source: mainline/uspace/lib/c/generic/async.c@ bc216a0

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since bc216a0 was bc216a0, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

Refactored any users of hash_table to use opaque void* keys instead of the cumbersome unsigned long[] keys. Switched from the ad hoc computations of hashes of multiple values to hash_combine().

  • Property mode set to 100644
File size: 67.0 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * my_client_connection(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <futex.h>
104#include <fibril.h>
105#include <adt/hash_table.h>
106#include <adt/list.h>
107#include <assert.h>
108#include <errno.h>
109#include <sys/time.h>
110#include <libarch/barrier.h>
111#include <bool.h>
112#include <malloc.h>
113#include <mem.h>
114#include <stdlib.h>
115#include <macros.h>
116
117
118/** Session data */
119struct async_sess {
120 /** List of inactive exchanges */
121 list_t exch_list;
122
123 /** Exchange management style */
124 exch_mgmt_t mgmt;
125
126 /** Session identification */
127 int phone;
128
129 /** First clone connection argument */
130 sysarg_t arg1;
131
132 /** Second clone connection argument */
133 sysarg_t arg2;
134
135 /** Third clone connection argument */
136 sysarg_t arg3;
137
138 /** Exchange mutex */
139 fibril_mutex_t mutex;
140
141 /** Number of opened exchanges */
142 atomic_t refcnt;
143
144 /** Mutex for stateful connections */
145 fibril_mutex_t remote_state_mtx;
146
147 /** Data for stateful connections */
148 void *remote_state_data;
149};
150
151/** Exchange data */
152struct async_exch {
153 /** Link into list of inactive exchanges */
154 link_t sess_link;
155
156 /** Link into global list of inactive exchanges */
157 link_t global_link;
158
159 /** Session pointer */
160 async_sess_t *sess;
161
162 /** Exchange identification */
163 int phone;
164};
165
166/** Async framework global futex */
167atomic_t async_futex = FUTEX_INITIALIZER;
168
169/** Number of threads waiting for IPC in the kernel. */
170atomic_t threads_in_ipc_wait = { 0 };
171
172/** Naming service session */
173async_sess_t *session_ns;
174
175/** Call data */
176typedef struct {
177 link_t link;
178
179 ipc_callid_t callid;
180 ipc_call_t call;
181} msg_t;
182
183/** Message data */
184typedef struct {
185 awaiter_t wdata;
186
187 /** If reply was received. */
188 bool done;
189
190 /** If the message / reply should be discarded on arrival. */
191 bool forget;
192
193 /** If already destroyed. */
194 bool destroyed;
195
196 /** Pointer to where the answer data is stored. */
197 ipc_call_t *dataptr;
198
199 sysarg_t retval;
200} amsg_t;
201
202/* Client connection data */
203typedef struct {
204 ht_link_t link;
205
206 task_id_t in_task_id;
207 atomic_t refcnt;
208 void *data;
209} client_t;
210
211/* Server connection data */
212typedef struct {
213 awaiter_t wdata;
214
215 /** Hash table link. */
216 ht_link_t link;
217
218 /** Incoming client task ID. */
219 task_id_t in_task_id;
220
221 /** Incoming phone hash. */
222 sysarg_t in_phone_hash;
223
224 /** Link to the client tracking structure. */
225 client_t *client;
226
227 /** Messages that should be delivered to this fibril. */
228 list_t msg_queue;
229
230 /** Identification of the opening call. */
231 ipc_callid_t callid;
232 /** Call data of the opening call. */
233 ipc_call_t call;
234 /** Local argument or NULL if none. */
235 void *carg;
236
237 /** Identification of the closing call. */
238 ipc_callid_t close_callid;
239
240 /** Fibril function that will be used to handle the connection. */
241 async_client_conn_t cfibril;
242} connection_t;
243
244/** Identifier of the incoming connection handled by the current fibril. */
245static fibril_local connection_t *fibril_connection;
246
247static void to_event_initialize(to_event_t *to)
248{
249 struct timeval tv = { 0, 0 };
250
251 to->inlist = false;
252 to->occurred = false;
253 link_initialize(&to->link);
254 to->expires = tv;
255}
256
257static void wu_event_initialize(wu_event_t *wu)
258{
259 wu->inlist = false;
260 link_initialize(&wu->link);
261}
262
263void awaiter_initialize(awaiter_t *aw)
264{
265 aw->fid = 0;
266 aw->active = false;
267 to_event_initialize(&aw->to_event);
268 wu_event_initialize(&aw->wu_event);
269}
270
271static amsg_t *amsg_create(void)
272{
273 amsg_t *msg;
274
275 msg = malloc(sizeof(amsg_t));
276 if (msg) {
277 msg->done = false;
278 msg->forget = false;
279 msg->destroyed = false;
280 msg->dataptr = NULL;
281 msg->retval = (sysarg_t) EINVAL;
282 awaiter_initialize(&msg->wdata);
283 }
284
285 return msg;
286}
287
288static void amsg_destroy(amsg_t *msg)
289{
290 assert(!msg->destroyed);
291 msg->destroyed = true;
292 free(msg);
293}
294
295static void *default_client_data_constructor(void)
296{
297 return NULL;
298}
299
300static void default_client_data_destructor(void *data)
301{
302}
303
304static async_client_data_ctor_t async_client_data_create =
305 default_client_data_constructor;
306static async_client_data_dtor_t async_client_data_destroy =
307 default_client_data_destructor;
308
309void async_set_client_data_constructor(async_client_data_ctor_t ctor)
310{
311 assert(async_client_data_create == default_client_data_constructor);
312 async_client_data_create = ctor;
313}
314
315void async_set_client_data_destructor(async_client_data_dtor_t dtor)
316{
317 assert(async_client_data_destroy == default_client_data_destructor);
318 async_client_data_destroy = dtor;
319}
320
321/** Default fibril function that gets called to handle new connection.
322 *
323 * This function is defined as a weak symbol - to be redefined in user code.
324 *
325 * @param callid Hash of the incoming call.
326 * @param call Data of the incoming call.
327 * @param arg Local argument
328 *
329 */
330static void default_client_connection(ipc_callid_t callid, ipc_call_t *call,
331 void *arg)
332{
333 ipc_answer_0(callid, ENOENT);
334}
335
336/** Default fibril function that gets called to handle interrupt notifications.
337 *
338 * This function is defined as a weak symbol - to be redefined in user code.
339 *
340 * @param callid Hash of the incoming call.
341 * @param call Data of the incoming call.
342 * @param arg Local argument.
343 *
344 */
345static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call)
346{
347}
348
349static async_client_conn_t client_connection = default_client_connection;
350static async_interrupt_handler_t interrupt_received = default_interrupt_received;
351
352/** Setter for client_connection function pointer.
353 *
354 * @param conn Function that will implement a new connection fibril.
355 *
356 */
357void async_set_client_connection(async_client_conn_t conn)
358{
359 assert(client_connection == default_client_connection);
360 client_connection = conn;
361}
362
363/** Setter for interrupt_received function pointer.
364 *
365 * @param intr Function that will implement a new interrupt
366 * notification fibril.
367 */
368void async_set_interrupt_received(async_interrupt_handler_t intr)
369{
370 interrupt_received = intr;
371}
372
373/** Mutex protecting inactive_exch_list and avail_phone_cv.
374 *
375 */
376static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
377
378/** List of all currently inactive exchanges.
379 *
380 */
381static LIST_INITIALIZE(inactive_exch_list);
382
383/** Condition variable to wait for a phone to become available.
384 *
385 */
386static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
387
388static hash_table_t client_hash_table;
389static hash_table_t conn_hash_table;
390static LIST_INITIALIZE(timeout_list);
391
392static size_t client_key_hash(void *k)
393{
394 task_id_t key = *(task_id_t*)k;
395 return key;
396}
397
398static size_t client_hash(const ht_link_t *item)
399{
400 client_t *client = hash_table_get_inst(item, client_t, link);
401 return client_key_hash(&client->in_task_id);
402}
403
404static bool client_key_equal(void *k, const ht_link_t *item)
405{
406 task_id_t key = *(task_id_t*)k;
407 client_t *client = hash_table_get_inst(item, client_t, link);
408 return key == client->in_task_id;
409}
410
411
412/** Operations for the client hash table. */
413static hash_table_ops_t client_hash_table_ops = {
414 .hash = client_hash,
415 .key_hash = client_key_hash,
416 .key_equal = client_key_equal,
417 .equal = 0,
418 .remove_callback = 0
419};
420
421/** Compute hash into the connection hash table based on the source phone hash.
422 *
423 * @param key Pointer to source phone hash.
424 *
425 * @return Index into the connection hash table.
426 *
427 */
428static size_t conn_key_hash(void *key)
429{
430 sysarg_t in_phone_hash = *(sysarg_t*)key;
431 return in_phone_hash ;
432}
433
434static size_t conn_hash(const ht_link_t *item)
435{
436 connection_t *conn = hash_table_get_inst(item, connection_t, link);
437 return conn_key_hash(&conn->in_phone_hash);
438}
439
440static bool conn_key_equal(void *key, const ht_link_t *item)
441{
442 sysarg_t in_phone_hash = *(sysarg_t*)key;
443 connection_t *conn = hash_table_get_inst(item, connection_t, link);
444 return (in_phone_hash == conn->in_phone_hash);
445}
446
447
448/** Operations for the connection hash table. */
449static hash_table_ops_t conn_hash_table_ops = {
450 .hash = conn_hash,
451 .key_hash = conn_key_hash,
452 .key_equal = conn_key_equal,
453 .equal = 0,
454 .remove_callback = 0
455};
456
457/** Sort in current fibril's timeout request.
