source: mainline/uspace/lib/c/generic/async/server.c@ 241f1985

Last change on this file since 241f1985 was 241f1985, checked in by Matthieu Riolo <matthieu.riolo@…>, 6 years ago

Correcting failure from previous merge

The commits from Michal Koutný from the branch system-daemon
where built on a old version of Helenos. Because of this
many types and API functions have changed. This commit
upgrades the merge code

  • Property mode set to 100644
File size: 45.8 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(ipc_call_t *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icall, ELIMIT);
83 * return;
84 * }
85 *
86 * async_answer_0(icall, EOK);
87 *
88 * async_get_call(&call);
89 * somehow_handle_the_call(&call);
90 * async_answer_2(&call, 1, 2, 3);
91 *
92 * async_get_call(&call);
93 * ...
94 * }
95 *
96 */
97
98#define _LIBC_ASYNC_C_
99#include <ipc/ipc.h>
100#include <async.h>
101#include "../private/async.h"
102#undef _LIBC_ASYNC_C_
103
104#include <ipc/irq.h>
105#include <ipc/event.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/hash.h>
109#include <adt/list.h>
110#include <assert.h>
111#include <errno.h>
112#include <time.h>
113#include <stdbool.h>
114#include <stdlib.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <str_error.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "../private/libc.h"
122#include "../private/fibril.h"
123
124#define DPRINTF(...) ((void) 0)
125
126/* Client connection data */
127typedef struct {
128 ht_link_t link;
129
130 task_id_t in_task_id;
131 int refcnt;
132 void *data;
133} client_t;
134
135/* Server connection data */
136typedef struct {
137 /** Fibril handling the connection. */
138 fid_t fid;
139
140 /** Hash table link. */
141 ht_link_t link;
142
143 /** Incoming client task ID. */
144 task_id_t in_task_id;
145
146 /** Link to the client tracking structure. */
147 client_t *client;
148
149 /** Channel for messages that should be delivered to this fibril. */
150 mpsc_t *msg_channel;
151
152 /** Call data of the opening call. */
153 ipc_call_t call;
154
155 /** Fibril function that will be used to handle the connection. */
156 async_port_handler_t handler;
157
158 /** Client data */
159 void *data;
160} connection_t;
161
162/* Member of notification_t::msg_list. */
163typedef struct {
164 link_t link;
165 ipc_call_t calldata;
166} notification_msg_t;
167
168/* Notification data */
169typedef struct {
170 /** notification_hash_table link */
171 ht_link_t htlink;
172
173 /** notification_queue link */
174 link_t qlink;
175
176 /** Notification method */
177 sysarg_t imethod;
178
179 /** Notification handler */
180 async_notification_handler_t handler;
181
182 /** Notification handler argument */
183 void *arg;
184
185 /** List of arrived notifications. */
186 list_t msg_list;
187} notification_t;
188
189/** Identifier of the incoming connection handled by the current fibril. */
190static fibril_local connection_t *fibril_connection;
191
192static void *default_client_data_constructor(void)
193{
194 return NULL;
195}
196
197static void default_client_data_destructor(void *data)
198{
199}
200
201static async_client_data_ctor_t async_client_data_create =
202 default_client_data_constructor;
203static async_client_data_dtor_t async_client_data_destroy =
204 default_client_data_destructor;
205
206void async_set_client_data_constructor(async_client_data_ctor_t ctor)
207{
208 assert(async_client_data_create == default_client_data_constructor);
209 async_client_data_create = ctor;
210}
211
212void async_set_client_data_destructor(async_client_data_dtor_t dtor)
213{
214 assert(async_client_data_destroy == default_client_data_destructor);
215 async_client_data_destroy = dtor;
216}
217
218static async_port_handler_t implicit_connection = NULL;
219
220/** Setter for implicit_connection function pointer.
221 *
222 * @param conn Function that will implement a new connection fibril for
223 * unrouted calls.
224 *
225 */
226void async_set_implicit_connection(async_port_handler_t conn)
227{
228 assert(implicit_connection == NULL);
229 implicit_connection = conn;
230}
231
232
233static fibril_rmutex_t client_mutex;
234static hash_table_t client_hash_table;
235
236// TODO: lockfree notification_queue?
237static fibril_rmutex_t notification_mutex;
238static hash_table_t notification_hash_table;
239static LIST_INITIALIZE(notification_queue);
240static FIBRIL_SEMAPHORE_INITIALIZE(notification_semaphore, 0);
241
242static LIST_INITIALIZE(notification_freelist);
243static long notification_freelist_total = 0;
244static long notification_freelist_used = 0;
245
246static sysarg_t notification_avail = 0;
247
248static size_t client_key_hash(const void *key)
249{
250 const task_id_t *in_task_id = key;
251 return *in_task_id;
252}
253
254static size_t client_hash(const ht_link_t *item)
255{
256 client_t *client = hash_table_get_inst(item, client_t, link);
257 return client_key_hash(&client->in_task_id);
258}
259
260static bool client_key_equal(const void *key, const ht_link_t *item)
261{
262 const task_id_t *in_task_id = key;
263 client_t *client = hash_table_get_inst(item, client_t, link);
264 return *in_task_id == client->in_task_id;
265}
266
267/** Operations for the client hash table. */
268static hash_table_ops_t client_hash_table_ops = {
269 .hash = client_hash,
270 .key_hash = client_key_hash,
271 .key_equal = client_key_equal,
272 .equal = NULL,
273 .remove_callback = NULL
274};
275
276static client_t *async_client_get(task_id_t client_id, bool create)
277{
278 client_t *client = NULL;
279
280 fibril_rmutex_lock(&client_mutex);
281 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
282 if (link) {
283 client = hash_table_get_inst(link, client_t, link);
284 client->refcnt++;
285 } else if (create) {
286 // TODO: move the malloc out of critical section
287 /* malloc() is rmutex safe. */
288 client = malloc(sizeof(client_t));
289 if (client) {
290 client->in_task_id = client_id;
291 client->data = async_client_data_create();
292
293 client->refcnt = 1;
294 hash_table_insert(&client_hash_table, &client->link);
295 }
296 }
297
298 fibril_rmutex_unlock(&client_mutex);
299 return client;
300}
301
302static void async_client_put(client_t *client)
303{
304 bool destroy;
305
306 fibril_rmutex_lock(&client_mutex);
307
308 if (--client->refcnt == 0) {
309 hash_table_remove(&client_hash_table, &client->in_task_id);
310 destroy = true;
311 } else
312 destroy = false;
313
314 fibril_rmutex_unlock(&client_mutex);
315
316 if (destroy) {
317 if (client->data)
318 async_client_data_destroy(client->data);
319
320 free(client);
321 }
322}
323
324/** Wrapper for client connection fibril.
