produced decimal digits as correct if such a decimal number
241 * is close to the bounds to within 1 ulp.
242 */
243 upper_scaled.significand -= 1;
244 lower_scaled.significand += 1;
245
246 *bounds_delta = subtract(upper_scaled, lower_scaled);
247 *scaled_upper_bound = upper_scaled;
248}
249
250
251/** Rounds the last digit of buf so that it is closest to the converted number.*/
252static void round_last_digit(uint64_t rest, uint64_t w_dist, uint64_t delta,
253 uint64_t digit_val_diff, char *buf, int len)
254{
255 /*
256 * | <------- delta -------> |
257 * | | <---- w_dist ----> |
258 * | | | <- rest -> |
259 * | | | |
260 * | | ` buffer |
261 * | ` w ` upper
262 * ` lower
263 *
264 * delta = upper - lower .. conservative/safe interval
265 * w_dist = upper - w
266 * upper = "number represented by digits in buf" + rest
267 *
268 * Changing buf[len - 1] changes the value represented by buf
269 * by digit_val_diff * scaling, where scaling is shared by
270 * all parameters.
271 *
272 */
273
274 /* Current number in buf is greater than the double being converted */
275 bool cur_greater_w = rest < w_dist;
276 /* Rounding down by one would keep buf in between bounds (in safe rng). */
277 bool next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
278 /* Rounding down by one would bring buf closer to the processed number. */
279 bool next_closer = next_in_val_rng
280 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
281
282 /* Of the shortest strings pick the one that is closest to the actual
283 floating point number. */
284 while (next_closer) {
285 assert('0' < buf[len - 1]);
286 assert(0 < digit_val_diff);
287
288 --buf[len - 1];
289 rest += digit_val_diff;
290
291 cur_greater_w = rest < w_dist;
292 next_in_val_rng = cur_greater_w && (rest + digit_val_diff < delta);
293 next_closer = next_in_val_rng
294 && (rest + digit_val_diff < w_dist || rest - w_dist < w_dist - rest);
295 }
296}
297
298
299/** Generates the shortest accurate decimal string representation.
300 *
301 * Outputs (mostly) the shortest accurate string representation
302 * for the number scaled_upper - val_dist. Numbers in the interval
303 * [scaled_upper - delta, scaled_upper] have the same binary
304 * floating point representation and will therefore share the
305 * shortest string representation (up to the rounding of the last
306 * digit to bring the shortest string also the closest to the
307 * actual number).
308 *
309 * @param scaled_upper Scaled upper bound of numbers that have the
310 * same binary representation as the converted number.
311 * Scaled by 10^-scale so that alpha <= exponent <= gamma.
312 * @param delta scaled_upper - delta is the lower bound of numbers
313 * that share the same binary representation in double.
314 * @param val_dist scaled_upper - val_dist is the number whose
315 * decimal string we're generating.
316 * @param scale Decimal scaling of the value to convert (ie scaled_upper).
317 * @param buf Buffer to store the string representation. Must be large
318 * enough to store all digits and a null terminator. At most
319 * MAX_DOUBLE_STR_LEN digits will be written (not counting
320 * the null terminator).
321 * @param buf_size Size of buf in bytes.
322 * @param dec_exponent Will be set to the decimal exponent of the number
323 * string in buf.
324 *
325 * @return Number of digits; negative on failure (eg buffer too small).
326 */
327static int gen_dec_digits(fp_num_t scaled_upper, fp_num_t delta,
328 fp_num_t val_dist, int scale, char *buf, size_t buf_size, int *dec_exponent)
329{
330 /*
331 * The integral part of scaled_upper is 5 to 32 bits long while
332 * the remaining fractional part is 59 to 32 bits long because:
333 * -59 == alpha <= scaled_upper.e <= gamma == -32
334 *
335 * | <------- delta -------> |
336 * | | <--- val_dist ---> |
337 * | | |<- remainder ->|
338 * | | | |
339 * | | ` buffer |
340 * | ` val ` upper
341 * ` lower
342 *
343 */
344 assert(scaled_upper.significand != 0);
345 assert(alpha <= scaled_upper.exponent && scaled_upper.exponent <= gamma);
346 assert(scaled_upper.exponent == delta.exponent);
347 assert(scaled_upper.exponent == val_dist.exponent);
348 assert(val_dist.significand <= delta.significand);
349
350 /* We'll produce at least one digit and a null terminator. */
351 if (buf_size < 2) {
352 return -1;
353 }
354
355 /* one is number 1 encoded with the same exponent as scaled_upper */
356 fp_num_t one;
357 one.significand = ((uint64_t) 1) << (-scaled_upper.exponent);
358 one.exponent = scaled_upper.exponent;
359
360 /*
361 * Extract the integral part of scaled_upper.
