source: mainline/uspace/lib/c/generic/async.c@ f6bffee

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since f6bffee was f6bffee, checked in by Jakub Jermar <jakub@…>, 14 years ago

Allow special flags that control processing of IPC_M_DATA_READ/WRITE in
the kernel:

  • IPC_XF_NONE: default behavior
  • IPC_XF_RESTRICT: restrict the transfer size if necessary

Make read() and write() use IPC_XF_RESTRICT.

  • Property mode set to 100644
File size: 47.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs, the async
43 * framework will automatically take care of most synchronization problems.
44 *
45 * Example of use (pseudo C):
46 *
47 * 1) Multithreaded client application
48 *
49 * fibril_create(fibril1, ...);
50 * fibril_create(fibril2, ...);
51 * ...
52 *
53 * int fibril1(void *arg)
54 * {
55 * conn = async_connect_me_to();
56 * c1 = async_send(conn);
57 * c2 = async_send(conn);
58 * async_wait_for(c1);
59 * async_wait_for(c2);
60 * ...
61 * }
62 *
63 *
64 * 2) Multithreaded server application
65 *
66 * main()
67 * {
68 * async_manager();
69 * }
70 *
71 * my_client_connection(icallid, *icall)
72 * {
73 * if (want_refuse) {
74 * async_answer_0(icallid, ELIMIT);
75 * return;
76 * }
77 * async_answer_0(icallid, EOK);
78 *
79 * callid = async_get_call(&call);
80 * somehow_handle_the_call(callid, call);
81 * async_answer_2(callid, 1, 2, 3);
82 *
83 * callid = async_get_call(&call);
84 * ...
85 * }
86 *
87 */
88
89#define LIBC_ASYNC_C_
90#include <ipc/ipc.h>
91#include <async.h>
92#undef LIBC_ASYNC_C_
93
94#include <futex.h>
95#include <fibril.h>
96#include <stdio.h>
97#include <adt/hash_table.h>
98#include <adt/list.h>
99#include <assert.h>
100#include <errno.h>
101#include <sys/time.h>
102#include <arch/barrier.h>
103#include <bool.h>
104#include "private/async.h"
105
106atomic_t async_futex = FUTEX_INITIALIZER;
107
108/** Number of threads waiting for IPC in the kernel. */
109atomic_t threads_in_ipc_wait = { 0 };
110
111typedef struct {
112 awaiter_t wdata;
113
114 /** If reply was received. */
115 bool done;
116
117 /** Pointer to where the answer data is stored. */
118 ipc_call_t *dataptr;
119
120 sysarg_t retval;
121} amsg_t;
122
123/**
124 * Structures of this type are used to group information about
125 * a call and about a message queue link.
126 */
127typedef struct {
128 link_t link;
129 ipc_callid_t callid;
130 ipc_call_t call;
131} msg_t;
132
133typedef struct {
134 sysarg_t in_task_hash;
135 link_t link;
136 int refcnt;
137 void *data;
138} client_t;
139
140typedef struct {
141 awaiter_t wdata;
142
143 /** Hash table link. */
144 link_t link;
145
146 /** Incoming client task hash. */
147 sysarg_t in_task_hash;
148 /** Incoming phone hash. */
149 sysarg_t in_phone_hash;
150
151 /** Link to the client tracking structure. */
152 client_t *client;
153
154 /** Messages that should be delivered to this fibril. */
155 link_t msg_queue;
156
157 /** Identification of the opening call. */
158 ipc_callid_t callid;
159 /** Call data of the opening call. */
160 ipc_call_t call;
161
162 /** Identification of the closing call. */
163 ipc_callid_t close_callid;
164
165 /** Fibril function that will be used to handle the connection. */
166 void (*cfibril)(ipc_callid_t, ipc_call_t *);
167} connection_t;
168
169/** Identifier of the incoming connection handled by the current fibril. */
170static fibril_local connection_t *FIBRIL_connection;
171
172static void *default_client_data_constructor(void)
173{
174 return NULL;
175}
176
177static void default_client_data_destructor(void *data)
178{
179}
180
181static async_client_data_ctor_t async_client_data_create =
182 default_client_data_constructor;
183static async_client_data_dtor_t async_client_data_destroy =
184 default_client_data_destructor;
185
186void async_set_client_data_constructor(async_client_data_ctor_t ctor)
187{
188 async_client_data_create = ctor;
189}
190
191void async_set_client_data_destructor(async_client_data_dtor_t dtor)
192{
193 async_client_data_destroy = dtor;
194}
195
196void *async_client_data_get(void)
197{
198 assert(FIBRIL_connection);
199 return FIBRIL_connection->client->data;
200}
201
202/** Default fibril function that gets called to handle new connection.
203 *
204 * This function is defined as a weak symbol - to be redefined in user code.
205 *
206 * @param callid Hash of the incoming call.
207 * @param call Data of the incoming call.
208 *
209 */
210static void default_client_connection(ipc_callid_t callid, ipc_call_t *call)
211{
212 ipc_answer_0(callid, ENOENT);
213}
214
215/**
216 * Pointer to a fibril function that will be used to handle connections.
217 */
218static async_client_conn_t client_connection = default_client_connection;
219
220/** Default fibril function that gets called to handle interrupt notifications.
221 *
222 * This function is defined as a weak symbol - to be redefined in user code.
223 *
224 * @param callid Hash of the incoming call.
225 * @param call Data of the incoming call.
226 *
227 */
228static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call)
229{
230}
231
232/**
233 * Pointer to a fibril function that will be used to handle interrupt
234 * notifications.
235 */
236static async_client_conn_t interrupt_received = default_interrupt_received;
237
238static hash_table_t client_hash_table;
239static hash_table_t conn_hash_table;
240static LIST_INITIALIZE(timeout_list);
241
242#define CLIENT_HASH_TABLE_BUCKETS 32
243#define CONN_HASH_TABLE_BUCKETS 32
244
245static hash_index_t client_hash(unsigned long key[])
246{
247 assert(key);
248 return (((key[0]) >> 4) % CLIENT_HASH_TABLE_BUCKETS);
249}
250
251static int client_compare(unsigned long key[], hash_count_t keys, link_t *item)
252{
253 client_t *client = hash_table_get_instance(item, client_t, link);
254 return (key[0] == client->in_task_hash);
255}
256
257static void client_remove(link_t *item)
258{
259}
260
261/** Operations for the client hash table. */
262static hash_table_operations_t client_hash_table_ops = {
263 .hash = client_hash,
264 .compare = client_compare,
265 .remove_callback = client_remove
266};
267
268/** Compute hash into the connection hash table based on the source phone hash.