325 *
326 * When a new connection arrives, a fibril with this implementing
327 * function is created.
328 *
329 * @param arg Connection structure pointer.
330 *
331 * @return Always zero.
332 *
333 */
334static errno_t connection_fibril(void *arg)
335{
336 assert(arg);
337
338 /*
339 * Setup fibril-local connection pointer.
340 */
341 fibril_connection = (connection_t *) arg;
342
343 mpsc_t *c = fibril_connection->msg_channel;
344
345 /*
346 * Add our reference for the current connection in the client task
347 * tracking structure. If this is the first reference, create and
348 * hash in a new tracking structure.
349 */
350
351 client_t *client = async_client_get(fibril_connection->in_task_id, true);
352 if (!client) {
353 ipc_answer_0(fibril_connection->call.cap_handle, ENOMEM);
354 goto out;
355 }
356
357 fibril_connection->client = client;
358
359 /*
360 * Call the connection handler function.
361 */
362 fibril_connection->handler(&fibril_connection->call,
363 fibril_connection->data);
364
365 /*
366 * Remove the reference for this client task connection.
367 */
368 async_client_put(client);
369
370 /*
371 * Close the channel, if it isn't closed already.
372 */
373 mpsc_close(c);
374
375 /*
376 * Answer all remaining messages with EHANGUP.
377 */
378 ipc_call_t call;
379 while (mpsc_receive(c, &call, NULL) == EOK)
380 ipc_answer_0(call.cap_handle, EHANGUP);
381
382 /*
383 * Clean up memory.
384 */
385out:
386 mpsc_destroy(c);
387 free(fibril_connection);
388 return EOK;
389}
390
391/** Return label usable during replies to IPC_M_CONNECT_ME_TO. */
392sysarg_t async_get_label(void)
393{
394 return (sysarg_t) fibril_connection;
395}
396
397/** Create a new fibril for a new connection.
398 *
399 * Create new fibril for connection, fill in connection structures and insert it
400 * into the hash table, so that later we can easily do routing of messages to
401 * particular fibrils.
402 *
403 * @param conn Pointer to the connection structure. Will be used as the
404 * label of the connected phone and request_label of incoming
405 * calls routed through that phone.
406 * @param in_task_id Identification of the incoming connection.
407 * @param call Call data of the opening call. If call is NULL, it's
408 * either a callback connection that was opened by
409 * accepting the IPC_M_CONNECT_TO_ME call.
410 * Alternatively, it is zero when we are opening
411 * implicit connection.
412 * @param handler Connection handler.
413 * @param data Client argument to pass to the connection handler.
414 *
415 * @return New fibril id or NULL on failure.
416 *
417 */
418static fid_t async_new_connection(connection_t *conn, task_id_t in_task_id,
419 ipc_call_t *call, async_port_handler_t handler, void *data)
420{
421 conn->in_task_id = in_task_id;
422 conn->msg_channel = mpsc_create(sizeof(ipc_call_t));
423 conn->handler = handler;
424 conn->data = data;
425
426 if (!conn->msg_channel)
427 goto error;
428
429 if (call)
430 conn->call = *call;
431 else
432 conn->call.cap_handle = CAP_NIL;
433
434 /* We will activate the fibril ASAP */
435 conn->fid = fibril_create(connection_fibril, conn);
436
437 if (conn->fid == 0)
438 goto error;
439
440 fibril_start(conn->fid);
441
442 return conn->fid;
443
444error:
445 if (conn->msg_channel)
446 mpsc_destroy(conn->msg_channel);
447 free(conn);
448
449 if (call)
450 ipc_answer_0(call->cap_handle, ENOMEM);
451
452 return (fid_t) NULL;
453}
454
455/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
456 *
457 * Ask through phone for a new connection to some service.
458 *
459 * @param exch Exchange for sending the message.
460 * @param iface Callback interface.
461 * @param arg1 User defined argument.
462 * @param arg2 User defined argument.
463 * @param handler Callback handler.
464 * @param data Handler data.
465 * @param port_id ID of the newly created port.
466 *
467 * @return Zero on success or an error code.
468 *
469 */
470errno_t async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
471 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
472{
473 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
474 return EINVAL;
475
476 if (exch == NULL)
477 return ENOENT;
478
479 connection_t *conn = calloc(1, sizeof(*conn));
480 if (!conn)
481 return ENOMEM;
482
483 ipc_call_t answer;
484 aid_t req = async_send_5(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
485 0, (sysarg_t) conn, &answer);
486
487 errno_t rc;
488 async_wait_for(req, &rc);
489 if (rc != EOK) {
490 free(conn);
491 return rc;
492 }
493
494 rc = async_create_port_internal(iface, handler, data, port_id);
495 if (rc != EOK) {
496 free(conn);
497 return rc;
498 }
499
500 fid_t fid = async_new_connection(conn, answer.task_id, NULL, handler,
501 data);
502 if (fid == (fid_t) NULL)
503 return ENOMEM;
504
505 return EOK;
506}
507
508static size_t notification_key_hash(const void *key)
509{
510 const sysarg_t *id = key;
511 return *id;
512}
513
514static size_t notification_hash(const ht_link_t *item)
515{
516 notification_t *notification =
517 hash_table_get_inst(item, notification_t, htlink);
518 return notification_key_hash(&notification->imethod);
519}
520
521static bool notification_key_equal(const void *key, const ht_link_t *item)
522{
523 const sysarg_t *id = key;
524 notification_t *notification =
525 hash_table_get_inst(item, notification_t, htlink);
526 return *id == notification->imethod;
527}
528
529/** Operations for the notification hash table. */
530static hash_table_ops_t notification_hash_table_ops = {
531 .hash = notification_hash,
532 .key_hash = notification_key_hash,
533 .key_equal = notification_key_equal,
534 .equal = NULL,
535 .remove_callback = NULL
536};
537
538/** Try to route a call to an appropriate connection fibril.
539 *
540 * If the proper connection fibril is found, a message with the call is added to
541 * its message queue. If the fibril was not active, it is activated and all
542 * timeouts are unregistered.
543 *
544 * @param call Data of the incoming call.
545 *
546 * @return EOK if the call was successfully passed to the respective fibril.
547 * @return ENOENT if the call doesn't match any connection.
