source: mainline/uspace/lib/c/generic/async.c@ be2a38ad

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since be2a38ad was d7978525, checked in by Jakub Jermar <jakub@…>, 13 years ago

Implement ipc_*_finalize() functionality directly in async framework.

  • Remove ipc_*_finalize() as these interfaces do not make much sense only on their own.
  • Property mode set to 100644
File size: 67.6 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * my_client_connection(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <futex.h>
104#include <fibril.h>
105#include <adt/hash_table.h>
106#include <adt/list.h>
107#include <assert.h>
108#include <errno.h>
109#include <sys/time.h>
110#include <libarch/barrier.h>
111#include <bool.h>
112#include <malloc.h>
113#include <mem.h>
114#include <stdlib.h>
115#include <macros.h>
116#include "private/libc.h"
117
118#define CLIENT_HASH_TABLE_BUCKETS 32
119#define CONN_HASH_TABLE_BUCKETS 32
120
121/** Session data */
122struct async_sess {
123 /** List of inactive exchanges */
124 list_t exch_list;
125
126 /** Exchange management style */
127 exch_mgmt_t mgmt;
128
129 /** Session identification */
130 int phone;
131
132 /** First clone connection argument */
133 sysarg_t arg1;
134
135 /** Second clone connection argument */
136 sysarg_t arg2;
137
138 /** Third clone connection argument */
139 sysarg_t arg3;
140
141 /** Exchange mutex */
142 fibril_mutex_t mutex;
143
144 /** Number of opened exchanges */
145 atomic_t refcnt;
146
147 /** Mutex for stateful connections */
148 fibril_mutex_t remote_state_mtx;
149
150 /** Data for stateful connections */
151 void *remote_state_data;
152};
153
154/** Exchange data */
155struct async_exch {
156 /** Link into list of inactive exchanges */
157 link_t sess_link;
158
159 /** Link into global list of inactive exchanges */
160 link_t global_link;
161
162 /** Session pointer */
163 async_sess_t *sess;
164
165 /** Exchange identification */
166 int phone;
167};
168
169/** Async framework global futex */
170atomic_t async_futex = FUTEX_INITIALIZER;
171
172/** Number of threads waiting for IPC in the kernel. */
173atomic_t threads_in_ipc_wait = { 0 };
174
175/** Naming service session */
176async_sess_t *session_ns;
177
178/** Call data */
179typedef struct {
180 link_t link;
181
182 ipc_callid_t callid;
183 ipc_call_t call;
184} msg_t;
185
186/** Message data */
187typedef struct {
188 awaiter_t wdata;
189
190 /** If reply was received. */
191 bool done;
192
193 /** If the message / reply should be discarded on arrival. */
194 bool forget;
195
196 /** If already destroyed. */
197 bool destroyed;
198
199 /** Pointer to where the answer data is stored. */
200 ipc_call_t *dataptr;
201
202 sysarg_t retval;
203} amsg_t;
204
205/* Client connection data */
206typedef struct {
207 link_t link;
208
209 task_id_t in_task_id;
210 atomic_t refcnt;
211 void *data;
212} client_t;
213
214/* Server connection data */
215typedef struct {
216 awaiter_t wdata;
217
218 /** Hash table link. */
219 link_t link;
220
221 /** Incoming client task ID. */
222 task_id_t in_task_id;
223
224 /** Incoming phone hash. */
225 sysarg_t in_phone_hash;
226
227 /** Link to the client tracking structure. */
228 client_t *client;
229
230 /** Messages that should be delivered to this fibril. */
231 list_t msg_queue;
232
233 /** Identification of the opening call. */
234 ipc_callid_t callid;
235 /** Call data of the opening call. */
236 ipc_call_t call;
237 /** Local argument or NULL if none. */
238 void *carg;
239
240 /** Identification of the closing call. */
241 ipc_callid_t close_callid;
242
243 /** Fibril function that will be used to handle the connection. */
244 async_client_conn_t cfibril;
245} connection_t;
246
247/** Identifier of the incoming connection handled by the current fibril. */
248static fibril_local connection_t *fibril_connection;
249
250static void to_event_initialize(to_event_t *to)
251{
252 struct timeval tv = { 0, 0 };
253
254 to->inlist = false;
255 to->occurred = false;
256 link_initialize(&to->link);
257 to->expires = tv;
258}
259
260static void wu_event_initialize(wu_event_t *wu)
261{
262 wu->inlist = false;
263 link_initialize(&wu->link);
264}
265
266void awaiter_initialize(awaiter_t *aw)
267{
268 aw->fid = 0;
269 aw->active = false;
270 to_event_initialize(&aw->to_event);
271 wu_event_initialize(&aw->wu_event);
272}
273
274static amsg_t *amsg_create(void)
275{
276 amsg_t *msg;
277
278 msg = malloc(sizeof(amsg_t));
279 if (msg) {
280 msg->done = false;
281 msg->forget = false;
282 msg->destroyed = false;
283 msg->dataptr = NULL;
284 msg->retval = (sysarg_t) EINVAL;
285 awaiter_initialize(&msg->wdata);
286 }
287
288 return msg;
289}
290
291static void amsg_destroy(amsg_t *msg)
292{
293 assert(!msg->destroyed);
294 msg->destroyed = true;
295 free(msg);
296}
297
298static void *default_client_data_constructor(void)
299{
300 return NULL;
301}
302
303static void default_client_data_destructor(void *data)
304{
305}
306
307static async_client_data_ctor_t async_client_data_create =
308 default_client_data_constructor;
309static async_client_data_dtor_t async_client_data_destroy =
310 default_client_data_destructor;
311
312void async_set_client_data_constructor(async_client_data_ctor_t ctor)
313{
314 assert(async_client_data_create == default_client_data_constructor);
315 async_client_data_create = ctor;
316}
317
318void async_set_client_data_destructor(async_client_data_dtor_t dtor)
319{
320 assert(async_client_data_destroy == default_client_data_destructor);
321 async_client_data_destroy = dtor;
322}
323
324/** Default fibril function that gets called to handle new connection.
325 *
326 * This function is defined as a weak symbol - to be redefined in user code.
327 *
328 * @param callid Hash of the incoming call.
329 * @param call Data of the incoming call.
330 * @param arg Local argument
331 *
332 */
333static void default_client_connection(ipc_callid_t callid, ipc_call_t *call,
334 void *arg)
335{
336 ipc_answer_0(callid, ENOENT);
337}
338
339/** Default fibril function that gets called to handle interrupt notifications.
340 *
341 * This function is defined as a weak symbol - to be redefined in user code.
342 *
343 * @param callid Hash of the incoming call.
344 * @param call Data of the incoming call.
345 * @param arg Local argument.
346 *
347 */
348static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call)
349{
350}
351
352static async_client_conn_t client_connection = default_client_connection;
353static async_interrupt_handler_t interrupt_received = default_interrupt_received;
354
355/** Setter for client_connection function pointer.
356 *
357 * @param conn Function that will implement a new connection fibril.
358 *
359 */
360void async_set_client_connection(async_client_conn_t conn)
361{
362 assert(client_connection == default_client_connection);
363 client_connection = conn;
364}
365
366/** Setter for interrupt_received function pointer.
367 *
368 * @param intr Function that will implement a new interrupt
369 * notification fibril.
370 */
371void async_set_interrupt_received(async_interrupt_handler_t intr)
372{
373 interrupt_received = intr;
374}
375
376/** Mutex protecting inactive_exch_list and avail_phone_cv.
377 *
378 */
379static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
380
381/** List of all currently inactive exchanges.
382 *
383 */
384static LIST_INITIALIZE(inactive_exch_list);
385
386/** Condition variable to wait for a phone to become available.
387 *
388 */
389static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
390
391static hash_table_t client_hash_table;
392static hash_table_t conn_hash_table;
393static LIST_INITIALIZE(timeout_list);
394
395static hash_index_t client_hash(unsigned long key[])
396{
397 assert(key);
398
399 return (((key[0]) >> 4) % CLIENT_HASH_TABLE_BUCKETS);
400}
401
402static int client_compare(unsigned long key[], hash_count_t keys, link_t *item)
403{
404 assert(key);
405 assert(keys == 2);
406 assert(item);
407
408 client_t *client = hash_table_get_instance(item, client_t, link);
409 return (key[0] == LOWER32(client->in_task_id) &&
410 (key[1] == UPPER32(client->in_task_id)));
411}
412
413static void client_remove(link_t *item)
414{
415}
416
417/** Operations for the client hash table. */
418static hash_table_operations_t client_hash_table_ops = {
419 .hash = client_hash,
420 .compare = client_compare,
421 .remove_callback = client_remove
422};
423
424/** Compute hash into the connection hash table based on the source phone hash.
425 *
426 * @param key Pointer to source phone hash.
427 *
428 * @return Index into the connection hash table.
429 *
430 */
431static hash_index_t conn_hash(unsigned long key[])
432{
433 assert(key);
434
435 return (((key[0]) >> 4) % CONN_HASH_TABLE_BUCKETS);
436}
437
438/** Compare hash table item with a key.
439 *
440 * @param key Array containing the source phone hash as the only item.
441 * @param keys Expected 1 but ignored.
442 * @param item Connection hash table item.
443 *
444 * @return True on match, false otherwise.
