source: mainline/uspace/lib/c/generic/async/server.c@ 3951046

Last change on this file since 3951046 was 3951046, checked in by Jiri Svoboda <jiri@…>, 12 days ago

Async ports and interfaces do the castling.

Now interfaces hang under ports.
Minimum change, missing port ID to select port if iface type is the
same.

  • Property mode set to 100644
File size: 45.6 KB
Line 
1/*
2 * Copyright (c) 2025 Jiri Svoboda
3 * Copyright (c) 2006 Ondrej Palkovsky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup libc
31 * @{
32 */
33/** @file
34 */
35
36/**
37 * Asynchronous library
38 *
39 * The aim of this library is to provide a facility for writing programs which
40 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
41 * programming.
42 *
43 * You should be able to write very simple multithreaded programs. The async
44 * framework will automatically take care of most of the synchronization
45 * problems.
46 *
47 * Example of use (pseudo C):
48 *
49 * 1) Multithreaded client application
50 *
51 * fibril_create(fibril1, ...);
52 * fibril_create(fibril2, ...);
53 * ...
54 *
55 * int fibril1(void *arg)
56 * {
57 * conn = async_connect_me_to(...);
58 *
59 * exch = async_exchange_begin(conn);
60 * c1 = async_send(exch);
61 * async_exchange_end(exch);
62 *
63 * exch = async_exchange_begin(conn);
64 * c2 = async_send(exch);
65 * async_exchange_end(exch);
66 *
67 * async_wait_for(c1);
68 * async_wait_for(c2);
69 * ...
70 * }
71 *
72 *
73 * 2) Multithreaded server application
74 *
75 * main()
76 * {
77 * async_manager();
78 * }
79 *
80 * port_handler(ipc_call_t *icall)
81 * {
82 * if (want_refuse) {
83 * async_answer_0(icall, ELIMIT);
84 * return;
85 * }
86 *
87 * async_answer_0(icall, EOK);
88 *
89 * async_get_call(&call);
90 * somehow_handle_the_call(&call);
91 * async_answer_2(&call, 1, 2, 3);
92 *
93 * async_get_call(&call);
94 * ...
95 * }
96 *
97 */
98
99#define _LIBC_ASYNC_C_
100#include <ipc/ipc.h>
101#include <async.h>
102#include "../private/async.h"
103#undef _LIBC_ASYNC_C_
104
105#include <ipc/irq.h>
106#include <ipc/event.h>
107#include <fibril.h>
108#include <adt/hash_table.h>
109#include <adt/hash.h>
110#include <adt/list.h>
111#include <assert.h>
112#include <errno.h>
113#include <time.h>
114#include <stdbool.h>
115#include <stdlib.h>
116#include <mem.h>
117#include <macros.h>
118#include <str_error.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "../private/libc.h"
122#include "../private/fibril.h"
123
124#define DPRINTF(...) ((void) 0)
125
126/* Client connection data */
127typedef struct {
128 ht_link_t link;
129
130 task_id_t in_task_id;
131 int refcnt;
132 void *data;
133} client_t;
134
135/* Server connection data */
136typedef struct {
137 /** Fibril handling the connection. */
138 fid_t fid;
139
140 /** Hash table link. */
141 ht_link_t link;
142
143 /** Incoming client task ID. */
144 task_id_t in_task_id;
145
146 /** Link to the client tracking structure. */
147 client_t *client;
148
149 /** Channel for messages that should be delivered to this fibril. */
150 mpsc_t *msg_channel;
151
152 /** Call data of the opening call. */
153 ipc_call_t call;
154
155 /** Fibril function that will be used to handle the connection. */
156 async_port_handler_t handler;
157
158 /** Client data */
159 void *data;
160} connection_t;
161
162/* Member of notification_t::msg_list. */
163typedef struct {
164 link_t link;
165 ipc_call_t calldata;
166} notification_msg_t;
167
168/* Notification data */
169typedef struct {
170 /** notification_hash_table link */
171 ht_link_t htlink;
172
173 /** notification_queue link */
174 link_t qlink;
175
176 /** Notification method */
177 sysarg_t imethod;
178
179 /** Notification handler */
180 async_notification_handler_t handler;
181
182 /** Notification handler argument */
183 void *arg;
184
185 /** List of arrived notifications. */
186 list_t msg_list;
187} notification_t;
188
189/** Identifier of the incoming connection handled by the current fibril. */
190static fibril_local connection_t *fibril_connection;
191
192static void *default_client_data_constructor(void)
193{
194 return NULL;
195}
196
197static void default_client_data_destructor(void *data)
198{
199}
200
201static async_client_data_ctor_t async_client_data_create =
202 default_client_data_constructor;
203static async_client_data_dtor_t async_client_data_destroy =
204 default_client_data_destructor;
205
206void async_set_client_data_constructor(async_client_data_ctor_t ctor)
207{
208 assert(async_client_data_create == default_client_data_constructor);
209 async_client_data_create = ctor;
210}
211
212void async_set_client_data_destructor(async_client_data_dtor_t dtor)
213{
214 assert(async_client_data_destroy == default_client_data_destructor);
215 async_client_data_destroy = dtor;
216}
217
218static fibril_rmutex_t client_mutex;
219static hash_table_t client_hash_table;
220
221// TODO: lockfree notification_queue?
222static fibril_rmutex_t notification_mutex;
223static hash_table_t notification_hash_table;
224static LIST_INITIALIZE(notification_queue);
225static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
226
227static LIST_INITIALIZE(notification_freelist);
228static long notification_freelist_total = 0;
229static long notification_freelist_used = 0;
230
231static sysarg_t notification_avail = 0;
232
233static size_t client_key_hash(const void *key)
234{
235 const task_id_t *in_task_id = key;
236 return *in_task_id;
237}
238
239static size_t client_hash(const ht_link_t *item)
240{
241 client_t *client = hash_table_get_inst(item, client_t, link);
242 return client_key_hash(&client->in_task_id);
243}
244
245static bool client_key_equal(const void *key, size_t, const ht_link_t *item)
246{
247 const task_id_t *in_task_id = key;
248 client_t *client = hash_table_get_inst(item, client_t, link);
249 return *in_task_id == client->in_task_id;
250}
251
252/** Operations for the client hash table. */
253static const hash_table_ops_t client_hash_table_ops = {
254 .hash = client_hash,
255 .key_hash = client_key_hash,
256 .key_equal = client_key_equal,
257 .equal = NULL,
258 .remove_callback = NULL
259};
260
261static client_t *async_client_get(task_id_t client_id, bool create)
262{
263 client_t *client = NULL;
264
265 fibril_rmutex_lock(&client_mutex);
266 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
267 if (link) {
268 client = hash_table_get_inst(link, client_t, link);
269 client->refcnt++;
270 } else if (create) {
271 // TODO: move the malloc out of critical section
272 /* malloc() is rmutex safe. */
273 client = malloc(sizeof(client_t));
274 if (client) {
275 client->in_task_id = client_id;
276 client->data = async_client_data_create();
277
278 client->refcnt = 1;
279 hash_table_insert(&client_hash_table, &client->link);
280 }
281 }
282
283 fibril_rmutex_unlock(&client_mutex);
284 return client;
285}
286
287static void async_client_put(client_t *client)
288{
289 bool destroy;
290
291 fibril_rmutex_lock(&client_mutex);
292
293 if (--client->refcnt == 0) {
294 hash_table_remove(&client_hash_table, &client->in_task_id);
295 destroy = true;
296 } else
297 destroy = false;
298
299 fibril_rmutex_unlock(&client_mutex);
300
301 if (destroy) {
302 if (client->data)
303 async_client_data_destroy(client->data);
304
305 free(client);
306 }
307}
308
309/** Wrapper for client connection fibril.