362 * upper / one == upper >> -one.e
363 */
364 uint32_t int_part = (uint32_t)(scaled_upper.significand >> (-one.exponent));
365
366 /*
367 * Fractional part of scaled_upper.
368 * upper % one == upper & (one.f - 1)
369 */
370 uint64_t frac_part = scaled_upper.significand & (one.significand - 1);
371
372 /*
373 * The integral part of upper has at least 5 bits (64 + alpha) and
374 * at most 32 bits (64 + gamma). The integral part has at most 10
375 * decimal digits, so kappa <= 10.
376 */
377 int kappa = 10;
378 uint32_t div = 1000000000;
379 size_t len = 0;
380
381 /* Produce decimal digits for the integral part of upper. */
382 while (kappa > 0) {
383 int digit = int_part / div;
384 int_part %= div;
385
386 --kappa;
387
388 /* Skip leading zeros. */
389 if (digit != 0 || len != 0) {
390 /* Current length + new digit + null terminator <= buf_size */
391 if (len + 2 <= buf_size) {
392 buf[len] = '0' + digit;
393 ++len;
394 } else {
395 return -1;
396 }
397 }
398
399 /*
400 * Difference between the so far produced decimal number and upper
401 * is calculated as: remaining_int_part * one + frac_part
402 */
403 uint64_t remainder = (((uint64_t)int_part) << -one.exponent) + frac_part;
404
405 /* The produced decimal number would convert back to upper. */
406 if (remainder <= delta.significand) {
407 assert(0 < len && len < buf_size);
408 *dec_exponent = kappa - scale;
409 buf[len] = '\0';
410
411 /* Of the shortest representations choose the numerically closest. */
412 round_last_digit(remainder, val_dist.significand, delta.significand,
413 (uint64_t)div << (-one.exponent), buf, len);
414 return len;
415 }
416
417 div /= 10;
418 }
419
420 /* Generate decimal digits for the fractional part of upper. */
421 do {
422 /*
423 * Does not overflow because at least 5 upper bits were
424 * taken by the integral part and are now unused in frac_part.
425 */
426 frac_part *= 10;
427 delta.significand *= 10;
428 val_dist.significand *= 10;
429
430 /* frac_part / one */
431 int digit = (int)(frac_part >> (-one.exponent));
432
433 /* frac_part %= one */
434 frac_part &= one.significand - 1;
435
436 --kappa;
437
438 /* Skip leading zeros. */
439 if (digit == 0 && len == 0) {
440 continue;
441 }
442
443 /* Current length + new digit + null terminator <= buf_size */
444 if (len + 2 <= buf_size) {
445 buf[len] = '0' + digit;
446 ++len;
447 } else {
448 return -1;
449 }
450 } while (frac_part > delta.significand);
451
452 assert(0 < len && len < buf_size);
453
454 *dec_exponent = kappa - scale;
455 buf[len] = '\0';
456
457 /* Of the shortest representations choose the numerically closest one. */
458 round_last_digit(frac_part, val_dist.significand, delta.significand,
459 one.significand, buf, len);
460
461 return len;
462}
463
464/** Produce a string for 0.0 */
465static int zero_to_str(char *buf, size_t buf_size, int *dec_exponent)
466{
467 if (2 <= buf_size) {
468 buf[0] = '0';
469 buf[1] = '\0';
470 *dec_exponent = 0;
471 return 1;
472 } else {
473 return -1;
474 }
475}
476
477
478/** Converts a non-special double into its shortest accurate string
479 * representation.
