source: mainline/uspace/lib/c/generic/async/server.c@ 59ff52d

Last change on this file since 59ff52d was 59ff52d, checked in by Jakub Jermar <jakub@…>, 7 years ago

Add async_accept_0() for accepting connections

  • Property mode set to 100644
File size: 38.6 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(ipc_call_t *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icall, ELIMIT);
83 * return;
84 * }
85 *
86 * async_answer_0(icall, EOK);
87 *
88 * async_get_call(&call);
89 * somehow_handle_the_call(&call);
90 * async_answer_2(&call, 1, 2, 3);
91 *
92 * async_get_call(&call);
93 * ...
94 * }
95 *
96 */
97
98#define LIBC_ASYNC_C_
99#include <ipc/ipc.h>
100#include <async.h>
101#include "../private/async.h"
102#undef LIBC_ASYNC_C_
103
104#include <ipc/irq.h>
105#include <ipc/event.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/hash.h>
109#include <adt/list.h>
110#include <assert.h>
111#include <errno.h>
112#include <time.h>
113#include <stdbool.h>
114#include <stdlib.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <str_error.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "../private/libc.h"
122#include "../private/fibril.h"
123
124#define DPRINTF(...) ((void) 0)
125
126/* Client connection data */
127typedef struct {
128 ht_link_t link;
129
130 task_id_t in_task_id;
131 int refcnt;
132 void *data;
133} client_t;
134
135/* Server connection data */
136typedef struct {
137 /** Fibril handling the connection. */
138 fid_t fid;
139
140 /** Hash table link. */
141 ht_link_t link;
142
143 /** Incoming client task ID. */
144 task_id_t in_task_id;
145
146 /** Link to the client tracking structure. */
147 client_t *client;
148
149 /** Channel for messages that should be delivered to this fibril. */
150 mpsc_t *msg_channel;
151
152 /** Call data of the opening call. */
153 ipc_call_t call;
154
155 /** Fibril function that will be used to handle the connection. */
156 async_port_handler_t handler;
157
158 /** Client data */
159 void *data;
160} connection_t;
161
162/* Member of notification_t::msg_list. */
163typedef struct {
164 link_t link;
165 ipc_call_t calldata;
166} notification_msg_t;
167
168/* Notification data */
169typedef struct {
170 /** notification_hash_table link */
171 ht_link_t htlink;
172
173 /** notification_queue link */
174 link_t qlink;
175
176 /** Notification method */
177 sysarg_t imethod;
178
179 /** Notification handler */
180 async_notification_handler_t handler;
181
182 /** Notification handler argument */
183 void *arg;
184
185 /** List of arrived notifications. */
186 list_t msg_list;
187} notification_t;
188
189/** Identifier of the incoming connection handled by the current fibril. */
190static fibril_local connection_t *fibril_connection;
191
192static void *default_client_data_constructor(void)
193{
194 return NULL;
195}
196
197static void default_client_data_destructor(void *data)
198{
199}
200
201static async_client_data_ctor_t async_client_data_create =
202 default_client_data_constructor;
203static async_client_data_dtor_t async_client_data_destroy =
204 default_client_data_destructor;
205
206void async_set_client_data_constructor(async_client_data_ctor_t ctor)
207{
208 assert(async_client_data_create == default_client_data_constructor);
209 async_client_data_create = ctor;
210}
211
212void async_set_client_data_destructor(async_client_data_dtor_t dtor)
213{
214 assert(async_client_data_destroy == default_client_data_destructor);
215 async_client_data_destroy = dtor;
216}
217
218static FIBRIL_RMUTEX_INITIALIZE(client_mutex);
219static hash_table_t client_hash_table;
220
221// TODO: lockfree notification_queue?
222static FIBRIL_RMUTEX_INITIALIZE(notification_mutex);
223static hash_table_t notification_hash_table;
224static LIST_INITIALIZE(notification_queue);
225static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
226
227static LIST_INITIALIZE(notification_freelist);
228static long notification_freelist_total = 0;
229static long notification_freelist_used = 0;
230
231static sysarg_t notification_avail = 0;
232
233static size_t client_key_hash(void *key)
234{
235 task_id_t in_task_id = *(task_id_t *) key;
236 return in_task_id;
237}
238
239static size_t client_hash(const ht_link_t *item)
240{
241 client_t *client = hash_table_get_inst(item, client_t, link);
242 return client_key_hash(&client->in_task_id);
243}
244
245static bool client_key_equal(void *key, const ht_link_t *item)
246{
247 task_id_t in_task_id = *(task_id_t *) key;
248 client_t *client = hash_table_get_inst(item, client_t, link);
249 return in_task_id == client->in_task_id;
250}
251
252/** Operations for the client hash table. */
253static hash_table_ops_t client_hash_table_ops = {
254 .hash = client_hash,
255 .key_hash = client_key_hash,
256 .key_equal = client_key_equal,
257 .equal = NULL,
258 .remove_callback = NULL
259};
260
261static client_t *async_client_get(task_id_t client_id, bool create)
262{
263 client_t *client = NULL;
264
265 fibril_rmutex_lock(&client_mutex);
266 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
267 if (link) {
268 client = hash_table_get_inst(link, client_t, link);
269 client->refcnt++;
270 } else if (create) {
271 // TODO: move the malloc out of critical section
272 /* malloc() is rmutex safe. */
273 client = malloc(sizeof(client_t));
274 if (client) {
275 client->in_task_id = client_id;
276 client->data = async_client_data_create();
277
278 client->refcnt = 1;
279 hash_table_insert(&client_hash_table, &client->link);
280 }
281 }
282
283 fibril_rmutex_unlock(&client_mutex);
284 return client;
285}
286
287static void async_client_put(client_t *client)
288{
289 bool destroy;
290
291 fibril_rmutex_lock(&client_mutex);
292
293 if (--client->refcnt == 0) {
294 hash_table_remove(&client_hash_table, &client->in_task_id);
295 destroy = true;
296 } else
297 destroy = false;
298
299 fibril_rmutex_unlock(&client_mutex);
300
301 if (destroy) {
302 if (client->data)
303 async_client_data_destroy(client->data);
304
305 free(client);
306 }
307}
308
309/** Wrapper for client connection fibril.