310 *
311 * When a new connection arrives, a fibril with this implementing
312 * function is created.
313 *
314 * @param arg Connection structure pointer.
315 *
316 * @return Always zero.
317 *
318 */
319static errno_t connection_fibril(void *arg)
320{
321 assert(arg);
322
323 /*
324 * Setup fibril-local connection pointer.
325 */
326 fibril_connection = (connection_t *) arg;
327
328 mpsc_t *c = fibril_connection->msg_channel;
329
330 /*
331 * Add our reference for the current connection in the client task
332 * tracking structure. If this is the first reference, create and
333 * hash in a new tracking structure.
334 */
335
336 client_t *client = async_client_get(fibril_connection->in_task_id, true);
337 if (!client) {
338 ipc_answer_0(fibril_connection->call.cap_handle, ENOMEM);
339 goto out;
340 }
341
342 fibril_connection->client = client;
343
344 /*
345 * Call the connection handler function.
346 */
347 fibril_connection->handler(&fibril_connection->call,
348 fibril_connection->data);
349
350 /*
351 * Remove the reference for this client task connection.
352 */
353 async_client_put(client);
354
355 /*
356 * Close the channel, if it isn't closed already.
357 */
358 mpsc_close(c);
359
360 /*
361 * Answer all remaining messages with EHANGUP.
362 */
363 ipc_call_t call;
364 while (mpsc_receive(c, &call, NULL) == EOK)
365 ipc_answer_0(call.cap_handle, EHANGUP);
366
367 /*
368 * Clean up memory.
369 */
370out:
371 mpsc_destroy(c);
372 free(fibril_connection);
373 return EOK;
374}
375
376/** Return label usable during replies to IPC_M_CONNECT_ME_TO. */
377sysarg_t async_get_label(void)
378{
379 return (sysarg_t) fibril_connection;
380}
381
382/** Create a new fibril for a new connection.
383 *
384 * Create new fibril for connection, fill in connection structures and insert it
385 * into the hash table, so that later we can easily do routing of messages to
386 * particular fibrils.
387 *
388 * @param conn Pointer to the connection structure. Will be used as the
389 * label of the connected phone and request_label of incoming
390 * calls routed through that phone.
391 * @param in_task_id Identification of the incoming connection.
392 * @param call Call data of the opening call. If call is NULL, the
393 * connection was opened by accepting the
394 * IPC_M_CONNECT_TO_ME call and this function is called
395 * directly by the server.
396 * @param handler Connection handler.
397 * @param data Client argument to pass to the connection handler.
398 *
399 * @return New fibril id or NULL on failure.
400 *
401 */
402static fid_t async_new_connection(connection_t *conn, task_id_t in_task_id,
403 ipc_call_t *call, async_port_handler_t handler, void *data)
404{
405 conn->in_task_id = in_task_id;
406 conn->msg_channel = mpsc_create(sizeof(ipc_call_t));
407 conn->handler = handler;
408 conn->data = data;
409
410 if (!conn->msg_channel)
411 goto error;
412
413 if (call)
414 conn->call = *call;
415 else
416 conn->call.cap_handle = CAP_NIL;
417
418 /* We will activate the fibril ASAP */
419 conn->fid = fibril_create(connection_fibril, conn);
420
421 if (conn->fid == 0)
422 goto error;
423
424 fibril_start(conn->fid);
425
426 return conn->fid;
427
428error:
429 if (conn->msg_channel)
430 mpsc_destroy(conn->msg_channel);
431 free(conn);
432
433 if (call)
434 ipc_answer_0(call->cap_handle, ENOMEM);
435
436 return (fid_t) NULL;
437}
438
439/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
440 *
441 * Ask through phone for a new connection to some service.
442 *
443 * @param exch Exchange for sending the message.
444 * @param iface Callback interface.
445 * @param arg1 User defined argument.
446 * @param arg2 User defined argument.
447 * @param handler Callback handler.
448 * @param data Handler data.
449 * @param port_id ID of the newly created port.
450 *
451 * @return Zero on success or an error code.
452 *
453 */
454errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
455 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
456{
457 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
458 return EINVAL;
459
460 if (exch == NULL)
461 return ENOENT;
462
463 connection_t *conn = calloc(1, sizeof(*conn));
464 if (!conn)
465 return ENOMEM;
466
467 ipc_call_t answer;
468 aid_t req = async_send_5(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
469 0, (sysarg_t) conn, &answer);
470
471 errno_t rc;
472 async_wait_for(req, &rc);
473 if (rc != EOK) {
474 free(conn);
475 return rc;
476 }
477
478 rc = async_create_port_internal(iface, handler, data, port_id);
479 if (rc != EOK) {
480 free(conn);
481 return rc;
482 }
483
484 fid_t fid = async_new_connection(conn, answer.task_id, NULL, handler,
485 data);
486 if (fid == (fid_t) NULL)
487 return ENOMEM;
488
489 return EOK;
490}
491
492static size_t notification_key_hash(const void *key)
493{
494 const sysarg_t *id = key;
495 return *id;
496}
497
498static size_t notification_hash(const ht_link_t *item)
499{
500 notification_t *notification =
501 hash_table_get_inst(item, notification_t, htlink);
502 return notification_key_hash(&notification->imethod);
503}
504
505static bool notification_key_equal(const void *key, size_t hash, const ht_link_t *item)
506{
507 const sysarg_t *id = key;
508 notification_t *notification =
509 hash_table_get_inst(item, notification_t, htlink);
510 return *id == notification->imethod;
511}
512
513/** Operations for the notification hash table. */
514static const hash_table_ops_t notification_hash_table_ops = {
515 .hash = notification_hash,
516 .key_hash = notification_key_hash,
517 .key_equal = notification_key_equal,
518 .equal = NULL,
519 .remove_callback = NULL
520};
521
522/** Try to route a call to an appropriate connection fibril.