458 *
459 * @param wd Wait data of the current fibril.
460 *
461 */
462void async_insert_timeout(awaiter_t *wd)
463{
464 assert(wd);
465
466 wd->to_event.occurred = false;
467 wd->to_event.inlist = true;
468
469 link_t *tmp = timeout_list.head.next;
470 while (tmp != &timeout_list.head) {
471 awaiter_t *cur
472 = list_get_instance(tmp, awaiter_t, to_event.link);
473
474 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
475 break;
476
477 tmp = tmp->next;
478 }
479
480 list_insert_before(&wd->to_event.link, tmp);
481}
482
483/** Try to route a call to an appropriate connection fibril.
484 *
485 * If the proper connection fibril is found, a message with the call is added to
486 * its message queue. If the fibril was not active, it is activated and all
487 * timeouts are unregistered.
488 *
489 * @param callid Hash of the incoming call.
490 * @param call Data of the incoming call.
491 *
492 * @return False if the call doesn't match any connection.
493 * @return True if the call was passed to the respective connection fibril.
494 *
495 */
496static bool route_call(ipc_callid_t callid, ipc_call_t *call)
497{
498 assert(call);
499
500 futex_down(&async_futex);
501
502 ht_link_t *hlp = hash_table_find(&conn_hash_table, &call->in_phone_hash);
503
504 if (!hlp) {
505 futex_up(&async_futex);
506 return false;
507 }
508
509 connection_t *conn = hash_table_get_inst(hlp, connection_t, link);
510
511 msg_t *msg = malloc(sizeof(*msg));
512 if (!msg) {
513 futex_up(&async_futex);
514 return false;
515 }
516
517 msg->callid = callid;
518 msg->call = *call;
519 list_append(&msg->link, &conn->msg_queue);
520
521 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
522 conn->close_callid = callid;
523
524 /* If the connection fibril is waiting for an event, activate it */
525 if (!conn->wdata.active) {
526
527 /* If in timeout list, remove it */
528 if (conn->wdata.to_event.inlist) {
529 conn->wdata.to_event.inlist = false;
530 list_remove(&conn->wdata.to_event.link);
531 }
532
533 conn->wdata.active = true;
534 fibril_add_ready(conn->wdata.fid);
535 }
536
537 futex_up(&async_futex);
538 return true;
539}
540
541/** Notification fibril.
542 *
543 * When a notification arrives, a fibril with this implementing function is
544 * created. It calls interrupt_received() and does the final cleanup.
545 *
546 * @param arg Message structure pointer.
547 *
548 * @return Always zero.
549 *
550 */
551static int notification_fibril(void *arg)
552{
553 assert(arg);
554
555 msg_t *msg = (msg_t *) arg;
556 interrupt_received(msg->callid, &msg->call);
557
558 free(msg);
559 return 0;
560}
561
562/** Process interrupt notification.
563 *
564 * A new fibril is created which would process the notification.
565 *
566 * @param callid Hash of the incoming call.
567 * @param call Data of the incoming call.
568 *
569 * @return False if an error occured.
570 * True if the call was passed to the notification fibril.
571 *
572 */
573static bool process_notification(ipc_callid_t callid, ipc_call_t *call)
574{
575 assert(call);
576
577 futex_down(&async_futex);
578
579 msg_t *msg = malloc(sizeof(*msg));
580 if (!msg) {
581 futex_up(&async_futex);
582 return false;
583 }
584
585 msg->callid = callid;
586 msg->call = *call;
587
588 fid_t fid = fibril_create(notification_fibril, msg);
589 if (fid == 0) {
590 free(msg);
591 futex_up(&async_futex);
592 return false;
593 }
594
595 fibril_add_ready(fid);
596
597 futex_up(&async_futex);
598 return true;
599}
600
601/** Return new incoming message for the current (fibril-local) connection.
602 *
603 * @param call Storage where the incoming call data will be stored.
604 * @param usecs Timeout in microseconds. Zero denotes no timeout.
605 *
606 * @return If no timeout was specified, then a hash of the
607 * incoming call is returned. If a timeout is specified,
608 * then a hash of the incoming call is returned unless
609 * the timeout expires prior to receiving a message. In
610 * that case zero is returned.
611 *
612 */
613ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
614{
615 assert(call);
616 assert(fibril_connection);
617
618 /* Why doing this?
619 * GCC 4.1.0 coughs on fibril_connection-> dereference.
620 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
621 * I would never expect to find so many errors in
622 * a compiler.
623 */
624 connection_t *conn = fibril_connection;
625
626 futex_down(&async_futex);
627
628 if (usecs) {
629 gettimeofday(&conn->wdata.to_event.expires, NULL);
630 tv_add(&conn->wdata.to_event.expires, usecs);
631 } else
632 conn->wdata.to_event.inlist = false;
633
634 /* If nothing in queue, wait until something arrives */
635 while (list_empty(&conn->msg_queue)) {
636 if (conn->close_callid) {
637 /*
638 * Handle the case when the connection was already
639 * closed by the client but the server did not notice
640 * the first IPC_M_PHONE_HUNGUP call and continues to
641 * call async_get_call_timeout(). Repeat
642 * IPC_M_PHONE_HUNGUP until the caller notices.
643 */
644 memset(call, 0, sizeof(ipc_call_t));
645 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
646 futex_up(&async_futex);
647 return conn->close_callid;
648 }
649
650 if (usecs)
651 async_insert_timeout(&conn->wdata);
652
653 conn->wdata.active = false;
654
655 /*
656 * Note: the current fibril will be rescheduled either due to a
657 * timeout or due to an arriving message destined to it. In the
658 * former case, handle_expired_timeouts() and, in the latter
659 * case, route_call() will perform the wakeup.
660 */
661 fibril_switch(FIBRIL_TO_MANAGER);
662
663 /*
664 * Futex is up after getting back from async_manager.
665 * Get it again.
666 */
667 futex_down(&async_futex);
668 if ((usecs) && (conn->wdata.to_event.occurred)
669 && (list_empty(&conn->msg_queue))) {
670 /* If we timed out -> exit */
671 futex_up(&async_futex);
672 return 0;
673 }
674 }
675
676 msg_t *msg = list_get_instance(list_first(&conn->msg_queue), msg_t, link);
677 list_remove(&msg->link);
678
679 ipc_callid_t callid = msg->callid;
680 *call = msg->call;
681 free(msg);
682
683 futex_up(&async_futex);
684 return callid;
685}
686
687static client_t *async_client_get(task_id_t client_id, bool create)
688{
689 client_t *client = NULL;
690
691 futex_down(&async_futex);
692 ht_link_t *lnk = hash_table_find(&client_hash_table, &client_id);
693 if (lnk) {
694 client = hash_table_get_inst(lnk, client_t, link);
695 atomic_inc(&client->refcnt);
696 } else if (create) {
697 client = malloc(sizeof(client_t));
698 if (client) {
699 client->in_task_id = client_id;
700 client->data = async_client_data_create();
701
702 atomic_set(&client->refcnt, 1);
703 hash_table_insert(&client_hash_table, &client->link);
704 }
705 }
706
707 futex_up(&async_futex);
708 return client;
709}
710
711static void async_client_put(client_t *client)
712{
713 bool destroy;
714
715 futex_down(&async_futex);
716
717 if (atomic_predec(&client->refcnt) == 0) {
718 hash_table_remove(&client_hash_table, &client->in_task_id);
719 destroy = true;
720 } else
721 destroy = false;
722
723 futex_up(&async_futex);
724
725 if (destroy) {
726 if (client->data)
727 async_client_data_destroy(client->data);
728
729 free(client);
730 }
731}
732
733void *async_get_client_data(void)
734{
735 assert(fibril_connection);
736 return fibril_connection->client->data;
737}
738
739void *async_get_client_data_by_id(task_id_t client_id)
740{
741 client_t *client = async_client_get(client_id, false);
742 if (!client)
743 return NULL;
744 if (!client->data) {
745 async_client_put(client);
746 return NULL;
747 }
748
749 return client->data;
750}
751
752void async_put_client_data_by_id(task_id_t client_id)
753{
754 client_t *client = async_client_get(client_id, false);
755
756 assert(client);
757 assert(client->data);
758
759 /* Drop the reference we got in async_get_client_data_by_hash(). */
760 async_client_put(client);
761
762 /* Drop our own reference we got at the beginning of this function. */
763 async_client_put(client);
764}
765
766/** Wrapper for client connection fibril.
767 *
768 * When a new connection arrives, a fibril with this implementing function is
769 * created. It calls client_connection() and does the final cleanup.
770 *
771 * @param arg Connection structure pointer.
772 *
773 * @return Always zero.