548 * @return Other error code if routing failed for other reasons.
549 *
550 */
551static errno_t route_call(ipc_call_t *call)
552{
553 assert(call);
554
555 connection_t *conn = (connection_t *) call->request_label;
556
557 if (!conn)
558 return ENOENT;
559
560 assert(conn->msg_channel);
561
562 errno_t rc = mpsc_send(conn->msg_channel, call);
563
564 if (ipc_get_imethod(call) == IPC_M_PHONE_HUNGUP) {
565 /* Close the channel, but let the connection fibril answer. */
566 mpsc_close(conn->msg_channel);
567 // FIXME: Ideally, we should be able to discard/answer the
568 // hungup message here and just close the channel without
569 // passing it out. Unfortunatelly, somehow that breaks
570 // handling of CPU exceptions.
571 }
572
573 return rc;
574}
575
576/** Function implementing the notification handler fibril. Never returns. */
577static errno_t notification_fibril_func(void *arg)
578{
579 (void) arg;
580
581 while (true) {
582 fibril_semaphore_down(&notification_semaphore);
583
584 fibril_rmutex_lock(&notification_mutex);
585
586 /*
587 * The semaphore ensures that if we get this far,
588 * the queue must be non-empty.
589 */
590 assert(!list_empty(&notification_queue));
591
592 notification_t *notification = list_get_instance(
593 list_first(&notification_queue), notification_t, qlink);
594
595 async_notification_handler_t handler = notification->handler;
596 void *arg = notification->arg;
597
598 notification_msg_t *m = list_pop(&notification->msg_list,
599 notification_msg_t, link);
600 assert(m);
601 ipc_call_t calldata = m->calldata;
602
603 notification_freelist_used--;
604
605 if (notification_freelist_total > 64 &&
606 notification_freelist_total > 2 * notification_freelist_used) {
607 /* Going to free the structure if we have too much. */
608 notification_freelist_total--;
609 } else {
610 /* Otherwise add to freelist. */
611 list_append(&m->link, &notification_freelist);
612 m = NULL;
613 }
614
615 if (list_empty(&notification->msg_list))
616 list_remove(&notification->qlink);
617
618 fibril_rmutex_unlock(&notification_mutex);
619
620 if (handler)
621 handler(&calldata, arg);
622
623 free(m);
624 }
625
626 /* Not reached. */
627 return EOK;
628}
629
630/**
631 * Creates a new dedicated fibril for handling notifications.
632 * By default, there is one such fibril. This function can be used to
633 * create more in order to increase the number of notification that can
634 * be processed concurrently.
635 *
636 * Currently, there is no way to destroy those fibrils after they are created.
637 */
638errno_t async_spawn_notification_handler(void)
639{
640 fid_t f = fibril_create(notification_fibril_func, NULL);
641 if (f == 0)
642 return ENOMEM;
643
644 fibril_add_ready(f);
645 return EOK;
646}
647
648/** Queue notification.
649 *
650 * @param call Data of the incoming call.
651 *
652 */
653static void queue_notification(ipc_call_t *call)
654{
655 assert(call);
656
657 fibril_rmutex_lock(&notification_mutex);
658
659 notification_msg_t *m = list_pop(&notification_freelist,
660 notification_msg_t, link);
661
662 if (!m) {
663 fibril_rmutex_unlock(&notification_mutex);
664 m = malloc(sizeof(notification_msg_t));
665 if (!m) {
666 DPRINTF("Out of memory.\n");
667 abort();
668 }
669
670 fibril_rmutex_lock(&notification_mutex);
671 notification_freelist_total++;
672 }
673
674 sysarg_t imethod = ipc_get_imethod(call);
675 ht_link_t *link = hash_table_find(&notification_hash_table, &imethod);
676 if (!link) {
677 /* Invalid notification. */
678 // TODO: Make sure this can't happen and turn it into assert.
679 notification_freelist_total--;
680 fibril_rmutex_unlock(&notification_mutex);
681 free(m);
682 return;
683 }
684
685 notification_t *notification =
686 hash_table_get_inst(link, notification_t, htlink);
687
688 notification_freelist_used++;
689 m->calldata = *call;
690 list_append(&m->link, &notification->msg_list);
691
692 if (!link_in_use(&notification->qlink))
693 list_append(&notification->qlink, &notification_queue);
694
695 fibril_rmutex_unlock(&notification_mutex);
696
697 fibril_semaphore_up(&notification_semaphore);
698}
699
700/**
701 * Creates a new notification structure and inserts it into the hash table.
702 *
703 * @param handler Function to call when notification is received.
704 * @param arg Argument for the handler function.
705 * @return The newly created notification structure.
706 */
707static notification_t *notification_create(async_notification_handler_t handler, void *arg)
708{
709 notification_t *notification = calloc(1, sizeof(notification_t));
710 if (!notification)
711 return NULL;
712
713 notification->handler = handler;
714 notification->arg = arg;
715
716 list_initialize(&notification->msg_list);
717
718 fid_t fib = 0;
719
720 fibril_rmutex_lock(&notification_mutex);
721
722 if (notification_avail == 0) {
723 /* Attempt to create the first handler fibril. */
724 fib = fibril_create(notification_fibril_func, NULL);
725 if (fib == 0) {
726 fibril_rmutex_unlock(&notification_mutex);
727 free(notification);
728 return NULL;
729 }
730 }
731
732 sysarg_t imethod = notification_avail;
733 notification_avail++;
734
735 notification->imethod = imethod;
736 hash_table_insert(&notification_hash_table, &notification->htlink);
737
738 fibril_rmutex_unlock(&notification_mutex);
739
740 if (imethod == 0) {
741 assert(fib);
742 fibril_add_ready(fib);
743 }
744
745 return notification;
746}
747
748/** Subscribe to IRQ notification.
749 *
750 * @param inr IRQ number.
751 * @param handler Notification handler.
752 * @param data Notification handler client data.
753 * @param ucode Top-half pseudocode handler.
754 *
755 * @param[out] handle IRQ capability handle on success.
756 *
757 * @return An error code.
758 *
759 */
760errno_t async_irq_subscribe(int inr, async_notification_handler_t handler,
761 void *data, const irq_code_t *ucode, cap_irq_handle_t *handle)
762{
763 notification_t *notification = notification_create(handler, data);
764 if (!notification)
765 return ENOMEM;
766
767 cap_irq_handle_t ihandle;
768 errno_t rc = ipc_irq_subscribe(inr, notification->imethod, ucode,
769 &ihandle);
770 if (rc == EOK && handle != NULL) {
771 *handle = ihandle;
772 }
773 return rc;
774}
775
776/** Unsubscribe from IRQ notification.