523 *
524 * If the proper connection fibril is found, a message with the call is added to
525 * its message queue. If the fibril was not active, it is activated and all
526 * timeouts are unregistered.
527 *
528 * @param call Data of the incoming call.
529 *
530 * @return EOK if the call was successfully passed to the respective fibril.
531 * @return ENOENT if the call doesn't match any connection.
532 * @return Other error code if routing failed for other reasons.
533 *
534 */
535static errno_t route_call(ipc_call_t *call)
536{
537 assert(call);
538
539 connection_t *conn = (connection_t *) call->request_label;
540
541 if (!conn)
542 return ENOENT;
543
544 assert(conn->msg_channel);
545
546 errno_t rc = mpsc_send(conn->msg_channel, call);
547
548 if (ipc_get_imethod(call) == IPC_M_PHONE_HUNGUP) {
549 /* Close the channel, but let the connection fibril answer. */
550 mpsc_close(conn->msg_channel);
551 // FIXME: Ideally, we should be able to discard/answer the
552 // hungup message here and just close the channel without
553 // passing it out. Unfortunatelly, somehow that breaks
554 // handling of CPU exceptions.
555 }
556
557 return rc;
558}
559
560/** Function implementing the notification handler fibril. Never returns. */
561static errno_t notification_fibril_func(void *arg)
562{
563 (void) arg;
564
565 while (true) {
566 fibril_semaphore_down(&notification_semaphore);
567
568 fibril_rmutex_lock(&notification_mutex);
569
570 /*
571 * The semaphore ensures that if we get this far,
572 * the queue must be non-empty.
573 */
574 assert(!list_empty(&notification_queue));
575
576 notification_t *notification = list_get_instance(
577 list_first(&notification_queue), notification_t, qlink);
578
579 async_notification_handler_t handler = notification->handler;
580 void *arg = notification->arg;
581
582 notification_msg_t *m = list_pop(&notification->msg_list,
583 notification_msg_t, link);
584 assert(m);
585 ipc_call_t calldata = m->calldata;
586
587 notification_freelist_used--;
588
589 if (notification_freelist_total > 64 &&
590 notification_freelist_total > 2 * notification_freelist_used) {
591 /* Going to free the structure if we have too much. */
592 notification_freelist_total--;
593 } else {
594 /* Otherwise add to freelist. */
595 list_append(&m->link, &notification_freelist);
596 m = NULL;
597 }
598
599 if (list_empty(&notification->msg_list))
600 list_remove(&notification->qlink);
601
602 fibril_rmutex_unlock(&notification_mutex);
603
604 if (handler)
605 handler(&calldata, arg);
606
607 free(m);
608 }
609
610 /* Not reached. */
611 return EOK;
612}
613
614/**
615 * Creates a new dedicated fibril for handling notifications.
616 * By default, there is one such fibril. This function can be used to
617 * create more in order to increase the number of notification that can
618 * be processed concurrently.
619 *
620 * Currently, there is no way to destroy those fibrils after they are created.
621 */
622errno_t async_spawn_notification_handler(void)
623{
624 fid_t f = fibril_create(notification_fibril_func, NULL);
625 if (f == 0)
626 return ENOMEM;
627
628 fibril_add_ready(f);
629 return EOK;
630}
631
632/** Queue notification.
633 *
634 * @param call Data of the incoming call.
635 *
636 */
637static void queue_notification(ipc_call_t *call)
638{
639 assert(call);
640
641 fibril_rmutex_lock(&notification_mutex);
642
643 notification_msg_t *m = list_pop(&notification_freelist,
644 notification_msg_t, link);
645
646 if (!m) {
647 fibril_rmutex_unlock(&notification_mutex);
648 m = malloc(sizeof(notification_msg_t));
649 if (!m) {
650 DPRINTF("Out of memory.\n");
651 abort();
652 }
653
654 fibril_rmutex_lock(&notification_mutex);
655 notification_freelist_total++;
656 }
657
658 sysarg_t imethod = ipc_get_imethod(call);
659 ht_link_t *link = hash_table_find(&notification_hash_table, &imethod);
660 if (!link) {
661 /* Invalid notification. */
662 // TODO: Make sure this can't happen and turn it into assert.
663 notification_freelist_total--;
664 fibril_rmutex_unlock(&notification_mutex);
665 free(m);
666 return;
667 }
668
669 notification_t *notification =
670 hash_table_get_inst(link, notification_t, htlink);
671
672 notification_freelist_used++;
673 m->calldata = *call;
674 list_append(&m->link, &notification->msg_list);
675
676 if (!link_in_use(&notification->qlink))
677 list_append(&notification->qlink, &notification_queue);
678
679 fibril_rmutex_unlock(&notification_mutex);
680
681 fibril_semaphore_up(&notification_semaphore);
682}
683
684/**
685 * Creates a new notification structure and inserts it into the hash table.
686 *
687 * @param handler Function to call when notification is received.
688 * @param arg Argument for the handler function.
689 * @return The newly created notification structure.
690 */
691static notification_t *notification_create(async_notification_handler_t handler, void *arg)
692{
693 notification_t *notification = calloc(1, sizeof(notification_t));
694 if (!notification)
695 return NULL;
696
697 notification->handler = handler;
698 notification->arg = arg;
699
700 list_initialize(&notification->msg_list);
701
702 fid_t fib = 0;
703
704 fibril_rmutex_lock(&notification_mutex);
705
706 if (notification_avail == 0) {
707 /* Attempt to create the first handler fibril. */
708 fib = fibril_create(notification_fibril_func, NULL);
709 if (fib == 0) {
710 fibril_rmutex_unlock(&notification_mutex);
711 free(notification);
712 return NULL;
713 }
714 }
715
716 sysarg_t imethod = notification_avail;
717 notification_avail++;
718
719 notification->imethod = imethod;
720 hash_table_insert(&notification_hash_table, &notification->htlink);
721
722 fibril_rmutex_unlock(&notification_mutex);
723
724 if (imethod == 0) {
725 assert(fib);
726 fibril_add_ready(fib);
727 }
728
729 return notification;
730}
731
732/** Subscribe to IRQ notification.