480 *
481 * Produces an accurate string representation, ie the string will
482 * convert back to the same binary double (eg via strtod). In the
483 * vast majority of cases (99%) the string will be the shortest such
484 * string that is also the closest to the value of any shortest
485 * string representations. Therefore, no trailing zeros are ever
486 * produced.
487 *
488 * Conceptually, the value is: buf * 10^dec_exponent
489 *
490 * Never outputs trailing zeros.
491 *
492 * @param ieee_val Binary double description to convert. Must be the product
493 * of extract_ieee_double and it must not be a special number.
494 * @param buf Buffer to store the string representation. Must be large
495 * enough to store all digits and a null terminator. At most
496 * MAX_DOUBLE_STR_LEN digits will be written (not counting
497 * the null terminator).
498 * @param buf_size Size of buf in bytes.
499 * @param dec_exponent Will be set to the decimal exponent of the number
500 * string in buf.
501 *
502 * @return The number of printed digits. A negative value indicates
503 * an error: buf too small (or ieee_val.is_special).
504 */
505int double_to_short_str(ieee_double_t ieee_val, char *buf, size_t buf_size,
506 int *dec_exponent)
507{
508 /* The whole computation assumes 64bit significand. */
509 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
510
511 if (ieee_val.is_special) {
512 return -1;
513 }
514
515 /* Zero cannot be normalized. Handle it here. */
516 if (0 == ieee_val.pos_val.significand) {
517 return zero_to_str(buf, buf_size, dec_exponent);
518 }
519
520 fp_num_t scaled_upper_bound;
521 fp_num_t delta;
522 fp_num_t val_dist;
523 int scale;
524
525 calc_scaled_bounds(ieee_val, &scaled_upper_bound,
526 &delta, &val_dist, &scale);
527
528 int len = gen_dec_digits(scaled_upper_bound, delta, val_dist, scale,
529 buf, buf_size, dec_exponent);
530
531 assert(len <= MAX_DOUBLE_STR_LEN);
532 return len;
533}
534
535/** Generates a fixed number of decimal digits of w_scaled.
536 *
537 * double == w_scaled * 10^-scale, where alpha <= w_scaled.e <= gamma
538 *
539 * @param w_scaled Scaled number by 10^-scale so that
540 * alpha <= exponent <= gamma
541 * @param scale Decimal scaling of the value to convert (ie w_scaled).
542 * @param signif_d_cnt Maximum number of significant digits to output.
543 * Negative if as many as possible are requested.
544 * @param frac_d_cnt Maximum number of fractional digits to output.
545 * Negative if as many as possible are requested.
546 * Eg. if 2 then 1.234 -> "1.23"; if 2 then 3e-9 -> "0".
547 * @param buf Buffer to store the string representation. Must be large
548 * enough to store all digits and a null terminator. At most
549 * MAX_DOUBLE_STR_LEN digits will be written (not counting
550 * the null terminator).
551 * @param buf_size Size of buf in bytes.
552 *
553 * @return Number of digits; negative on failure (eg buffer too small).
554 */
555static int gen_fixed_dec_digits(fp_num_t w_scaled, int scale, int signif_d_cnt,
556 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
557{
558 /* We'll produce at least one digit and a null terminator. */
559 if (0 == signif_d_cnt || buf_size < 2) {
560 return -1;
561 }
562
563 /*
564 * The integral part of w_scaled is 5 to 32 bits long while the
565 * remaining fractional part is 59 to 32 bits long because:
566 * -59 == alpha <= w_scaled.e <= gamma == -32
567 *
568 * Therefore:
569 * | 5..32 bits | 32..59 bits | == w_scaled == w * 10^scale
570 * | int_part | frac_part |
571 * |0 0 .. 0 1|0 0 .. 0 0| == one == 1.0
572 * | 0 |0 0 .. 0 1| == w_err == 1 * 2^w_scaled.e
573 */
574 assert(alpha <= w_scaled.exponent && w_scaled.exponent <= gamma);
575 assert(0 != w_scaled.significand);
576
577 /*
578 * Scaling the number being converted by 10^scale introduced
579 * an error of less that 1 ulp. The actual value of w_scaled
580 * could lie anywhere between w_scaled.signif +/- w_err.