774 *
775 */
776static int connection_fibril(void *arg)
777{
778 assert(arg);
779
780 /*
781 * Setup fibril-local connection pointer.
782 */
783 fibril_connection = (connection_t *) arg;
784
785 /*
786 * Add our reference for the current connection in the client task
787 * tracking structure. If this is the first reference, create and
788 * hash in a new tracking structure.
789 */
790
791 client_t *client = async_client_get(fibril_connection->in_task_id, true);
792 if (!client) {
793 ipc_answer_0(fibril_connection->callid, ENOMEM);
794 return 0;
795 }
796
797 fibril_connection->client = client;
798
799 /*
800 * Call the connection handler function.
801 */
802 fibril_connection->cfibril(fibril_connection->callid,
803 &fibril_connection->call, fibril_connection->carg);
804
805 /*
806 * Remove the reference for this client task connection.
807 */
808 async_client_put(client);
809
810 /*
811 * Remove myself from the connection hash table.
812 */
813 futex_down(&async_futex);
814 hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash);
815 futex_up(&async_futex);
816
817 /*
818 * Answer all remaining messages with EHANGUP.
819 */
820 while (!list_empty(&fibril_connection->msg_queue)) {
821 msg_t *msg =
822 list_get_instance(list_first(&fibril_connection->msg_queue),
823 msg_t, link);
824
825 list_remove(&msg->link);
826 ipc_answer_0(msg->callid, EHANGUP);
827 free(msg);
828 }
829
830 /*
831 * If the connection was hung-up, answer the last call,
832 * i.e. IPC_M_PHONE_HUNGUP.
833 */
834 if (fibril_connection->close_callid)
835 ipc_answer_0(fibril_connection->close_callid, EOK);
836
837 free(fibril_connection);
838 return 0;
839}
840
841/** Create a new fibril for a new connection.
842 *
843 * Create new fibril for connection, fill in connection structures and insert
844 * it into the hash table, so that later we can easily do routing of messages to
845 * particular fibrils.
846 *
847 * @param in_task_id Identification of the incoming connection.
848 * @param in_phone_hash Identification of the incoming connection.
849 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
850 * If callid is zero, the connection was opened by
851 * accepting the IPC_M_CONNECT_TO_ME call and this function
852 * is called directly by the server.
853 * @param call Call data of the opening call.
854 * @param cfibril Fibril function that should be called upon opening the
855 * connection.
856 * @param carg Extra argument to pass to the connection fibril
857 *
858 * @return New fibril id or NULL on failure.
859 *
860 */
861fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
862 ipc_callid_t callid, ipc_call_t *call,
863 async_client_conn_t cfibril, void *carg)
864{
865 connection_t *conn = malloc(sizeof(*conn));
866 if (!conn) {
867 if (callid)
868 ipc_answer_0(callid, ENOMEM);
869
870 return (uintptr_t) NULL;
871 }
872
873 conn->in_task_id = in_task_id;
874 conn->in_phone_hash = in_phone_hash;
875 list_initialize(&conn->msg_queue);
876 conn->callid = callid;
877 conn->close_callid = 0;
878 conn->carg = carg;
879
880 if (call)
881 conn->call = *call;
882
883 /* We will activate the fibril ASAP */
884 conn->wdata.active = true;
885 conn->cfibril = cfibril;
886 conn->wdata.fid = fibril_create(connection_fibril, conn);
887
888 if (conn->wdata.fid == 0) {
889 free(conn);
890
891 if (callid)
892 ipc_answer_0(callid, ENOMEM);
893
894 return (uintptr_t) NULL;
895 }
896
897 /* Add connection to the connection hash table */
898
899 futex_down(&async_futex);
900 hash_table_insert(&conn_hash_table, &conn->link);
901 futex_up(&async_futex);
902
903 fibril_add_ready(conn->wdata.fid);
904
905 return conn->wdata.fid;
906}
907
908/** Handle a call that was received.
909 *
910 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
911 * Otherwise the call is routed to its connection fibril.
912 *
913 * @param callid Hash of the incoming call.
914 * @param call Data of the incoming call.
915 *
916 */
917static void handle_call(ipc_callid_t callid, ipc_call_t *call)
918{
919 assert(call);
920
921 /* Unrouted call - take some default action */
922 if ((callid & IPC_CALLID_NOTIFICATION)) {
923 process_notification(callid, call);
924 return;
925 }
926
927 switch (IPC_GET_IMETHOD(*call)) {
928 case IPC_M_CLONE_ESTABLISH:
929 case IPC_M_CONNECT_ME_TO:
930 /* Open new connection with fibril, etc. */
931 async_new_connection(call->in_task_id, IPC_GET_ARG5(*call),
932 callid, call, client_connection, NULL);
933 return;
934 }
935
936 /* Try to route the call through the connection hash table */
937 if (route_call(callid, call))
938 return;
939
940 /* Unknown call from unknown phone - hang it up */
941 ipc_answer_0(callid, EHANGUP);
942}
943
944/** Fire all timeouts that expired. */
945static void handle_expired_timeouts(void)
946{
947 struct timeval tv;
948 gettimeofday(&tv, NULL);
949
950 futex_down(&async_futex);
951
952 link_t *cur = list_first(&timeout_list);
953 while (cur != NULL) {
954 awaiter_t *waiter =
955 list_get_instance(cur, awaiter_t, to_event.link);
956
957 if (tv_gt(&waiter->to_event.expires, &tv))
958 break;
959
960 list_remove(&waiter->to_event.link);
961 waiter->to_event.inlist = false;
962 waiter->to_event.occurred = true;
963
964 /*
965 * Redundant condition?
966 * The fibril should not be active when it gets here.
967 */
968 if (!waiter->active) {
969 waiter->active = true;
970 fibril_add_ready(waiter->fid);
971 }
972
973 cur = list_first(&timeout_list);
974 }
975
976 futex_up(&async_futex);
977}
978
979/** Endless loop dispatching incoming calls and answers.
980 *
981 * @return Never returns.
982 *
983 */
984static int async_manager_worker(void)
985{
986 while (true) {
987 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
988 futex_up(&async_futex);
989 /*
990 * async_futex is always held when entering a manager
991 * fibril.
992 */
993 continue;
994 }
995
996 futex_down(&async_futex);
997
998 suseconds_t timeout;
999 unsigned int flags = SYNCH_FLAGS_NONE;
1000 if (!list_empty(&timeout_list)) {
1001 awaiter_t *waiter = list_get_instance(
1002 list_first(&timeout_list), awaiter_t, to_event.link);
1003
1004 struct timeval tv;
1005 gettimeofday(&tv, NULL);
1006
1007 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1008 futex_up(&async_futex);
1009 handle_expired_timeouts();
1010 /*
1011 * Notice that even if the event(s) already
1012 * expired (and thus the other fibril was
1013 * supposed to be running already),
1014 * we check for incoming IPC.
1015 *
1016 * Otherwise, a fibril that continuously
1017 * creates (almost) expired events could
1018 * prevent IPC retrieval from the kernel.
1019 */
1020 timeout = 0;
1021 flags = SYNCH_FLAGS_NON_BLOCKING;
1022
1023 } else {
1024 timeout = tv_sub(&waiter->to_event.expires, &tv);
1025 futex_up(&async_futex);
1026 }
1027 } else {
1028 futex_up(&async_futex);
1029 timeout = SYNCH_NO_TIMEOUT;
1030 }
1031
1032 atomic_inc(&threads_in_ipc_wait);
1033
1034 ipc_call_t call;
1035 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1036
1037 atomic_dec(&threads_in_ipc_wait);
1038
1039 if (!callid) {
1040 handle_expired_timeouts();
1041 continue;
1042 }
1043
1044 if (callid & IPC_CALLID_ANSWERED)
1045 continue;
1046
1047 handle_call(callid, &call);
1048 }
1049
1050 return 0;
1051}
1052
1053/** Function to start async_manager as a standalone fibril.
1054 *
1055 * When more kernel threads are used, one async manager should exist per thread.
1056 *
1057 * @param arg Unused.
1058 * @return Never returns.
1059 *
1060 */
1061static int async_manager_fibril(void *arg)
1062{
1063 futex_up(&async_futex);
1064
1065 /*
1066 * async_futex is always locked when entering manager
1067 */
1068 async_manager_worker();
1069
1070 return 0;
1071}
1072
1073/** Add one manager to manager list. */
1074void async_create_manager(void)
1075{
1076 fid_t fid = fibril_create(async_manager_fibril, NULL);
1077 if (fid != 0)
1078 fibril_add_manager(fid);
1079}
1080
1081/** Remove one manager from manager list */
1082void async_destroy_manager(void)
1083{
1084 fibril_remove_manager();
1085}
1086
1087/** Initialize the async framework.
1088 *
1089 */
1090void __async_init(void)
1091{
1092 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1093 abort();
1094
1095 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1096 abort();
1097
1098 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1099 if (session_ns == NULL)
1100 abort();
1101
1102 session_ns->mgmt = EXCHANGE_ATOMIC;
1103 session_ns->phone = PHONE_NS;
1104 session_ns->arg1 = 0;
1105 session_ns->arg2 = 0;
1106 session_ns->arg3 = 0;
1107
1108 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1109 session_ns->remote_state_data = NULL;
1110
1111 list_initialize(&session_ns->exch_list);
1112 fibril_mutex_initialize(&session_ns->mutex);
1113 atomic_set(&session_ns->refcnt, 0);
1114}
1115
1116/** Reply received callback.