733 *
734 * @param inr IRQ number.
735 * @param handler Notification handler.
736 * @param data Notification handler client data.
737 * @param ucode Top-half pseudocode handler.
738 *
739 * @param[out] handle IRQ capability handle on success.
740 *
741 * @return An error code.
742 *
743 */
744errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
745 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
746{
747 notification_t *notification = notification_create(handler, data);
748 if (!notification)
749 return ENOMEM;
750
751 cap_irq_handle_t ihandle;
752 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
753 &ihandle);
754 if (rc == EOK && handle != NULL) {
755 *handle = ihandle;
756 }
757 return rc;
758}
759
760/** Unsubscribe from IRQ notification.
761 *
762 * @param handle IRQ capability handle.
763 *
764 * @return Zero on success or an error code.
765 *
766 */
767errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
768{
769 // TODO: Remove entry from hash table
770 // to avoid memory leak
771
772 return ipc_irq_unsubscribe(ihandle);
773}
774
775/** Subscribe to event notifications.
776 *
777 * @param evno Event type to subscribe.
778 * @param handler Notification handler.
779 * @param data Notification handler client data.
780 *
781 * @return Zero on success or an error code.
782 *
783 */
784errno_t async_event_subscribe(event_type_t evno,
785 async_notification_handler_t handler, void *data)
786{
787 notification_t *notification = notification_create(handler, data);
788 if (!notification)
789 return ENOMEM;
790
791 return ipc_event_subscribe(evno, notification->imethod);
792}
793
794/** Subscribe to task event notifications.
795 *
796 * @param evno Event type to subscribe.
797 * @param handler Notification handler.
798 * @param data Notification handler client data.
799 *
800 * @return Zero on success or an error code.
801 *
802 */
803errno_t async_event_task_subscribe(event_task_type_t evno,
804 async_notification_handler_t handler, void *data)
805{
806 notification_t *notification = notification_create(handler, data);
807 if (!notification)
808 return ENOMEM;
809
810 return ipc_event_task_subscribe(evno, notification->imethod);
811}
812
813/** Unmask event notifications.
814 *
815 * @param evno Event type to unmask.
816 *
817 * @return Value returned by the kernel.
818 *
819 */
820errno_t async_event_unmask(event_type_t evno)
821{
822 return ipc_event_unmask(evno);
823}
824
825/** Unmask task event notifications.
826 *
827 * @param evno Event type to unmask.
828 *
829 * @return Value returned by the kernel.
830 *
831 */
832errno_t async_event_task_unmask(event_task_type_t evno)
833{
834 return ipc_event_task_unmask(evno);
835}
836
837/** Return new incoming message for the current (fibril-local) connection.
838 *
839 * @param call Storage where the incoming call data will be stored.
840 * @param usecs Timeout in microseconds. Zero denotes no timeout.
841 *
842 * @return If no timeout was specified, then true is returned.
843 * @return If a timeout is specified, then true is returned unless
844 * the timeout expires prior to receiving a message.
845 *
846 */
847bool async_get_call_timeout(ipc_call_t *call, usec_t usecs)
848{
849 assert(call);
850 assert(fibril_connection);
851
852 struct timespec ts;
853 struct timespec *expires = NULL;
854 if (usecs) {
855 getuptime(&ts);
856 ts_add_diff(&ts, USEC2NSEC(usecs));
857 expires = &ts;
858 }
859
860 errno_t rc = mpsc_receive(fibril_connection->msg_channel,
861 call, expires);
862
863 if (rc == ETIMEOUT)
864 return false;
865
866 if (rc != EOK) {
867 /*
868 * The async_get_call_timeout() interface doesn't support
869 * propagating errors. Return a null call instead.
870 */
871
872 memset(call, 0, sizeof(ipc_call_t));
873 ipc_set_imethod(call, IPC_M_PHONE_HUNGUP);
874 call->cap_handle = CAP_NIL;
875 }
876
877 return true;
878}
879
880bool async_get_call(ipc_call_t *call)
881{
882 return async_get_call_timeout(call, 0);
883}
884
885void *async_get_client_data(void)
886{
887 assert(fibril_connection);
888 return fibril_connection->client->data;
889}
890
891void *async_get_client_data_by_id(task_id_t client_id)
892{
893 client_t *client = async_client_get(client_id, false);
894 if (!client)
895 return NULL;
896
897 if (!client->data) {
898 async_client_put(client);
899 return NULL;
900 }
901
902 return client->data;
903}
904
905void async_put_client_data_by_id(task_id_t client_id)
906{
907 client_t *client = async_client_get(client_id, false);
908
909 assert(client);
910 assert(client->data);
911
912 /* Drop the reference we got in async_get_client_data_by_hash(). */
913 async_client_put(client);
914
915 /* Drop our own reference we got at the beginning of this function. */
916 async_client_put(client);
917}
918
919/** Handle a call that was received.
920 *
921 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
922 * Otherwise the call is routed to its connection fibril.
923 *
924 * @param call Data of the incoming call.
925 *
926 */
927static void handle_call(ipc_call_t *call)
928{
929 assert(call);
930
931 if (call->flags & IPC_CALL_ANSWERED) {
932 /* Answer to a call made by us. */
933 async_reply_received(call);
934 return;
935 }
936
937 if (call->cap_handle == CAP_NIL) {
938 if (call->flags & IPC_CALL_NOTIF) {
939 /* Kernel notification */
940 queue_notification(call);
941 }
942 return;
943 }
944
945 /* New connection */
946 if (ipc_get_imethod(call) == IPC_M_CONNECT_ME_TO) {
947 connection_t *conn = calloc(1, sizeof(*conn));
948 if (!conn) {
949 ipc_answer_0(call->cap_handle, ENOMEM);
950 return;
951 }
952
953 iface_t iface = (iface_t) ipc_get_arg1(call);
954
955 // TODO: Currently ignores all ports but the first one.
956 void *data;
957 async_port_handler_t handler =
958 async_get_interface_handler(iface, 0, &data);
959
960 async_new_connection(conn, call->task_id, call, handler, data);
961 return;
962 }
963
964 /* Route the call according to its request label */
965 errno_t rc = route_call(call);
966 if (rc == EOK)
967 return;
968
969 // TODO: Log the error.
970
971 if (call->cap_handle != CAP_NIL)
972 /* Unknown call from unknown phone - hang it up */
973 ipc_answer_0(call->cap_handle, EHANGUP);
974}
975
976/** Endless loop dispatching incoming calls and answers.