445 *
446 */
447static int conn_compare(unsigned long key[], hash_count_t keys, link_t *item)
448{
449 assert(key);
450 assert(item);
451
452 connection_t *conn = hash_table_get_instance(item, connection_t, link);
453 return (key[0] == conn->in_phone_hash);
454}
455
456static void conn_remove(link_t *item)
457{
458}
459
460/** Operations for the connection hash table. */
461static hash_table_operations_t conn_hash_table_ops = {
462 .hash = conn_hash,
463 .compare = conn_compare,
464 .remove_callback = conn_remove
465};
466
467/** Sort in current fibril's timeout request.
468 *
469 * @param wd Wait data of the current fibril.
470 *
471 */
472void async_insert_timeout(awaiter_t *wd)
473{
474 assert(wd);
475
476 wd->to_event.occurred = false;
477 wd->to_event.inlist = true;
478
479 link_t *tmp = timeout_list.head.next;
480 while (tmp != &timeout_list.head) {
481 awaiter_t *cur
482 = list_get_instance(tmp, awaiter_t, to_event.link);
483
484 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
485 break;
486
487 tmp = tmp->next;
488 }
489
490 list_insert_before(&wd->to_event.link, tmp);
491}
492
493/** Try to route a call to an appropriate connection fibril.
494 *
495 * If the proper connection fibril is found, a message with the call is added to
496 * its message queue. If the fibril was not active, it is activated and all
497 * timeouts are unregistered.
498 *
499 * @param callid Hash of the incoming call.
500 * @param call Data of the incoming call.
501 *
502 * @return False if the call doesn't match any connection.
503 * @return True if the call was passed to the respective connection fibril.
504 *
505 */
506static bool route_call(ipc_callid_t callid, ipc_call_t *call)
507{
508 assert(call);
509
510 futex_down(&async_futex);
511
512 unsigned long key = call->in_phone_hash;
513 link_t *hlp = hash_table_find(&conn_hash_table, &key);
514
515 if (!hlp) {
516 futex_up(&async_futex);
517 return false;
518 }
519
520 connection_t *conn = hash_table_get_instance(hlp, connection_t, link);
521
522 msg_t *msg = malloc(sizeof(*msg));
523 if (!msg) {
524 futex_up(&async_futex);
525 return false;
526 }
527
528 msg->callid = callid;
529 msg->call = *call;
530 list_append(&msg->link, &conn->msg_queue);
531
532 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
533 conn->close_callid = callid;
534
535 /* If the connection fibril is waiting for an event, activate it */
536 if (!conn->wdata.active) {
537
538 /* If in timeout list, remove it */
539 if (conn->wdata.to_event.inlist) {
540 conn->wdata.to_event.inlist = false;
541 list_remove(&conn->wdata.to_event.link);
542 }
543
544 conn->wdata.active = true;
545 fibril_add_ready(conn->wdata.fid);
546 }
547
548 futex_up(&async_futex);
549 return true;
550}
551
552/** Notification fibril.
553 *
554 * When a notification arrives, a fibril with this implementing function is
555 * created. It calls interrupt_received() and does the final cleanup.
556 *
557 * @param arg Message structure pointer.
558 *
559 * @return Always zero.
560 *
561 */
562static int notification_fibril(void *arg)
563{
564 assert(arg);
565
566 msg_t *msg = (msg_t *) arg;
567 interrupt_received(msg->callid, &msg->call);
568
569 free(msg);
570 return 0;
571}
572
573/** Process interrupt notification.
574 *
575 * A new fibril is created which would process the notification.
576 *
577 * @param callid Hash of the incoming call.
578 * @param call Data of the incoming call.
579 *
580 * @return False if an error occured.
581 * True if the call was passed to the notification fibril.
582 *
583 */
584static bool process_notification(ipc_callid_t callid, ipc_call_t *call)
585{
586 assert(call);
587
588 futex_down(&async_futex);
589
590 msg_t *msg = malloc(sizeof(*msg));
591 if (!msg) {
592 futex_up(&async_futex);
593 return false;
594 }
595
596 msg->callid = callid;
597 msg->call = *call;
598
599 fid_t fid = fibril_create(notification_fibril, msg);
600 if (fid == 0) {
601 free(msg);
602 futex_up(&async_futex);
603 return false;
604 }
605
606 fibril_add_ready(fid);
607
608 futex_up(&async_futex);
609 return true;
610}
611
612/** Return new incoming message for the current (fibril-local) connection.
613 *
614 * @param call Storage where the incoming call data will be stored.
615 * @param usecs Timeout in microseconds. Zero denotes no timeout.
616 *
617 * @return If no timeout was specified, then a hash of the
618 * incoming call is returned. If a timeout is specified,
619 * then a hash of the incoming call is returned unless
620 * the timeout expires prior to receiving a message. In
621 * that case zero is returned.
622 *
623 */
624ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
625{
626 assert(call);
627 assert(fibril_connection);
628
629 /* Why doing this?
630 * GCC 4.1.0 coughs on fibril_connection-> dereference.
631 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
632 * I would never expect to find so many errors in
633 * a compiler.
634 */
635 connection_t *conn = fibril_connection;
636
637 futex_down(&async_futex);
638
639 if (usecs) {
640 gettimeofday(&conn->wdata.to_event.expires, NULL);
641 tv_add(&conn->wdata.to_event.expires, usecs);
642 } else
643 conn->wdata.to_event.inlist = false;
644
645 /* If nothing in queue, wait until something arrives */
646 while (list_empty(&conn->msg_queue)) {
647 if (conn->close_callid) {
648 /*
649 * Handle the case when the connection was already
650 * closed by the client but the server did not notice
651 * the first IPC_M_PHONE_HUNGUP call and continues to
652 * call async_get_call_timeout(). Repeat
653 * IPC_M_PHONE_HUNGUP until the caller notices.
654 */
655 memset(call, 0, sizeof(ipc_call_t));
656 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
657 futex_up(&async_futex);
658 return conn->close_callid;
659 }
660
661 if (usecs)
662 async_insert_timeout(&conn->wdata);
663
664 conn->wdata.active = false;
665
666 /*
667 * Note: the current fibril will be rescheduled either due to a
668 * timeout or due to an arriving message destined to it. In the
669 * former case, handle_expired_timeouts() and, in the latter
670 * case, route_call() will perform the wakeup.
671 */
672 fibril_switch(FIBRIL_TO_MANAGER);
673
674 /*
675 * Futex is up after getting back from async_manager.
676 * Get it again.
677 */
678 futex_down(&async_futex);
679 if ((usecs) && (conn->wdata.to_event.occurred)
680 && (list_empty(&conn->msg_queue))) {
681 /* If we timed out -> exit */
682 futex_up(&async_futex);
683 return 0;
684 }
685 }
686
687 msg_t *msg = list_get_instance(list_first(&conn->msg_queue), msg_t, link);
688 list_remove(&msg->link);
689
690 ipc_callid_t callid = msg->callid;
691 *call = msg->call;
692 free(msg);
693
694 futex_up(&async_futex);
695 return callid;
696}
697
698static client_t *async_client_get(task_id_t client_id, bool create)
699{
700 unsigned long key[2] = {
701 LOWER32(client_id),
702 UPPER32(client_id),
703 };
704 client_t *client = NULL;
705
706 futex_down(&async_futex);
707 link_t *lnk = hash_table_find(&client_hash_table, key);
708 if (lnk) {
709 client = hash_table_get_instance(lnk, client_t, link);
710 atomic_inc(&client->refcnt);
711 } else if (create) {
712 client = malloc(sizeof(client_t));
713 if (client) {
714 client->in_task_id = client_id;
715 client->data = async_client_data_create();
716
717 atomic_set(&client->refcnt, 1);
718 hash_table_insert(&client_hash_table, key, &client->link);
719 }
720 }
721
722 futex_up(&async_futex);
723 return client;
724}
725
726static void async_client_put(client_t *client)
727{
728 bool destroy;
729 unsigned long key[2] = {
730 LOWER32(client->in_task_id),
731 UPPER32(client->in_task_id)
732 };
733
734 futex_down(&async_futex);
735
736 if (atomic_predec(&client->refcnt) == 0) {
737 hash_table_remove(&client_hash_table, key, 2);
738 destroy = true;
739 } else
740 destroy = false;
741
742 futex_up(&async_futex);
743
744 if (destroy) {
745 if (client->data)
746 async_client_data_destroy(client->data);
747
748 free(client);
749 }
750}
751
752void *async_get_client_data(void)
753{
754 assert(fibril_connection);
755 return fibril_connection->client->data;
756}
757
758void *async_get_client_data_by_id(task_id_t client_id)
759{
760 client_t *client = async_client_get(client_id, false);
761 if (!client)
762 return NULL;
763 if (!client->data) {
764 async_client_put(client);
765 return NULL;
766 }
767
768 return client->data;
769}
770
771void async_put_client_data_by_id(task_id_t client_id)
772{
773 client_t *client = async_client_get(client_id, false);
774
775 assert(client);
776 assert(client->data);
777
778 /* Drop the reference we got in async_get_client_data_by_hash(). */
779 async_client_put(client);
780
781 /* Drop our own reference we got at the beginning of this function. */
782 async_client_put(client);
783}
784
785/** Wrapper for client connection fibril.