310 *
311 * When a new connection arrives, a fibril with this implementing
312 * function is created.
313 *
314 * @param arg Connection structure pointer.
315 *
316 * @return Always zero.
317 *
318 */
319static errno_t connection_fibril(void *arg)
320{
321 assert(arg);
322
323 /*
324 * Setup fibril-local connection pointer.
325 */
326 fibril_connection = (connection_t *) arg;
327
328 mpsc_t *c = fibril_connection->msg_channel;
329
330 /*
331 * Add our reference for the current connection in the client task
332 * tracking structure. If this is the first reference, create and
333 * hash in a new tracking structure.
334 */
335
336 client_t *client = async_client_get(fibril_connection->in_task_id, true);
337 if (!client) {
338 ipc_answer_0(fibril_connection->call.cap_handle, ENOMEM);
339 goto out;
340 }
341
342 fibril_connection->client = client;
343
344 /*
345 * Call the connection handler function.
346 */
347 fibril_connection->handler(&fibril_connection->call,
348 fibril_connection->data);
349
350 /*
351 * Remove the reference for this client task connection.
352 */
353 async_client_put(client);
354
355 /*
356 * Close the channel, if it isn't closed already.
357 */
358 mpsc_close(c);
359
360 /*
361 * Answer all remaining messages with EHANGUP.
362 */
363 ipc_call_t call;
364 while (mpsc_receive(c, &call, NULL) == EOK)
365 ipc_answer_0(call.cap_handle, EHANGUP);
366
367 /*
368 * Clean up memory.
369 */
370out:
371 mpsc_destroy(c);
372 free(fibril_connection);
373 return EOK;
374}
375
376/** Return label usable during replies to IPC_M_CONNECT_ME_TO. */
377sysarg_t async_get_label(void)
378{
379 return (sysarg_t) fibril_connection;
380}
381
382/** Create a new fibril for a new connection.
383 *
384 * Create new fibril for connection, fill in connection structures and insert it
385 * into the hash table, so that later we can easily do routing of messages to
386 * particular fibrils.
387 *
388 * @param conn Pointer to the connection structure. Will be used as the
389 * label of the connected phone and request_label of incoming
390 * calls routed through that phone.
391 * @param in_task_id Identification of the incoming connection.
392 * @param call Call data of the opening call. If call is NULL, the
393 * connection was opened by accepting the
394 * IPC_M_CONNECT_TO_ME call and this function is called
395 * directly by the server.
396 * @param handler Connection handler.
397 * @param data Client argument to pass to the connection handler.
398 *
399 * @return New fibril id or NULL on failure.
400 *
401 */
402static fid_t async_new_connection(connection_t *conn, task_id_t in_task_id,
403 ipc_call_t *call, async_port_handler_t handler, void *data)
404{
405 conn->in_task_id = in_task_id;
406 conn->msg_channel = mpsc_create(sizeof(ipc_call_t));
407 conn->handler = handler;
408 conn->data = data;
409
410 if (!conn->msg_channel)
411 goto error;
412
413 if (call)
414 conn->call = *call;
415 else
416 conn->call.cap_handle = CAP_NIL;
417
418 /* We will activate the fibril ASAP */
419 conn->fid = fibril_create(connection_fibril, conn);
420
421 if (conn->fid == 0)
422 goto error;
423
424 fibril_start(conn->fid);
425
426 return conn->fid;
427
428error:
429 if (conn->msg_channel)
430 mpsc_destroy(conn->msg_channel);
431 free(conn);
432
433 if (call)
434 ipc_answer_0(call->cap_handle, ENOMEM);
435
436 return (fid_t) NULL;
437}
438
439/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
440 *
441 * Ask through phone for a new connection to some service.
442 *
443 * @param exch Exchange for sending the message.
444 * @param iface Callback interface.
445 * @param arg1 User defined argument.
446 * @param arg2 User defined argument.
447 * @param handler Callback handler.
448 * @param data Handler data.
449 * @param port_id ID of the newly created port.
450 *
451 * @return Zero on success or an error code.