269 *
270 * @param key Pointer to source phone hash.
271 *
272 * @return Index into the connection hash table.
273 *
274 */
275static hash_index_t conn_hash(unsigned long key[])
276{
277 assert(key);
278 return (((key[0]) >> 4) % CONN_HASH_TABLE_BUCKETS);
279}
280
281/** Compare hash table item with a key.
282 *
283 * @param key Array containing the source phone hash as the only item.
284 * @param keys Expected 1 but ignored.
285 * @param item Connection hash table item.
286 *
287 * @return True on match, false otherwise.
288 *
289 */
290static int conn_compare(unsigned long key[], hash_count_t keys, link_t *item)
291{
292 connection_t *conn = hash_table_get_instance(item, connection_t, link);
293 return (key[0] == conn->in_phone_hash);
294}
295
296static void conn_remove(link_t *item)
297{
298}
299
300/** Operations for the connection hash table. */
301static hash_table_operations_t conn_hash_table_ops = {
302 .hash = conn_hash,
303 .compare = conn_compare,
304 .remove_callback = conn_remove
305};
306
307/** Sort in current fibril's timeout request.
308 *
309 * @param wd Wait data of the current fibril.
310 *
311 */
312void async_insert_timeout(awaiter_t *wd)
313{
314 wd->to_event.occurred = false;
315 wd->to_event.inlist = true;
316
317 link_t *tmp = timeout_list.next;
318 while (tmp != &timeout_list) {
319 awaiter_t *cur
320 = list_get_instance(tmp, awaiter_t, to_event.link);
321
322 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
323 break;
324
325 tmp = tmp->next;
326 }
327
328 list_append(&wd->to_event.link, tmp);
329}
330
331/** Try to route a call to an appropriate connection fibril.
332 *
333 * If the proper connection fibril is found, a message with the call is added to
334 * its message queue. If the fibril was not active, it is activated and all
335 * timeouts are unregistered.
336 *
337 * @param callid Hash of the incoming call.
338 * @param call Data of the incoming call.
339 *
340 * @return False if the call doesn't match any connection.
341 * @return True if the call was passed to the respective connection fibril.
342 *
343 */
344static bool route_call(ipc_callid_t callid, ipc_call_t *call)
345{
346 futex_down(&async_futex);
347
348 unsigned long key = call->in_phone_hash;
349 link_t *hlp = hash_table_find(&conn_hash_table, &key);
350
351 if (!hlp) {
352 futex_up(&async_futex);
353 return false;
354 }
355
356 connection_t *conn = hash_table_get_instance(hlp, connection_t, link);
357
358 msg_t *msg = malloc(sizeof(*msg));
359 if (!msg) {
360 futex_up(&async_futex);
361 return false;
362 }
363
364 msg->callid = callid;
365 msg->call = *call;
366 list_append(&msg->link, &conn->msg_queue);
367
368 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
369 conn->close_callid = callid;
370
371 /* If the connection fibril is waiting for an event, activate it */
372 if (!conn->wdata.active) {
373
374 /* If in timeout list, remove it */
375 if (conn->wdata.to_event.inlist) {
376 conn->wdata.to_event.inlist = false;
377 list_remove(&conn->wdata.to_event.link);
378 }
379
380 conn->wdata.active = true;
381 fibril_add_ready(conn->wdata.fid);
382 }
383
384 futex_up(&async_futex);
385 return true;
386}
387
388/** Notification fibril.
389 *
390 * When a notification arrives, a fibril with this implementing function is
391 * created. It calls interrupt_received() and does the final cleanup.
392 *
393 * @param arg Message structure pointer.
394 *
395 * @return Always zero.
396 *
397 */
398static int notification_fibril(void *arg)
399{
400 msg_t *msg = (msg_t *) arg;
401 interrupt_received(msg->callid, &msg->call);
402
403 free(msg);
404 return 0;
405}
406
407/** Process interrupt notification.
408 *
409 * A new fibril is created which would process the notification.
410 *
411 * @param callid Hash of the incoming call.
412 * @param call Data of the incoming call.
413 *
414 * @return False if an error occured.
415 * True if the call was passed to the notification fibril.
416 *
417 */
418static bool process_notification(ipc_callid_t callid, ipc_call_t *call)
419{
420 futex_down(&async_futex);
421
422 msg_t *msg = malloc(sizeof(*msg));
423 if (!msg) {
424 futex_up(&async_futex);
425 return false;
426 }
427
428 msg->callid = callid;
429 msg->call = *call;
430
431 fid_t fid = fibril_create(notification_fibril, msg);
432 if (fid == 0) {
433 free(msg);
434 futex_up(&async_futex);
435 return false;
436 }
437
438 fibril_add_ready(fid);
439
440 futex_up(&async_futex);
441 return true;
442}
443
444/** Return new incoming message for the current (fibril-local) connection.
445 *
446 * @param call Storage where the incoming call data will be stored.
447 * @param usecs Timeout in microseconds. Zero denotes no timeout.
448 *
449 * @return If no timeout was specified, then a hash of the
450 * incoming call is returned. If a timeout is specified,
451 * then a hash of the incoming call is returned unless
452 * the timeout expires prior to receiving a message. In
453 * that case zero is returned.
454 *
455 */
456ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
457{
458 assert(FIBRIL_connection);
459
460 /* Why doing this?
461 * GCC 4.1.0 coughs on FIBRIL_connection-> dereference.
462 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
463 * I would never expect to find so many errors in
464 * a compiler.
465 */
466 connection_t *conn = FIBRIL_connection;
467
468 futex_down(&async_futex);
469
470 if (usecs) {
471 gettimeofday(&conn->wdata.to_event.expires, NULL);
472 tv_add(&conn->wdata.to_event.expires, usecs);
473 } else
474 conn->wdata.to_event.inlist = false;
475
476 /* If nothing in queue, wait until something arrives */
477 while (list_empty(&conn->msg_queue)) {
478 if (conn->close_callid) {
479 /*
480 * Handle the case when the connection was already
481 * closed by the client but the server did not notice
482 * the first IPC_M_PHONE_HUNGUP call and continues to
483 * call async_get_call_timeout(). Repeat
484 * IPC_M_PHONE_HUNGUP until the caller notices.
485 */
486 memset(call, 0, sizeof(ipc_call_t));
487 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
488 futex_up(&async_futex);
489 return conn->close_callid;
490 }
491
492 if (usecs)
493 async_insert_timeout(&conn->wdata);
494
495 conn->wdata.active = false;
496
497 /*
498 * Note: the current fibril will be rescheduled either due to a
499 * timeout or due to an arriving message destined to it. In the
500 * former case, handle_expired_timeouts() and, in the latter
501 * case, route_call() will perform the wakeup.