977 *
978 * @return Never returns.
979 *
980 */
981static errno_t async_manager_worker(void)
982{
983 ipc_call_t call;
984 errno_t rc;
985
986 while (true) {
987 rc = fibril_ipc_wait(&call, NULL);
988 if (rc == EOK)
989 handle_call(&call);
990 }
991
992 return 0;
993}
994
995/** Function to start async_manager as a standalone fibril.
996 *
997 * When more kernel threads are used, one async manager should exist per thread.
998 *
999 * @param arg Unused.
1000 * @return Never returns.
1001 *
1002 */
1003static errno_t async_manager_fibril(void *arg)
1004{
1005 async_manager_worker();
1006 return 0;
1007}
1008
1009/** Add one manager to manager list. */
1010static fid_t async_create_manager(void)
1011{
1012 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1013 fibril_start(fid);
1014 return fid;
1015}
1016
1017/** Initialize the async framework.
1018 *
1019 */
1020void __async_server_init(void)
1021{
1022 if (fibril_rmutex_initialize(&client_mutex) != EOK)
1023 abort();
1024 if (fibril_rmutex_initialize(&notification_mutex) != EOK)
1025 abort();
1026
1027 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1028 abort();
1029
1030 if (!hash_table_create(&notification_hash_table, 0, 0,
1031 &notification_hash_table_ops))
1032 abort();
1033
1034 async_create_manager();
1035}
1036
1037void __async_server_fini(void)
1038{
1039 fibril_rmutex_destroy(&client_mutex);
1040 fibril_rmutex_destroy(&notification_mutex);
1041}
1042
1043errno_t async_accept_0(ipc_call_t *call)
1044{
1045 cap_call_handle_t chandle = call->cap_handle;
1046 assert(chandle != CAP_NIL);
1047 call->cap_handle = CAP_NIL;
1048 return ipc_answer_5(chandle, EOK, 0, 0, 0, 0, async_get_label());
1049}
1050
1051errno_t async_answer_0(ipc_call_t *call, errno_t retval)
1052{
1053 cap_call_handle_t chandle = call->cap_handle;
1054 assert(chandle != CAP_NIL);
1055 call->cap_handle = CAP_NIL;
1056 return ipc_answer_0(chandle, retval);
1057}
1058
1059errno_t async_answer_1(ipc_call_t *call, errno_t retval, sysarg_t arg1)
1060{
1061 cap_call_handle_t chandle = call->cap_handle;
1062 assert(chandle != CAP_NIL);
1063 call->cap_handle = CAP_NIL;
1064 return ipc_answer_1(chandle, retval, arg1);
1065}
1066
1067errno_t async_answer_2(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1068 sysarg_t arg2)
1069{
1070 cap_call_handle_t chandle = call->cap_handle;
1071 assert(chandle != CAP_NIL);
1072 call->cap_handle = CAP_NIL;
1073 return ipc_answer_2(chandle, retval, arg1, arg2);
1074}
1075
1076errno_t async_answer_3(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1077 sysarg_t arg2, sysarg_t arg3)
1078{
1079 cap_call_handle_t chandle = call->cap_handle;
1080 assert(chandle != CAP_NIL);
1081 call->cap_handle = CAP_NIL;
1082 return ipc_answer_3(chandle, retval, arg1, arg2, arg3);
1083}
1084
1085errno_t async_answer_4(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1086 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1087{
1088 cap_call_handle_t chandle = call->cap_handle;
1089 assert(chandle != CAP_NIL);
1090 call->cap_handle = CAP_NIL;
1091 return ipc_answer_4(chandle, retval, arg1, arg2, arg3, arg4);
1092}
1093
1094errno_t async_answer_5(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1095 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1096{
1097 cap_call_handle_t chandle = call->cap_handle;
1098 assert(chandle != CAP_NIL);
1099 call->cap_handle = CAP_NIL;
1100 return ipc_answer_5(chandle, retval, arg1, arg2, arg3, arg4, arg5);
1101}
1102
1103static errno_t async_forward_fast(ipc_call_t *call, async_exch_t *exch,
1104 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1105{
1106 assert(call);
1107
1108 cap_call_handle_t chandle = call->cap_handle;
1109 assert(chandle != CAP_NIL);
1110 call->cap_handle = CAP_NIL;
1111
1112 if (exch == NULL)
1113 return ENOENT;
1114
1115 return ipc_forward_fast(chandle, exch->phone, imethod, arg1, arg2,
1116 mode);
1117}
1118
1119static errno_t async_forward_slow(ipc_call_t *call, async_exch_t *exch,
1120 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1121 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1122{
1123 assert(call);
1124
1125 cap_call_handle_t chandle = call->cap_handle;
1126 assert(chandle != CAP_NIL);
1127 call->cap_handle = CAP_NIL;
1128
1129 if (exch == NULL)
1130 return ENOENT;
1131
1132 return ipc_forward_slow(chandle, exch->phone, imethod, arg1, arg2, arg3,
1133 arg4, arg5, mode);
1134}
1135
1136errno_t async_forward_0(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1137 unsigned int mode)
1138{
1139 return async_forward_fast(call, exch, imethod, 0, 0, mode);
1140}
1141
1142errno_t async_forward_1(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1143 sysarg_t arg1, unsigned int mode)
1144{
1145 return async_forward_fast(call, exch, imethod, arg1, 0, mode);
1146}
1147
1148errno_t async_forward_2(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1149 sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1150{
1151 return async_forward_fast(call, exch, imethod, arg1, arg2, mode);
1152}
1153
1154errno_t async_forward_3(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1155 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, unsigned int mode)
1156{
1157 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, 0, 0,
1158 mode);
1159}
1160
1161errno_t async_forward_4(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1162 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1163 unsigned int mode)
1164{
1165 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, arg4,
1166 0, mode);
1167}
1168
1169errno_t async_forward_5(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1170 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1171 unsigned int mode)
1172{
1173 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, arg4,
1174 arg5, mode);
1175}
1176
1177/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1178 *
1179 * Ask through phone for a new connection to some service.
1180 *
1181 * @param exch Exchange for sending the message.
1182 * @param iface Callback interface.
1183 * @param arg2 User defined argument.
1184 * @param arg3 User defined argument.
1185 *
1186 * @return Zero on success or an error code.