452 *
453 */
454errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
455 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
456{
457 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
458 return EINVAL;
459
460 if (exch == NULL)
461 return ENOENT;
462
463 connection_t *conn = calloc(1, sizeof(*conn));
464 if (!conn)
465 return ENOMEM;
466
467 ipc_call_t answer;
468 aid_t req = async_send_5(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
469 0, (sysarg_t) conn, &answer);
470
471 errno_t rc;
472 async_wait_for(req, &rc);
473 if (rc != EOK) {
474 free(conn);
475 return rc;
476 }
477
478 rc = async_create_port_internal(iface, handler, data, port_id);
479 if (rc != EOK) {
480 free(conn);
481 return rc;
482 }
483
484 fid_t fid = async_new_connection(conn, answer.task_id, NULL, handler,
485 data);
486 if (fid == (fid_t) NULL)
487 return ENOMEM;
488
489 return EOK;
490}
491
492static size_t notification_key_hash(void *key)
493{
494 sysarg_t id = *(sysarg_t *) key;
495 return id;
496}
497
498static size_t notification_hash(const ht_link_t *item)
499{
500 notification_t *notification =
501 hash_table_get_inst(item, notification_t, htlink);
502 return notification_key_hash(&notification->imethod);
503}
504
505static bool notification_key_equal(void *key, const ht_link_t *item)
506{
507 sysarg_t id = *(sysarg_t *) key;
508 notification_t *notification =
509 hash_table_get_inst(item, notification_t, htlink);
510 return id == notification->imethod;
511}
512
513/** Operations for the notification hash table. */
514static hash_table_ops_t notification_hash_table_ops = {
515 .hash = notification_hash,
516 .key_hash = notification_key_hash,
517 .key_equal = notification_key_equal,
518 .equal = NULL,
519 .remove_callback = NULL
520};
521
522/** Try to route a call to an appropriate connection fibril.
523 *
524 * If the proper connection fibril is found, a message with the call is added to
525 * its message queue. If the fibril was not active, it is activated and all
526 * timeouts are unregistered.
527 *
528 * @param call Data of the incoming call.
529 *
530 * @return EOK if the call was successfully passed to the respective fibril.
531 * @return ENOENT if the call doesn't match any connection.
532 * @return Other error code if routing failed for other reasons.
533 *
534 */
535static errno_t route_call(ipc_call_t *call)
536{
537 assert(call);
538
539 connection_t *conn = (connection_t *) call->request_label;
540
541 if (!conn)
542 return ENOENT;
543
544 assert(conn->msg_channel);
545
546 errno_t rc = mpsc_send(conn->msg_channel, call);
547
548 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP) {
549 /* Close the channel, but let the connection fibril answer. */
550 mpsc_close(conn->msg_channel);
551 // FIXME: Ideally, we should be able to discard/answer the
552 // hungup message here and just close the channel without
553 // passing it out. Unfortunatelly, somehow that breaks
554 // handling of CPU exceptions.
555 }
556
557 return rc;
558}
559
560/** Function implementing the notification handler fibril. Never returns. */
561static errno_t notification_fibril_func(void *arg)
562{
563 (void) arg;
564
565 while (true) {
566 fibril_semaphore_down(&notification_semaphore);
567
568 fibril_rmutex_lock(&notification_mutex);
569
570 /*
571 * The semaphore ensures that if we get this far,
572 * the queue must be non-empty.
573 */
574 assert(!list_empty(&notification_queue));
575
576 notification_t *notification = list_get_instance(
577 list_first(&notification_queue), notification_t, qlink);
578
579 async_notification_handler_t handler = notification->handler;
580 void *arg = notification->arg;
581
582 notification_msg_t *m = list_pop(&notification->msg_list,
583 notification_msg_t, link);
584 assert(m);
585 ipc_call_t calldata = m->calldata;
586
587 notification_freelist_used--;
588
589 if (notification_freelist_total > 64 &&
590 notification_freelist_total > 2 * notification_freelist_used) {
591 /* Going to free the structure if we have too much. */
592 notification_freelist_total--;
593 } else {
594 /* Otherwise add to freelist. */
595 list_append(&m->link, &notification_freelist);
596 m = NULL;
597 }
598
599 if (list_empty(&notification->msg_list))
600 list_remove(&notification->qlink);
601
602 fibril_rmutex_unlock(&notification_mutex);
603
604 if (handler)
605 handler(&calldata, arg);
606
607 free(m);
608 }
609
610 /* Not reached. */
611 return EOK;
612}
613
614/**
615 * Creates a new dedicated fibril for handling notifications.
616 * By default, there is one such fibril. This function can be used to
617 * create more in order to increase the number of notification that can
618 * be processed concurrently.
619 *
620 * Currently, there is no way to destroy those fibrils after they are created.
621 */
622errno_t async_spawn_notification_handler(void)
623{
624 fid_t f = fibril_create(notification_fibril_func, NULL);
625 if (f == 0)
626 return ENOMEM;
627
628 fibril_add_ready(f);
629 return EOK;
630}
631
632/** Queue notification.
633 *
634 * @param call Data of the incoming call.
635 *
636 */
637static void queue_notification(ipc_call_t *call)
638{
639 assert(call);
640
641 fibril_rmutex_lock(&notification_mutex);
642
643 notification_msg_t *m = list_pop(&notification_freelist,
644 notification_msg_t, link);
645
646 if (!m) {
647 fibril_rmutex_unlock(&notification_mutex);
648 m = malloc(sizeof(notification_msg_t));
649 if (!m) {
650 DPRINTF("Out of memory.\n");
651 abort();
652 }
653
654 fibril_rmutex_lock(&notification_mutex);
655 notification_freelist_total++;
656 }
657
658 ht_link_t *link = hash_table_find(&notification_hash_table,
659 &IPC_GET_IMETHOD(*call));
660 if (!link) {
661 /* Invalid notification. */
662 // TODO: Make sure this can't happen and turn it into assert.