777 *
778 * @param handle IRQ capability handle.
779 *
780 * @return Zero on success or an error code.
781 *
782 */
783errno_t async_irq_unsubscribe(cap_irq_handle_t ihandle)
784{
785 // TODO: Remove entry from hash table
786 // to avoid memory leak
787
788 return ipc_irq_unsubscribe(ihandle);
789}
790
791/** Subscribe to event notifications.
792 *
793 * @param evno Event type to subscribe.
794 * @param handler Notification handler.
795 * @param data Notification handler client data.
796 *
797 * @return Zero on success or an error code.
798 *
799 */
800errno_t async_event_subscribe(event_type_t evno,
801 async_notification_handler_t handler, void *data)
802{
803 notification_t *notification = notification_create(handler, data);
804 if (!notification)
805 return ENOMEM;
806
807 return ipc_event_subscribe(evno, notification->imethod);
808}
809
810/** Subscribe to task event notifications.
811 *
812 * @param evno Event type to subscribe.
813 * @param handler Notification handler.
814 * @param data Notification handler client data.
815 *
816 * @return Zero on success or an error code.
817 *
818 */
819errno_t async_event_task_subscribe(event_task_type_t evno,
820 async_notification_handler_t handler, void *data)
821{
822 notification_t *notification = notification_create(handler, data);
823 if (!notification)
824 return ENOMEM;
825
826 return ipc_event_task_subscribe(evno, notification->imethod);
827}
828
829/** Unmask event notifications.
830 *
831 * @param evno Event type to unmask.
832 *
833 * @return Value returned by the kernel.
834 *
835 */
836errno_t async_event_unmask(event_type_t evno)
837{
838 return ipc_event_unmask(evno);
839}
840
841/** Unmask task event notifications.
842 *
843 * @param evno Event type to unmask.
844 *
845 * @return Value returned by the kernel.
846 *
847 */
848errno_t async_event_task_unmask(event_task_type_t evno)
849{
850 return ipc_event_task_unmask(evno);
851}
852
853/** Return new incoming message for the current (fibril-local) connection.
854 *
855 * @param call Storage where the incoming call data will be stored.
856 * @param usecs Timeout in microseconds. Zero denotes no timeout.
857 *
858 * @return If no timeout was specified, then true is returned.
859 * @return If a timeout is specified, then true is returned unless
860 * the timeout expires prior to receiving a message.
861 *
862 */
863bool async_get_call_timeout(ipc_call_t *call, usec_t usecs)
864{
865 assert(call);
866 assert(fibril_connection);
867
868 struct timespec ts;
869 struct timespec *expires = NULL;
870 if (usecs) {
871 getuptime(&ts);
872 ts_add_diff(&ts, USEC2NSEC(usecs));
873 expires = &ts;
874 }
875
876 errno_t rc = mpsc_receive(fibril_connection->msg_channel,
877 call, expires);
878
879 if (rc == ETIMEOUT)
880 return false;
881
882 if (rc != EOK) {
883 /*
884 * The async_get_call_timeout() interface doesn't support
885 * propagating errors. Return a null call instead.
886 */
887
888 memset(call, 0, sizeof(ipc_call_t));
889 ipc_set_imethod(call, IPC_M_PHONE_HUNGUP);
890 call->cap_handle = CAP_NIL;
891 }
892
893 return true;
894}
895
896bool async_get_call(ipc_call_t *call)
897{
898 return async_get_call_timeout(call, 0);
899}
900
901void *async_get_client_data(void)
902{
903 assert(fibril_connection);
904 return fibril_connection->client->data;
905}
906
907void *async_get_client_data_by_id(task_id_t client_id)
908{
909 client_t *client = async_client_get(client_id, false);
910 if (!client)
911 return NULL;
912
913 if (!client->data) {
914 async_client_put(client);
915 return NULL;
916 }
917
918 return client->data;
919}
920
921void async_put_client_data_by_id(task_id_t client_id)
922{
923 client_t *client = async_client_get(client_id, false);
924
925 assert(client);
926 assert(client->data);
927
928 /* Drop the reference we got in async_get_client_data_by_hash(). */
929 async_client_put(client);
930
931 /* Drop our own reference we got at the beginning of this function. */
932 async_client_put(client);
933}
934
935/** Handle a call that was received.
936 *
937 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
938 * Otherwise the call is routed to its connection fibril.
939 *
940 * @param call Data of the incoming call.
941 *
942 */
943static void handle_call(ipc_call_t *call)
944{
945 assert(call);
946
947 if (call->flags & IPC_CALL_ANSWERED) {
948 /* Answer to a call made by us. */
949 async_reply_received(call);
950 return;
951 }
952
953 if (call->cap_handle == CAP_NIL) {
954 if (call->flags & IPC_CALL_NOTIF) {
955 /* Kernel notification */
956 queue_notification(call);
957 }
958 return;
959 }
960
961 /* New connection */
962 if (ipc_get_imethod(call) == IPC_M_CONNECT_ME_TO) {
963 connection_t *conn = calloc(1, sizeof(*conn));
964 if (!conn) {
965 ipc_answer_0(call->cap_handle, ENOMEM);
966 return;
967 }
968
969 iface_t iface = (iface_t) ipc_get_arg1(call);
970
971 // TODO: Currently ignores all ports but the first one.
972 void *data;
973 async_port_handler_t handler =
974 async_get_port_handler(iface, 0, &data);
975
976 async_new_connection(conn, call->task_id, call, handler, data);
977 return;
978 }
979
980 /* Route the call according to its request label */
981 errno_t rc = route_call(call);
982 if (rc == EOK) {
983 return;
984 } else if (implicit_connection != NULL) {
985 connection_t *conn = calloc(1, sizeof(connection_t));
986 if (!conn) {
987 ipc_answer_0(call->cap_handle, ENOMEM);
988 return;
989 }
990
991 async_new_connection(conn, call->task_id, call, implicit_connection, NULL);
992 return;
993 }
994
995 // TODO: Log the error.
996
997 if (call->cap_handle != CAP_NIL)
998 /* Unknown call from unknown phone - hang it up */
999 ipc_answer_0(call->cap_handle, EHANGUP);
1000}
1001
1002/** Endless loop dispatching incoming calls and answers.
1003 *
1004 * @return Never returns.