1187 *
1188 */
1189errno_t async_connect_to_me(async_exch_t *exch, iface_t iface, sysarg_t arg2,
1190 sysarg_t arg3)
1191{
1192 if (exch == NULL)
1193 return ENOENT;
1194
1195 sysarg_t label = 0;
1196 errno_t rc = async_req_5_0(exch, IPC_M_CONNECT_TO_ME, iface, arg2, arg3,
1197 0, label);
1198
1199 return rc;
1200}
1201
1202/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1203 *
1204 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1205 * calls so that the user doesn't have to remember the meaning of each IPC
1206 * argument.
1207 *
1208 * So far, this wrapper is to be used from within a connection fibril.
1209 *
1210 * @param call Storage for the data of the IPC_M_SHARE_IN call.
1211 * @param size Destination address space area size.
1212 *
1213 * @return True on success, false on failure.
1214 *
1215 */
1216bool async_share_in_receive(ipc_call_t *call, size_t *size)
1217{
1218 assert(call);
1219 assert(size);
1220
1221 async_get_call(call);
1222
1223 if (ipc_get_imethod(call) != IPC_M_SHARE_IN)
1224 return false;
1225
1226 *size = (size_t) ipc_get_arg1(call);
1227 return true;
1228}
1229
1230/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1231 *
1232 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1233 * calls so that the user doesn't have to remember the meaning of each IPC
1234 * argument.
1235 *
1236 * @param call IPC_M_SHARE_IN call to answer.
1237 * @param src Source address space base.
1238 * @param flags Flags to be used for sharing. Bits can be only cleared.
1239 *
1240 * @return Zero on success or a value from @ref errno.h on failure.
1241 *
1242 */
1243errno_t async_share_in_finalize(ipc_call_t *call, void *src, unsigned int flags)
1244{
1245 assert(call);
1246
1247 cap_call_handle_t chandle = call->cap_handle;
1248 assert(chandle != CAP_NIL);
1249 call->cap_handle = CAP_NIL;
1250
1251 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) flags);
1252}
1253
1254/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1255 *
1256 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1257 * calls so that the user doesn't have to remember the meaning of each IPC
1258 * argument.
1259 *
1260 * So far, this wrapper is to be used from within a connection fibril.
1261 *
1262 * @param call Storage for the data of the IPC_M_SHARE_OUT call.
1263 * @param size Storage for the source address space area size.
1264 * @param flags Storage for the sharing flags.
1265 *
1266 * @return True on success, false on failure.
1267 *
1268 */
1269bool async_share_out_receive(ipc_call_t *call, size_t *size,
1270 unsigned int *flags)
1271{
1272 assert(call);
1273 assert(size);
1274 assert(flags);
1275
1276 async_get_call(call);
1277
1278 if (ipc_get_imethod(call) != IPC_M_SHARE_OUT)
1279 return false;
1280
1281 *size = (size_t) ipc_get_arg2(call);
1282 *flags = (unsigned int) ipc_get_arg3(call);
1283 return true;
1284}
1285
1286/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1287 *
1288 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1289 * calls so that the user doesn't have to remember the meaning of each IPC
1290 * argument.
1291 *
1292 * @param call IPC_M_SHARE_OUT call to answer.
1293 * @param dst Address of the storage for the destination address space area
1294 * base address.
1295 *
1296 * @return Zero on success or a value from @ref errno.h on failure.
1297 *
1298 */
1299errno_t async_share_out_finalize(ipc_call_t *call, void **dst)
1300{
1301 assert(call);
1302
1303 cap_call_handle_t chandle = call->cap_handle;
1304 assert(chandle != CAP_NIL);
1305 call->cap_handle = CAP_NIL;
1306
1307 return ipc_answer_2(chandle, EOK, (sysarg_t) __progsymbols.end,
1308 (sysarg_t) dst);
1309}
1310
1311/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1312 *
1313 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1314 * calls so that the user doesn't have to remember the meaning of each IPC
1315 * argument.
1316 *
1317 * So far, this wrapper is to be used from within a connection fibril.
1318 *
1319 * @param call Storage for the data of the IPC_M_DATA_READ.
1320 * @param size Storage for the maximum size. Can be NULL.
1321 *
1322 * @return True on success, false on failure.
1323 *
1324 */
1325bool async_data_read_receive(ipc_call_t *call, size_t *size)
1326{
1327 assert(call);
1328
1329 async_get_call(call);
1330
1331 if (ipc_get_imethod(call) != IPC_M_DATA_READ)
1332 return false;
1333
1334 if (size)
1335 *size = (size_t) ipc_get_arg2(call);
1336
1337 return true;
1338}
1339
1340/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1341 *
1342 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1343 * calls so that the user doesn't have to remember the meaning of each IPC
1344 * argument.
1345 *
1346 * @param call IPC_M_DATA_READ call to answer.
1347 * @param src Source address for the IPC_M_DATA_READ call.
1348 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1349 * the maximum size announced by the sender.
1350 *
1351 * @return Zero on success or a value from @ref errno.h on failure.