581 * Scale the error locally as we scale the fractional part
582 * of w_scaled.
583 */
584 uint64_t w_err = 1;
585
586 /* one is number 1.0 encoded with the same exponent as w_scaled */
587 fp_num_t one;
588 one.significand = ((uint64_t) 1) << (-w_scaled.exponent);
589 one.exponent = w_scaled.exponent;
590
591 /* Extract the integral part of w_scaled.
592 w_scaled / one == w_scaled >> -one.e */
593 uint32_t int_part = (uint32_t)(w_scaled.significand >> (-one.exponent));
594
595 /* Fractional part of w_scaled.
596 w_scaled % one == w_scaled & (one.f - 1) */
597 uint64_t frac_part = w_scaled.significand & (one.significand - 1);
598
599 size_t len = 0;
600 /*
601 * The integral part of w_scaled has at least 5 bits (64 + alpha = 5)
602 * and at most 32 bits (64 + gamma = 32). The integral part has
603 * at most 10 decimal digits, so kappa <= 10.
604 */
605 int kappa = 10;
606 uint32_t div = 1000000000;
607
608 int rem_signif_d_cnt = signif_d_cnt;
609 int rem_frac_d_cnt =
610 (frac_d_cnt >= 0) ? (kappa - scale + frac_d_cnt) : INT_MAX;
611
612 /* Produce decimal digits for the integral part of w_scaled. */
613 while (kappa > 0 && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
614 int digit = int_part / div;
615 int_part %= div;
616
617 div /= 10;
618 --kappa;
619 --rem_frac_d_cnt;
620
621 /* Skip leading zeros. */
622 if (digit == 0 && len == 0) {
623 continue;
624 }
625
626 /* Current length + new digit + null terminator <= buf_size */
627 if (len + 2 <= buf_size) {
628 buf[len] = '0' + digit;
629 ++len;
630 --rem_signif_d_cnt;
631 } else {
632 return -1;
633 }
634 }
635
636 /* Generate decimal digits for the fractional part of w_scaled. */
637 while (w_err <= frac_part && rem_signif_d_cnt != 0 && rem_frac_d_cnt > 0) {
638 /*
639 * Does not overflow because at least 5 upper bits were
640 * taken by the integral part and are now unused in frac_part.
641 */
642 frac_part *= 10;
643 w_err *= 10;
644
645 /* frac_part / one */
646 int digit = (int)(frac_part >> (-one.exponent));
647
648 /* frac_part %= one */
649 frac_part &= one.significand - 1;
650
651 --kappa;
652 --rem_frac_d_cnt;
653
654 /* Skip leading zeros. */
655 if (digit == 0 && len == 0) {
656 continue;
657 }
658
659 /* Current length + new digit + null terminator <= buf_size */
660 if (len + 2 <= buf_size) {
661 buf[len] = '0' + digit;
662 ++len;
663 --rem_signif_d_cnt;
664 } else {
665 return -1;
666 }
667 };
668
669 assert(/* 0 <= len && */ len < buf_size);
670
671 if (0 < len) {
672 *dec_exponent = kappa - scale;
673 assert(frac_d_cnt < 0 || -frac_d_cnt <= *dec_exponent);
674 } else {
675 /*
676 * The number of fractional digits was too limiting to produce
677 * any digits.
678 */
679 assert(rem_frac_d_cnt <= 0 || w_scaled.significand == 0);
680 *dec_exponent = 0;
681 buf[0] = '0';
682 len = 1;
683 }
684
685 if (len < buf_size) {
686 buf[len] = '\0';
687 assert(signif_d_cnt < 0 || (int)len <= signif_d_cnt);
688 return len;
689 } else {
690 return -1;
691 }
692}
693
694
695/** Converts a non-special double into its string representation.