502 */
503 fibril_switch(FIBRIL_TO_MANAGER);
504
505 /*
506 * Futex is up after getting back from async_manager.
507 * Get it again.
508 */
509 futex_down(&async_futex);
510 if ((usecs) && (conn->wdata.to_event.occurred)
511 && (list_empty(&conn->msg_queue))) {
512 /* If we timed out -> exit */
513 futex_up(&async_futex);
514 return 0;
515 }
516 }
517
518 msg_t *msg = list_get_instance(conn->msg_queue.next, msg_t, link);
519 list_remove(&msg->link);
520
521 ipc_callid_t callid = msg->callid;
522 *call = msg->call;
523 free(msg);
524
525 futex_up(&async_futex);
526 return callid;
527}
528
529/** Wrapper for client connection fibril.
530 *
531 * When a new connection arrives, a fibril with this implementing function is
532 * created. It calls client_connection() and does the final cleanup.
533 *
534 * @param arg Connection structure pointer.
535 *
536 * @return Always zero.
537 *
538 */
539static int connection_fibril(void *arg)
540{
541 /*
542 * Setup fibril-local connection pointer.
543 */
544 FIBRIL_connection = (connection_t *) arg;
545
546 futex_down(&async_futex);
547
548 /*
549 * Add our reference for the current connection in the client task
550 * tracking structure. If this is the first reference, create and
551 * hash in a new tracking structure.
552 */
553
554 unsigned long key = FIBRIL_connection->in_task_hash;
555 link_t *lnk = hash_table_find(&client_hash_table, &key);
556
557 client_t *client;
558
559 if (lnk) {
560 client = hash_table_get_instance(lnk, client_t, link);
561 client->refcnt++;
562 } else {
563 client = malloc(sizeof(client_t));
564 if (!client) {
565 ipc_answer_0(FIBRIL_connection->callid, ENOMEM);
566 futex_up(&async_futex);
567 return 0;
568 }
569
570 client->in_task_hash = FIBRIL_connection->in_task_hash;
571
572 async_serialize_start();
573 client->data = async_client_data_create();
574 async_serialize_end();
575
576 client->refcnt = 1;
577 hash_table_insert(&client_hash_table, &key, &client->link);
578 }
579
580 futex_up(&async_futex);
581
582 FIBRIL_connection->client = client;
583
584 /*
585 * Call the connection handler function.
586 */
587 FIBRIL_connection->cfibril(FIBRIL_connection->callid,
588 &FIBRIL_connection->call);
589
590 /*
591 * Remove the reference for this client task connection.
592 */
593 bool destroy;
594
595 futex_down(&async_futex);
596
597 if (--client->refcnt == 0) {
598 hash_table_remove(&client_hash_table, &key, 1);
599 destroy = true;
600 } else
601 destroy = false;
602
603 futex_up(&async_futex);
604
605 if (destroy) {
606 if (client->data)
607 async_client_data_destroy(client->data);
608
609 free(client);
610 }
611
612 /*
613 * Remove myself from the connection hash table.
614 */
615 futex_down(&async_futex);
616 key = FIBRIL_connection->in_phone_hash;
617 hash_table_remove(&conn_hash_table, &key, 1);
618 futex_up(&async_futex);
619
620 /*
621 * Answer all remaining messages with EHANGUP.
622 */
623 while (!list_empty(&FIBRIL_connection->msg_queue)) {
624 msg_t *msg =
625 list_get_instance(FIBRIL_connection->msg_queue.next, msg_t,
626 link);
627
628 list_remove(&msg->link);
629 ipc_answer_0(msg->callid, EHANGUP);
630 free(msg);
631 }
632
633 /*
634 * If the connection was hung-up, answer the last call,
635 * i.e. IPC_M_PHONE_HUNGUP.
636 */
637 if (FIBRIL_connection->close_callid)
638 ipc_answer_0(FIBRIL_connection->close_callid, EOK);
639
640 free(FIBRIL_connection);
641 return 0;
642}
643
644/** Create a new fibril for a new connection.
645 *
646 * Create new fibril for connection, fill in connection structures and inserts
647 * it into the hash table, so that later we can easily do routing of messages to
648 * particular fibrils.
649 *
650 * @param in_task_hash Identification of the incoming connection.
651 * @param in_phone_hash Identification of the incoming connection.
652 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
653 * If callid is zero, the connection was opened by
654 * accepting the IPC_M_CONNECT_TO_ME call and this function
655 * is called directly by the server.
656 * @param call Call data of the opening call.
657 * @param cfibril Fibril function that should be called upon opening the
658 * connection.
659 *
660 * @return New fibril id or NULL on failure.
661 *
662 */
663fid_t async_new_connection(sysarg_t in_task_hash, sysarg_t in_phone_hash,
664 ipc_callid_t callid, ipc_call_t *call,
665 void (*cfibril)(ipc_callid_t, ipc_call_t *))
666{
667 connection_t *conn = malloc(sizeof(*conn));
668 if (!conn) {
669 if (callid)
670 ipc_answer_0(callid, ENOMEM);
671
672 return (uintptr_t) NULL;
673 }
674
675 conn->in_task_hash = in_task_hash;
676 conn->in_phone_hash = in_phone_hash;
677 list_initialize(&conn->msg_queue);
678 conn->callid = callid;
679 conn->close_callid = 0;
680
681 if (call)
682 conn->call = *call;
683
684 /* We will activate the fibril ASAP */
685 conn->wdata.active = true;
686 conn->cfibril = cfibril;
687 conn->wdata.fid = fibril_create(connection_fibril, conn);
688
689 if (conn->wdata.fid == 0) {
690 free(conn);
691
692 if (callid)
693 ipc_answer_0(callid, ENOMEM);
694
695 return (uintptr_t) NULL;
696 }
697
698 /* Add connection to the connection hash table */
699 unsigned long key = conn->in_phone_hash;
700
701 futex_down(&async_futex);
702 hash_table_insert(&conn_hash_table, &key, &conn->link);
703 futex_up(&async_futex);
704
705 fibril_add_ready(conn->wdata.fid);
706
707 return conn->wdata.fid;
708}
709
710/** Handle a call that was received.
711 *
712 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
713 * Otherwise the call is routed to its connection fibril.
714 *
715 * @param callid Hash of the incoming call.
716 * @param call Data of the incoming call.