1005 *
1006 */
1007static errno_t async_manager_worker(void)
1008{
1009 ipc_call_t call;
1010 errno_t rc;
1011
1012 while (true) {
1013 rc = fibril_ipc_wait(&call, NULL);
1014 if (rc == EOK)
1015 handle_call(&call);
1016 }
1017
1018 return 0;
1019}
1020
1021/** Function to start async_manager as a standalone fibril.
1022 *
1023 * When more kernel threads are used, one async manager should exist per thread.
1024 *
1025 * @param arg Unused.
1026 * @return Never returns.
1027 *
1028 */
1029static errno_t async_manager_fibril(void *arg)
1030{
1031 async_manager_worker();
1032 return 0;
1033}
1034
1035/** Add one manager to manager list. */
1036static fid_t async_create_manager(void)
1037{
1038 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1039 fibril_start(fid);
1040 return fid;
1041}
1042
1043/** Initialize the async framework.
1044 *
1045 */
1046void __async_server_init(void)
1047{
1048 if (fibril_rmutex_initialize(&client_mutex) != EOK)
1049 abort();
1050 if (fibril_rmutex_initialize(&notification_mutex) != EOK)
1051 abort();
1052
1053 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1054 abort();
1055
1056 if (!hash_table_create(&notification_hash_table, 0, 0,
1057 &notification_hash_table_ops))
1058 abort();
1059
1060 async_create_manager();
1061}
1062
1063void __async_server_fini(void)
1064{
1065 fibril_rmutex_destroy(&client_mutex);
1066 fibril_rmutex_destroy(&notification_mutex);
1067}
1068
1069errno_t async_accept_0(ipc_call_t *call)
1070{
1071 cap_call_handle_t chandle = call->cap_handle;
1072 assert(chandle != CAP_NIL);
1073 call->cap_handle = CAP_NIL;
1074 return ipc_answer_5(chandle, EOK, 0, 0, 0, 0, async_get_label());
1075}
1076
1077errno_t async_answer_0(ipc_call_t *call, errno_t retval)
1078{
1079 cap_call_handle_t chandle = call->cap_handle;
1080 assert(chandle != CAP_NIL);
1081 call->cap_handle = CAP_NIL;
1082 return ipc_answer_0(chandle, retval);
1083}
1084
1085errno_t async_answer_1(ipc_call_t *call, errno_t retval, sysarg_t arg1)
1086{
1087 cap_call_handle_t chandle = call->cap_handle;
1088 assert(chandle != CAP_NIL);
1089 call->cap_handle = CAP_NIL;
1090 return ipc_answer_1(chandle, retval, arg1);
1091}
1092
1093errno_t async_answer_2(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1094 sysarg_t arg2)
1095{
1096 cap_call_handle_t chandle = call->cap_handle;
1097 assert(chandle != CAP_NIL);
1098 call->cap_handle = CAP_NIL;
1099 return ipc_answer_2(chandle, retval, arg1, arg2);
1100}
1101
1102errno_t async_answer_3(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1103 sysarg_t arg2, sysarg_t arg3)
1104{
1105 cap_call_handle_t chandle = call->cap_handle;
1106 assert(chandle != CAP_NIL);
1107 call->cap_handle = CAP_NIL;
1108 return ipc_answer_3(chandle, retval, arg1, arg2, arg3);
1109}
1110
1111errno_t async_answer_4(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1112 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1113{
1114 cap_call_handle_t chandle = call->cap_handle;
1115 assert(chandle != CAP_NIL);
1116 call->cap_handle = CAP_NIL;
1117 return ipc_answer_4(chandle, retval, arg1, arg2, arg3, arg4);
1118}
1119
1120errno_t async_answer_5(ipc_call_t *call, errno_t retval, sysarg_t arg1,
1121 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1122{
1123 cap_call_handle_t chandle = call->cap_handle;
1124 assert(chandle != CAP_NIL);
1125 call->cap_handle = CAP_NIL;
1126 return ipc_answer_5(chandle, retval, arg1, arg2, arg3, arg4, arg5);
1127}
1128
1129static errno_t async_forward_fast(ipc_call_t *call, async_exch_t *exch,
1130 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1131{
1132 assert(call);
1133
1134 cap_call_handle_t chandle = call->cap_handle;
1135 assert(chandle != CAP_NIL);
1136 call->cap_handle = CAP_NIL;
1137
1138 if (exch == NULL)
1139 return ENOENT;
1140
1141 return ipc_forward_fast(chandle, exch->phone, imethod, arg1, arg2,
1142 mode);
1143}
1144
1145static errno_t async_forward_slow(ipc_call_t *call, async_exch_t *exch,
1146 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1147 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1148{
1149 assert(call);
1150
1151 cap_call_handle_t chandle = call->cap_handle;
1152 assert(chandle != CAP_NIL);
1153 call->cap_handle = CAP_NIL;
1154
1155 if (exch == NULL)
1156 return ENOENT;
1157
1158 return ipc_forward_slow(chandle, exch->phone, imethod, arg1, arg2, arg3,
1159 arg4, arg5, mode);
1160}
1161
1162errno_t async_forward_0(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1163 unsigned int mode)
1164{
1165 return async_forward_fast(call, exch, imethod, 0, 0, mode);
1166}
1167
1168errno_t async_forward_1(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1169 sysarg_t arg1, unsigned int mode)
1170{
1171 return async_forward_fast(call, exch, imethod, arg1, 0, mode);
1172}
1173
1174errno_t async_forward_2(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1175 sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1176{
1177 return async_forward_fast(call, exch, imethod, arg1, arg2, mode);
1178}
1179
1180errno_t async_forward_3(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1181 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, unsigned int mode)
1182{
1183 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, 0, 0,
1184 mode);
1185}
1186
1187errno_t async_forward_4(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1188 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1189 unsigned int mode)
1190{
1191 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, arg4,
1192 0, mode);
1193}
1194
1195errno_t async_forward_5(ipc_call_t *call, async_exch_t *exch, sysarg_t imethod,
1196 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1197 unsigned int mode)
1198{
1199 return async_forward_slow(call, exch, imethod, arg1, arg2, arg3, arg4,
1200 arg5, mode);
1201}
1202
1203/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1204 *
1205 * Ask through phone for a new connection to some service.
1206 *
1207 * @param exch Exchange for sending the message.
1208 * @param iface Callback interface.
1209 * @param arg2 User defined argument.
1210 * @param arg3 User defined argument.
1211 *
1212 * @return Zero on success or an error code.