1352 *
1353 */
1354errno_t async_data_read_finalize(ipc_call_t *call, const void *src, size_t size)
1355{
1356 assert(call);
1357
1358 cap_call_handle_t chandle = call->cap_handle;
1359 assert(chandle != CAP_NIL);
1360 call->cap_handle = CAP_NIL;
1361
1362 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) size);
1363}
1364
1365/** Wrapper for forwarding any read request
1366 *
1367 */
1368static errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1369 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1370 ipc_call_t *dataptr)
1371{
1372 if (exch == NULL)
1373 return ENOENT;
1374
1375 ipc_call_t call;
1376 if (!async_data_read_receive(&call, NULL)) {
1377 async_answer_0(&call, EINVAL);
1378 return EINVAL;
1379 }
1380
1381 aid_t msg = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1382 dataptr);
1383 if (msg == 0) {
1384 async_answer_0(&call, EINVAL);
1385 return EINVAL;
1386 }
1387
1388 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1389 IPC_FF_ROUTE_FROM_ME);
1390 if (retval != EOK) {
1391 async_forget(msg);
1392 async_answer_0(&call, retval);
1393 return retval;
1394 }
1395
1396 errno_t rc;
1397 async_wait_for(msg, &rc);
1398
1399 return (errno_t) rc;
1400}
1401
1402errno_t async_data_read_forward_0_0(async_exch_t *exch, sysarg_t imethod)
1403{
1404 return async_data_read_forward_fast(exch, imethod, 0, 0, 0, 0, NULL);
1405}
1406
1407errno_t async_data_read_forward_1_0(async_exch_t *exch, sysarg_t imethod,
1408 sysarg_t arg1)
1409{
1410 return async_data_read_forward_fast(exch, imethod, arg1, 0, 0, 0, NULL);
1411}
1412
1413errno_t async_data_read_forward_2_0(async_exch_t *exch, sysarg_t imethod,
1414 sysarg_t arg1, sysarg_t arg2)
1415{
1416 return async_data_read_forward_fast(exch, imethod, arg1, arg2, 0,
1417 0, NULL);
1418}
1419
1420errno_t async_data_read_forward_3_0(async_exch_t *exch, sysarg_t imethod,
1421 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1422{
1423 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1424 0, NULL);
1425}
1426
1427errno_t async_data_read_forward_4_0(async_exch_t *exch, sysarg_t imethod,
1428 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1429{
1430 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1431 arg4, NULL);
1432}
1433
1434errno_t async_data_read_forward_0_1(async_exch_t *exch, sysarg_t imethod,
1435 ipc_call_t *dataptr)
1436{
1437 return async_data_read_forward_fast(exch, imethod, 0, 0, 0,
1438 0, dataptr);
1439}
1440
1441errno_t async_data_read_forward_1_1(async_exch_t *exch, sysarg_t imethod,
1442 sysarg_t arg1, ipc_call_t *dataptr)
1443{
1444 return async_data_read_forward_fast(exch, imethod, arg1, 0, 0,
1445 0, dataptr);
1446}
1447
1448errno_t async_data_read_forward_2_1(async_exch_t *exch, sysarg_t imethod,
1449 sysarg_t arg1, sysarg_t arg2, ipc_call_t *dataptr)
1450{
1451 return async_data_read_forward_fast(exch, imethod, arg1, arg2, 0,
1452 0, dataptr);
1453}
1454
1455errno_t async_data_read_forward_3_1(async_exch_t *exch, sysarg_t imethod,
1456 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, ipc_call_t *dataptr)
1457{
1458 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1459 0, dataptr);
1460}
1461
1462errno_t async_data_read_forward_4_1(async_exch_t *exch, sysarg_t imethod,
1463 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1464 ipc_call_t *dataptr)
1465{
1466 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1467 arg4, dataptr);
1468}
1469
1470/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1471 *
1472 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1473 * calls so that the user doesn't have to remember the meaning of each IPC
1474 * argument.
1475 *
1476 * So far, this wrapper is to be used from within a connection fibril.
1477 *
1478 * @param call Storage for the data of the IPC_M_DATA_WRITE.
1479 * @param size Storage for the suggested size. May be NULL.
1480 *
1481 * @return True on success, false on failure.
1482 *
1483 */
1484bool async_data_write_receive(ipc_call_t *call, size_t *size)
1485{
1486 assert(call);
1487
1488 async_get_call(call);
1489
1490 if (ipc_get_imethod(call) != IPC_M_DATA_WRITE)
1491 return false;
1492
1493 if (size)
1494 *size = (size_t) ipc_get_arg2(call);
1495
1496 return true;
1497}
1498
1499/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1500 *
1501 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1502 * calls so that the user doesn't have to remember the meaning of each IPC
1503 * argument.
1504 *
1505 * @param call IPC_M_DATA_WRITE call to answer.
1506 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1507 * @param size Final size for the IPC_M_DATA_WRITE call.
1508 *
1509 * @return Zero on success or a value from @ref errno.h on failure.
1510 *
1511 */
1512errno_t async_data_write_finalize(ipc_call_t *call, void *dst, size_t size)
1513{
1514 assert(call);
1515
1516 return async_answer_2(call, EOK, (sysarg_t) dst, (sysarg_t) size);
1517}
1518
1519/** Wrapper for receiving binary data or strings
1520 *
1521 * This wrapper only makes it more comfortable to use async_data_write_*
1522 * functions to receive binary data or strings.
1523 *
1524 * @param data Pointer to data pointer (which should be later disposed
1525 * by free()). If the operation fails, the pointer is not
1526 * touched.
1527 * @param nullterm If true then the received data is always zero terminated.
1528 * This also causes to allocate one extra byte beyond the
1529 * raw transmitted data.
1530 * @param min_size Minimum size (in bytes) of the data to receive.
1531 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1532 * no limit.
1533 * @param granulariy If non-zero then the size of the received data has to
1534 * be divisible by this value.
1535 * @param received If not NULL, the size of the received data is stored here.
1536 *
1537 * @return Zero on success or a value from @ref errno.h on failure.
1538 *
1539 */
1540errno_t async_data_write_accept(void **data, const bool nullterm,
1541 const size_t min_size, const size_t max_size, const size_t granularity,
1542 size_t *received)
1543{
1544 assert(data);
1545
1546 ipc_call_t call;
1547 size_t size;
1548 if (!async_data_write_receive(&call, &size)) {
1549 async_answer_0(&call, EINVAL);
1550 return EINVAL;
1551 }
1552
1553 if (size < min_size) {
1554 async_answer_0(&call, EINVAL);
1555 return EINVAL;
1556 }
1557
1558 if ((max_size > 0) && (size > max_size)) {
1559 async_answer_0(&call, EINVAL);
1560 return EINVAL;
1561 }
1562
1563 if ((granularity > 0) && ((size % granularity) != 0)) {
1564 async_answer_0(&call, EINVAL);
1565 return EINVAL;
1566 }
1567
1568 void *arg_data;
1569
1570 if (nullterm)
1571 arg_data = malloc(size + 1);
1572 else
1573 arg_data = malloc(size);
1574
1575 if (arg_data == NULL) {
1576 async_answer_0(&call, ENOMEM);
1577 return ENOMEM;
1578 }
1579
1580 errno_t rc = async_data_write_finalize(&call, arg_data, size);
1581 if (rc != EOK) {
1582 free(arg_data);
1583 return rc;
1584 }
1585
1586 if (nullterm)
1587 ((char *) arg_data)[size] = 0;
1588
1589 *data = arg_data;
1590 if (received != NULL)
1591 *received = size;
1592
1593 return EOK;
1594}
1595
1596/** Wrapper for voiding any data that is about to be received
1597 *
1598 * This wrapper can be used to void any pending data
1599 *
1600 * @param retval Error value from @ref errno.h to be returned to the caller.