696 *
697 * Conceptually, the truncated double value is: buf * 10^dec_exponent
698 *
699 * Conversion errors are tracked, so all produced digits except the
700 * last one are accurate. Garbage digits are never produced.
701 * If the requested number of digits cannot be produced accurately
702 * due to conversion errors less digits are produced than requested
703 * and the last digit has an error of +/- 1 (so if '7' is the last
704 * converted digit it might have been converted to any of '6'..'8'
705 * had the conversion been completely precise).
706 *
707 * If no error occurs at least one digit is output.
708 *
709 * The conversion stops once the requested number of significant or
710 * fractional digits is reached or the conversion error is too large
711 * to generate any more digits (whichever happens first).
712 *
713 * Any digits following the first (most-significant) digit (this digit
714 * included) are counted as significant digits; eg:
715 * 1.4, 4 signif -> "1400" * 10^-3, ie 1.400
716 * 1000.3, 1 signif -> "1" * 10^3 ie 1000
717 * 0.003, 2 signif -> "30" * 10^-4 ie 0.003
718 * 9.5 1 signif -> "9" * 10^0, ie 9
719 *
720 * Any digits following the decimal point are counted as fractional digits.
721 * This includes the zeros that would appear between the decimal point
722 * and the first non-zero fractional digit. If fewer fractional digits
723 * are requested than would allow to place the most-significant digit
724 * a "0" is output. Eg:
725 * 1.4, 3 frac -> "1400" * 10^-3, ie 1.400
726 * 12.34 4 frac -> "123400" * 10^-4, ie 12.3400
727 * 3e-99 4 frac -> "0" * 10^0, ie 0
728 * 0.009 2 frac -> "0" * 10^-2, ie 0
729 *
730 * @param ieee_val Binary double description to convert. Must be the product
731 * of extract_ieee_double and it must not be a special number.
732 * @param signif_d_cnt Maximum number of significant digits to produce.
733 * The output is not rounded.
734 * Set to a negative value to generate as many digits
735 * as accurately possible.
736 * @param frac_d_cnt Maximum number of fractional digits to produce including
737 * any zeros immediately trailing the decimal point.
738 * The output is not rounded.
739 * Set to a negative value to generate as many digits
740 * as accurately possible.
741 * @param buf Buffer to store the string representation. Must be large
742 * enough to store all digits and a null terminator. At most
743 * MAX_DOUBLE_STR_LEN digits will be written (not counting
744 * the null terminator).
745 * @param buf_size Size of buf in bytes.
746 * @param dec_exponent Set to the decimal exponent of the number string
747 * in buf.
748 *
749 * @return The number of output digits. A negative value indicates
750 * an error: buf too small (or ieee_val.is_special, or
751 * signif_d_cnt == 0).
752 */
753int double_to_fixed_str(ieee_double_t ieee_val, int signif_d_cnt,
754 int frac_d_cnt, char *buf, size_t buf_size, int *dec_exponent)
755{
756 /* The whole computation assumes 64bit significand. */
757 static_assert(sizeof(ieee_val.pos_val.significand) == sizeof(uint64_t));
758
759 if (ieee_val.is_special) {
760 return -1;
761 }
762
763 /* Zero cannot be normalized. Handle it here. */
764 if (0 == ieee_val.pos_val.significand) {
765 return zero_to_str(buf, buf_size, dec_exponent);
766 }
767
768 /* Normalize and scale. */
769 fp_num_t w = normalize(ieee_val.pos_val);
770
771 int lower_bin_exp = alpha - w.exponent - significand_width;
772
773 int scale;
774 fp_num_t scaling_power_of_10;
775
776 get_power_of_ten(lower_bin_exp, &scaling_power_of_10, &scale);
777
778 fp_num_t w_scaled = multiply(w, scaling_power_of_10);
779
780 /* Produce decimal digits from the scaled number. */
781 int len = gen_fixed_dec_digits(w_scaled, scale, signif_d_cnt, frac_d_cnt,
782 buf, buf_size, dec_exponent);
783
784 assert(len <= MAX_DOUBLE_STR_LEN);
785 return len;
786}
787
Note: See TracBrowser for help on using the repository browser.