786 *
787 * When a new connection arrives, a fibril with this implementing function is
788 * created. It calls client_connection() and does the final cleanup.
789 *
790 * @param arg Connection structure pointer.
791 *
792 * @return Always zero.
793 *
794 */
795static int connection_fibril(void *arg)
796{
797 assert(arg);
798
799 /*
800 * Setup fibril-local connection pointer.
801 */
802 fibril_connection = (connection_t *) arg;
803
804 /*
805 * Add our reference for the current connection in the client task
806 * tracking structure. If this is the first reference, create and
807 * hash in a new tracking structure.
808 */
809
810 client_t *client = async_client_get(fibril_connection->in_task_id, true);
811 if (!client) {
812 ipc_answer_0(fibril_connection->callid, ENOMEM);
813 return 0;
814 }
815
816 fibril_connection->client = client;
817
818 /*
819 * Call the connection handler function.
820 */
821 fibril_connection->cfibril(fibril_connection->callid,
822 &fibril_connection->call, fibril_connection->carg);
823
824 /*
825 * Remove the reference for this client task connection.
826 */
827 async_client_put(client);
828
829 /*
830 * Remove myself from the connection hash table.
831 */
832 futex_down(&async_futex);
833 unsigned long key = fibril_connection->in_phone_hash;
834 hash_table_remove(&conn_hash_table, &key, 1);
835 futex_up(&async_futex);
836
837 /*
838 * Answer all remaining messages with EHANGUP.
839 */
840 while (!list_empty(&fibril_connection->msg_queue)) {
841 msg_t *msg =
842 list_get_instance(list_first(&fibril_connection->msg_queue),
843 msg_t, link);
844
845 list_remove(&msg->link);
846 ipc_answer_0(msg->callid, EHANGUP);
847 free(msg);
848 }
849
850 /*
851 * If the connection was hung-up, answer the last call,
852 * i.e. IPC_M_PHONE_HUNGUP.
853 */
854 if (fibril_connection->close_callid)
855 ipc_answer_0(fibril_connection->close_callid, EOK);
856
857 free(fibril_connection);
858 return 0;
859}
860
861/** Create a new fibril for a new connection.
862 *
863 * Create new fibril for connection, fill in connection structures and insert
864 * it into the hash table, so that later we can easily do routing of messages to
865 * particular fibrils.
866 *
867 * @param in_task_id Identification of the incoming connection.
868 * @param in_phone_hash Identification of the incoming connection.
869 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
870 * If callid is zero, the connection was opened by
871 * accepting the IPC_M_CONNECT_TO_ME call and this function
872 * is called directly by the server.
873 * @param call Call data of the opening call.
874 * @param cfibril Fibril function that should be called upon opening the
875 * connection.
876 * @param carg Extra argument to pass to the connection fibril
877 *
878 * @return New fibril id or NULL on failure.
879 *
880 */
881fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
882 ipc_callid_t callid, ipc_call_t *call,
883 async_client_conn_t cfibril, void *carg)
884{
885 connection_t *conn = malloc(sizeof(*conn));
886 if (!conn) {
887 if (callid)
888 ipc_answer_0(callid, ENOMEM);
889
890 return (uintptr_t) NULL;
891 }
892
893 conn->in_task_id = in_task_id;
894 conn->in_phone_hash = in_phone_hash;
895 list_initialize(&conn->msg_queue);
896 conn->callid = callid;
897 conn->close_callid = 0;
898 conn->carg = carg;
899
900 if (call)
901 conn->call = *call;
902
903 /* We will activate the fibril ASAP */
904 conn->wdata.active = true;
905 conn->cfibril = cfibril;
906 conn->wdata.fid = fibril_create(connection_fibril, conn);
907
908 if (conn->wdata.fid == 0) {
909 free(conn);
910
911 if (callid)
912 ipc_answer_0(callid, ENOMEM);
913
914 return (uintptr_t) NULL;
915 }
916
917 /* Add connection to the connection hash table */
918 unsigned long key = conn->in_phone_hash;
919
920 futex_down(&async_futex);
921 hash_table_insert(&conn_hash_table, &key, &conn->link);
922 futex_up(&async_futex);
923
924 fibril_add_ready(conn->wdata.fid);
925
926 return conn->wdata.fid;
927}
928
929/** Handle a call that was received.
930 *
931 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
932 * Otherwise the call is routed to its connection fibril.
933 *
934 * @param callid Hash of the incoming call.
935 * @param call Data of the incoming call.
936 *
937 */
938static void handle_call(ipc_callid_t callid, ipc_call_t *call)
939{
940 assert(call);
941
942 /* Unrouted call - take some default action */
943 if ((callid & IPC_CALLID_NOTIFICATION)) {
944 process_notification(callid, call);
945 return;
946 }
947
948 switch (IPC_GET_IMETHOD(*call)) {
949 case IPC_M_CLONE_ESTABLISH:
950 case IPC_M_CONNECT_ME_TO:
951 /* Open new connection with fibril, etc. */
952 async_new_connection(call->in_task_id, IPC_GET_ARG5(*call),
953 callid, call, client_connection, NULL);
954 return;
955 }
956
957 /* Try to route the call through the connection hash table */
958 if (route_call(callid, call))
959 return;
960
961 /* Unknown call from unknown phone - hang it up */
962 ipc_answer_0(callid, EHANGUP);
963}
964
965/** Fire all timeouts that expired. */
966static void handle_expired_timeouts(void)
967{
968 struct timeval tv;
969 gettimeofday(&tv, NULL);
970
971 futex_down(&async_futex);
972
973 link_t *cur = list_first(&timeout_list);
974 while (cur != NULL) {
975 awaiter_t *waiter =
976 list_get_instance(cur, awaiter_t, to_event.link);
977
978 if (tv_gt(&waiter->to_event.expires, &tv))
979 break;
980
981 list_remove(&waiter->to_event.link);
982 waiter->to_event.inlist = false;
983 waiter->to_event.occurred = true;
984
985 /*
986 * Redundant condition?
987 * The fibril should not be active when it gets here.
988 */
989 if (!waiter->active) {
990 waiter->active = true;
991 fibril_add_ready(waiter->fid);
992 }
993
994 cur = list_first(&timeout_list);
995 }
996
997 futex_up(&async_futex);
998}
999
1000/** Endless loop dispatching incoming calls and answers.
1001 *
1002 * @return Never returns.
1003 *
1004 */
1005static int async_manager_worker(void)
1006{
1007 while (true) {
1008 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1009 futex_up(&async_futex);
1010 /*
1011 * async_futex is always held when entering a manager
1012 * fibril.
1013 */
1014 continue;
1015 }
1016
1017 futex_down(&async_futex);
1018
1019 suseconds_t timeout;
1020 unsigned int flags = SYNCH_FLAGS_NONE;
1021 if (!list_empty(&timeout_list)) {
1022 awaiter_t *waiter = list_get_instance(
1023 list_first(&timeout_list), awaiter_t, to_event.link);
1024
1025 struct timeval tv;
1026 gettimeofday(&tv, NULL);
1027
1028 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1029 futex_up(&async_futex);
1030 handle_expired_timeouts();
1031 /*
1032 * Notice that even if the event(s) already
1033 * expired (and thus the other fibril was
1034 * supposed to be running already),
1035 * we check for incoming IPC.
1036 *
1037 * Otherwise, a fibril that continuously
1038 * creates (almost) expired events could
1039 * prevent IPC retrieval from the kernel.
1040 */
1041 timeout = 0;
1042 flags = SYNCH_FLAGS_NON_BLOCKING;
1043
1044 } else {
1045 timeout = tv_sub(&waiter->to_event.expires, &tv);
1046 futex_up(&async_futex);
1047 }
1048 } else {
1049 futex_up(&async_futex);
1050 timeout = SYNCH_NO_TIMEOUT;
1051 }
1052
1053 atomic_inc(&threads_in_ipc_wait);
1054
1055 ipc_call_t call;
1056 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1057
1058 atomic_dec(&threads_in_ipc_wait);
1059
1060 if (!callid) {
1061 handle_expired_timeouts();
1062 continue;
1063 }
1064
1065 if (callid & IPC_CALLID_ANSWERED)
1066 continue;
1067
1068 handle_call(callid, &call);
1069 }
1070
1071 return 0;
1072}
1073
1074/** Function to start async_manager as a standalone fibril.
1075 *
1076 * When more kernel threads are used, one async manager should exist per thread.
1077 *
1078 * @param arg Unused.
1079 * @return Never returns.
1080 *
1081 */
1082static int async_manager_fibril(void *arg)
1083{
1084 futex_up(&async_futex);
1085
1086 /*
1087 * async_futex is always locked when entering manager
1088 */
1089 async_manager_worker();
1090
1091 return 0;
1092}
1093
1094/** Add one manager to manager list. */
1095void async_create_manager(void)
1096{
1097 fid_t fid = fibril_create(async_manager_fibril, NULL);
1098 if (fid != 0)
1099 fibril_add_manager(fid);
1100}
1101
1102/** Remove one manager from manager list */
1103void async_destroy_manager(void)
1104{
1105 fibril_remove_manager();
1106}
1107
1108/** Initialize the async framework.