717 *
718 */
719static void handle_call(ipc_callid_t callid, ipc_call_t *call)
720{
721 /* Unrouted call - take some default action */
722 if ((callid & IPC_CALLID_NOTIFICATION)) {
723 process_notification(callid, call);
724 return;
725 }
726
727 switch (IPC_GET_IMETHOD(*call)) {
728 case IPC_M_CONNECT_ME:
729 case IPC_M_CONNECT_ME_TO:
730 /* Open new connection with fibril, etc. */
731 async_new_connection(call->in_task_hash, IPC_GET_ARG5(*call),
732 callid, call, client_connection);
733 return;
734 }
735
736 /* Try to route the call through the connection hash table */
737 if (route_call(callid, call))
738 return;
739
740 /* Unknown call from unknown phone - hang it up */
741 ipc_answer_0(callid, EHANGUP);
742}
743
744/** Fire all timeouts that expired. */
745static void handle_expired_timeouts(void)
746{
747 struct timeval tv;
748 gettimeofday(&tv, NULL);
749
750 futex_down(&async_futex);
751
752 link_t *cur = timeout_list.next;
753 while (cur != &timeout_list) {
754 awaiter_t *waiter =
755 list_get_instance(cur, awaiter_t, to_event.link);
756
757 if (tv_gt(&waiter->to_event.expires, &tv))
758 break;
759
760 cur = cur->next;
761
762 list_remove(&waiter->to_event.link);
763 waiter->to_event.inlist = false;
764 waiter->to_event.occurred = true;
765
766 /*
767 * Redundant condition?
768 * The fibril should not be active when it gets here.
769 */
770 if (!waiter->active) {
771 waiter->active = true;
772 fibril_add_ready(waiter->fid);
773 }
774 }
775
776 futex_up(&async_futex);
777}
778
779/** Endless loop dispatching incoming calls and answers.
780 *
781 * @return Never returns.
782 *
783 */
784static int async_manager_worker(void)
785{
786 while (true) {
787 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
788 futex_up(&async_futex);
789 /*
790 * async_futex is always held when entering a manager
791 * fibril.
792 */
793 continue;
794 }
795
796 futex_down(&async_futex);
797
798 suseconds_t timeout;
799 if (!list_empty(&timeout_list)) {
800 awaiter_t *waiter = list_get_instance(timeout_list.next,
801 awaiter_t, to_event.link);
802
803 struct timeval tv;
804 gettimeofday(&tv, NULL);
805
806 if (tv_gteq(&tv, &waiter->to_event.expires)) {
807 futex_up(&async_futex);
808 handle_expired_timeouts();
809 continue;
810 } else
811 timeout = tv_sub(&waiter->to_event.expires, &tv);
812 } else
813 timeout = SYNCH_NO_TIMEOUT;
814
815 futex_up(&async_futex);
816
817 atomic_inc(&threads_in_ipc_wait);
818
819 ipc_call_t call;
820 ipc_callid_t callid = ipc_wait_cycle(&call, timeout,
821 SYNCH_FLAGS_NONE);
822
823 atomic_dec(&threads_in_ipc_wait);
824
825 if (!callid) {
826 handle_expired_timeouts();
827 continue;
828 }
829
830 if (callid & IPC_CALLID_ANSWERED)
831 continue;
832
833 handle_call(callid, &call);
834 }
835
836 return 0;
837}
838
839/** Function to start async_manager as a standalone fibril.
840 *
841 * When more kernel threads are used, one async manager should exist per thread.
842 *
843 * @param arg Unused.
844 * @return Never returns.
845 *
846 */
847static int async_manager_fibril(void *arg)
848{
849 futex_up(&async_futex);
850
851 /*
852 * async_futex is always locked when entering manager
853 */
854 async_manager_worker();
855
856 return 0;
857}
858
859/** Add one manager to manager list. */
860void async_create_manager(void)
861{
862 fid_t fid = fibril_create(async_manager_fibril, NULL);
863 if (fid != 0)
864 fibril_add_manager(fid);
865}
866
867/** Remove one manager from manager list */
868void async_destroy_manager(void)
869{
870 fibril_remove_manager();
871}
872
873/** Initialize the async framework.
874 *
875 */
876void __async_init(void)
877{
878 if (!hash_table_create(&client_hash_table, CLIENT_HASH_TABLE_BUCKETS, 1,
879 &client_hash_table_ops))
880 abort();
881
882 if (!hash_table_create(&conn_hash_table, CONN_HASH_TABLE_BUCKETS, 1,
883 &conn_hash_table_ops))
884 abort();
885}
886
887/** Reply received callback.
888 *
889 * This function is called whenever a reply for an asynchronous message sent out
890 * by the asynchronous framework is received.
891 *
892 * Notify the fibril which is waiting for this message that it has arrived.
893 *
894 * @param arg Pointer to the asynchronous message record.
895 * @param retval Value returned in the answer.
896 * @param data Call data of the answer.
897 *
898 */
899static void reply_received(void *arg, int retval, ipc_call_t *data)
900{
901 futex_down(&async_futex);
902
903 amsg_t *msg = (amsg_t *) arg;
904 msg->retval = retval;
905
906 /* Copy data after futex_down, just in case the call was detached */
907 if ((msg->dataptr) && (data))
908 *msg->dataptr = *data;
909
910 write_barrier();
911
912 /* Remove message from timeout list */
913 if (msg->wdata.to_event.inlist)
914 list_remove(&msg->wdata.to_event.link);
915
916 msg->done = true;
917 if (!msg->wdata.active) {
918 msg->wdata.active = true;
919 fibril_add_ready(msg->wdata.fid);
920 }
921
922 futex_up(&async_futex);
923}
924
925/** Send message and return id of the sent message.
926 *
927 * The return value can be used as input for async_wait() to wait for
928 * completion.
929 *
930 * @param phoneid Handle of the phone that will be used for the send.
931 * @param method Service-defined method.
932 * @param arg1 Service-defined payload argument.
933 * @param arg2 Service-defined payload argument.
934 * @param arg3 Service-defined payload argument.
935 * @param arg4 Service-defined payload argument.
936 * @param dataptr If non-NULL, storage where the reply data will be
937 * stored.
938 *
939 * @return Hash of the sent message or 0 on error.
940 *
941 */
942aid_t async_send_fast(int phoneid, sysarg_t method, sysarg_t arg1,
943 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
944{
945 amsg_t *msg = malloc(sizeof(amsg_t));
946
947 if (!msg)
948 return 0;
949
950 msg->done = false;
951 msg->dataptr = dataptr;
952
953 msg->wdata.to_event.inlist = false;
954
955 /*
956 * We may sleep in the next method,
957 * but it will use its own means
958 */
959 msg->wdata.active = true;
960
961 ipc_call_async_4(phoneid, method, arg1, arg2, arg3, arg4, msg,
962 reply_received, true);
963
964 return (aid_t) msg;
965}
966
967/** Send message and return id of the sent message
968 *
969 * The return value can be used as input for async_wait() to wait for
970 * completion.