663 notification_freelist_total--;
664 fibril_rmutex_unlock(&notification_mutex);
665 free(m);
666 return;
667 }
668
669 notification_t *notification =
670 hash_table_get_inst(link, notification_t, htlink);
671
672 notification_freelist_used++;
673 m->calldata = *call;
674 list_append(&m->link, &notification->msg_list);
675
676 if (!link_in_use(&notification->qlink))
677 list_append(&notification->qlink, &notification_queue);
678
679 fibril_rmutex_unlock(&notification_mutex);
680
681 fibril_semaphore_up(&notification_semaphore);
682}
683
684/**
685 * Creates a new notification structure and inserts it into the hash table.
686 *
687 * @param handler Function to call when notification is received.
688 * @param arg Argument for the handler function.
689 * @return The newly created notification structure.
690 */
691static notification_t *notification_create(async_notification_handler_t handler, void *arg)
692{
693 notification_t *notification = calloc(1, sizeof(notification_t));
694 if (!notification)
695 return NULL;
696
697 notification->handler = handler;
698 notification->arg = arg;
699
700 list_initialize(&notification->msg_list);
701
702 fid_t fib = 0;
703
704 fibril_rmutex_lock(&notification_mutex);
705
706 if (notification_avail == 0) {
707 /* Attempt to create the first handler fibril. */
708 fib = fibril_create(notification_fibril_func, NULL);
709 if (fib == 0) {
710 fibril_rmutex_unlock(&notification_mutex);
711 free(notification);
712 return NULL;
713 }
714 }
715
716 sysarg_t imethod = notification_avail;
717 notification_avail++;
718
719 notification->imethod = imethod;
720 hash_table_insert(&notification_hash_table, &notification->htlink);
721
722 fibril_rmutex_unlock(&notification_mutex);
723
724 if (imethod == 0) {
725 assert(fib);
726 fibril_add_ready(fib);
727 }
728
729 return notification;
730}
731
732/** Subscribe to IRQ notification.
733 *
734 * @param inr IRQ number.
735 * @param handler Notification handler.
736 * @param data Notification handler client data.
737 * @param ucode Top-half pseudocode handler.
738 *
739 * @param[out] handle IRQ capability handle on success.
740 *
741 * @return An error code.
742 *
743 */
744errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
745 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
746{
747 notification_t *notification = notification_create(handler, data);
748 if (!notification)
749 return ENOMEM;
750
751 cap_irq_handle_t ihandle;
752 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
753 &ihandle);
754 if (rc == EOK && handle != NULL) {
755 *handle = ihandle;
756 }
757 return rc;
758}
759
760/** Unsubscribe from IRQ notification.
761 *
762 * @param handle IRQ capability handle.
763 *
764 * @return Zero on success or an error code.
765 *
766 */
767errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
768{
769 // TODO: Remove entry from hash table
770 // to avoid memory leak
771
772 return ipc_irq_unsubscribe(ihandle);
773}
774
775/** Subscribe to event notifications.
776 *
777 * @param evno Event type to subscribe.
778 * @param handler Notification handler.
779 * @param data Notification handler client data.
780 *
781 * @return Zero on success or an error code.
782 *
783 */
784errno_t async_event_subscribe(event_type_t evno,
785 async_notification_handler_t handler, void *data)
786{
787 notification_t *notification = notification_create(handler, data);
788 if (!notification)
789 return ENOMEM;
790
791 return ipc_event_subscribe(evno, notification->imethod);
792}
793
794/** Subscribe to task event notifications.
795 *
796 * @param evno Event type to subscribe.
797 * @param handler Notification handler.
798 * @param data Notification handler client data.
799 *
800 * @return Zero on success or an error code.
801 *
802 */
803errno_t async_event_task_subscribe(event_task_type_t evno,
804 async_notification_handler_t handler, void *data)
805{
806 notification_t *notification = notification_create(handler, data);
807 if (!notification)
808 return ENOMEM;
809
810 return ipc_event_task_subscribe(evno, notification->imethod);
811}
812
813/** Unmask event notifications.
814 *
815 * @param evno Event type to unmask.
816 *
817 * @return Value returned by the kernel.
818 *
819 */
820errno_t async_event_unmask(event_type_t evno)
821{
822 return ipc_event_unmask(evno);
823}
824
825/** Unmask task event notifications.
826 *
827 * @param evno Event type to unmask.
828 *
829 * @return Value returned by the kernel.
830 *
831 */
832errno_t async_event_task_unmask(event_task_type_t evno)
833{
834 return ipc_event_task_unmask(evno);
835}
836
837/** Return new incoming message for the current (fibril-local) connection.
838 *
839 * @param call Storage where the incoming call data will be stored.
840 * @param usecs Timeout in microseconds. Zero denotes no timeout.
841 *
842 * @return If no timeout was specified, then true is returned.
843 * @return If a timeout is specified, then true is returned unless
844 * the timeout expires prior to receiving a message.