1109 *
1110 */
1111void __async_init(void)
1112{
1113 if (!hash_table_create(&client_hash_table, CLIENT_HASH_TABLE_BUCKETS,
1114 2, &client_hash_table_ops))
1115 abort();
1116
1117 if (!hash_table_create(&conn_hash_table, CONN_HASH_TABLE_BUCKETS,
1118 1, &conn_hash_table_ops))
1119 abort();
1120
1121 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1122 if (session_ns == NULL)
1123 abort();
1124
1125 session_ns->mgmt = EXCHANGE_ATOMIC;
1126 session_ns->phone = PHONE_NS;
1127 session_ns->arg1 = 0;
1128 session_ns->arg2 = 0;
1129 session_ns->arg3 = 0;
1130
1131 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1132 session_ns->remote_state_data = NULL;
1133
1134 list_initialize(&session_ns->exch_list);
1135 fibril_mutex_initialize(&session_ns->mutex);
1136 atomic_set(&session_ns->refcnt, 0);
1137}
1138
1139/** Reply received callback.
1140 *
1141 * This function is called whenever a reply for an asynchronous message sent out
1142 * by the asynchronous framework is received.
1143 *
1144 * Notify the fibril which is waiting for this message that it has arrived.
1145 *
1146 * @param arg Pointer to the asynchronous message record.
1147 * @param retval Value returned in the answer.
1148 * @param data Call data of the answer.
1149 *
1150 */
1151void reply_received(void *arg, int retval, ipc_call_t *data)
1152{
1153 assert(arg);
1154
1155 futex_down(&async_futex);
1156
1157 amsg_t *msg = (amsg_t *) arg;
1158 msg->retval = retval;
1159
1160 /* Copy data after futex_down, just in case the call was detached */
1161 if ((msg->dataptr) && (data))
1162 *msg->dataptr = *data;
1163
1164 write_barrier();
1165
1166 /* Remove message from timeout list */
1167 if (msg->wdata.to_event.inlist)
1168 list_remove(&msg->wdata.to_event.link);
1169
1170 msg->done = true;
1171
1172 if (msg->forget) {
1173 assert(msg->wdata.active);
1174 amsg_destroy(msg);
1175 } else if (!msg->wdata.active) {
1176 msg->wdata.active = true;
1177 fibril_add_ready(msg->wdata.fid);
1178 }
1179
1180 futex_up(&async_futex);
1181}
1182
1183/** Send message and return id of the sent message.
1184 *
1185 * The return value can be used as input for async_wait() to wait for
1186 * completion.
1187 *
1188 * @param exch Exchange for sending the message.
1189 * @param imethod Service-defined interface and method.
1190 * @param arg1 Service-defined payload argument.
1191 * @param arg2 Service-defined payload argument.
1192 * @param arg3 Service-defined payload argument.
1193 * @param arg4 Service-defined payload argument.
1194 * @param dataptr If non-NULL, storage where the reply data will be
1195 * stored.
1196 *
1197 * @return Hash of the sent message or 0 on error.
1198 *
1199 */
1200aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1201 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1202{
1203 if (exch == NULL)
1204 return 0;
1205
1206 amsg_t *msg = amsg_create();
1207 if (msg == NULL)
1208 return 0;
1209
1210 msg->dataptr = dataptr;
1211 msg->wdata.active = true;
1212
1213 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1214 reply_received, true);
1215
1216 return (aid_t) msg;
1217}
1218
1219/** Send message and return id of the sent message
1220 *
1221 * The return value can be used as input for async_wait() to wait for
1222 * completion.
1223 *
1224 * @param exch Exchange for sending the message.
1225 * @param imethod Service-defined interface and method.
1226 * @param arg1 Service-defined payload argument.
1227 * @param arg2 Service-defined payload argument.
1228 * @param arg3 Service-defined payload argument.
1229 * @param arg4 Service-defined payload argument.
1230 * @param arg5 Service-defined payload argument.
1231 * @param dataptr If non-NULL, storage where the reply data will be
1232 * stored.
1233 *
1234 * @return Hash of the sent message or 0 on error.
1235 *
1236 */
1237aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1238 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1239 ipc_call_t *dataptr)
1240{
1241 if (exch == NULL)
1242 return 0;
1243
1244 amsg_t *msg = amsg_create();
1245 if (msg == NULL)
1246 return 0;
1247
1248 msg->dataptr = dataptr;
1249 msg->wdata.active = true;
1250
1251 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1252 msg, reply_received, true);
1253
1254 return (aid_t) msg;
1255}
1256
1257/** Wait for a message sent by the async framework.
1258 *
1259 * @param amsgid Hash of the message to wait for.
1260 * @param retval Pointer to storage where the retval of the answer will
1261 * be stored.
1262 *
1263 */
1264void async_wait_for(aid_t amsgid, sysarg_t *retval)
1265{
1266 assert(amsgid);
1267
1268 amsg_t *msg = (amsg_t *) amsgid;
1269
1270 futex_down(&async_futex);
1271
1272 assert(!msg->forget);
1273 assert(!msg->destroyed);
1274
1275 if (msg->done) {
1276 futex_up(&async_futex);
1277 goto done;
1278 }
1279
1280 msg->wdata.fid = fibril_get_id();
1281 msg->wdata.active = false;
1282 msg->wdata.to_event.inlist = false;
1283
1284 /* Leave the async_futex locked when entering this function */
1285 fibril_switch(FIBRIL_TO_MANAGER);
1286
1287 /* Futex is up automatically after fibril_switch */
1288
1289done:
1290 if (retval)
1291 *retval = msg->retval;
1292
1293 amsg_destroy(msg);
1294}
1295
1296/** Wait for a message sent by the async framework, timeout variant.
1297 *
1298 * If the wait times out, the caller may choose to either wait again by calling
1299 * async_wait_for() or async_wait_timeout(), or forget the message via
1300 * async_forget().
1301 *
1302 * @param amsgid Hash of the message to wait for.
1303 * @param retval Pointer to storage where the retval of the answer will
1304 * be stored.
1305 * @param timeout Timeout in microseconds.
1306 *
1307 * @return Zero on success, ETIMEOUT if the timeout has expired.
1308 *
1309 */
1310int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1311{
1312 assert(amsgid);
1313
1314 amsg_t *msg = (amsg_t *) amsgid;
1315
1316 futex_down(&async_futex);
1317
1318 assert(!msg->forget);
1319 assert(!msg->destroyed);
1320
1321 if (msg->done) {
1322 futex_up(&async_futex);
1323 goto done;
1324 }
1325
1326 /*
1327 * Negative timeout is converted to zero timeout to avoid
1328 * using tv_add with negative augmenter.
1329 */
1330 if (timeout < 0)
1331 timeout = 0;
1332
1333 gettimeofday(&msg->wdata.to_event.expires, NULL);
1334 tv_add(&msg->wdata.to_event.expires, timeout);
1335
1336 /*
1337 * Current fibril is inserted as waiting regardless of the
1338 * "size" of the timeout.
1339 *
1340 * Checking for msg->done and immediately bailing out when
1341 * timeout == 0 would mean that the manager fibril would never
1342 * run (consider single threaded program).
1343 * Thus the IPC answer would be never retrieved from the kernel.
1344 *
1345 * Notice that the actual delay would be very small because we
1346 * - switch to manager fibril
1347 * - the manager sees expired timeout
1348 * - and thus adds us back to ready queue
1349 * - manager switches back to some ready fibril
1350 * (prior it, it checks for incoming IPC).
1351 *
1352 */
1353 msg->wdata.fid = fibril_get_id();
1354 msg->wdata.active = false;
1355 async_insert_timeout(&msg->wdata);
1356
1357 /* Leave the async_futex locked when entering this function */
1358 fibril_switch(FIBRIL_TO_MANAGER);
1359
1360 /* Futex is up automatically after fibril_switch */
1361
1362 if (!msg->done)
1363 return ETIMEOUT;
1364
1365done:
1366 if (retval)
1367 *retval = msg->retval;
1368
1369 amsg_destroy(msg);
1370
1371 return 0;
1372}
1373
1374/** Discard the message / reply on arrival.
1375 *
1376 * The message will be marked to be discarded once the reply arrives in
1377 * reply_received(). It is not allowed to call async_wait_for() or
1378 * async_wait_timeout() on this message after a call to this function.
1379 *
1380 * @param amsgid Hash of the message to forget.
1381 */
1382void async_forget(aid_t amsgid)
1383{
1384 amsg_t *msg = (amsg_t *) amsgid;
1385
1386 assert(msg);
1387 assert(!msg->forget);
1388 assert(!msg->destroyed);
1389
1390 futex_down(&async_futex);
1391 if (msg->done) {
1392 amsg_destroy(msg);
1393 } else {
1394 msg->dataptr = NULL;
1395 msg->forget = true;
1396 }
1397 futex_up(&async_futex);
1398}
1399
1400/** Wait for specified time.
1401 *
1402 * The current fibril is suspended but the thread continues to execute.
1403 *
1404 * @param timeout Duration of the wait in microseconds.