1117 *
1118 * This function is called whenever a reply for an asynchronous message sent out
1119 * by the asynchronous framework is received.
1120 *
1121 * Notify the fibril which is waiting for this message that it has arrived.
1122 *
1123 * @param arg Pointer to the asynchronous message record.
1124 * @param retval Value returned in the answer.
1125 * @param data Call data of the answer.
1126 *
1127 */
1128void reply_received(void *arg, int retval, ipc_call_t *data)
1129{
1130 assert(arg);
1131
1132 futex_down(&async_futex);
1133
1134 amsg_t *msg = (amsg_t *) arg;
1135 msg->retval = retval;
1136
1137 /* Copy data after futex_down, just in case the call was detached */
1138 if ((msg->dataptr) && (data))
1139 *msg->dataptr = *data;
1140
1141 write_barrier();
1142
1143 /* Remove message from timeout list */
1144 if (msg->wdata.to_event.inlist)
1145 list_remove(&msg->wdata.to_event.link);
1146
1147 msg->done = true;
1148
1149 if (msg->forget) {
1150 assert(msg->wdata.active);
1151 amsg_destroy(msg);
1152 } else if (!msg->wdata.active) {
1153 msg->wdata.active = true;
1154 fibril_add_ready(msg->wdata.fid);
1155 }
1156
1157 futex_up(&async_futex);
1158}
1159
1160/** Send message and return id of the sent message.
1161 *
1162 * The return value can be used as input for async_wait() to wait for
1163 * completion.
1164 *
1165 * @param exch Exchange for sending the message.
1166 * @param imethod Service-defined interface and method.
1167 * @param arg1 Service-defined payload argument.
1168 * @param arg2 Service-defined payload argument.
1169 * @param arg3 Service-defined payload argument.
1170 * @param arg4 Service-defined payload argument.
1171 * @param dataptr If non-NULL, storage where the reply data will be
1172 * stored.
1173 *
1174 * @return Hash of the sent message or 0 on error.
1175 *
1176 */
1177aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1178 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1179{
1180 if (exch == NULL)
1181 return 0;
1182
1183 amsg_t *msg = amsg_create();
1184 if (msg == NULL)
1185 return 0;
1186
1187 msg->dataptr = dataptr;
1188 msg->wdata.active = true;
1189
1190 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1191 reply_received, true);
1192
1193 return (aid_t) msg;
1194}
1195
1196/** Send message and return id of the sent message
1197 *
1198 * The return value can be used as input for async_wait() to wait for
1199 * completion.
1200 *
1201 * @param exch Exchange for sending the message.
1202 * @param imethod Service-defined interface and method.
1203 * @param arg1 Service-defined payload argument.
1204 * @param arg2 Service-defined payload argument.
1205 * @param arg3 Service-defined payload argument.
1206 * @param arg4 Service-defined payload argument.
1207 * @param arg5 Service-defined payload argument.
1208 * @param dataptr If non-NULL, storage where the reply data will be
1209 * stored.
1210 *
1211 * @return Hash of the sent message or 0 on error.
1212 *
1213 */
1214aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1215 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1216 ipc_call_t *dataptr)
1217{
1218 if (exch == NULL)
1219 return 0;
1220
1221 amsg_t *msg = amsg_create();
1222 if (msg == NULL)
1223 return 0;
1224
1225 msg->dataptr = dataptr;
1226 msg->wdata.active = true;
1227
1228 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1229 msg, reply_received, true);
1230
1231 return (aid_t) msg;
1232}
1233
1234/** Wait for a message sent by the async framework.
1235 *
1236 * @param amsgid Hash of the message to wait for.
1237 * @param retval Pointer to storage where the retval of the answer will
1238 * be stored.
1239 *
1240 */
1241void async_wait_for(aid_t amsgid, sysarg_t *retval)
1242{
1243 assert(amsgid);
1244
1245 amsg_t *msg = (amsg_t *) amsgid;
1246
1247 futex_down(&async_futex);
1248
1249 assert(!msg->forget);
1250 assert(!msg->destroyed);
1251
1252 if (msg->done) {
1253 futex_up(&async_futex);
1254 goto done;
1255 }
1256
1257 msg->wdata.fid = fibril_get_id();
1258 msg->wdata.active = false;
1259 msg->wdata.to_event.inlist = false;
1260
1261 /* Leave the async_futex locked when entering this function */
1262 fibril_switch(FIBRIL_TO_MANAGER);
1263
1264 /* Futex is up automatically after fibril_switch */
1265
1266done:
1267 if (retval)
1268 *retval = msg->retval;
1269
1270 amsg_destroy(msg);
1271}
1272
1273/** Wait for a message sent by the async framework, timeout variant.
1274 *
1275 * If the wait times out, the caller may choose to either wait again by calling
1276 * async_wait_for() or async_wait_timeout(), or forget the message via
1277 * async_forget().
1278 *
1279 * @param amsgid Hash of the message to wait for.
1280 * @param retval Pointer to storage where the retval of the answer will
1281 * be stored.
1282 * @param timeout Timeout in microseconds.
1283 *
1284 * @return Zero on success, ETIMEOUT if the timeout has expired.
1285 *
1286 */
1287int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1288{
1289 assert(amsgid);
1290
1291 amsg_t *msg = (amsg_t *) amsgid;
1292
1293 futex_down(&async_futex);
1294
1295 assert(!msg->forget);
1296 assert(!msg->destroyed);
1297
1298 if (msg->done) {
1299 futex_up(&async_futex);
1300 goto done;
1301 }
1302
1303 /*
1304 * Negative timeout is converted to zero timeout to avoid
1305 * using tv_add with negative augmenter.
1306 */
1307 if (timeout < 0)
1308 timeout = 0;
1309
1310 gettimeofday(&msg->wdata.to_event.expires, NULL);
1311 tv_add(&msg->wdata.to_event.expires, timeout);
1312
1313 /*
1314 * Current fibril is inserted as waiting regardless of the
1315 * "size" of the timeout.
1316 *
1317 * Checking for msg->done and immediately bailing out when
1318 * timeout == 0 would mean that the manager fibril would never
1319 * run (consider single threaded program).
1320 * Thus the IPC answer would be never retrieved from the kernel.
1321 *
1322 * Notice that the actual delay would be very small because we
1323 * - switch to manager fibril
1324 * - the manager sees expired timeout
1325 * - and thus adds us back to ready queue
1326 * - manager switches back to some ready fibril
1327 * (prior it, it checks for incoming IPC).
1328 *
1329 */
1330 msg->wdata.fid = fibril_get_id();
1331 msg->wdata.active = false;
1332 async_insert_timeout(&msg->wdata);
1333
1334 /* Leave the async_futex locked when entering this function */
1335 fibril_switch(FIBRIL_TO_MANAGER);
1336
1337 /* Futex is up automatically after fibril_switch */
1338
1339 if (!msg->done)
1340 return ETIMEOUT;
1341
1342done:
1343 if (retval)
1344 *retval = msg->retval;
1345
1346 amsg_destroy(msg);
1347
1348 return 0;
1349}
1350
1351/** Discard the message / reply on arrival.
1352 *
1353 * The message will be marked to be discarded once the reply arrives in
1354 * reply_received(). It is not allowed to call async_wait_for() or
1355 * async_wait_timeout() on this message after a call to this function.
1356 *
1357 * @param amsgid Hash of the message to forget.
1358 */
1359void async_forget(aid_t amsgid)
1360{
1361 amsg_t *msg = (amsg_t *) amsgid;
1362
1363 assert(msg);
1364 assert(!msg->forget);
1365 assert(!msg->destroyed);
1366
1367 futex_down(&async_futex);
1368 if (msg->done) {
1369 amsg_destroy(msg);
1370 } else {
1371 msg->dataptr = NULL;
1372 msg->forget = true;
1373 }
1374 futex_up(&async_futex);
1375}
1376
1377/** Wait for specified time.
1378 *
1379 * The current fibril is suspended but the thread continues to execute.
1380 *
1381 * @param timeout Duration of the wait in microseconds.
1382 *
1383 */
1384void async_usleep(suseconds_t timeout)
1385{
1386 amsg_t *msg = amsg_create();
1387 if (!msg)
1388 return;
1389
1390 msg->wdata.fid = fibril_get_id();
1391
1392 gettimeofday(&msg->wdata.to_event.expires, NULL);
1393 tv_add(&msg->wdata.to_event.expires, timeout);
1394
1395 futex_down(&async_futex);
1396
1397 async_insert_timeout(&msg->wdata);
1398
1399 /* Leave the async_futex locked when entering this function */
1400 fibril_switch(FIBRIL_TO_MANAGER);
1401
1402 /* Futex is up automatically after fibril_switch() */
1403
1404 amsg_destroy(msg);
1405}
1406
1407/** Pseudo-synchronous message sending - fast version.
1408 *
1409 * Send message asynchronously and return only after the reply arrives.