845 *
846 */
847bool async_get_call_timeout(ipc_call_t *call, usec_t usecs)
848{
849 assert(call);
850 assert(fibril_connection);
851
852 struct timespec ts;
853 struct timespec *expires = NULL;
854 if (usecs) {
855 getuptime(&ts);
856 ts_add_diff(&ts, USEC2NSEC(usecs));
857 expires = &ts;
858 }
859
860 errno_t rc = mpsc_receive(fibril_connection->msg_channel,
861 call, expires);
862
863 if (rc == ETIMEOUT)
864 return false;
865
866 if (rc != EOK) {
867 /*
868 * The async_get_call_timeout() interface doesn't support
869 * propagating errors. Return a null call instead.
870 */
871
872 memset(call, 0, sizeof(ipc_call_t));
873 }
874
875 return true;
876}
877
878void *async_get_client_data(void)
879{
880 assert(fibril_connection);
881 return fibril_connection->client->data;
882}
883
884void *async_get_client_data_by_id(task_id_t client_id)
885{
886 client_t *client = async_client_get(client_id, false);
887 if (!client)
888 return NULL;
889
890 if (!client->data) {
891 async_client_put(client);
892 return NULL;
893 }
894
895 return client->data;
896}
897
898void async_put_client_data_by_id(task_id_t client_id)
899{
900 client_t *client = async_client_get(client_id, false);
901
902 assert(client);
903 assert(client->data);
904
905 /* Drop the reference we got in async_get_client_data_by_hash(). */
906 async_client_put(client);
907
908 /* Drop our own reference we got at the beginning of this function. */
909 async_client_put(client);
910}
911
912/** Handle a call that was received.
913 *
914 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
915 * Otherwise the call is routed to its connection fibril.
916 *
917 * @param call Data of the incoming call.
918 *
919 */
920static void handle_call(ipc_call_t *call)
921{
922 assert(call);
923
924 if (call->flags & IPC_CALL_ANSWERED) {
925 /* Answer to a call made by us. */
926 async_reply_received(call);
927 return;
928 }
929
930 if (call->cap_handle == CAP_NIL) {
931 if (call->flags & IPC_CALL_NOTIF) {
932 /* Kernel notification */
933 queue_notification(call);
934 }
935 return;
936 }
937
938 /* New connection */
939 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
940 connection_t *conn = calloc(1, sizeof(*conn));
941 if (!conn) {
942 ipc_answer_0(call->cap_handle, ENOMEM);
943 return;
944 }
945
946 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
947
948 // TODO: Currently ignores all ports but the first one.
949 void *data;
950 async_port_handler_t handler =
951 async_get_port_handler(iface, 0, &data);
952
953 async_new_connection(conn, call->task_id, call, handler, data);
954 return;
955 }
956
957 /* Route the call according to its request label */
958 errno_t rc = route_call(call);
959 if (rc == EOK)
960 return;
961
962 // TODO: Log the error.
963
964 if (call->cap_handle != CAP_NIL)
965 /* Unknown call from unknown phone - hang it up */
966 ipc_answer_0(call->cap_handle, EHANGUP);
967}
968
969/** Endless loop dispatching incoming calls and answers.
970 *
971 * @return Never returns.
972 *
973 */
974static errno_t async_manager_worker(void)
975{
976 ipc_call_t call;
977 errno_t rc;
978
979 while (true) {
980 rc = fibril_ipc_wait(&call, NULL);
981 if (rc == EOK)
982 handle_call(&call);
983 }
984
985 return 0;
986}
987
988/** Function to start async_manager as a standalone fibril.
989 *
990 * When more kernel threads are used, one async manager should exist per thread.
991 *
992 * @param arg Unused.
993 * @return Never returns.
994 *
995 */
996static errno_t async_manager_fibril(void *arg)
997{
998 async_manager_worker();
999 return 0;
1000}
1001
1002/** Add one manager to manager list. */
1003fid_t async_create_manager(void)
1004{
1005 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1006 fibril_start(fid);
1007 return fid;
1008}
1009
1010/** Initialize the async framework.
1011 *
1012 */
1013void __async_server_init(void)
1014{
1015 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1016 abort();
1017
1018 if (!hash_table_create(&notification_hash_table, 0, 0,
1019 &notification_hash_table_ops))
1020 abort();
1021
1022 async_create_manager();
1023}
1024
1025errno_t async_accept_0(ipc_call_t *call)
1026{
1027 return ipc_answer_5(call->cap_handle, EOK, 0, 0, 0, 0,
1028 async_get_label());
1029}
1030
1031errno_t async_answer_0(ipc_call_t *call, errno_t retval)
1032{
1033 return ipc_answer_0(call->cap_handle, retval);
1034}
1035
1036errno_t async_answer_1(ipc_call_t *call, errno_t retval, sysarg_t arg1)
1037{
1038 return ipc_answer_1(call->cap_handle, retval, arg1);
1039}
1040
1041errno_t async_answer_2(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1042 sysarg_t arg2)
1043{
1044 return ipc_answer_2(call->cap_handle, retval, arg1, arg2);
1045}
1046
1047errno_t async_answer_3(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1048 sysarg_t arg2, sysarg_t arg3)
1049{
1050 return ipc_answer_3(call->cap_handle, retval, arg1, arg2, arg3);
1051}
1052
1053errno_t async_answer_4(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1054 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1055{
1056 return ipc_answer_4(call->cap_handle, retval, arg1, arg2, arg3, arg4);
1057}
1058
1059errno_t async_answer_5(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1060 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1061{
1062 return ipc_answer_5(call->cap_handle, retval, arg1, arg2, arg3, arg4,
1063 arg5);
1064}
1065
1066errno_t async_forward_fast(ipc_call_t *call, async_exch_t *exch,
1067 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1068{
1069 assert(call);
1070
1071 if (exch == NULL)
1072 return ENOENT;
1073
1074 return ipc_forward_fast(call->cap_handle, exch->phone, imethod, arg1,
1075 arg2, mode);
1076}
1077
1078errno_t async_forward_slow(ipc_call_t *call, async_exch_t *exch,
1079 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1080 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1081{
1082 assert(call);
1083
1084 if (exch == NULL)
1085 return ENOENT;
1086
1087 return ipc_forward_slow(call->cap_handle, exch->phone, imethod, arg1,
1088 arg2, arg3, arg4, arg5, mode);
1089}
1090
1091/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1092 *
1093 * Ask through phone for a new connection to some service.