1405 *
1406 */
1407void async_usleep(suseconds_t timeout)
1408{
1409 amsg_t *msg = amsg_create();
1410 if (!msg)
1411 return;
1412
1413 msg->wdata.fid = fibril_get_id();
1414
1415 gettimeofday(&msg->wdata.to_event.expires, NULL);
1416 tv_add(&msg->wdata.to_event.expires, timeout);
1417
1418 futex_down(&async_futex);
1419
1420 async_insert_timeout(&msg->wdata);
1421
1422 /* Leave the async_futex locked when entering this function */
1423 fibril_switch(FIBRIL_TO_MANAGER);
1424
1425 /* Futex is up automatically after fibril_switch() */
1426
1427 amsg_destroy(msg);
1428}
1429
1430/** Pseudo-synchronous message sending - fast version.
1431 *
1432 * Send message asynchronously and return only after the reply arrives.
1433 *
1434 * This function can only transfer 4 register payload arguments. For
1435 * transferring more arguments, see the slower async_req_slow().
1436 *
1437 * @param exch Exchange for sending the message.
1438 * @param imethod Interface and method of the call.
1439 * @param arg1 Service-defined payload argument.
1440 * @param arg2 Service-defined payload argument.
1441 * @param arg3 Service-defined payload argument.
1442 * @param arg4 Service-defined payload argument.
1443 * @param r1 If non-NULL, storage for the 1st reply argument.
1444 * @param r2 If non-NULL, storage for the 2nd reply argument.
1445 * @param r3 If non-NULL, storage for the 3rd reply argument.
1446 * @param r4 If non-NULL, storage for the 4th reply argument.
1447 * @param r5 If non-NULL, storage for the 5th reply argument.
1448 *
1449 * @return Return code of the reply or a negative error code.
1450 *
1451 */
1452sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1453 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1454 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1455{
1456 if (exch == NULL)
1457 return ENOENT;
1458
1459 ipc_call_t result;
1460 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1461 &result);
1462
1463 sysarg_t rc;
1464 async_wait_for(aid, &rc);
1465
1466 if (r1)
1467 *r1 = IPC_GET_ARG1(result);
1468
1469 if (r2)
1470 *r2 = IPC_GET_ARG2(result);
1471
1472 if (r3)
1473 *r3 = IPC_GET_ARG3(result);
1474
1475 if (r4)
1476 *r4 = IPC_GET_ARG4(result);
1477
1478 if (r5)
1479 *r5 = IPC_GET_ARG5(result);
1480
1481 return rc;
1482}
1483
1484/** Pseudo-synchronous message sending - slow version.
1485 *
1486 * Send message asynchronously and return only after the reply arrives.
1487 *
1488 * @param exch Exchange for sending the message.
1489 * @param imethod Interface and method of the call.
1490 * @param arg1 Service-defined payload argument.
1491 * @param arg2 Service-defined payload argument.
1492 * @param arg3 Service-defined payload argument.
1493 * @param arg4 Service-defined payload argument.
1494 * @param arg5 Service-defined payload argument.
1495 * @param r1 If non-NULL, storage for the 1st reply argument.
1496 * @param r2 If non-NULL, storage for the 2nd reply argument.
1497 * @param r3 If non-NULL, storage for the 3rd reply argument.
1498 * @param r4 If non-NULL, storage for the 4th reply argument.
1499 * @param r5 If non-NULL, storage for the 5th reply argument.
1500 *
1501 * @return Return code of the reply or a negative error code.
1502 *
1503 */
1504sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1505 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1506 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1507{
1508 if (exch == NULL)
1509 return ENOENT;
1510
1511 ipc_call_t result;
1512 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1513 &result);
1514
1515 sysarg_t rc;
1516 async_wait_for(aid, &rc);
1517
1518 if (r1)
1519 *r1 = IPC_GET_ARG1(result);
1520
1521 if (r2)
1522 *r2 = IPC_GET_ARG2(result);
1523
1524 if (r3)
1525 *r3 = IPC_GET_ARG3(result);
1526
1527 if (r4)
1528 *r4 = IPC_GET_ARG4(result);
1529
1530 if (r5)
1531 *r5 = IPC_GET_ARG5(result);
1532
1533 return rc;
1534}
1535
1536void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1537{
1538 if (exch != NULL)
1539 ipc_call_async_0(exch->phone, imethod, NULL, NULL, true);
1540}
1541
1542void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1543{
1544 if (exch != NULL)
1545 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL, true);
1546}
1547
1548void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1549 sysarg_t arg2)
1550{
1551 if (exch != NULL)
1552 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL,
1553 true);
1554}
1555
1556void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1557 sysarg_t arg2, sysarg_t arg3)
1558{
1559 if (exch != NULL)
1560 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1561 NULL, true);
1562}
1563
1564void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1565 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1566{
1567 if (exch != NULL)
1568 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1569 NULL, NULL, true);
1570}
1571
1572void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1573 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1574{
1575 if (exch != NULL)
1576 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
1577 arg5, NULL, NULL, true);
1578}
1579
1580sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
1581{
1582 return ipc_answer_0(callid, retval);
1583}
1584
1585sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
1586{
1587 return ipc_answer_1(callid, retval, arg1);
1588}
1589
1590sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1591 sysarg_t arg2)
1592{
1593 return ipc_answer_2(callid, retval, arg1, arg2);
1594}
1595
1596sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1597 sysarg_t arg2, sysarg_t arg3)
1598{
1599 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
1600}
1601
1602sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1603 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1604{
1605 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
1606}
1607
1608sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1609 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1610{
1611 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
1612}
1613
1614int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
1615 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1616{
1617 if (exch == NULL)
1618 return ENOENT;
1619
1620 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
1621}
1622
1623int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
1624 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1625 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1626{
1627 if (exch == NULL)
1628 return ENOENT;
1629
1630 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
1631 arg4, arg5, mode);
1632}
1633
1634/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1635 *
1636 * Ask through phone for a new connection to some service.
1637 *
1638 * @param exch Exchange for sending the message.
1639 * @param arg1 User defined argument.
1640 * @param arg2 User defined argument.
1641 * @param arg3 User defined argument.
1642 * @param client_receiver Connection handing routine.
1643 *
1644 * @return Zero on success or a negative error code.
1645 *
1646 */
1647int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
1648 sysarg_t arg3, async_client_conn_t client_receiver, void *carg)
1649{
1650 if (exch == NULL)
1651 return ENOENT;
1652
1653 sysarg_t phone_hash;
1654 sysarg_t rc;
1655
1656 aid_t req;
1657 ipc_call_t answer;
1658 req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1659 &answer);
1660 async_wait_for(req, &rc);
1661 if (rc != EOK)
1662 return (int) rc;
1663
1664 phone_hash = IPC_GET_ARG5(answer);
1665
1666 if (client_receiver != NULL)
1667 async_new_connection(answer.in_task_id, phone_hash, 0, NULL,
1668 client_receiver, carg);
1669
1670 return EOK;
1671}
1672
1673/** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework.
1674 *
1675 * Ask for a cloned connection to some service.
1676 *
1677 * @param mgmt Exchange management style.
1678 * @param exch Exchange for sending the message.
1679 *
1680 * @return New session on success or NULL on error.
1681 *
1682 */
1683async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch)
1684{
1685 if (exch == NULL) {
1686 errno = ENOENT;
1687 return NULL;
1688 }
1689
1690 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1691 if (sess == NULL) {
1692 errno = ENOMEM;
1693 return NULL;
1694 }
1695
1696 ipc_call_t result;
1697
1698 amsg_t *msg = amsg_create();
1699 if (!msg) {
1700 free(sess);
1701 errno = ENOMEM;
1702 return NULL;
1703 }
1704
1705 msg->dataptr = &result;
1706 msg->wdata.active = true;
1707
1708 ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg,
1709 reply_received, true);
1710
1711 sysarg_t rc;
1712 async_wait_for((aid_t) msg, &rc);
1713
1714 if (rc != EOK) {
1715 errno = rc;
1716 free(sess);
1717 return NULL;
1718 }
1719
1720 int phone = (int) IPC_GET_ARG5(result);
1721
1722 if (phone < 0) {
1723 errno = phone;
1724 free(sess);
1725 return NULL;
1726 }
1727
1728 sess->mgmt = mgmt;
1729 sess->phone = phone;
1730 sess->arg1 = 0;
1731 sess->arg2 = 0;
1732 sess->arg3 = 0;
1733
1734 fibril_mutex_initialize(&sess->remote_state_mtx);
1735 sess->remote_state_data = NULL;
1736
1737 list_initialize(&sess->exch_list);
1738 fibril_mutex_initialize(&sess->mutex);
1739 atomic_set(&sess->refcnt, 0);
1740
1741 return sess;
1742}
1743
1744static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
1745 sysarg_t arg3, sysarg_t arg4)
1746{
1747 ipc_call_t result;
1748
1749 amsg_t *msg = amsg_create();
1750 if (!msg)
1751 return ENOENT;
1752
1753 msg->dataptr = &result;
1754 msg->wdata.active = true;
1755
1756 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
1757 msg, reply_received, true);
1758
1759 sysarg_t rc;
1760 async_wait_for((aid_t) msg, &rc);
1761
1762 if (rc != EOK)
1763 return rc;
1764
1765 return (int) IPC_GET_ARG5(result);
1766}
1767
1768/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1769 *
1770 * Ask through for a new connection to some service.
1771 *
1772 * @param mgmt Exchange management style.
1773 * @param exch Exchange for sending the message.
1774 * @param arg1 User defined argument.
1775 * @param arg2 User defined argument.