1410 *
1411 * This function can only transfer 4 register payload arguments. For
1412 * transferring more arguments, see the slower async_req_slow().
1413 *
1414 * @param exch Exchange for sending the message.
1415 * @param imethod Interface and method of the call.
1416 * @param arg1 Service-defined payload argument.
1417 * @param arg2 Service-defined payload argument.
1418 * @param arg3 Service-defined payload argument.
1419 * @param arg4 Service-defined payload argument.
1420 * @param r1 If non-NULL, storage for the 1st reply argument.
1421 * @param r2 If non-NULL, storage for the 2nd reply argument.
1422 * @param r3 If non-NULL, storage for the 3rd reply argument.
1423 * @param r4 If non-NULL, storage for the 4th reply argument.
1424 * @param r5 If non-NULL, storage for the 5th reply argument.
1425 *
1426 * @return Return code of the reply or a negative error code.
1427 *
1428 */
1429sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1430 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1431 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1432{
1433 if (exch == NULL)
1434 return ENOENT;
1435
1436 ipc_call_t result;
1437 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1438 &result);
1439
1440 sysarg_t rc;
1441 async_wait_for(aid, &rc);
1442
1443 if (r1)
1444 *r1 = IPC_GET_ARG1(result);
1445
1446 if (r2)
1447 *r2 = IPC_GET_ARG2(result);
1448
1449 if (r3)
1450 *r3 = IPC_GET_ARG3(result);
1451
1452 if (r4)
1453 *r4 = IPC_GET_ARG4(result);
1454
1455 if (r5)
1456 *r5 = IPC_GET_ARG5(result);
1457
1458 return rc;
1459}
1460
1461/** Pseudo-synchronous message sending - slow version.
1462 *
1463 * Send message asynchronously and return only after the reply arrives.
1464 *
1465 * @param exch Exchange for sending the message.
1466 * @param imethod Interface and method of the call.
1467 * @param arg1 Service-defined payload argument.
1468 * @param arg2 Service-defined payload argument.
1469 * @param arg3 Service-defined payload argument.
1470 * @param arg4 Service-defined payload argument.
1471 * @param arg5 Service-defined payload argument.
1472 * @param r1 If non-NULL, storage for the 1st reply argument.
1473 * @param r2 If non-NULL, storage for the 2nd reply argument.
1474 * @param r3 If non-NULL, storage for the 3rd reply argument.
1475 * @param r4 If non-NULL, storage for the 4th reply argument.
1476 * @param r5 If non-NULL, storage for the 5th reply argument.
1477 *
1478 * @return Return code of the reply or a negative error code.
1479 *
1480 */
1481sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1482 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1483 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1484{
1485 if (exch == NULL)
1486 return ENOENT;
1487
1488 ipc_call_t result;
1489 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1490 &result);
1491
1492 sysarg_t rc;
1493 async_wait_for(aid, &rc);
1494
1495 if (r1)
1496 *r1 = IPC_GET_ARG1(result);
1497
1498 if (r2)
1499 *r2 = IPC_GET_ARG2(result);
1500
1501 if (r3)
1502 *r3 = IPC_GET_ARG3(result);
1503
1504 if (r4)
1505 *r4 = IPC_GET_ARG4(result);
1506
1507 if (r5)
1508 *r5 = IPC_GET_ARG5(result);
1509
1510 return rc;
1511}
1512
1513void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1514{
1515 if (exch != NULL)
1516 ipc_call_async_0(exch->phone, imethod, NULL, NULL, true);
1517}
1518
1519void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1520{
1521 if (exch != NULL)
1522 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL, true);
1523}
1524
1525void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1526 sysarg_t arg2)
1527{
1528 if (exch != NULL)
1529 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL,
1530 true);
1531}
1532
1533void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1534 sysarg_t arg2, sysarg_t arg3)
1535{
1536 if (exch != NULL)
1537 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1538 NULL, true);
1539}
1540
1541void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1542 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1543{
1544 if (exch != NULL)
1545 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1546 NULL, NULL, true);
1547}
1548
1549void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1550 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1551{
1552 if (exch != NULL)
1553 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
1554 arg5, NULL, NULL, true);
1555}
1556
1557sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
1558{
1559 return ipc_answer_0(callid, retval);
1560}
1561
1562sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
1563{
1564 return ipc_answer_1(callid, retval, arg1);
1565}
1566
1567sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1568 sysarg_t arg2)
1569{
1570 return ipc_answer_2(callid, retval, arg1, arg2);
1571}
1572
1573sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1574 sysarg_t arg2, sysarg_t arg3)
1575{
1576 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
1577}
1578
1579sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1580 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1581{
1582 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
1583}
1584
1585sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1586 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1587{
1588 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
1589}
1590
1591int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
1592 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1593{
1594 if (exch == NULL)
1595 return ENOENT;
1596
1597 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
1598}
1599
1600int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
1601 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
1602 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
1603{
1604 if (exch == NULL)
1605 return ENOENT;
1606
1607 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
1608 arg4, arg5, mode);
1609}
1610
1611/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1612 *
1613 * Ask through phone for a new connection to some service.
1614 *
1615 * @param exch Exchange for sending the message.
1616 * @param arg1 User defined argument.
1617 * @param arg2 User defined argument.
1618 * @param arg3 User defined argument.
1619 * @param client_receiver Connection handing routine.
1620 *
1621 * @return Zero on success or a negative error code.
1622 *
1623 */
1624int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
1625 sysarg_t arg3, async_client_conn_t client_receiver, void *carg)
1626{
1627 if (exch == NULL)
1628 return ENOENT;
1629
1630 sysarg_t phone_hash;
1631 sysarg_t rc;
1632
1633 aid_t req;
1634 ipc_call_t answer;
1635 req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1636 &answer);
1637 async_wait_for(req, &rc);
1638 if (rc != EOK)
1639 return (int) rc;
1640
1641 phone_hash = IPC_GET_ARG5(answer);
1642
1643 if (client_receiver != NULL)
1644 async_new_connection(answer.in_task_id, phone_hash, 0, NULL,
1645 client_receiver, carg);
1646
1647 return EOK;
1648}
1649
1650/** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework.
1651 *
1652 * Ask for a cloned connection to some service.
1653 *
1654 * @param mgmt Exchange management style.
1655 * @param exch Exchange for sending the message.
1656 *
1657 * @return New session on success or NULL on error.
1658 *
1659 */
1660async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch)
1661{
1662 if (exch == NULL) {
1663 errno = ENOENT;
1664 return NULL;
1665 }
1666
1667 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1668 if (sess == NULL) {
1669 errno = ENOMEM;
1670 return NULL;
1671 }
1672
1673 ipc_call_t result;
1674
1675 amsg_t *msg = amsg_create();
1676 if (!msg) {
1677 free(sess);
1678 errno = ENOMEM;
1679 return NULL;
1680 }
1681
1682 msg->dataptr = &result;
1683 msg->wdata.active = true;
1684
1685 ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg,
1686 reply_received, true);
1687
1688 sysarg_t rc;
1689 async_wait_for((aid_t) msg, &rc);
1690
1691 if (rc != EOK) {
1692 errno = rc;
1693 free(sess);
1694 return NULL;
1695 }
1696
1697 int phone = (int) IPC_GET_ARG5(result);
1698
1699 if (phone < 0) {
1700 errno = phone;
1701 free(sess);
1702 return NULL;
1703 }
1704
1705 sess->mgmt = mgmt;
1706 sess->phone = phone;
1707 sess->arg1 = 0;
1708 sess->arg2 = 0;
1709 sess->arg3 = 0;
1710
1711 fibril_mutex_initialize(&sess->remote_state_mtx);
1712 sess->remote_state_data = NULL;
1713
1714 list_initialize(&sess->exch_list);
1715 fibril_mutex_initialize(&sess->mutex);
1716 atomic_set(&sess->refcnt, 0);
1717
1718 return sess;
1719}
1720
1721static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
1722 sysarg_t arg3, sysarg_t arg4)
1723{
1724 ipc_call_t result;
1725
1726 amsg_t *msg = amsg_create();
1727 if (!msg)
1728 return ENOENT;
1729
1730 msg->dataptr = &result;
1731 msg->wdata.active = true;
1732
1733 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
1734 msg, reply_received, true);
1735
1736 sysarg_t rc;
1737 async_wait_for((aid_t) msg, &rc);
1738
1739 if (rc != EOK)
1740 return rc;
1741
1742 return (int) IPC_GET_ARG5(result);
1743}
1744
1745/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1746 *
1747 * Ask through for a new connection to some service.
1748 *
1749 * @param mgmt Exchange management style.
1750 * @param exch Exchange for sending the message.
1751 * @param arg1 User defined argument.
1752 * @param arg2 User defined argument.
1753 * @param arg3 User defined argument.
1754 *
1755 * @return New session on success or NULL on error.