1213 *
1214 */
1215errno_t async_connect_to_me(async_exch_t *exch, iface_t iface, sysarg_t arg2,
1216 sysarg_t arg3)
1217{
1218 if (exch == NULL)
1219 return ENOENT;
1220
1221 sysarg_t label = 0;
1222 errno_t rc = async_req_5_0(exch, IPC_M_CONNECT_TO_ME, iface, arg2, arg3,
1223 0, label);
1224
1225 return rc;
1226}
1227
1228/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1229 *
1230 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1231 * calls so that the user doesn't have to remember the meaning of each IPC
1232 * argument.
1233 *
1234 * So far, this wrapper is to be used from within a connection fibril.
1235 *
1236 * @param call Storage for the data of the IPC_M_SHARE_IN call.
1237 * @param size Destination address space area size.
1238 *
1239 * @return True on success, false on failure.
1240 *
1241 */
1242bool async_share_in_receive(ipc_call_t *call, size_t *size)
1243{
1244 assert(call);
1245 assert(size);
1246
1247 async_get_call(call);
1248
1249 if (ipc_get_imethod(call) != IPC_M_SHARE_IN)
1250 return false;
1251
1252 *size = (size_t) ipc_get_arg1(call);
1253 return true;
1254}
1255
1256/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1257 *
1258 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
1259 * calls so that the user doesn't have to remember the meaning of each IPC
1260 * argument.
1261 *
1262 * @param call IPC_M_SHARE_IN call to answer.
1263 * @param src Source address space base.
1264 * @param flags Flags to be used for sharing. Bits can be only cleared.
1265 *
1266 * @return Zero on success or a value from @ref errno.h on failure.
1267 *
1268 */
1269errno_t async_share_in_finalize(ipc_call_t *call, void *src, unsigned int flags)
1270{
1271 assert(call);
1272
1273 cap_call_handle_t chandle = call->cap_handle;
1274 assert(chandle != CAP_NIL);
1275 call->cap_handle = CAP_NIL;
1276
1277 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) flags);
1278}
1279
1280/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1281 *
1282 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1283 * calls so that the user doesn't have to remember the meaning of each IPC
1284 * argument.
1285 *
1286 * So far, this wrapper is to be used from within a connection fibril.
1287 *
1288 * @param call Storage for the data of the IPC_M_SHARE_OUT call.
1289 * @param size Storage for the source address space area size.
1290 * @param flags Storage for the sharing flags.
1291 *
1292 * @return True on success, false on failure.
1293 *
1294 */
1295bool async_share_out_receive(ipc_call_t *call, size_t *size,
1296 unsigned int *flags)
1297{
1298 assert(call);
1299 assert(size);
1300 assert(flags);
1301
1302 async_get_call(call);
1303
1304 if (ipc_get_imethod(call) != IPC_M_SHARE_OUT)
1305 return false;
1306
1307 *size = (size_t) ipc_get_arg2(call);
1308 *flags = (unsigned int) ipc_get_arg3(call);
1309 return true;
1310}
1311
1312/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1313 *
1314 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1315 * calls so that the user doesn't have to remember the meaning of each IPC
1316 * argument.
1317 *
1318 * @param call IPC_M_SHARE_OUT call to answer.
1319 * @param dst Address of the storage for the destination address space area
1320 * base address.
1321 *
1322 * @return Zero on success or a value from @ref errno.h on failure.
1323 *
1324 */
1325errno_t async_share_out_finalize(ipc_call_t *call, void **dst)
1326{
1327 assert(call);
1328
1329 cap_call_handle_t chandle = call->cap_handle;
1330 assert(chandle != CAP_NIL);
1331 call->cap_handle = CAP_NIL;
1332
1333 return ipc_answer_2(chandle, EOK, (sysarg_t) __progsymbols.end,
1334 (sysarg_t) dst);
1335}
1336
1337/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1338 *
1339 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1340 * calls so that the user doesn't have to remember the meaning of each IPC
1341 * argument.
1342 *
1343 * So far, this wrapper is to be used from within a connection fibril.
1344 *
1345 * @param call Storage for the data of the IPC_M_DATA_READ.
1346 * @param size Storage for the maximum size. Can be NULL.
1347 *
1348 * @return True on success, false on failure.
1349 *
1350 */
1351bool async_data_read_receive(ipc_call_t *call, size_t *size)
1352{
1353 assert(call);
1354
1355 async_get_call(call);
1356
1357 if (ipc_get_imethod(call) != IPC_M_DATA_READ)
1358 return false;
1359
1360 if (size)
1361 *size = (size_t) ipc_get_arg2(call);
1362
1363 return true;
1364}
1365
1366/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1367 *
1368 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1369 * calls so that the user doesn't have to remember the meaning of each IPC
1370 * argument.
1371 *
1372 * @param call IPC_M_DATA_READ call to answer.
1373 * @param src Source address for the IPC_M_DATA_READ call.
1374 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1375 * the maximum size announced by the sender.
1376 *
1377 * @return Zero on success or a value from @ref errno.h on failure.