1776 * @param arg3 User defined argument.
1777 *
1778 * @return New session on success or NULL on error.
1779 *
1780 */
1781async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
1782 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1783{
1784 if (exch == NULL) {
1785 errno = ENOENT;
1786 return NULL;
1787 }
1788
1789 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1790 if (sess == NULL) {
1791 errno = ENOMEM;
1792 return NULL;
1793 }
1794
1795 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
1796 0);
1797
1798 if (phone < 0) {
1799 errno = phone;
1800 free(sess);
1801 return NULL;
1802 }
1803
1804 sess->mgmt = mgmt;
1805 sess->phone = phone;
1806 sess->arg1 = arg1;
1807 sess->arg2 = arg2;
1808 sess->arg3 = arg3;
1809
1810 fibril_mutex_initialize(&sess->remote_state_mtx);
1811 sess->remote_state_data = NULL;
1812
1813 list_initialize(&sess->exch_list);
1814 fibril_mutex_initialize(&sess->mutex);
1815 atomic_set(&sess->refcnt, 0);
1816
1817 return sess;
1818}
1819
1820/** Set arguments for new connections.
1821 *
1822 * FIXME This is an ugly hack to work around the problem that parallel
1823 * exchanges are implemented using parallel connections. When we create
1824 * a callback session, the framework does not know arguments for the new
1825 * connections.
1826 *
1827 * The proper solution seems to be to implement parallel exchanges using
1828 * tagging.
1829 */
1830void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
1831 sysarg_t arg3)
1832{
1833 sess->arg1 = arg1;
1834 sess->arg2 = arg2;
1835 sess->arg3 = arg3;
1836}
1837
1838/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1839 *
1840 * Ask through phone for a new connection to some service and block until
1841 * success.
1842 *
1843 * @param mgmt Exchange management style.
1844 * @param exch Exchange for sending the message.
1845 * @param arg1 User defined argument.
1846 * @param arg2 User defined argument.
1847 * @param arg3 User defined argument.
1848 *
1849 * @return New session on success or NULL on error.
1850 *
1851 */
1852async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
1853 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1854{
1855 if (exch == NULL) {
1856 errno = ENOENT;
1857 return NULL;
1858 }
1859
1860 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1861 if (sess == NULL) {
1862 errno = ENOMEM;
1863 return NULL;
1864 }
1865
1866 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
1867 IPC_FLAG_BLOCKING);
1868
1869 if (phone < 0) {
1870 errno = phone;
1871 free(sess);
1872 return NULL;
1873 }
1874
1875 sess->mgmt = mgmt;
1876 sess->phone = phone;
1877 sess->arg1 = arg1;
1878 sess->arg2 = arg2;
1879 sess->arg3 = arg3;
1880
1881 fibril_mutex_initialize(&sess->remote_state_mtx);
1882 sess->remote_state_data = NULL;
1883
1884 list_initialize(&sess->exch_list);
1885 fibril_mutex_initialize(&sess->mutex);
1886 atomic_set(&sess->refcnt, 0);
1887
1888 return sess;
1889}
1890
1891/** Connect to a task specified by id.
1892 *
1893 */
1894async_sess_t *async_connect_kbox(task_id_t id)
1895{
1896 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1897 if (sess == NULL) {
1898 errno = ENOMEM;
1899 return NULL;
1900 }
1901
1902 int phone = ipc_connect_kbox(id);
1903 if (phone < 0) {
1904 errno = phone;
1905 free(sess);
1906 return NULL;
1907 }
1908
1909 sess->mgmt = EXCHANGE_ATOMIC;
1910 sess->phone = phone;
1911 sess->arg1 = 0;
1912 sess->arg2 = 0;
1913 sess->arg3 = 0;
1914
1915 fibril_mutex_initialize(&sess->remote_state_mtx);
1916 sess->remote_state_data = NULL;
1917
1918 list_initialize(&sess->exch_list);
1919 fibril_mutex_initialize(&sess->mutex);
1920 atomic_set(&sess->refcnt, 0);
1921
1922 return sess;
1923}
1924
1925static int async_hangup_internal(int phone)
1926{
1927 return ipc_hangup(phone);
1928}
1929
1930/** Wrapper for ipc_hangup.
1931 *
1932 * @param sess Session to hung up.
1933 *
1934 * @return Zero on success or a negative error code.
1935 *
1936 */
1937int async_hangup(async_sess_t *sess)
1938{
1939 async_exch_t *exch;
1940
1941 assert(sess);
1942
1943 if (atomic_get(&sess->refcnt) > 0)
1944 return EBUSY;
1945
1946 fibril_mutex_lock(&async_sess_mutex);
1947
1948 int rc = async_hangup_internal(sess->phone);
1949
1950 while (!list_empty(&sess->exch_list)) {
1951 exch = (async_exch_t *)
1952 list_get_instance(list_first(&sess->exch_list),
1953 async_exch_t, sess_link);
1954
1955 list_remove(&exch->sess_link);
1956 list_remove(&exch->global_link);
1957 async_hangup_internal(exch->phone);
1958 free(exch);
1959 }
1960
1961 free(sess);
1962
1963 fibril_mutex_unlock(&async_sess_mutex);
1964
1965 return rc;
1966}
1967
1968/** Interrupt one thread of this task from waiting for IPC. */
1969void async_poke(void)
1970{
1971 ipc_poke();
1972}
1973
1974/** Start new exchange in a session.
1975 *
1976 * @param session Session.
1977 *
1978 * @return New exchange or NULL on error.
1979 *
1980 */
1981async_exch_t *async_exchange_begin(async_sess_t *sess)
1982{
1983 if (sess == NULL)
1984 return NULL;
1985
1986 async_exch_t *exch;
1987
1988 fibril_mutex_lock(&async_sess_mutex);
1989
1990 if (!list_empty(&sess->exch_list)) {
1991 /*
1992 * There are inactive exchanges in the session.
1993 */
1994 exch = (async_exch_t *)
1995 list_get_instance(list_first(&sess->exch_list),
1996 async_exch_t, sess_link);
1997
1998 list_remove(&exch->sess_link);
1999 list_remove(&exch->global_link);
2000 } else {
2001 /*
2002 * There are no available exchanges in the session.
2003 */
2004
2005 if ((sess->mgmt == EXCHANGE_ATOMIC) ||
2006 (sess->mgmt == EXCHANGE_SERIALIZE)) {
2007 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2008 if (exch != NULL) {
2009 link_initialize(&exch->sess_link);
2010 link_initialize(&exch->global_link);
2011 exch->sess = sess;
2012 exch->phone = sess->phone;
2013 }
2014 } else { /* EXCHANGE_PARALLEL */
2015 /*
2016 * Make a one-time attempt to connect a new data phone.
2017 */
2018
2019 int phone;
2020
2021retry:
2022 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2023 sess->arg2, sess->arg3, 0);
2024 if (phone >= 0) {
2025 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2026 if (exch != NULL) {
2027 link_initialize(&exch->sess_link);
2028 link_initialize(&exch->global_link);
2029 exch->sess = sess;
2030 exch->phone = phone;
2031 } else
2032 async_hangup_internal(phone);
2033 } else if (!list_empty(&inactive_exch_list)) {
2034 /*
2035 * We did not manage to connect a new phone. But we
2036 * can try to close some of the currently inactive
2037 * connections in other sessions and try again.
2038 */
2039 exch = (async_exch_t *)
2040 list_get_instance(list_first(&inactive_exch_list),
2041 async_exch_t, global_link);
2042
2043 list_remove(&exch->sess_link);
2044 list_remove(&exch->global_link);
2045 async_hangup_internal(exch->phone);
2046 free(exch);
2047 goto retry;
2048 } else {
2049 /*
2050 * Wait for a phone to become available.
2051 */
2052 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2053 goto retry;
2054 }
2055 }
2056 }
2057
2058 fibril_mutex_unlock(&async_sess_mutex);
2059
2060 if (exch != NULL) {
2061 atomic_inc(&sess->refcnt);
2062
2063 if (sess->mgmt == EXCHANGE_SERIALIZE)
2064 fibril_mutex_lock(&sess->mutex);
2065 }
2066
2067 return exch;
2068}
2069
2070/** Finish an exchange.
2071 *
2072 * @param exch Exchange to finish.
2073 *
2074 */
2075void async_exchange_end(async_exch_t *exch)
2076{
2077 if (exch == NULL)
2078 return;
2079
2080 async_sess_t *sess = exch->sess;
2081
2082 atomic_dec(&sess->refcnt);
2083
2084 if (sess->mgmt == EXCHANGE_SERIALIZE)
2085 fibril_mutex_unlock(&sess->mutex);
2086
2087 fibril_mutex_lock(&async_sess_mutex);
2088
2089 list_append(&exch->sess_link, &sess->exch_list);
2090 list_append(&exch->global_link, &inactive_exch_list);
2091 fibril_condvar_signal(&avail_phone_cv);
2092
2093 fibril_mutex_unlock(&async_sess_mutex);
2094}
2095
2096/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2097 *
2098 * @param exch Exchange for sending the message.
2099 * @param size Size of the destination address space area.
2100 * @param arg User defined argument.
2101 * @param flags Storage for the received flags. Can be NULL.
2102 * @param dst Destination address space area base. Cannot be NULL.