1756 *
1757 */
1758async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
1759 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1760{
1761 if (exch == NULL) {
1762 errno = ENOENT;
1763 return NULL;
1764 }
1765
1766 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1767 if (sess == NULL) {
1768 errno = ENOMEM;
1769 return NULL;
1770 }
1771
1772 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
1773 0);
1774
1775 if (phone < 0) {
1776 errno = phone;
1777 free(sess);
1778 return NULL;
1779 }
1780
1781 sess->mgmt = mgmt;
1782 sess->phone = phone;
1783 sess->arg1 = arg1;
1784 sess->arg2 = arg2;
1785 sess->arg3 = arg3;
1786
1787 fibril_mutex_initialize(&sess->remote_state_mtx);
1788 sess->remote_state_data = NULL;
1789
1790 list_initialize(&sess->exch_list);
1791 fibril_mutex_initialize(&sess->mutex);
1792 atomic_set(&sess->refcnt, 0);
1793
1794 return sess;
1795}
1796
1797/** Set arguments for new connections.
1798 *
1799 * FIXME This is an ugly hack to work around the problem that parallel
1800 * exchanges are implemented using parallel connections. When we create
1801 * a callback session, the framework does not know arguments for the new
1802 * connections.
1803 *
1804 * The proper solution seems to be to implement parallel exchanges using
1805 * tagging.
1806 */
1807void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
1808 sysarg_t arg3)
1809{
1810 sess->arg1 = arg1;
1811 sess->arg2 = arg2;
1812 sess->arg3 = arg3;
1813}
1814
1815/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1816 *
1817 * Ask through phone for a new connection to some service and block until
1818 * success.
1819 *
1820 * @param mgmt Exchange management style.
1821 * @param exch Exchange for sending the message.
1822 * @param arg1 User defined argument.
1823 * @param arg2 User defined argument.
1824 * @param arg3 User defined argument.
1825 *
1826 * @return New session on success or NULL on error.
1827 *
1828 */
1829async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
1830 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
1831{
1832 if (exch == NULL) {
1833 errno = ENOENT;
1834 return NULL;
1835 }
1836
1837 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1838 if (sess == NULL) {
1839 errno = ENOMEM;
1840 return NULL;
1841 }
1842
1843 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
1844 IPC_FLAG_BLOCKING);
1845
1846 if (phone < 0) {
1847 errno = phone;
1848 free(sess);
1849 return NULL;
1850 }
1851
1852 sess->mgmt = mgmt;
1853 sess->phone = phone;
1854 sess->arg1 = arg1;
1855 sess->arg2 = arg2;
1856 sess->arg3 = arg3;
1857
1858 fibril_mutex_initialize(&sess->remote_state_mtx);
1859 sess->remote_state_data = NULL;
1860
1861 list_initialize(&sess->exch_list);
1862 fibril_mutex_initialize(&sess->mutex);
1863 atomic_set(&sess->refcnt, 0);
1864
1865 return sess;
1866}
1867
1868/** Connect to a task specified by id.
1869 *
1870 */
1871async_sess_t *async_connect_kbox(task_id_t id)
1872{
1873 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
1874 if (sess == NULL) {
1875 errno = ENOMEM;
1876 return NULL;
1877 }
1878
1879 int phone = ipc_connect_kbox(id);
1880 if (phone < 0) {
1881 errno = phone;
1882 free(sess);
1883 return NULL;
1884 }
1885
1886 sess->mgmt = EXCHANGE_ATOMIC;
1887 sess->phone = phone;
1888 sess->arg1 = 0;
1889 sess->arg2 = 0;
1890 sess->arg3 = 0;
1891
1892 fibril_mutex_initialize(&sess->remote_state_mtx);
1893 sess->remote_state_data = NULL;
1894
1895 list_initialize(&sess->exch_list);
1896 fibril_mutex_initialize(&sess->mutex);
1897 atomic_set(&sess->refcnt, 0);
1898
1899 return sess;
1900}
1901
1902static int async_hangup_internal(int phone)
1903{
1904 return ipc_hangup(phone);
1905}
1906
1907/** Wrapper for ipc_hangup.
1908 *
1909 * @param sess Session to hung up.
1910 *
1911 * @return Zero on success or a negative error code.
1912 *
1913 */
1914int async_hangup(async_sess_t *sess)
1915{
1916 async_exch_t *exch;
1917
1918 assert(sess);
1919
1920 if (atomic_get(&sess->refcnt) > 0)
1921 return EBUSY;
1922
1923 fibril_mutex_lock(&async_sess_mutex);
1924
1925 int rc = async_hangup_internal(sess->phone);
1926
1927 while (!list_empty(&sess->exch_list)) {
1928 exch = (async_exch_t *)
1929 list_get_instance(list_first(&sess->exch_list),
1930 async_exch_t, sess_link);
1931
1932 list_remove(&exch->sess_link);
1933 list_remove(&exch->global_link);
1934 async_hangup_internal(exch->phone);
1935 free(exch);
1936 }
1937
1938 free(sess);
1939
1940 fibril_mutex_unlock(&async_sess_mutex);
1941
1942 return rc;
1943}
1944
1945/** Interrupt one thread of this task from waiting for IPC. */
1946void async_poke(void)
1947{
1948 ipc_poke();
1949}
1950
1951/** Start new exchange in a session.
1952 *
1953 * @param session Session.
1954 *
1955 * @return New exchange or NULL on error.
1956 *
1957 */
1958async_exch_t *async_exchange_begin(async_sess_t *sess)
1959{
1960 if (sess == NULL)
1961 return NULL;
1962
1963 async_exch_t *exch;
1964
1965 fibril_mutex_lock(&async_sess_mutex);
1966
1967 if (!list_empty(&sess->exch_list)) {
1968 /*
1969 * There are inactive exchanges in the session.
1970 */
1971 exch = (async_exch_t *)
1972 list_get_instance(list_first(&sess->exch_list),
1973 async_exch_t, sess_link);
1974
1975 list_remove(&exch->sess_link);
1976 list_remove(&exch->global_link);
1977 } else {
1978 /*
1979 * There are no available exchanges in the session.
1980 */
1981
1982 if ((sess->mgmt == EXCHANGE_ATOMIC) ||
1983 (sess->mgmt == EXCHANGE_SERIALIZE)) {
1984 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
1985 if (exch != NULL) {
1986 link_initialize(&exch->sess_link);
1987 link_initialize(&exch->global_link);
1988 exch->sess = sess;
1989 exch->phone = sess->phone;
1990 }
1991 } else { /* EXCHANGE_PARALLEL */
1992 /*
1993 * Make a one-time attempt to connect a new data phone.
1994 */
1995
1996 int phone;
1997
1998retry:
1999 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2000 sess->arg2, sess->arg3, 0);
2001 if (phone >= 0) {
2002 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2003 if (exch != NULL) {
2004 link_initialize(&exch->sess_link);
2005 link_initialize(&exch->global_link);
2006 exch->sess = sess;
2007 exch->phone = phone;
2008 } else
2009 async_hangup_internal(phone);
2010 } else if (!list_empty(&inactive_exch_list)) {
2011 /*
2012 * We did not manage to connect a new phone. But we
2013 * can try to close some of the currently inactive
2014 * connections in other sessions and try again.
2015 */
2016 exch = (async_exch_t *)
2017 list_get_instance(list_first(&inactive_exch_list),
2018 async_exch_t, global_link);
2019
2020 list_remove(&exch->sess_link);
2021 list_remove(&exch->global_link);
2022 async_hangup_internal(exch->phone);
2023 free(exch);
2024 goto retry;
2025 } else {
2026 /*
2027 * Wait for a phone to become available.
2028 */
2029 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2030 goto retry;
2031 }
2032 }
2033 }
2034
2035 fibril_mutex_unlock(&async_sess_mutex);
2036
2037 if (exch != NULL) {
2038 atomic_inc(&sess->refcnt);
2039
2040 if (sess->mgmt == EXCHANGE_SERIALIZE)
2041 fibril_mutex_lock(&sess->mutex);
2042 }
2043
2044 return exch;
2045}
2046
2047/** Finish an exchange.
2048 *
2049 * @param exch Exchange to finish.
2050 *
2051 */
2052void async_exchange_end(async_exch_t *exch)
2053{
2054 if (exch == NULL)
2055 return;
2056
2057 async_sess_t *sess = exch->sess;
2058
2059 atomic_dec(&sess->refcnt);
2060
2061 if (sess->mgmt == EXCHANGE_SERIALIZE)
2062 fibril_mutex_unlock(&sess->mutex);
2063
2064 fibril_mutex_lock(&async_sess_mutex);
2065
2066 list_append(&exch->sess_link, &sess->exch_list);
2067 list_append(&exch->global_link, &inactive_exch_list);
2068 fibril_condvar_signal(&avail_phone_cv);
2069
2070 fibril_mutex_unlock(&async_sess_mutex);
2071}
2072
2073/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2074 *
2075 * @param exch Exchange for sending the message.
2076 * @param size Size of the destination address space area.
2077 * @param arg User defined argument.
2078 * @param flags Storage for the received flags. Can be NULL.
2079 * @param dst Destination address space area base. Cannot be NULL.
2080 *
2081 * @return Zero on success or a negative error code from errno.h.