1094 *
1095 * @param exch Exchange for sending the message.
1096 * @param iface Callback interface.
1097 * @param arg2 User defined argument.
1098 * @param arg3 User defined argument.
1099 *
1100 * @return Zero on success or an error code.
1101 *
1102 */
1103errno_t async_connect_to_me(async_exch_t *exch, iface_t iface, sysarg_t arg2,
1104 sysarg_t arg3)
1105{
1106 if (exch == NULL)
1107 return ENOENT;
1108
1109 sysarg_t label = 0;
1110 errno_t rc = async_req_5_0(exch, IPC_M_CONNECT_TO_ME, iface, arg2, arg3,
1111 0, label);
1112
1113 return rc;
1114}
1115
1116/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1117 *
1118 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1119 * calls so that the user doesn't have to remember the meaning of each IPC
1120 * argument.
1121 *
1122 * So far, this wrapper is to be used from within a connection fibril.
1123 *
1124 * @param call Storage for the data of the IPC_M_SHARE_IN call.
1125 * @param size Destination address space area size.
1126 *
1127 * @return True on success, false on failure.
1128 *
1129 */
1130bool async_share_in_receive(ipc_call_t *call, size_t *size)
1131{
1132 assert(call);
1133 assert(size);
1134
1135 async_get_call(call);
1136
1137 if (IPC_GET_IMETHOD(*call) != IPC_M_SHARE_IN)
1138 return false;
1139
1140 *size = (size_t) IPC_GET_ARG1(*call);
1141 return true;
1142}
1143
1144/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1145 *
1146 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1147 * calls so that the user doesn't have to remember the meaning of each IPC
1148 * argument.
1149 *
1150 * @param call IPC_M_SHARE_IN call to answer.
1151 * @param src Source address space base.
1152 * @param flags Flags to be used for sharing. Bits can be only cleared.
1153 *
1154 * @return Zero on success or a value from @ref errno.h on failure.
1155 *
1156 */
1157errno_t async_share_in_finalize(ipc_call_t *call, void *src, unsigned int flags)
1158{
1159 assert(call);
1160
1161 return ipc_answer_2(call->cap_handle, EOK, (sysarg_t) src, (sysarg_t) flags);
1162}
1163
1164/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1165 *
1166 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1167 * calls so that the user doesn't have to remember the meaning of each IPC
1168 * argument.
1169 *
1170 * So far, this wrapper is to be used from within a connection fibril.
1171 *
1172 * @param call Storage for the data of the IPC_M_SHARE_OUT call.
1173 * @param size Storage for the source address space area size.
1174 * @param flags Storage for the sharing flags.
1175 *
1176 * @return True on success, false on failure.
1177 *
1178 */
1179bool async_share_out_receive(ipc_call_t *call, size_t *size,
1180 unsigned int *flags)
1181{
1182 assert(call);
1183 assert(size);
1184 assert(flags);
1185
1186 async_get_call(call);
1187
1188 if (IPC_GET_IMETHOD(*call) != IPC_M_SHARE_OUT)
1189 return false;
1190
1191 *size = (size_t) IPC_GET_ARG2(*call);
1192 *flags = (unsigned int) IPC_GET_ARG3(*call);
1193 return true;
1194}
1195
1196/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1197 *
1198 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1199 * calls so that the user doesn't have to remember the meaning of each IPC
1200 * argument.
1201 *
1202 * @param call IPC_M_SHARE_OUT call to answer.
1203 * @param dst Address of the storage for the destination address space area
1204 * base address.
1205 *
1206 * @return Zero on success or a value from @ref errno.h on failure.
1207 *
1208 */
1209errno_t async_share_out_finalize(ipc_call_t *call, void **dst)
1210{
1211 assert(call);
1212
1213 return ipc_answer_2(call->cap_handle, EOK, (sysarg_t) __progsymbols.end,
1214 (sysarg_t) dst);
1215}
1216
1217/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1218 *
1219 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1220 * calls so that the user doesn't have to remember the meaning of each IPC
1221 * argument.
1222 *
1223 * So far, this wrapper is to be used from within a connection fibril.