2103 *
2104 * @return Zero on success or a negative error code from errno.h.
2105 *
2106 */
2107int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2108 unsigned int *flags, void **dst)
2109{
2110 if (exch == NULL)
2111 return ENOENT;
2112
2113 sysarg_t _flags = 0;
2114 sysarg_t _dst = (sysarg_t) -1;
2115 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2116 arg, NULL, &_flags, NULL, &_dst);
2117
2118 if (flags)
2119 *flags = (unsigned int) _flags;
2120
2121 *dst = (void *) _dst;
2122 return res;
2123}
2124
2125/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2126 *
2127 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2128 * calls so that the user doesn't have to remember the meaning of each IPC
2129 * argument.
2130 *
2131 * So far, this wrapper is to be used from within a connection fibril.
2132 *
2133 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2134 * @param size Destination address space area size.
2135 *
2136 * @return True on success, false on failure.
2137 *
2138 */
2139bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2140{
2141 assert(callid);
2142 assert(size);
2143
2144 ipc_call_t data;
2145 *callid = async_get_call(&data);
2146
2147 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2148 return false;
2149
2150 *size = (size_t) IPC_GET_ARG1(data);
2151 return true;
2152}
2153
2154/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2155 *
2156 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2157 * calls so that the user doesn't have to remember the meaning of each IPC
2158 * argument.
2159 *
2160 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2161 * @param src Source address space base.
2162 * @param flags Flags to be used for sharing. Bits can be only cleared.
2163 *
2164 * @return Zero on success or a value from @ref errno.h on failure.
2165 *
2166 */
2167int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2168{
2169 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2170 (sysarg_t) __entry);
2171}
2172
2173/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2174 *
2175 * @param exch Exchange for sending the message.
2176 * @param src Source address space area base address.
2177 * @param flags Flags to be used for sharing. Bits can be only cleared.
2178 *
2179 * @return Zero on success or a negative error code from errno.h.
2180 *
2181 */
2182int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2183{
2184 if (exch == NULL)
2185 return ENOENT;
2186
2187 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2188 (sysarg_t) flags);
2189}
2190
2191/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2192 *
2193 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2194 * calls so that the user doesn't have to remember the meaning of each IPC
2195 * argument.
2196 *
2197 * So far, this wrapper is to be used from within a connection fibril.
2198 *
2199 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2200 * @param size Storage for the source address space area size.
2201 * @param flags Storage for the sharing flags.
2202 *
2203 * @return True on success, false on failure.
2204 *
2205 */
2206bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2207{
2208 assert(callid);
2209 assert(size);
2210 assert(flags);
2211
2212 ipc_call_t data;
2213 *callid = async_get_call(&data);
2214
2215 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2216 return false;
2217
2218 *size = (size_t) IPC_GET_ARG2(data);
2219 *flags = (unsigned int) IPC_GET_ARG3(data);
2220 return true;
2221}
2222
2223/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2224 *
2225 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2226 * calls so that the user doesn't have to remember the meaning of each IPC
2227 * argument.
2228 *
2229 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2230 * @param dst Destination address space area base address.
2231 *
2232 * @return Zero on success or a value from @ref errno.h on failure.
2233 *
2234 */
2235int async_share_out_finalize(ipc_callid_t callid, void **dst)
2236{
2237 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2238}
2239
2240/** Start IPC_M_DATA_READ using the async framework.
2241 *
2242 * @param exch Exchange for sending the message.
2243 * @param dst Address of the beginning of the destination buffer.
2244 * @param size Size of the destination buffer (in bytes).
2245 * @param dataptr Storage of call data (arg 2 holds actual data size).
2246 *
2247 * @return Hash of the sent message or 0 on error.
2248 *
2249 */
2250aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2251 ipc_call_t *dataptr)
2252{
2253 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2254 (sysarg_t) size, dataptr);
2255}
2256
2257/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2258 *
2259 * @param exch Exchange for sending the message.
2260 * @param dst Address of the beginning of the destination buffer.
2261 * @param size Size of the destination buffer.
2262 *
2263 * @return Zero on success or a negative error code from errno.h.
2264 *
2265 */
2266int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2267{
2268 if (exch == NULL)
2269 return ENOENT;
2270
2271 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2272 (sysarg_t) size);
2273}
2274
2275/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2276 *
2277 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2278 * calls so that the user doesn't have to remember the meaning of each IPC
2279 * argument.
2280 *
2281 * So far, this wrapper is to be used from within a connection fibril.
2282 *
2283 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2284 * @param size Storage for the maximum size. Can be NULL.
2285 *
2286 * @return True on success, false on failure.
2287 *
2288 */
2289bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2290{
2291 assert(callid);
2292
2293 ipc_call_t data;
2294 *callid = async_get_call(&data);
2295
2296 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_READ)
2297 return false;
2298
2299 if (size)
2300 *size = (size_t) IPC_GET_ARG2(data);
2301
2302 return true;
2303}
2304
2305/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2306 *
2307 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2308 * calls so that the user doesn't have to remember the meaning of each IPC
2309 * argument.
2310 *
2311 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2312 * @param src Source address for the IPC_M_DATA_READ call.
2313 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2314 * the maximum size announced by the sender.
2315 *
2316 * @return Zero on success or a value from @ref errno.h on failure.
2317 *
2318 */
2319int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2320{
2321 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2322}
2323
2324/** Wrapper for forwarding any read request
2325 *
2326 */
2327int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2328 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2329 ipc_call_t *dataptr)
2330{
2331 if (exch == NULL)
2332 return ENOENT;
2333
2334 ipc_callid_t callid;
2335 if (!async_data_read_receive(&callid, NULL)) {
2336 ipc_answer_0(callid, EINVAL);
2337 return EINVAL;
2338 }
2339
2340 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2341 dataptr);
2342 if (msg == 0) {
2343 ipc_answer_0(callid, EINVAL);
2344 return EINVAL;
2345 }
2346
2347 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2348 IPC_FF_ROUTE_FROM_ME);
2349 if (retval != EOK) {
2350 async_forget(msg);
2351 ipc_answer_0(callid, retval);
2352 return retval;
2353 }
2354
2355 sysarg_t rc;
2356 async_wait_for(msg, &rc);
2357
2358 return (int) rc;
2359}
2360
2361/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2362 *
2363 * @param exch Exchange for sending the message.
2364 * @param src Address of the beginning of the source buffer.
2365 * @param size Size of the source buffer.
2366 *
2367 * @return Zero on success or a negative error code from errno.h.
2368 *
2369 */
2370int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2371{
2372 if (exch == NULL)
2373 return ENOENT;
2374
2375 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2376 (sysarg_t) size);
2377}
2378
2379/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2380 *
2381 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2382 * calls so that the user doesn't have to remember the meaning of each IPC
2383 * argument.
2384 *
2385 * So far, this wrapper is to be used from within a connection fibril.
2386 *
2387 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2388 * @param size Storage for the suggested size. May be NULL.
2389 *
2390 * @return True on success, false on failure.
2391 *
2392 */
2393bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2394{
2395 assert(callid);
2396
2397 ipc_call_t data;
2398 *callid = async_get_call(&data);
2399
2400 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_WRITE)
2401 return false;
2402
2403 if (size)
2404 *size = (size_t) IPC_GET_ARG2(data);
2405
2406 return true;
2407}
2408
2409/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2410 *
2411 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2412 * calls so that the user doesn't have to remember the meaning of each IPC
2413 * argument.
2414 *
2415 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2416 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2417 * @param size Final size for the IPC_M_DATA_WRITE call.
2418 *
2419 * @return Zero on success or a value from @ref errno.h on failure.
2420 *
2421 */
2422int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2423{
2424 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2425}
2426
2427/** Wrapper for receiving binary data or strings
2428 *
2429 * This wrapper only makes it more comfortable to use async_data_write_*
2430 * functions to receive binary data or strings.
2431 *
2432 * @param data Pointer to data pointer (which should be later disposed
2433 * by free()). If the operation fails, the pointer is not
2434 * touched.
2435 * @param nullterm If true then the received data is always zero terminated.
2436 * This also causes to allocate one extra byte beyond the
2437 * raw transmitted data.
2438 * @param min_size Minimum size (in bytes) of the data to receive.
2439 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2440 * no limit.
2441 * @param granulariy If non-zero then the size of the received data has to
2442 * be divisible by this value.
2443 * @param received If not NULL, the size of the received data is stored here.
2444 *
2445 * @return Zero on success or a value from @ref errno.h on failure.