2082 *
2083 */
2084int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2085 unsigned int *flags, void **dst)
2086{
2087 if (exch == NULL)
2088 return ENOENT;
2089
2090 sysarg_t _flags = 0;
2091 sysarg_t _dst = (sysarg_t) -1;
2092 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2093 arg, NULL, &_flags, NULL, &_dst);
2094
2095 if (flags)
2096 *flags = (unsigned int) _flags;
2097
2098 *dst = (void *) _dst;
2099 return res;
2100}
2101
2102/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2103 *
2104 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2105 * calls so that the user doesn't have to remember the meaning of each IPC
2106 * argument.
2107 *
2108 * So far, this wrapper is to be used from within a connection fibril.
2109 *
2110 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2111 * @param size Destination address space area size.
2112 *
2113 * @return True on success, false on failure.
2114 *
2115 */
2116bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2117{
2118 assert(callid);
2119 assert(size);
2120
2121 ipc_call_t data;
2122 *callid = async_get_call(&data);
2123
2124 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2125 return false;
2126
2127 *size = (size_t) IPC_GET_ARG1(data);
2128 return true;
2129}
2130
2131/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2132 *
2133 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2134 * calls so that the user doesn't have to remember the meaning of each IPC
2135 * argument.
2136 *
2137 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2138 * @param src Source address space base.
2139 * @param flags Flags to be used for sharing. Bits can be only cleared.
2140 *
2141 * @return Zero on success or a value from @ref errno.h on failure.
2142 *
2143 */
2144int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2145{
2146 return ipc_share_in_finalize(callid, src, flags);
2147}
2148
2149/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2150 *
2151 * @param exch Exchange for sending the message.
2152 * @param src Source address space area base address.
2153 * @param flags Flags to be used for sharing. Bits can be only cleared.
2154 *
2155 * @return Zero on success or a negative error code from errno.h.
2156 *
2157 */
2158int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2159{
2160 if (exch == NULL)
2161 return ENOENT;
2162
2163 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2164 (sysarg_t) flags);
2165}
2166
2167/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2168 *
2169 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2170 * calls so that the user doesn't have to remember the meaning of each IPC
2171 * argument.
2172 *
2173 * So far, this wrapper is to be used from within a connection fibril.
2174 *
2175 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2176 * @param size Storage for the source address space area size.
2177 * @param flags Storage for the sharing flags.
2178 *
2179 * @return True on success, false on failure.
2180 *
2181 */
2182bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2183{
2184 assert(callid);
2185 assert(size);
2186 assert(flags);
2187
2188 ipc_call_t data;
2189 *callid = async_get_call(&data);
2190
2191 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2192 return false;
2193
2194 *size = (size_t) IPC_GET_ARG2(data);
2195 *flags = (unsigned int) IPC_GET_ARG3(data);
2196 return true;
2197}
2198
2199/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2200 *
2201 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2202 * calls so that the user doesn't have to remember the meaning of each IPC
2203 * argument.
2204 *
2205 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2206 * @param dst Destination address space area base address.
2207 *
2208 * @return Zero on success or a value from @ref errno.h on failure.
2209 *
2210 */
2211int async_share_out_finalize(ipc_callid_t callid, void **dst)
2212{
2213 return ipc_share_out_finalize(callid, dst);
2214}
2215
2216/** Start IPC_M_DATA_READ using the async framework.
2217 *
2218 * @param exch Exchange for sending the message.
2219 * @param dst Address of the beginning of the destination buffer.
2220 * @param size Size of the destination buffer (in bytes).
2221 * @param dataptr Storage of call data (arg 2 holds actual data size).
2222 *
2223 * @return Hash of the sent message or 0 on error.
2224 *
2225 */
2226aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2227 ipc_call_t *dataptr)
2228{
2229 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2230 (sysarg_t) size, dataptr);
2231}
2232
2233/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2234 *
2235 * @param exch Exchange for sending the message.
2236 * @param dst Address of the beginning of the destination buffer.
2237 * @param size Size of the destination buffer.
2238 *
2239 * @return Zero on success or a negative error code from errno.h.
2240 *
2241 */
2242int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2243{
2244 if (exch == NULL)
2245 return ENOENT;
2246
2247 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2248 (sysarg_t) size);
2249}
2250
2251/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2252 *
2253 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2254 * calls so that the user doesn't have to remember the meaning of each IPC
2255 * argument.
2256 *
2257 * So far, this wrapper is to be used from within a connection fibril.
2258 *
2259 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2260 * @param size Storage for the maximum size. Can be NULL.
2261 *
2262 * @return True on success, false on failure.
2263 *
2264 */
2265bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2266{
2267 assert(callid);
2268
2269 ipc_call_t data;
2270 *callid = async_get_call(&data);
2271
2272 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_READ)
2273 return false;
2274
2275 if (size)
2276 *size = (size_t) IPC_GET_ARG2(data);
2277
2278 return true;
2279}
2280
2281/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2282 *
2283 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2284 * calls so that the user doesn't have to remember the meaning of each IPC
2285 * argument.
2286 *
2287 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2288 * @param src Source address for the IPC_M_DATA_READ call.
2289 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2290 * the maximum size announced by the sender.
2291 *
2292 * @return Zero on success or a value from @ref errno.h on failure.
2293 *
2294 */
2295int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2296{
2297 return ipc_data_read_finalize(callid, src, size);
2298}
2299
2300/** Wrapper for forwarding any read request
2301 *
2302 */
2303int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2304 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2305 ipc_call_t *dataptr)
2306{
2307 if (exch == NULL)
2308 return ENOENT;
2309
2310 ipc_callid_t callid;
2311 if (!async_data_read_receive(&callid, NULL)) {
2312 ipc_answer_0(callid, EINVAL);
2313 return EINVAL;
2314 }
2315
2316 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2317 dataptr);
2318 if (msg == 0) {
2319 ipc_answer_0(callid, EINVAL);
2320 return EINVAL;
2321 }
2322
2323 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2324 IPC_FF_ROUTE_FROM_ME);
2325 if (retval != EOK) {
2326 async_forget(msg);
2327 ipc_answer_0(callid, retval);
2328 return retval;
2329 }
2330
2331 sysarg_t rc;
2332 async_wait_for(msg, &rc);
2333
2334 return (int) rc;
2335}
2336
2337/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2338 *
2339 * @param exch Exchange for sending the message.
2340 * @param src Address of the beginning of the source buffer.
2341 * @param size Size of the source buffer.
2342 *
2343 * @return Zero on success or a negative error code from errno.h.
2344 *
2345 */
2346int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2347{
2348 if (exch == NULL)
2349 return ENOENT;
2350
2351 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2352 (sysarg_t) size);
2353}
2354
2355/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2356 *
2357 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2358 * calls so that the user doesn't have to remember the meaning of each IPC
2359 * argument.
2360 *
2361 * So far, this wrapper is to be used from within a connection fibril.
2362 *
2363 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2364 * @param size Storage for the suggested size. May be NULL.
2365 *
2366 * @return True on success, false on failure.
2367 *
2368 */
2369bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2370{
2371 assert(callid);
2372
2373 ipc_call_t data;
2374 *callid = async_get_call(&data);
2375
2376 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_WRITE)
2377 return false;
2378
2379 if (size)
2380 *size = (size_t) IPC_GET_ARG2(data);
2381
2382 return true;
2383}
2384
2385/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2386 *
2387 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2388 * calls so that the user doesn't have to remember the meaning of each IPC
2389 * argument.
2390 *
2391 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2392 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2393 * @param size Final size for the IPC_M_DATA_WRITE call.
2394 *
2395 * @return Zero on success or a value from @ref errno.h on failure.
2396 *
2397 */
2398int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2399{
2400 return ipc_data_write_finalize(callid, dst, size);
2401}
2402
2403/** Wrapper for receiving binary data or strings
2404 *
2405 * This wrapper only makes it more comfortable to use async_data_write_*
2406 * functions to receive binary data or strings.
2407 *
2408 * @param data Pointer to data pointer (which should be later disposed
2409 * by free()). If the operation fails, the pointer is not
2410 * touched.
2411 * @param nullterm If true then the received data is always zero terminated.
2412 * This also causes to allocate one extra byte beyond the
2413 * raw transmitted data.
2414 * @param min_size Minimum size (in bytes) of the data to receive.
2415 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2416 * no limit.
2417 * @param granulariy If non-zero then the size of the received data has to
2418 * be divisible by this value.
2419 * @param received If not NULL, the size of the received data is stored here.
2420 *
2421 * @return Zero on success or a value from @ref errno.h on failure.
2422 *
2423 */
2424int async_data_write_accept(void **data, const bool nullterm,
2425 const size_t min_size, const size_t max_size, const size_t granularity,
2426 size_t *received)
2427{
2428 assert(data);
2429
2430 ipc_callid_t callid;
2431 size_t size;
2432 if (!async_data_write_receive(&callid, &size)) {
2433 ipc_answer_0(callid, EINVAL);
2434 return EINVAL;
2435 }
2436
2437 if (size < min_size) {
2438 ipc_answer_0(callid, EINVAL);
2439 return EINVAL;
2440 }
2441
2442 if ((max_size > 0) && (size > max_size)) {
2443 ipc_answer_0(callid, EINVAL);
2444 return EINVAL;
2445 }
2446
2447 if ((granularity > 0) && ((size % granularity) != 0)) {
2448 ipc_answer_0(callid, EINVAL);
2449 return EINVAL;
2450 }
2451
2452 void *_data;
2453
2454 if (nullterm)
2455 _data = malloc(size + 1);
2456 else
2457 _data = malloc(size);
2458
2459 if (_data == NULL) {
2460 ipc_answer_0(callid, ENOMEM);
2461 return ENOMEM;
2462 }
2463
2464 int rc = async_data_write_finalize(callid, _data, size);
2465 if (rc != EOK) {
2466 free(_data);
2467 return rc;
2468 }
2469
2470 if (nullterm)
2471 ((char *) _data)[size] = 0;
2472
2473 *data = _data;
2474 if (received != NULL)
2475 *received = size;
2476
2477 return EOK;
2478}
2479
2480/** Wrapper for voiding any data that is about to be received
2481 *
2482 * This wrapper can be used to void any pending data
2483 *
2484 * @param retval Error value from @ref errno.h to be returned to the caller.