971 *
972 * @param phoneid Handle of the phone that will be used for the send.
973 * @param method Service-defined method.
974 * @param arg1 Service-defined payload argument.
975 * @param arg2 Service-defined payload argument.
976 * @param arg3 Service-defined payload argument.
977 * @param arg4 Service-defined payload argument.
978 * @param arg5 Service-defined payload argument.
979 * @param dataptr If non-NULL, storage where the reply data will be
980 * stored.
981 *
982 * @return Hash of the sent message or 0 on error.
983 *
984 */
985aid_t async_send_slow(int phoneid, sysarg_t method, sysarg_t arg1,
986 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
987 ipc_call_t *dataptr)
988{
989 amsg_t *msg = malloc(sizeof(amsg_t));
990
991 if (!msg)
992 return 0;
993
994 msg->done = false;
995 msg->dataptr = dataptr;
996
997 msg->wdata.to_event.inlist = false;
998
999 /*
1000 * We may sleep in the next method,
1001 * but it will use its own means
1002 */
1003 msg->wdata.active = true;
1004
1005 ipc_call_async_5(phoneid, method, arg1, arg2, arg3, arg4, arg5, msg,
1006 reply_received, true);
1007
1008 return (aid_t) msg;
1009}
1010
1011/** Wait for a message sent by the async framework.
1012 *
1013 * @param amsgid Hash of the message to wait for.
1014 * @param retval Pointer to storage where the retval of the answer will
1015 * be stored.
1016 *
1017 */
1018void async_wait_for(aid_t amsgid, sysarg_t *retval)
1019{
1020 amsg_t *msg = (amsg_t *) amsgid;
1021
1022 futex_down(&async_futex);
1023 if (msg->done) {
1024 futex_up(&async_futex);
1025 goto done;
1026 }
1027
1028 msg->wdata.fid = fibril_get_id();
1029 msg->wdata.active = false;
1030 msg->wdata.to_event.inlist = false;
1031
1032 /* Leave the async_futex locked when entering this function */
1033 fibril_switch(FIBRIL_TO_MANAGER);
1034
1035 /* Futex is up automatically after fibril_switch */
1036
1037done:
1038 if (retval)
1039 *retval = msg->retval;
1040
1041 free(msg);
1042}
1043
1044/** Wait for a message sent by the async framework, timeout variant.
1045 *
1046 * @param amsgid Hash of the message to wait for.
1047 * @param retval Pointer to storage where the retval of the answer will
1048 * be stored.
1049 * @param timeout Timeout in microseconds.
1050 *
1051 * @return Zero on success, ETIMEOUT if the timeout has expired.
1052 *
1053 */
1054int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1055{
1056 amsg_t *msg = (amsg_t *) amsgid;
1057
1058 /* TODO: Let it go through the event read at least once */
1059 if (timeout < 0)
1060 return ETIMEOUT;
1061
1062 futex_down(&async_futex);
1063 if (msg->done) {
1064 futex_up(&async_futex);
1065 goto done;
1066 }
1067
1068 gettimeofday(&msg->wdata.to_event.expires, NULL);
1069 tv_add(&msg->wdata.to_event.expires, timeout);
1070
1071 msg->wdata.fid = fibril_get_id();
1072 msg->wdata.active = false;
1073 async_insert_timeout(&msg->wdata);
1074
1075 /* Leave the async_futex locked when entering this function */
1076 fibril_switch(FIBRIL_TO_MANAGER);
1077
1078 /* Futex is up automatically after fibril_switch */
1079
1080 if (!msg->done)
1081 return ETIMEOUT;
1082
1083done:
1084 if (retval)
1085 *retval = msg->retval;
1086
1087 free(msg);
1088
1089 return 0;
1090}
1091
1092/** Wait for specified time.
1093 *
1094 * The current fibril is suspended but the thread continues to execute.
1095 *
1096 * @param timeout Duration of the wait in microseconds.
1097 *
1098 */
1099void async_usleep(suseconds_t timeout)
1100{
1101 amsg_t *msg = malloc(sizeof(amsg_t));
1102
1103 if (!msg)
1104 return;
1105
1106 msg->wdata.fid = fibril_get_id();
1107 msg->wdata.active = false;
1108
1109 gettimeofday(&msg->wdata.to_event.expires, NULL);
1110 tv_add(&msg->wdata.to_event.expires, timeout);
1111
1112 futex_down(&async_futex);
1113
1114 async_insert_timeout(&msg->wdata);
1115
1116 /* Leave the async_futex locked when entering this function */
1117 fibril_switch(FIBRIL_TO_MANAGER);
1118
1119 /* Futex is up automatically after fibril_switch() */
1120
1121 free(msg);
1122}
1123
1124/** Setter for client_connection function pointer.
1125 *
1126 * @param conn Function that will implement a new connection fibril.
1127 *
1128 */
1129void async_set_client_connection(async_client_conn_t conn)
1130{
1131 client_connection = conn;
1132}
1133
1134/** Setter for interrupt_received function pointer.
1135 *
1136 * @param intr Function that will implement a new interrupt
1137 * notification fibril.
1138 */
1139void async_set_interrupt_received(async_client_conn_t intr)
1140{
1141 interrupt_received = intr;
1142}
1143
1144/** Pseudo-synchronous message sending - fast version.
1145 *
1146 * Send message asynchronously and return only after the reply arrives.
1147 *
1148 * This function can only transfer 4 register payload arguments. For
1149 * transferring more arguments, see the slower async_req_slow().
1150 *
1151 * @param phoneid Hash of the phone through which to make the call.
1152 * @param method Method of the call.
1153 * @param arg1 Service-defined payload argument.
1154 * @param arg2 Service-defined payload argument.
1155 * @param arg3 Service-defined payload argument.
1156 * @param arg4 Service-defined payload argument.
1157 * @param r1 If non-NULL, storage for the 1st reply argument.
1158 * @param r2 If non-NULL, storage for the 2nd reply argument.
1159 * @param r3 If non-NULL, storage for the 3rd reply argument.
1160 * @param r4 If non-NULL, storage for the 4th reply argument.
1161 * @param r5 If non-NULL, storage for the 5th reply argument.
1162 *
1163 * @return Return code of the reply or a negative error code.