1601 *
1602 */
1603void async_data_write_void(errno_t retval)
1604{
1605 ipc_call_t call;
1606 async_data_write_receive(&call, NULL);
1607 async_answer_0(&call, retval);
1608}
1609
1610/** Wrapper for forwarding any data that is about to be received
1611 *
1612 */
1613static errno_t async_data_write_forward_fast(async_exch_t *exch,
1614 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1615 sysarg_t arg4, ipc_call_t *dataptr)
1616{
1617 if (exch == NULL)
1618 return ENOENT;
1619
1620 ipc_call_t call;
1621 if (!async_data_write_receive(&call, NULL)) {
1622 async_answer_0(&call, EINVAL);
1623 return EINVAL;
1624 }
1625
1626 aid_t msg = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1627 dataptr);
1628 if (msg == 0) {
1629 async_answer_0(&call, EINVAL);
1630 return EINVAL;
1631 }
1632
1633 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1634 IPC_FF_ROUTE_FROM_ME);
1635 if (retval != EOK) {
1636 async_forget(msg);
1637 async_answer_0(&call, retval);
1638 return retval;
1639 }
1640
1641 errno_t rc;
1642 async_wait_for(msg, &rc);
1643
1644 return (errno_t) rc;
1645}
1646
1647errno_t async_data_write_forward_0_0(async_exch_t *exch, sysarg_t imethod)
1648{
1649 return async_data_write_forward_fast(exch, imethod, 0, 0, 0,
1650 0, NULL);
1651}
1652
1653errno_t async_data_write_forward_1_0(async_exch_t *exch, sysarg_t imethod,
1654 sysarg_t arg1)
1655{
1656 return async_data_write_forward_fast(exch, imethod, arg1, 0, 0,
1657 0, NULL);
1658}
1659
1660errno_t async_data_write_forward_2_0(async_exch_t *exch, sysarg_t imethod,
1661 sysarg_t arg1, sysarg_t arg2)
1662{
1663 return async_data_write_forward_fast(exch, imethod, arg1, arg2, 0,
1664 0, NULL);
1665}
1666
1667errno_t async_data_write_forward_3_0(async_exch_t *exch, sysarg_t imethod,
1668 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1669{
1670 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1671 0, NULL);
1672}
1673
1674errno_t async_data_write_forward_4_0(async_exch_t *exch, sysarg_t imethod,
1675 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1676{
1677 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1678 arg4, NULL);
1679}
1680
1681errno_t async_data_write_forward_0_1(async_exch_t *exch, sysarg_t imethod,
1682 ipc_call_t *dataptr)
1683{
1684 return async_data_write_forward_fast(exch, imethod, 0, 0, 0,
1685 0, dataptr);
1686}
1687
1688errno_t async_data_write_forward_1_1(async_exch_t *exch, sysarg_t imethod,
1689 sysarg_t arg1, ipc_call_t *dataptr)
1690{
1691 return async_data_write_forward_fast(exch, imethod, arg1, 0, 0,
1692 0, dataptr);
1693}
1694
1695errno_t async_data_write_forward_2_1(async_exch_t *exch, sysarg_t imethod,
1696 sysarg_t arg1, sysarg_t arg2, ipc_call_t *dataptr)
1697{
1698 return async_data_write_forward_fast(exch, imethod, arg1, arg2, 0,
1699 0, dataptr);
1700}
1701
1702errno_t async_data_write_forward_3_1(async_exch_t *exch, sysarg_t imethod,
1703 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, ipc_call_t *dataptr)
1704{
1705 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1706 0, dataptr);
1707}
1708
1709errno_t async_data_write_forward_4_1(async_exch_t *exch, sysarg_t imethod,
1710 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1711 ipc_call_t *dataptr)
1712{
1713 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1714 arg4, dataptr);
1715}
1716
1717/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1718 *
1719 * If the current call is IPC_M_CONNECT_TO_ME then a new
1720 * async session is created for the accepted phone.
1721 *
1722 * @param mgmt Exchange management style.
1723 *
1724 * @return New async session.
1725 * @return NULL on failure.
1726 *
1727 */
1728async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1729{
1730 /* Accept the phone */
1731 ipc_call_t call;
1732 async_get_call(&call);
1733
1734 cap_phone_handle_t phandle = (cap_handle_t) ipc_get_arg5(&call);
1735
1736 if ((ipc_get_imethod(&call) != IPC_M_CONNECT_TO_ME) ||
1737 !cap_handle_valid((phandle))) {
1738 async_answer_0(&call, EINVAL);
1739 return NULL;
1740 }
1741
1742 async_sess_t *sess = calloc(1, sizeof(async_sess_t));
1743 if (sess == NULL) {
1744 async_answer_0(&call, ENOMEM);
1745 return NULL;
1746 }
1747
1748 sess->iface = 0;
1749 sess->mgmt = mgmt;
1750 sess->phone = phandle;
1751
1752 fibril_mutex_initialize(&sess->remote_state_mtx);
1753 list_initialize(&sess->exch_list);
1754 fibril_mutex_initialize(&sess->mutex);
1755
1756 /* Acknowledge the connected phone */
1757 async_answer_0(&call, EOK);
1758
1759 return sess;
1760}
1761
1762/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1763 *
1764 * If the call is IPC_M_CONNECT_TO_ME then a new
1765 * async session is created. However, the phone is
1766 * not accepted automatically.
1767 *
1768 * @param mgmt Exchange management style.
1769 * @param call Call data.
1770 *
1771 * @return New async session.
1772 * @return NULL on failure.
1773 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1774 *
1775 */
1776async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1777{
1778 cap_phone_handle_t phandle = (cap_handle_t) ipc_get_arg5(call);
1779
1780 if ((ipc_get_imethod(call) != IPC_M_CONNECT_TO_ME) ||
1781 !cap_handle_valid((phandle)))
1782 return NULL;
1783
1784 async_sess_t *sess = calloc(1, sizeof(async_sess_t));
1785 if (sess == NULL)
1786 return NULL;
1787
1788 sess->iface = 0;
1789 sess->mgmt = mgmt;
1790 sess->phone = phandle;
1791
1792 fibril_mutex_initialize(&sess->remote_state_mtx);
1793 list_initialize(&sess->exch_list);
1794 fibril_mutex_initialize(&sess->mutex);
1795
1796 return sess;
1797}
1798
1799bool async_state_change_receive(ipc_call_t *call)
1800{
1801 assert(call);
1802
1803 async_get_call(call);
1804
1805 if (ipc_get_imethod(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1806 return false;
1807
1808 return true;
1809}
1810
1811errno_t async_state_change_finalize(ipc_call_t *call, async_exch_t *other_exch)
1812{
1813 assert(call);
1814
1815 return async_answer_1(call, EOK, cap_handle_raw(other_exch->phone));
1816}
1817
1818__noreturn void async_manager(void)
1819{
1820 fibril_event_t ever = FIBRIL_EVENT_INIT;
1821 fibril_wait_for(&ever);
1822 __builtin_unreachable();
1823}
1824
1825/** @}
1826 */
Note: See TracBrowser for help on using the repository browser.