2485 *
2486 */
2487void async_data_write_void(sysarg_t retval)
2488{
2489 ipc_callid_t callid;
2490 async_data_write_receive(&callid, NULL);
2491 ipc_answer_0(callid, retval);
2492}
2493
2494/** Wrapper for forwarding any data that is about to be received
2495 *
2496 */
2497int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
2498 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2499 ipc_call_t *dataptr)
2500{
2501 if (exch == NULL)
2502 return ENOENT;
2503
2504 ipc_callid_t callid;
2505 if (!async_data_write_receive(&callid, NULL)) {
2506 ipc_answer_0(callid, EINVAL);
2507 return EINVAL;
2508 }
2509
2510 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2511 dataptr);
2512 if (msg == 0) {
2513 ipc_answer_0(callid, EINVAL);
2514 return EINVAL;
2515 }
2516
2517 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2518 IPC_FF_ROUTE_FROM_ME);
2519 if (retval != EOK) {
2520 async_forget(msg);
2521 ipc_answer_0(callid, retval);
2522 return retval;
2523 }
2524
2525 sysarg_t rc;
2526 async_wait_for(msg, &rc);
2527
2528 return (int) rc;
2529}
2530
2531/** Wrapper for sending an exchange over different exchange for cloning
2532 *
2533 * @param exch Exchange to be used for sending.
2534 * @param clone_exch Exchange to be cloned.
2535 *
2536 */
2537int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch)
2538{
2539 return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone);
2540}
2541
2542/** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls.
2543 *
2544 * If the current call is IPC_M_CONNECTION_CLONE then a new
2545 * async session is created for the accepted phone.
2546 *
2547 * @param mgmt Exchange management style.
2548 *
2549 * @return New async session or NULL on failure.
2550 *
2551 */
2552async_sess_t *async_clone_receive(exch_mgmt_t mgmt)
2553{
2554 /* Accept the phone */
2555 ipc_call_t call;
2556 ipc_callid_t callid = async_get_call(&call);
2557 int phone = (int) IPC_GET_ARG1(call);
2558
2559 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) ||
2560 (phone < 0)) {
2561 async_answer_0(callid, EINVAL);
2562 return NULL;
2563 }
2564
2565 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2566 if (sess == NULL) {
2567 async_answer_0(callid, ENOMEM);
2568 return NULL;
2569 }
2570
2571 sess->mgmt = mgmt;
2572 sess->phone = phone;
2573 sess->arg1 = 0;
2574 sess->arg2 = 0;
2575 sess->arg3 = 0;
2576
2577 fibril_mutex_initialize(&sess->remote_state_mtx);
2578 sess->remote_state_data = NULL;
2579
2580 list_initialize(&sess->exch_list);
2581 fibril_mutex_initialize(&sess->mutex);
2582 atomic_set(&sess->refcnt, 0);
2583
2584 /* Acknowledge the cloned phone */
2585 async_answer_0(callid, EOK);
2586
2587 return sess;
2588}
2589
2590/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
2591 *
2592 * If the current call is IPC_M_CONNECT_TO_ME then a new
2593 * async session is created for the accepted phone.
2594 *
2595 * @param mgmt Exchange management style.
2596 *
2597 * @return New async session.
2598 * @return NULL on failure.
2599 *
2600 */
2601async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
2602{
2603 /* Accept the phone */
2604 ipc_call_t call;
2605 ipc_callid_t callid = async_get_call(&call);
2606 int phone = (int) IPC_GET_ARG5(call);
2607
2608 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
2609 (phone < 0)) {
2610 async_answer_0(callid, EINVAL);
2611 return NULL;
2612 }
2613
2614 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2615 if (sess == NULL) {
2616 async_answer_0(callid, ENOMEM);
2617 return NULL;
2618 }
2619
2620 sess->mgmt = mgmt;
2621 sess->phone = phone;
2622 sess->arg1 = 0;
2623 sess->arg2 = 0;
2624 sess->arg3 = 0;
2625
2626 fibril_mutex_initialize(&sess->remote_state_mtx);
2627 sess->remote_state_data = NULL;
2628
2629 list_initialize(&sess->exch_list);
2630 fibril_mutex_initialize(&sess->mutex);
2631 atomic_set(&sess->refcnt, 0);
2632
2633 /* Acknowledge the connected phone */
2634 async_answer_0(callid, EOK);
2635
2636 return sess;
2637}
2638
2639/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
2640 *
2641 * If the call is IPC_M_CONNECT_TO_ME then a new
2642 * async session is created. However, the phone is
2643 * not accepted automatically.
2644 *
2645 * @param mgmt Exchange management style.
2646 * @param call Call data.
2647 *
2648 * @return New async session.
2649 * @return NULL on failure.
2650 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
2651 *
2652 */
2653async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
2654{
2655 int phone = (int) IPC_GET_ARG5(*call);
2656
2657 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
2658 (phone < 0))
2659 return NULL;
2660
2661 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2662 if (sess == NULL)
2663 return NULL;
2664
2665 sess->mgmt = mgmt;
2666 sess->phone = phone;
2667 sess->arg1 = 0;
2668 sess->arg2 = 0;
2669 sess->arg3 = 0;
2670
2671 fibril_mutex_initialize(&sess->remote_state_mtx);
2672 sess->remote_state_data = NULL;
2673
2674 list_initialize(&sess->exch_list);
2675 fibril_mutex_initialize(&sess->mutex);
2676 atomic_set(&sess->refcnt, 0);
2677
2678 return sess;
2679}
2680
2681int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2682 sysarg_t arg3, async_exch_t *other_exch)
2683{
2684 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
2685 arg1, arg2, arg3, 0, other_exch->phone);
2686}
2687
2688bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
2689 sysarg_t *arg2, sysarg_t *arg3)
2690{
2691 assert(callid);
2692
2693 ipc_call_t call;
2694 *callid = async_get_call(&call);
2695
2696 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
2697 return false;
2698
2699 if (arg1)
2700 *arg1 = IPC_GET_ARG1(call);
2701 if (arg2)
2702 *arg2 = IPC_GET_ARG2(call);
2703 if (arg3)
2704 *arg3 = IPC_GET_ARG3(call);
2705
2706 return true;
2707}
2708
2709int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
2710{
2711 return ipc_answer_1(callid, EOK, other_exch->phone);
2712}
2713
2714/** Lock and get session remote state
2715 *
2716 * Lock and get the local replica of the remote state
2717 * in stateful sessions. The call should be paired
2718 * with async_remote_state_release*().
2719 *
2720 * @param[in] sess Stateful session.
2721 *
2722 * @return Local replica of the remote state.
2723 *
2724 */
2725void *async_remote_state_acquire(async_sess_t *sess)
2726{
2727 fibril_mutex_lock(&sess->remote_state_mtx);
2728 return sess->remote_state_data;
2729}
2730
2731/** Update the session remote state
2732 *
2733 * Update the local replica of the remote state
2734 * in stateful sessions. The remote state must
2735 * be already locked.
2736 *
2737 * @param[in] sess Stateful session.
2738 * @param[in] state New local replica of the remote state.
2739 *
2740 */
2741void async_remote_state_update(async_sess_t *sess, void *state)
2742{
2743 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2744 sess->remote_state_data = state;
2745}
2746
2747/** Release the session remote state
2748 *
2749 * Unlock the local replica of the remote state
2750 * in stateful sessions.
2751 *
2752 * @param[in] sess Stateful session.
2753 *
2754 */
2755void async_remote_state_release(async_sess_t *sess)
2756{
2757 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2758
2759 fibril_mutex_unlock(&sess->remote_state_mtx);
2760}
2761
2762/** Release the session remote state and end an exchange
2763 *
2764 * Unlock the local replica of the remote state
2765 * in stateful sessions. This is convenience function
2766 * which gets the session pointer from the exchange
2767 * and also ends the exchange.
2768 *
2769 * @param[in] exch Stateful session's exchange.
2770 *
2771 */
2772void async_remote_state_release_exchange(async_exch_t *exch)
2773{
2774 if (exch == NULL)
2775 return;
2776
2777 async_sess_t *sess = exch->sess;
2778 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
2779
2780 async_exchange_end(exch);
2781 fibril_mutex_unlock(&sess->remote_state_mtx);
2782}
2783
2784/** @}
2785 */
Note: See TracBrowser for help on using the repository browser.