1164 *
1165 */
1166sysarg_t async_req_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1167 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1168 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1169{
1170 ipc_call_t result;
1171 aid_t eid = async_send_4(phoneid, method, arg1, arg2, arg3, arg4,
1172 &result);
1173
1174 sysarg_t rc;
1175 async_wait_for(eid, &rc);
1176
1177 if (r1)
1178 *r1 = IPC_GET_ARG1(result);
1179
1180 if (r2)
1181 *r2 = IPC_GET_ARG2(result);
1182
1183 if (r3)
1184 *r3 = IPC_GET_ARG3(result);
1185
1186 if (r4)
1187 *r4 = IPC_GET_ARG4(result);
1188
1189 if (r5)
1190 *r5 = IPC_GET_ARG5(result);
1191
1192 return rc;
1193}
1194
1195/** Pseudo-synchronous message sending - slow version.
1196 *
1197 * Send message asynchronously and return only after the reply arrives.
1198 *
1199 * @param phoneid Hash of the phone through which to make the call.
1200 * @param method Method of the call.
1201 * @param arg1 Service-defined payload argument.
1202 * @param arg2 Service-defined payload argument.
1203 * @param arg3 Service-defined payload argument.
1204 * @param arg4 Service-defined payload argument.
1205 * @param arg5 Service-defined payload argument.
1206 * @param r1 If non-NULL, storage for the 1st reply argument.
1207 * @param r2 If non-NULL, storage for the 2nd reply argument.
1208 * @param r3 If non-NULL, storage for the 3rd reply argument.
1209 * @param r4 If non-NULL, storage for the 4th reply argument.
1210 * @param r5 If non-NULL, storage for the 5th reply argument.
1211 *
1212 * @return Return code of the reply or a negative error code.
1213 *
1214 */
1215sysarg_t async_req_slow(int phoneid, sysarg_t method, sysarg_t arg1,
1216 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1217 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1218{
1219 ipc_call_t result;
1220 aid_t eid = async_send_5(phoneid, method, arg1, arg2, arg3, arg4, arg5,
1221 &result);
1222
1223 sysarg_t rc;
1224 async_wait_for(eid, &rc);
1225
1226 if (r1)
1227 *r1 = IPC_GET_ARG1(result);
1228
1229 if (r2)
1230 *r2 = IPC_GET_ARG2(result);
1231
1232 if (r3)
1233 *r3 = IPC_GET_ARG3(result);
1234
1235 if (r4)
1236 *r4 = IPC_GET_ARG4(result);
1237
1238 if (r5)
1239 *r5 = IPC_GET_ARG5(result);
1240
1241 return rc;
1242}
1243
1244void async_msg_0(int phone, sysarg_t imethod)
1245{
1246 ipc_call_async_0(phone, imethod, NULL, NULL, true);
1247}
1248
1249void async_msg_1(int phone, sysarg_t imethod, sysarg_t arg1)
1250{
1251 ipc_call_async_1(phone, imethod, arg1, NULL, NULL, true);
1252}
1253
1254void async_msg_2(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2)
1255{
1256 ipc_call_async_2(phone, imethod, arg1, arg2, NULL, NULL, true);
1257}
1258
1259void async_msg_3(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1260 sysarg_t arg3)
1261{
1262 ipc_call_async_3(phone, imethod, arg1, arg2, arg3, NULL, NULL, true);
1263}
1264
1265void async_msg_4(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1266 sysarg_t arg3, sysarg_t arg4)
1267{
1268 ipc_call_async_4(phone, imethod, arg1, arg2, arg3, arg4, NULL, NULL,
1269 true);
1270}
1271
1272void async_msg_5(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1273 sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1274{
1275 ipc_call_async_5(phone, imethod, arg1, arg2, arg3, arg4, arg5, NULL,
1276 NULL, true);
1277}
1278
1279sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
1280{
1281 return ipc_answer_0(callid, retval);
1282}
1283
1284sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
1285{
1286 return ipc_answer_1(callid, retval, arg1);
1287}
1288
1289sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1290 sysarg_t arg2)
1291{
1292 return ipc_answer_2(callid, retval, arg1, arg2);
1293}
1294
1295sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1296 sysarg_t arg2, sysarg_t arg3)
1297{
1298 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
1299}
1300
1301sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1302 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1303{
1304 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
1305}
1306
1307sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1308 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1309{
1310 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
1311}
1312
1313int async_forward_fast(ipc_callid_t callid, int phoneid, sysarg_t imethod,
1314 sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1315{
1316 return ipc_forward_fast(callid, phoneid, imethod, arg1, arg2, mode);
1317}
1318
1319int async_forward_slow(ipc_callid_t callid, int phoneid, sysarg_t imethod,
1320 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1321 unsigned int mode)
1322{
1323 return ipc_forward_slow(callid, phoneid, imethod, arg1, arg2, arg3, arg4,
1324 arg5, mode);
1325}
1326
1327/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1328 *
1329 * Ask through phone for a new connection to some service.
1330 *
1331 * @param phone Phone handle used for contacting the other side.
1332 * @param arg1 User defined argument.
1333 * @param arg2 User defined argument.
1334 * @param arg3 User defined argument.
1335 * @param client_receiver Connection handing routine.
1336 *
1337 * @return New phone handle on success or a negative error code.
1338 *
1339 */
1340int async_connect_to_me(int phone, sysarg_t arg1, sysarg_t arg2,
1341 sysarg_t arg3, async_client_conn_t client_receiver)
1342{
1343 sysarg_t task_hash;
1344 sysarg_t phone_hash;
1345 int rc = async_req_3_5(phone, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1346 NULL, NULL, NULL, &task_hash, &phone_hash);
1347 if (rc != EOK)
1348 return rc;
1349
1350 if (client_receiver != NULL)
1351 async_new_connection(task_hash, phone_hash, 0, NULL,
1352 client_receiver);
1353
1354 return EOK;
1355}
1356
1357/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1358 *
1359 * Ask through phone for a new connection to some service.
1360 *
1361 * @param phone Phone handle used for contacting the other side.
1362 * @param arg1 User defined argument.
1363 * @param arg2 User defined argument.
1364 * @param arg3 User defined argument.
1365 *
1366 * @return New phone handle on success or a negative error code.
1367 *
1368 */
1369int async_connect_me_to(int phone, sysarg_t arg1, sysarg_t arg2,
1370 sysarg_t arg3)
1371{
1372 sysarg_t newphid;
1373 int rc = async_req_3_5(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3,
1374 NULL, NULL, NULL, NULL, &newphid);
1375
1376 if (rc != EOK)
1377 return rc;
1378
1379 return newphid;
1380}
1381
1382/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1383 *
1384 * Ask through phone for a new connection to some service and block until
1385 * success.
1386 *
1387 * @param phoneid Phone handle used for contacting the other side.
1388 * @param arg1 User defined argument.
1389 * @param arg2 User defined argument.
1390 * @param arg3 User defined argument.
1391 *
1392 * @return New phone handle on success or a negative error code.