1378 *
1379 */
1380errno_t async_data_read_finalize(ipc_call_t *call, const void *src, size_t size)
1381{
1382 assert(call);
1383
1384 cap_call_handle_t chandle = call->cap_handle;
1385 assert(chandle != CAP_NIL);
1386 call->cap_handle = CAP_NIL;
1387
1388 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) size);
1389}
1390
1391/** Wrapper for forwarding any read request
1392 *
1393 */
1394static errno_t async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
1395 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1396 ipc_call_t *dataptr)
1397{
1398 if (exch == NULL)
1399 return ENOENT;
1400
1401 ipc_call_t call;
1402 if (!async_data_read_receive(&call, NULL)) {
1403 async_answer_0(&call, EINVAL);
1404 return EINVAL;
1405 }
1406
1407 aid_t msg = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1408 dataptr);
1409 if (msg == 0) {
1410 async_answer_0(&call, EINVAL);
1411 return EINVAL;
1412 }
1413
1414 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1415 IPC_FF_ROUTE_FROM_ME);
1416 if (retval != EOK) {
1417 async_forget(msg);
1418 async_answer_0(&call, retval);
1419 return retval;
1420 }
1421
1422 errno_t rc;
1423 async_wait_for(msg, &rc);
1424
1425 return (errno_t) rc;
1426}
1427
1428errno_t async_data_read_forward_0_0(async_exch_t *exch, sysarg_t imethod)
1429{
1430 return async_data_read_forward_fast(exch, imethod, 0, 0, 0, 0, NULL);
1431}
1432
1433errno_t async_data_read_forward_1_0(async_exch_t *exch, sysarg_t imethod,
1434 sysarg_t arg1)
1435{
1436 return async_data_read_forward_fast(exch, imethod, arg1, 0, 0, 0, NULL);
1437}
1438
1439errno_t async_data_read_forward_2_0(async_exch_t *exch, sysarg_t imethod,
1440 sysarg_t arg1, sysarg_t arg2)
1441{
1442 return async_data_read_forward_fast(exch, imethod, arg1, arg2, 0,
1443 0, NULL);
1444}
1445
1446errno_t async_data_read_forward_3_0(async_exch_t *exch, sysarg_t imethod,
1447 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1448{
1449 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1450 0, NULL);
1451}
1452
1453errno_t async_data_read_forward_4_0(async_exch_t *exch, sysarg_t imethod,
1454 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1455{
1456 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1457 arg4, NULL);
1458}
1459
1460errno_t async_data_read_forward_0_1(async_exch_t *exch, sysarg_t imethod,
1461 ipc_call_t *dataptr)
1462{
1463 return async_data_read_forward_fast(exch, imethod, 0, 0, 0,
1464 0, dataptr);
1465}
1466
1467errno_t async_data_read_forward_1_1(async_exch_t *exch, sysarg_t imethod,
1468 sysarg_t arg1, ipc_call_t *dataptr)
1469{
1470 return async_data_read_forward_fast(exch, imethod, arg1, 0, 0,
1471 0, dataptr);
1472}
1473
1474errno_t async_data_read_forward_2_1(async_exch_t *exch, sysarg_t imethod,
1475 sysarg_t arg1, sysarg_t arg2, ipc_call_t *dataptr)
1476{
1477 return async_data_read_forward_fast(exch, imethod, arg1, arg2, 0,
1478 0, dataptr);
1479}
1480
1481errno_t async_data_read_forward_3_1(async_exch_t *exch, sysarg_t imethod,
1482 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, ipc_call_t *dataptr)
1483{
1484 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1485 0, dataptr);
1486}
1487
1488errno_t async_data_read_forward_4_1(async_exch_t *exch, sysarg_t imethod,
1489 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1490 ipc_call_t *dataptr)
1491{
1492 return async_data_read_forward_fast(exch, imethod, arg1, arg2, arg3,
1493 arg4, dataptr);
1494}
1495
1496/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1497 *
1498 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1499 * calls so that the user doesn't have to remember the meaning of each IPC
1500 * argument.
1501 *
1502 * So far, this wrapper is to be used from within a connection fibril.
1503 *
1504 * @param call Storage for the data of the IPC_M_DATA_WRITE.
1505 * @param size Storage for the suggested size. May be NULL.
1506 *
1507 * @return True on success, false on failure.
1508 *
1509 */
1510bool async_data_write_receive(ipc_call_t *call, size_t *size)
1511{
1512 assert(call);
1513
1514 async_get_call(call);
1515
1516 if (ipc_get_imethod(call) != IPC_M_DATA_WRITE)
1517 return false;
1518
1519 if (size)
1520 *size = (size_t) ipc_get_arg2(call);
1521
1522 return true;
1523}
1524
1525/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1526 *
1527 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1528 * calls so that the user doesn't have to remember the meaning of each IPC
1529 * argument.
1530 *
1531 * @param call IPC_M_DATA_WRITE call to answer.
1532 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1533 * @param size Final size for the IPC_M_DATA_WRITE call.
1534 *
1535 * @return Zero on success or a value from @ref errno.h on failure.
1536 *
1537 */
1538errno_t async_data_write_finalize(ipc_call_t *call, void *dst, size_t size)
1539{
1540 assert(call);
1541
1542 return async_answer_2(call, EOK, (sysarg_t) dst, (sysarg_t) size);
1543}
1544
1545/** Wrapper for receiving binary data or strings
1546 *
1547 * This wrapper only makes it more comfortable to use async_data_write_*
1548 * functions to receive binary data or strings.
1549 *
1550 * @param data Pointer to data pointer (which should be later disposed
1551 * by free()). If the operation fails, the pointer is not
1552 * touched.
1553 * @param nullterm If true then the received data is always zero terminated.
1554 * This also causes to allocate one extra byte beyond the
1555 * raw transmitted data.
1556 * @param min_size Minimum size (in bytes) of the data to receive.
1557 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1558 * no limit.
1559 * @param granulariy If non-zero then the size of the received data has to
1560 * be divisible by this value.
1561 * @param received If not NULL, the size of the received data is stored here.
1562 *
1563 * @return Zero on success or a value from @ref errno.h on failure.
1564 *
1565 */
1566errno_t async_data_write_accept(void **data, const bool nullterm,
1567 const size_t min_size, const size_t max_size, const size_t granularity,
1568 size_t *received)
1569{
1570 assert(data);
1571
1572 ipc_call_t call;
1573 size_t size;
1574 if (!async_data_write_receive(&call, &size)) {
1575 async_answer_0(&call, EINVAL);
1576 return EINVAL;
1577 }
1578
1579 if (size < min_size) {
1580 async_answer_0(&call, EINVAL);
1581 return EINVAL;
1582 }
1583
1584 if ((max_size > 0) && (size > max_size)) {
1585 async_answer_0(&call, EINVAL);
1586 return EINVAL;
1587 }
1588
1589 if ((granularity > 0) && ((size % granularity) != 0)) {
1590 async_answer_0(&call, EINVAL);
1591 return EINVAL;
1592 }
1593
1594 void *arg_data;
1595
1596 if (nullterm)
1597 arg_data = malloc(size + 1);
1598 else
1599 arg_data = malloc(size);
1600
1601 if (arg_data == NULL) {
1602 async_answer_0(&call, ENOMEM);
1603 return ENOMEM;
1604 }
1605
1606 errno_t rc = async_data_write_finalize(&call, arg_data, size);
1607 if (rc != EOK) {
1608 free(arg_data);
1609 return rc;
1610 }
1611
1612 if (nullterm)
1613 ((char *) arg_data)[size] = 0;
1614
1615 *data = arg_data;
1616 if (received != NULL)
1617 *received = size;
1618
1619 return EOK;
1620}
1621
1622/** Wrapper for voiding any data that is about to be received
1623 *
1624 * This wrapper can be used to void any pending data
1625 *
1626 * @param retval Error value from @ref errno.h to be returned to the caller.