2446 *
2447 */
2448int async_data_write_accept(void **data, const bool nullterm,
2449 const size_t min_size, const size_t max_size, const size_t granularity,
2450 size_t *received)
2451{
2452 assert(data);
2453
2454 ipc_callid_t callid;
2455 size_t size;
2456 if (!async_data_write_receive(&callid, &size)) {
2457 ipc_answer_0(callid, EINVAL);
2458 return EINVAL;
2459 }
2460
2461 if (size < min_size) {
2462 ipc_answer_0(callid, EINVAL);
2463 return EINVAL;
2464 }
2465
2466 if ((max_size > 0) && (size > max_size)) {
2467 ipc_answer_0(callid, EINVAL);
2468 return EINVAL;
2469 }
2470
2471 if ((granularity > 0) && ((size % granularity) != 0)) {
2472 ipc_answer_0(callid, EINVAL);
2473 return EINVAL;
2474 }
2475
2476 void *_data;
2477
2478 if (nullterm)
2479 _data = malloc(size + 1);
2480 else
2481 _data = malloc(size);
2482
2483 if (_data == NULL) {
2484 ipc_answer_0(callid, ENOMEM);
2485 return ENOMEM;
2486 }
2487
2488 int rc = async_data_write_finalize(callid, _data, size);
2489 if (rc != EOK) {
2490 free(_data);
2491 return rc;
2492 }
2493
2494 if (nullterm)
2495 ((char *) _data)[size] = 0;
2496
2497 *data = _data;
2498 if (received != NULL)
2499 *received = size;
2500
2501 return EOK;
2502}
2503
2504/** Wrapper for voiding any data that is about to be received
2505 *
2506 * This wrapper can be used to void any pending data
2507 *
2508 * @param retval Error value from @ref errno.h to be returned to the caller.
2509 *
2510 */
2511void async_data_write_void(sysarg_t retval)
2512{
2513 ipc_callid_t callid;
2514 async_data_write_receive(&callid, NULL);
2515 ipc_answer_0(callid, retval);
2516}
2517
2518/** Wrapper for forwarding any data that is about to be received
2519 *
2520 */
2521int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
2522 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2523 ipc_call_t *dataptr)
2524{
2525 if (exch == NULL)
2526 return ENOENT;
2527
2528 ipc_callid_t callid;
2529 if (!async_data_write_receive(&callid, NULL)) {
2530 ipc_answer_0(callid, EINVAL);
2531 return EINVAL;
2532 }
2533
2534 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2535 dataptr);
2536 if (msg == 0) {
2537 ipc_answer_0(callid, EINVAL);
2538 return EINVAL;
2539 }
2540
2541 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2542 IPC_FF_ROUTE_FROM_ME);
2543 if (retval != EOK) {
2544 async_forget(msg);
2545 ipc_answer_0(callid, retval);
2546 return retval;
2547 }
2548
2549 sysarg_t rc;
2550 async_wait_for(msg, &rc);
2551
2552 return (int) rc;
2553}
2554
2555/** Wrapper for sending an exchange over different exchange for cloning
2556 *
2557 * @param exch Exchange to be used for sending.
2558 * @param clone_exch Exchange to be cloned.
2559 *
2560 */
2561int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch)
2562{
2563 return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone);
2564}
2565
2566/** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls.
2567 *
2568 * If the current call is IPC_M_CONNECTION_CLONE then a new
2569 * async session is created for the accepted phone.
2570 *
2571 * @param mgmt Exchange management style.
2572 *
2573 * @return New async session or NULL on failure.
2574 *
2575 */
2576async_sess_t *async_clone_receive(exch_mgmt_t mgmt)
2577{
2578 /* Accept the phone */
2579 ipc_call_t call;
2580 ipc_callid_t callid = async_get_call(&call);
2581 int phone = (int) IPC_GET_ARG1(call);
2582
2583 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) ||
2584 (phone < 0)) {
2585 async_answer_0(callid, EINVAL);
2586 return NULL;
2587 }
2588
2589 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2590 if (sess == NULL) {
2591 async_answer_0(callid, ENOMEM);
2592 return NULL;
2593 }
2594
2595 sess->mgmt = mgmt;
2596 sess->phone = phone;
2597 sess->arg1 = 0;
2598 sess->arg2 = 0;
2599 sess->arg3 = 0;
2600
2601 fibril_mutex_initialize(&sess->remote_state_mtx);
2602 sess->remote_state_data = NULL;
2603
2604 list_initialize(&sess->exch_list);
2605 fibril_mutex_initialize(&sess->mutex);
2606 atomic_set(&sess->refcnt, 0);
2607
2608 /* Acknowledge the cloned phone */
2609 async_answer_0(callid, EOK);
2610
2611 return sess;
2612}
2613
2614/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
2615 *
2616 * If the current call is IPC_M_CONNECT_TO_ME then a new
2617 * async session is created for the accepted phone.
2618 *
2619 * @param mgmt Exchange management style.
2620 *
2621 * @return New async session.
2622 * @return NULL on failure.
2623 *
2624 */
2625async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
2626{
2627 /* Accept the phone */
2628 ipc_call_t call;
2629 ipc_callid_t callid = async_get_call(&call);
2630 int phone = (int) IPC_GET_ARG5(call);
2631
2632 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
2633 (phone < 0)) {
2634 async_answer_0(callid, EINVAL);
2635 return NULL;
2636 }
2637
2638 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2639 if (sess == NULL) {
2640 async_answer_0(callid, ENOMEM);
2641 return NULL;
2642 }
2643
2644 sess->mgmt = mgmt;
2645 sess->phone = phone;
2646 sess->arg1 = 0;
2647 sess->arg2 = 0;
2648 sess->arg3 = 0;
2649
2650 fibril_mutex_initialize(&sess->remote_state_mtx);
2651 sess->remote_state_data = NULL;
2652
2653 list_initialize(&sess->exch_list);
2654 fibril_mutex_initialize(&sess->mutex);
2655 atomic_set(&sess->refcnt, 0);
2656
2657 /* Acknowledge the connected phone */
2658 async_answer_0(callid, EOK);
2659
2660 return sess;
2661}
2662
2663/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
2664 *
2665 * If the call is IPC_M_CONNECT_TO_ME then a new
2666 * async session is created. However, the phone is
2667 * not accepted automatically.
2668 *
2669 * @param mgmt Exchange management style.
2670 * @param call Call data.
2671 *
2672 * @return New async session.
2673 * @return NULL on failure.
2674 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
2675 *
2676 */
2677async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
2678{
2679 int phone = (int) IPC_GET_ARG5(*call);
2680
2681 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
2682 (phone < 0))
2683 return NULL;
2684
2685 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2686 if (sess == NULL)
2687 return NULL;
2688
2689 sess->mgmt = mgmt;
2690 sess->phone = phone;
2691 sess->arg1 = 0;
2692 sess->arg2 = 0;
2693 sess->arg3 = 0;
2694
2695 fibril_mutex_initialize(&sess->remote_state_mtx);
2696 sess->remote_state_data = NULL;
2697
2698 list_initialize(&sess->exch_list);
2699 fibril_mutex_initialize(&sess->mutex);
2700 atomic_set(&sess->refcnt, 0);
2701
2702 return sess;
2703}
2704
2705int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2706 sysarg_t arg3, async_exch_t *other_exch)
2707{
2708 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
2709 arg1, arg2, arg3, 0, other_exch->phone);
2710}
2711
2712bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
2713 sysarg_t *arg2, sysarg_t *arg3)
2714{
2715 assert(callid);
2716
2717 ipc_call_t call;
2718 *callid = async_get_call(&call);
2719
2720 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
2721 return false;
2722
2723 if (arg1)
2724 *arg1 = IPC_GET_ARG1(call);
2725 if (arg2)
2726 *arg2 = IPC_GET_ARG2(call);
2727 if (arg3)
2728 *arg3 = IPC_GET_ARG3(call);
2729
2730 return true;
2731}
2732
2733int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
2734{
2735 return ipc_answer_1(callid, EOK, other_exch->phone);
2736}
2737
2738/** Lock and get session remote state
2739 *
2740 * Lock and get the local replica of the remote state
2741 * in stateful sessions. The call should be paired
2742 * with async_remote_state_release*().
2743 *
2744 * @param[in] sess Stateful session.
2745 *
2746 * @return Local replica of the remote state.
2747 *
2748 */
2749void *async_remote_state_acquire(async_sess_t *sess)
2750{
2751 fibril_mutex_lock(&sess->remote_state_mtx);
2752 return sess->remote_state_data;
2753}
2754
2755/** Update the session remote state
2756 *
2757 * Update the local replica of the remote state
2758 * in stateful sessions. The remote state must
2759 * be already locked.
2760 *
2761 * @param[in] sess Stateful session.
2762 * @param[in] state New local replica of the remote state.
2763 *
2764 */
2765void async_remote_state_update(async_sess_t *sess, void *state)
2766{
2767 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2768 sess->remote_state_data = state;
2769}
2770
2771/** Release the session remote state
2772 *
2773 * Unlock the local replica of the remote state
2774 * in stateful sessions.
2775 *
2776 * @param[in] sess Stateful session.
2777 *
2778 */
2779void async_remote_state_release(async_sess_t *sess)
2780{
2781 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2782
2783 fibril_mutex_unlock(&sess->remote_state_mtx);
2784}
2785
2786/** Release the session remote state and end an exchange
2787 *
2788 * Unlock the local replica of the remote state
2789 * in stateful sessions. This is convenience function
2790 * which gets the session pointer from the exchange
2791 * and also ends the exchange.
2792 *
2793 * @param[in] exch Stateful session's exchange.
2794 *
2795 */
2796void async_remote_state_release_exchange(async_exch_t *exch)
2797{
2798 if (exch == NULL)
2799 return;
2800
2801 async_sess_t *sess = exch->sess;
2802 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2803
2804 async_exchange_end(exch);
2805 fibril_mutex_unlock(&sess->remote_state_mtx);
2806}
2807
2808/** @}
2809 */
Note: See TracBrowser for help on using the repository browser.