1224 *
1225 * @param call Storage for the data of the IPC_M_DATA_READ.
1226 * @param size Storage for the maximum size. Can be NULL.
1227 *
1228 * @return True on success, false on failure.
1229 *
1230 */
1231bool async_data_read_receive(ipc_call_t *call, size_t *size)
1232{
1233 assert(call);
1234
1235 async_get_call(call);
1236
1237 if (IPC_GET_IMETHOD(*call) != IPC_M_DATA_READ)
1238 return false;
1239
1240 if (size)
1241 *size = (size_t) IPC_GET_ARG2(*call);
1242
1243 return true;
1244}
1245
1246/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1247 *
1248 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1249 * calls so that the user doesn't have to remember the meaning of each IPC
1250 * argument.
1251 *
1252 * @param call IPC_M_DATA_READ call to answer.
1253 * @param src Source address for the IPC_M_DATA_READ call.
1254 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1255 * the maximum size announced by the sender.
1256 *
1257 * @return Zero on success or a value from @ref errno.h on failure.
1258 *
1259 */
1260errno_t async_data_read_finalize(ipc_call_t *call, const void *src, size_t size)
1261{
1262 assert(call);
1263
1264 return ipc_answer_2(call->cap_handle, EOK, (sysarg_t) src,
1265 (sysarg_t) size);
1266}
1267
1268/** Wrapper for forwarding any read request
1269 *
1270 */
1271errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1272 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1273 ipc_call_t *dataptr)
1274{
1275 if (exch == NULL)
1276 return ENOENT;
1277
1278 ipc_call_t call;
1279 if (!async_data_read_receive(&call, NULL)) {
1280 async_answer_0(&call, EINVAL);
1281 return EINVAL;
1282 }
1283
1284 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1285 dataptr);
1286 if (msg == 0) {
1287 async_answer_0(&call, EINVAL);
1288 return EINVAL;
1289 }
1290
1291 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1292 IPC_FF_ROUTE_FROM_ME);
1293 if (retval != EOK) {
1294 async_forget(msg);
1295 async_answer_0(&call, retval);
1296 return retval;
1297 }
1298
1299 errno_t rc;
1300 async_wait_for(msg, &rc);
1301
1302 return (errno_t) rc;
1303}
1304
1305/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1306 *
1307 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1308 * calls so that the user doesn't have to remember the meaning of each IPC
1309 * argument.
1310 *
1311 * So far, this wrapper is to be used from within a connection fibril.
1312 *
1313 * @param call Storage for the data of the IPC_M_DATA_WRITE.
1314 * @param size Storage for the suggested size. May be NULL.
1315 *
1316 * @return True on success, false on failure.
1317 *
1318 */
1319bool async_data_write_receive(ipc_call_t *call, size_t *size)
1320{
1321 assert(call);
1322
1323 async_get_call(call);
1324
1325 if (IPC_GET_IMETHOD(*call) != IPC_M_DATA_WRITE)
1326 return false;
1327
1328 if (size)
1329 *size = (size_t) IPC_GET_ARG2(*call);
1330
1331 return true;
1332}
1333
1334/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1335 *
1336 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1337 * calls so that the user doesn't have to remember the meaning of each IPC
1338 * argument.
1339 *
1340 * @param call IPC_M_DATA_WRITE call to answer.
1341 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1342 * @param size Final size for the IPC_M_DATA_WRITE call.
1343 *
1344 * @return Zero on success or a value from @ref errno.h on failure.
1345 *
1346 */
1347errno_t async_data_write_finalize(ipc_call_t *call, void *dst, size_t size)
1348{
1349 assert(call);
1350
1351 return async_answer_2(call, EOK, (sysarg_t) dst, (sysarg_t) size);
1352}
1353
1354/** Wrapper for receiving binary data or strings
1355 *
1356 * This wrapper only makes it more comfortable to use async_data_write_*
1357 * functions to receive binary data or strings.
1358 *
1359 * @param data Pointer to data pointer (which should be later disposed
1360 * by free()). If the operation fails, the pointer is not
1361 * touched.
1362 * @param nullterm If true then the received data is always zero terminated.
1363 * This also causes to allocate one extra byte beyond the
1364 * raw transmitted data.
1365 * @param min_size Minimum size (in bytes) of the data to receive.
1366 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1367 * no limit.
1368 * @param granulariy If non-zero then the size of the received data has to
1369 * be divisible by this value.
1370 * @param received If not NULL, the size of the received data is stored here.
1371 *
1372 * @return Zero on success or a value from @ref errno.h on failure.