1627 *
1628 */
1629void async_data_write_void(errno_t retval)
1630{
1631 ipc_call_t call;
1632 async_data_write_receive(&call, NULL);
1633 async_answer_0(&call, retval);
1634}
1635
1636/** Wrapper for forwarding any data that is about to be received
1637 *
1638 */
1639static errno_t async_data_write_forward_fast(async_exch_t *exch,
1640 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1641 sysarg_t arg4, ipc_call_t *dataptr)
1642{
1643 if (exch == NULL)
1644 return ENOENT;
1645
1646 ipc_call_t call;
1647 if (!async_data_write_receive(&call, NULL)) {
1648 async_answer_0(&call, EINVAL);
1649 return EINVAL;
1650 }
1651
1652 aid_t msg = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1653 dataptr);
1654 if (msg == 0) {
1655 async_answer_0(&call, EINVAL);
1656 return EINVAL;
1657 }
1658
1659 errno_t retval = ipc_forward_fast(call.cap_handle, exch->phone, 0, 0, 0,
1660 IPC_FF_ROUTE_FROM_ME);
1661 if (retval != EOK) {
1662 async_forget(msg);
1663 async_answer_0(&call, retval);
1664 return retval;
1665 }
1666
1667 errno_t rc;
1668 async_wait_for(msg, &rc);
1669
1670 return (errno_t) rc;
1671}
1672
1673errno_t async_data_write_forward_0_0(async_exch_t *exch, sysarg_t imethod)
1674{
1675 return async_data_write_forward_fast(exch, imethod, 0, 0, 0,
1676 0, NULL);
1677}
1678
1679errno_t async_data_write_forward_1_0(async_exch_t *exch, sysarg_t imethod,
1680 sysarg_t arg1)
1681{
1682 return async_data_write_forward_fast(exch, imethod, arg1, 0, 0,
1683 0, NULL);
1684}
1685
1686errno_t async_data_write_forward_2_0(async_exch_t *exch, sysarg_t imethod,
1687 sysarg_t arg1, sysarg_t arg2)
1688{
1689 return async_data_write_forward_fast(exch, imethod, arg1, arg2, 0,
1690 0, NULL);
1691}
1692
1693errno_t async_data_write_forward_3_0(async_exch_t *exch, sysarg_t imethod,
1694 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1695{
1696 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1697 0, NULL);
1698}
1699
1700errno_t async_data_write_forward_4_0(async_exch_t *exch, sysarg_t imethod,
1701 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1702{
1703 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1704 arg4, NULL);
1705}
1706
1707errno_t async_data_write_forward_0_1(async_exch_t *exch, sysarg_t imethod,
1708 ipc_call_t *dataptr)
1709{
1710 return async_data_write_forward_fast(exch, imethod, 0, 0, 0,
1711 0, dataptr);
1712}
1713
1714errno_t async_data_write_forward_1_1(async_exch_t *exch, sysarg_t imethod,
1715 sysarg_t arg1, ipc_call_t *dataptr)
1716{
1717 return async_data_write_forward_fast(exch, imethod, arg1, 0, 0,
1718 0, dataptr);
1719}
1720
1721errno_t async_data_write_forward_2_1(async_exch_t *exch, sysarg_t imethod,
1722 sysarg_t arg1, sysarg_t arg2, ipc_call_t *dataptr)
1723{
1724 return async_data_write_forward_fast(exch, imethod, arg1, arg2, 0,
1725 0, dataptr);
1726}
1727
1728errno_t async_data_write_forward_3_1(async_exch_t *exch, sysarg_t imethod,
1729 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, ipc_call_t *dataptr)
1730{
1731 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1732 0, dataptr);
1733}
1734
1735errno_t async_data_write_forward_4_1(async_exch_t *exch, sysarg_t imethod,
1736 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
1737 ipc_call_t *dataptr)
1738{
1739 return async_data_write_forward_fast(exch, imethod, arg1, arg2, arg3,
1740 arg4, dataptr);
1741}
1742
1743/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1744 *
1745 * If the current call is IPC_M_CONNECT_TO_ME then a new
1746 * async session is created for the accepted phone.
1747 *
1748 * @param mgmt Exchange management style.
1749 *
1750 * @return New async session.
1751 * @return NULL on failure.
1752 *
1753 */
1754async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
1755{
1756 /* Accept the phone */
1757 ipc_call_t call;
1758 async_get_call(&call);
1759
1760 cap_phone_handle_t phandle = (cap_handle_t) ipc_get_arg5(&call);
1761
1762 if ((ipc_get_imethod(&call) != IPC_M_CONNECT_TO_ME) ||
1763 !cap_handle_valid((phandle))) {
1764 async_answer_0(&call, EINVAL);
1765 return NULL;
1766 }
1767
1768 async_sess_t *sess = create_session(phandle, mgmt, 0, 0, 0);
1769 if (sess == NULL) {
1770 ipc_hangup(phandle);
1771 async_answer_0(&call, errno);
1772 } else {
1773 /* Acknowledge the connected phone */
1774 async_answer_0(&call, EOK);
1775 }
1776
1777 return sess;
1778}
1779
1780/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
1781 *
1782 * If the call is IPC_M_CONNECT_TO_ME then a new
1783 * async session is created. However, the phone is
1784 * not accepted automatically.
1785 *
1786 * @param mgmt Exchange management style.
1787 * @param call Call data.
1788 *
1789 * @return New async session.
1790 * @return NULL on failure.
1791 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
1792 *
1793 */
1794async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
1795{
1796 cap_phone_handle_t phandle = (cap_handle_t) ipc_get_arg5(call);
1797
1798 if ((ipc_get_imethod(call) != IPC_M_CONNECT_TO_ME) ||
1799 !cap_handle_valid((phandle)))
1800 return NULL;
1801
1802 return create_session(phandle, mgmt, 0, 0, 0);
1803}
1804
1805bool async_state_change_receive(ipc_call_t *call)
1806{
1807 assert(call);
1808
1809 async_get_call(call);
1810
1811 if (ipc_get_imethod(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
1812 return false;
1813
1814 return true;
1815}
1816
1817errno_t async_state_change_finalize(ipc_call_t *call, async_exch_t *other_exch)
1818{
1819 assert(call);
1820
1821 return async_answer_1(call, EOK, cap_handle_raw(other_exch->phone));
1822}
1823
1824__noreturn void async_manager(void)
1825{
1826 fibril_event_t ever = FIBRIL_EVENT_INIT;
1827 fibril_wait_for(&ever);
1828 __builtin_unreachable();
1829}
1830
1831/** @}
1832 */
Note: See TracBrowser for help on using the repository browser.