1393 *
1394 */
1395int async_connect_me_to_blocking(int phoneid, sysarg_t arg1, sysarg_t arg2,
1396 sysarg_t arg3)
1397{
1398 sysarg_t newphid;
1399 int rc = async_req_4_5(phoneid, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3,
1400 IPC_FLAG_BLOCKING, NULL, NULL, NULL, NULL, &newphid);
1401
1402 if (rc != EOK)
1403 return rc;
1404
1405 return newphid;
1406}
1407
1408/** Connect to a task specified by id.
1409 *
1410 */
1411int async_connect_kbox(task_id_t id)
1412{
1413 return ipc_connect_kbox(id);
1414}
1415
1416/** Wrapper for ipc_hangup.
1417 *
1418 * @param phone Phone handle to hung up.
1419 *
1420 * @return Zero on success or a negative error code.
1421 *
1422 */
1423int async_hangup(int phone)
1424{
1425 return ipc_hangup(phone);
1426}
1427
1428/** Interrupt one thread of this task from waiting for IPC. */
1429void async_poke(void)
1430{
1431 ipc_poke();
1432}
1433
1434/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
1435 *
1436 * @param phoneid Phone that will be used to contact the receiving side.
1437 * @param dst Destination address space area base.
1438 * @param size Size of the destination address space area.
1439 * @param arg User defined argument.
1440 * @param flags Storage for the received flags. Can be NULL.
1441 *
1442 * @return Zero on success or a negative error code from errno.h.
1443 *
1444 */
1445int async_share_in_start(int phoneid, void *dst, size_t size, sysarg_t arg,
1446 unsigned int *flags)
1447{
1448 sysarg_t tmp_flags;
1449 int res = async_req_3_2(phoneid, IPC_M_SHARE_IN, (sysarg_t) dst,
1450 (sysarg_t) size, arg, NULL, &tmp_flags);
1451
1452 if (flags)
1453 *flags = (unsigned int) tmp_flags;
1454
1455 return res;
1456}
1457
1458/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1459 *
1460 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1461 * calls so that the user doesn't have to remember the meaning of each IPC
1462 * argument.
1463 *
1464 * So far, this wrapper is to be used from within a connection fibril.
1465 *
1466 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
1467 * @param size Destination address space area size.
1468 *
1469 * @return True on success, false on failure.
1470 *
1471 */
1472bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
1473{
1474 assert(callid);
1475 assert(size);
1476
1477 ipc_call_t data;
1478 *callid = async_get_call(&data);
1479
1480 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
1481 return false;
1482
1483 *size = (size_t) IPC_GET_ARG2(data);
1484 return true;
1485}
1486
1487/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1488 *
1489 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1490 * calls so that the user doesn't have to remember the meaning of each IPC
1491 * argument.
1492 *
1493 * @param callid Hash of the IPC_M_DATA_READ call to answer.
1494 * @param src Source address space base.
1495 * @param flags Flags to be used for sharing. Bits can be only cleared.
1496 *
1497 * @return Zero on success or a value from @ref errno.h on failure.
1498 *
1499 */
1500int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
1501{
1502 return ipc_share_in_finalize(callid, src, flags);
1503}
1504
1505/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
1506 *
1507 * @param phoneid Phone that will be used to contact the receiving side.
1508 * @param src Source address space area base address.
1509 * @param flags Flags to be used for sharing. Bits can be only cleared.
1510 *
1511 * @return Zero on success or a negative error code from errno.h.
1512 *
1513 */
1514int async_share_out_start(int phoneid, void *src, unsigned int flags)
1515{
1516 return async_req_3_0(phoneid, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
1517 (sysarg_t) flags);
1518}
1519
1520/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1521 *
1522 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1523 * calls so that the user doesn't have to remember the meaning of each IPC
1524 * argument.
1525 *
1526 * So far, this wrapper is to be used from within a connection fibril.
1527 *
1528 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
1529 * @param size Storage for the source address space area size.
1530 * @param flags Storage for the sharing flags.
1531 *
1532 * @return True on success, false on failure.
1533 *
1534 */
1535bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
1536{
1537 assert(callid);
1538 assert(size);
1539 assert(flags);
1540
1541 ipc_call_t data;
1542 *callid = async_get_call(&data);
1543
1544 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
1545 return false;
1546
1547 *size = (size_t) IPC_GET_ARG2(data);
1548 *flags = (unsigned int) IPC_GET_ARG3(data);
1549 return true;
1550}
1551
1552/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1553 *
1554 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1555 * calls so that the user doesn't have to remember the meaning of each IPC
1556 * argument.
1557 *
1558 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
1559 * @param dst Destination address space area base address.
1560 *
1561 * @return Zero on success or a value from @ref errno.h on failure.
1562 *
1563 */
1564int async_share_out_finalize(ipc_callid_t callid, void *dst)
1565{
1566 return ipc_share_out_finalize(callid, dst);
1567}
1568
1569/** Wrapper for IPC_M_DATA_READ calls using the async framework.
1570 *
1571 * @param phoneid Phone that will be used to contact the receiving side.
1572 * @param dst Address of the beginning of the destination buffer.
1573 * @param size Size of the destination buffer.
1574 * @param flags Flags to control the data transfer.
1575 *
1576 * @return Zero on success or a negative error code from errno.h.
1577 *
1578 */
1579int
1580async_data_read_start_flexible(int phoneid, void *dst, size_t size, int flags)
1581{
1582 return async_req_3_0(phoneid, IPC_M_DATA_READ, (sysarg_t) dst,
1583 (sysarg_t) size, (sysarg_t) flags);
1584}
1585
1586/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1587 *
1588 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1589 * calls so that the user doesn't have to remember the meaning of each IPC
1590 * argument.
1591 *
1592 * So far, this wrapper is to be used from within a connection fibril.
1593 *
1594 * @param callid Storage for the hash of the IPC_M_DATA_READ.
1595 * @param size Storage for the maximum size. Can be NULL.
1596 *
1597 * @return True on success, false on failure.
1598 *
1599 */
1600bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
1601{
1602 assert(callid);
1603
1604 ipc_call_t data;
1605 *callid = async_get_call(&data);
1606
1607 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_READ)
1608 return false;
1609
1610 if (size)
1611 *size = (size_t) IPC_GET_ARG2(data);
1612
1613 return true;
1614}
1615
1616/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1617 *
1618 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1619 * calls so that the user doesn't have to remember the meaning of each IPC
1620 * argument.
1621 *
1622 * @param callid Hash of the IPC_M_DATA_READ call to answer.
1623 * @param src Source address for the IPC_M_DATA_READ call.