1373 *
1374 */
1375errno_t async_data_write_accept(void **data, const bool nullterm,
1376 const size_t min_size, const size_t max_size, const size_t granularity,
1377 size_t *received)
1378{
1379 assert(data);
1380
1381 ipc_call_t call;
1382 size_t size;
1383 if (!async_data_write_receive(&call, &size)) {
1384 async_answer_0(&call, EINVAL);
1385 return EINVAL;
1386 }
1387
1388 if (size < min_size) {
1389 async_answer_0(&call, EINVAL);
1390 return EINVAL;
1391 }
1392
1393 if ((max_size > 0) && (size > max_size)) {
1394 async_answer_0(&call, EINVAL);
1395 return EINVAL;
1396 }
1397
1398 if ((granularity > 0) && ((size % granularity) != 0)) {
1399 async_answer_0(&call, EINVAL);
1400 return EINVAL;
1401 }
1402
1403 void *arg_data;
1404
1405 if (nullterm)
1406 arg_data = malloc(size + 1);
1407 else
1408 arg_data = malloc(size);
1409
1410 if (arg_data == NULL) {
1411 async_answer_0(&call, ENOMEM);
1412 return ENOMEM;
1413 }
1414
1415 errno_t rc = async_data_write_finalize(&call, arg_data, size);
1416 if (rc != EOK) {
1417 free(arg_data);
1418 return rc;
1419 }
1420
1421 if (nullterm)
1422 ((char *) arg_data)[size] = 0;
1423
1424 *data = arg_data;
1425 if (received != NULL)
1426 *received = size;
1427
1428 return EOK;
1429}
1430
1431/** Wrapper for voiding any data that is about to be received
1432 *
1433 * This wrapper can be used to void any pending data
1434 *
1435 * @param retval Error value from @ref errno.h to be returned to the caller.
1436 *
1437 */
1438void async_data_write_void(errno_t retval)
1439{
1440 ipc_call_t call;
1441 async_data_write_receive(&call, NULL);
1442 async_answer_0(&call, retval);
1443}
1444
1445/** Wrapper for forwarding any data that is about to be received
1446 *
1447 */
1448errno_t async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
1449 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1450 ipc_call_t *dataptr)
1451{
1452 if (exch == NULL)
1453 return ENOENT;
1454
1455 ipc_call_t call;
1456 if (!async_data_write_receive(&call, NULL)) {
1457 async_answer_0(&call, EINVAL);
1458 return EINVAL;
1459 }
1460
1461 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
1462 dataptr);
1463 if (msg == 0) {
1464 async_answer_0(&call, EINVAL);
1465 return EINVAL;
1466 }
1467
1468 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1469 IPC_FF_ROUTE_FROM_ME);
1470 if (retval != EOK) {
1471 async_forget(msg);
1472 async_answer_0(&call, retval);
1473 return retval;
1474 }
1475
1476 errno_t rc;
1477 async_wait_for(msg, &rc);
1478
1479 return (errno_t) rc;
1480}
1481
1482/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1483 *
1484 * If the current call is IPC_M_CONNECT_TO_ME then a new
1485 * async session is created for the accepted phone.
1486 *
1487 * @param mgmt Exchange management style.
1488 *
1489 * @return New async session.
1490 * @return NULL on failure.
1491 *
1492 */
1493async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1494{
1495 /* Accept the phone */
1496 ipc_call_t call;
1497 async_get_call(&call);
1498
1499 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(call);
1500
1501 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
1502 !CAP_HANDLE_VALID((phandle))) {
1503 async_answer_0(&call, EINVAL);
1504 return NULL;
1505 }
1506
1507 async_sess_t *sess = calloc(1, sizeof(async_sess_t));
1508 if (sess == NULL) {
1509 async_answer_0(&call, ENOMEM);
1510 return NULL;
1511 }
1512
1513 sess->iface = 0;
1514 sess->mgmt = mgmt;
1515 sess->phone = phandle;
1516
1517 fibril_mutex_initialize(&sess->remote_state_mtx);
1518 list_initialize(&sess->exch_list);
1519 fibril_mutex_initialize(&sess->mutex);
1520
1521 /* Acknowledge the connected phone */
1522 async_answer_0(&call, EOK);
1523
1524 return sess;
1525}
1526
1527/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1528 *
1529 * If the call is IPC_M_CONNECT_TO_ME then a new
1530 * async session is created. However, the phone is
1531 * not accepted automatically.
1532 *
1533 * @param mgmt Exchange management style.
1534 * @param call Call data.
1535 *
1536 * @return New async session.
1537 * @return NULL on failure.
1538 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1539 *
1540 */
1541async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1542{
1543 cap_phone_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(*call);
1544
1545 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
1546 !CAP_HANDLE_VALID((phandle)))
1547 return NULL;
1548
1549 async_sess_t *sess = calloc(1, sizeof(async_sess_t));
1550 if (sess == NULL)
1551 return NULL;
1552
1553 sess->iface = 0;
1554 sess->mgmt = mgmt;
1555 sess->phone = phandle;
1556
1557 fibril_mutex_initialize(&sess->remote_state_mtx);
1558 list_initialize(&sess->exch_list);
1559 fibril_mutex_initialize(&sess->mutex);
1560
1561 return sess;
1562}
1563
1564bool async_state_change_receive(ipc_call_t *call)
1565{
1566 assert(call);
1567
1568 async_get_call(call);
1569
1570 if (IPC_GET_IMETHOD(*call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1571 return false;
1572
1573 return true;
1574}
1575
1576errno_t async_state_change_finalize(ipc_call_t *call, async_exch_t *other_exch)
1577{
1578 assert(call);
1579
1580 return async_answer_1(call, EOK, CAP_HANDLE_RAW(other_exch->phone));
1581}
1582
1583__noreturn void async_manager(void)
1584{
1585 fibril_event_t ever = FIBRIL_EVENT_INIT;
1586 fibril_wait_for(&ever);
1587 __builtin_unreachable();
1588}
1589
1590/** @}
1591 */
Note: See TracBrowser for help on using the repository browser.