1624 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1625 * the maximum size announced by the sender.
1626 *
1627 * @return Zero on success or a value from @ref errno.h on failure.
1628 *
1629 */
1630int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
1631{
1632 return ipc_data_read_finalize(callid, src, size);
1633}
1634
1635/** Wrapper for forwarding any read request
1636 *
1637 */
1638int async_data_read_forward_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1639 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1640{
1641 ipc_callid_t callid;
1642 if (!async_data_read_receive(&callid, NULL)) {
1643 ipc_answer_0(callid, EINVAL);
1644 return EINVAL;
1645 }
1646
1647 aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4,
1648 dataptr);
1649 if (msg == 0) {
1650 ipc_answer_0(callid, EINVAL);
1651 return EINVAL;
1652 }
1653
1654 int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0,
1655 IPC_FF_ROUTE_FROM_ME);
1656 if (retval != EOK) {
1657 async_wait_for(msg, NULL);
1658 ipc_answer_0(callid, retval);
1659 return retval;
1660 }
1661
1662 sysarg_t rc;
1663 async_wait_for(msg, &rc);
1664
1665 return (int) rc;
1666}
1667
1668/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
1669 *
1670 * @param phoneid Phone that will be used to contact the receiving side.
1671 * @param src Address of the beginning of the source buffer.
1672 * @param size Size of the source buffer.
1673 * @param flags Flags to control the data transfer.
1674 *
1675 * @return Zero on success or a negative error code from errno.h.
1676 *
1677 */
1678int
1679async_data_write_start_flexible(int phoneid, const void *src, size_t size,
1680 int flags)
1681{
1682 return async_req_3_0(phoneid, IPC_M_DATA_WRITE, (sysarg_t) src,
1683 (sysarg_t) size, (sysarg_t) flags);
1684}
1685
1686/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1687 *
1688 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1689 * calls so that the user doesn't have to remember the meaning of each IPC
1690 * argument.
1691 *
1692 * So far, this wrapper is to be used from within a connection fibril.
1693 *
1694 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
1695 * @param size Storage for the suggested size. May be NULL.
1696 *
1697 * @return True on success, false on failure.
1698 *
1699 */
1700bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
1701{
1702 assert(callid);
1703
1704 ipc_call_t data;
1705 *callid = async_get_call(&data);
1706
1707 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_WRITE)
1708 return false;
1709
1710 if (size)
1711 *size = (size_t) IPC_GET_ARG2(data);
1712
1713 return true;
1714}
1715
1716/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1717 *
1718 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1719 * calls so that the user doesn't have to remember the meaning of each IPC
1720 * argument.
1721 *
1722 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
1723 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1724 * @param size Final size for the IPC_M_DATA_WRITE call.
1725 *
1726 * @return Zero on success or a value from @ref errno.h on failure.
1727 *
1728 */
1729int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
1730{
1731 return ipc_data_write_finalize(callid, dst, size);
1732}
1733
1734/** Wrapper for receiving binary data or strings
1735 *
1736 * This wrapper only makes it more comfortable to use async_data_write_*
1737 * functions to receive binary data or strings.
1738 *
1739 * @param data Pointer to data pointer (which should be later disposed
1740 * by free()). If the operation fails, the pointer is not
1741 * touched.
1742 * @param nullterm If true then the received data is always zero terminated.
1743 * This also causes to allocate one extra byte beyond the
1744 * raw transmitted data.
1745 * @param min_size Minimum size (in bytes) of the data to receive.
1746 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1747 * no limit.
1748 * @param granulariy If non-zero then the size of the received data has to
1749 * be divisible by this value.
1750 * @param received If not NULL, the size of the received data is stored here.
1751 *
1752 * @return Zero on success or a value from @ref errno.h on failure.
1753 *
1754 */
1755int async_data_write_accept(void **data, const bool nullterm,
1756 const size_t min_size, const size_t max_size, const size_t granularity,
1757 size_t *received)
1758{
1759 ipc_callid_t callid;
1760 size_t size;
1761 if (!async_data_write_receive(&callid, &size)) {
1762 ipc_answer_0(callid, EINVAL);
1763 return EINVAL;
1764 }
1765
1766 if (size < min_size) {
1767 ipc_answer_0(callid, EINVAL);
1768 return EINVAL;
1769 }
1770
1771 if ((max_size > 0) && (size > max_size)) {
1772 ipc_answer_0(callid, EINVAL);
1773 return EINVAL;
1774 }
1775
1776 if ((granularity > 0) && ((size % granularity) != 0)) {
1777 ipc_answer_0(callid, EINVAL);
1778 return EINVAL;
1779 }
1780
1781 void *_data;
1782
1783 if (nullterm)
1784 _data = malloc(size + 1);
1785 else
1786 _data = malloc(size);
1787
1788 if (_data == NULL) {
1789 ipc_answer_0(callid, ENOMEM);
1790 return ENOMEM;
1791 }
1792
1793 int rc = async_data_write_finalize(callid, _data, size);
1794 if (rc != EOK) {
1795 free(_data);
1796 return rc;
1797 }
1798
1799 if (nullterm)
1800 ((char *) _data)[size] = 0;
1801
1802 *data = _data;
1803 if (received != NULL)
1804 *received = size;
1805
1806 return EOK;
1807}
1808
1809/** Wrapper for voiding any data that is about to be received
1810 *
1811 * This wrapper can be used to void any pending data
1812 *
1813 * @param retval Error value from @ref errno.h to be returned to the caller.
1814 *
1815 */
1816void async_data_write_void(sysarg_t retval)
1817{
1818 ipc_callid_t callid;
1819 async_data_write_receive(&callid, NULL);
1820 ipc_answer_0(callid, retval);
1821}
1822
1823/** Wrapper for forwarding any data that is about to be received
1824 *
1825 */
1826int async_data_write_forward_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1827 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1828{
1829 ipc_callid_t callid;
1830 if (!async_data_write_receive(&callid, NULL)) {
1831 ipc_answer_0(callid, EINVAL);
1832 return EINVAL;
1833 }
1834
1835 aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4,
1836 dataptr);
1837 if (msg == 0) {
1838 ipc_answer_0(callid, EINVAL);
1839 return EINVAL;
1840 }
1841
1842 int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0,
1843 IPC_FF_ROUTE_FROM_ME);
1844 if (retval != EOK) {
1845 async_wait_for(msg, NULL);
1846 ipc_answer_0(callid, retval);
1847 return retval;
1848 }
1849
1850 sysarg_t rc;
1851 async_wait_for(msg, &rc);
1852
1853 return (int) rc;
1854}
1855
1856/** @}
1857 */
Note: See TracBrowser for help on using the repository browser.