source: mainline/uspace/lib/c/generic/async.c@ ae6021d

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ae6021d was ae6021d, checked in by Jakub Jermar <jakub@…>, 9 years ago

Associate each paged as_area with its memory object upon creation

This will allow us to have one pager fibril per task rather than one
per paged area.

  • Property mode set to 100644
File size: 81.4 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/list.h>
109#include <assert.h>
110#include <errno.h>
111#include <sys/time.h>
112#include <libarch/barrier.h>
113#include <stdbool.h>
114#include <malloc.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <as.h>
119#include <abi/mm/as.h>
120#include "private/libc.h"
121
122/** Session data */
123struct async_sess {
124 /** List of inactive exchanges */
125 list_t exch_list;
126
127 /** Session interface */
128 iface_t iface;
129
130 /** Exchange management style */
131 exch_mgmt_t mgmt;
132
133 /** Session identification */
134 int phone;
135
136 /** First clone connection argument */
137 sysarg_t arg1;
138
139 /** Second clone connection argument */
140 sysarg_t arg2;
141
142 /** Third clone connection argument */
143 sysarg_t arg3;
144
145 /** Exchange mutex */
146 fibril_mutex_t mutex;
147
148 /** Number of opened exchanges */
149 atomic_t refcnt;
150
151 /** Mutex for stateful connections */
152 fibril_mutex_t remote_state_mtx;
153
154 /** Data for stateful connections */
155 void *remote_state_data;
156};
157
158/** Exchange data */
159struct async_exch {
160 /** Link into list of inactive exchanges */
161 link_t sess_link;
162
163 /** Link into global list of inactive exchanges */
164 link_t global_link;
165
166 /** Session pointer */
167 async_sess_t *sess;
168
169 /** Exchange identification */
170 int phone;
171};
172
173/** Async framework global futex */
174futex_t async_futex = FUTEX_INITIALIZER;
175
176/** Number of threads waiting for IPC in the kernel. */
177atomic_t threads_in_ipc_wait = { 0 };
178
179/** Naming service session */
180async_sess_t *session_ns;
181
182/** Call data */
183typedef struct {
184 link_t link;
185
186 ipc_callid_t callid;
187 ipc_call_t call;
188} msg_t;
189
190/** Message data */
191typedef struct {
192 awaiter_t wdata;
193
194 /** If reply was received. */
195 bool done;
196
197 /** If the message / reply should be discarded on arrival. */
198 bool forget;
199
200 /** If already destroyed. */
201 bool destroyed;
202
203 /** Pointer to where the answer data is stored. */
204 ipc_call_t *dataptr;
205
206 sysarg_t retval;
207} amsg_t;
208
209/* Client connection data */
210typedef struct {
211 ht_link_t link;
212
213 task_id_t in_task_id;
214 atomic_t refcnt;
215 void *data;
216} client_t;
217
218/* Server connection data */
219typedef struct {
220 awaiter_t wdata;
221
222 /** Hash table link. */
223 ht_link_t link;
224
225 /** Incoming client task ID. */
226 task_id_t in_task_id;
227
228 /** Incoming phone hash. */
229 sysarg_t in_phone_hash;
230
231 /** Link to the client tracking structure. */
232 client_t *client;
233
234 /** Messages that should be delivered to this fibril. */
235 list_t msg_queue;
236
237 /** Identification of the opening call. */
238 ipc_callid_t callid;
239
240 /** Call data of the opening call. */
241 ipc_call_t call;
242
243 /** Identification of the closing call. */
244 ipc_callid_t close_callid;
245
246 /** Fibril function that will be used to handle the connection. */
247 async_port_handler_t handler;
248
249 /** Client data */
250 void *data;
251} connection_t;
252
253/** Interface data */
254typedef struct {
255 ht_link_t link;
256
257 /** Interface ID */
258 iface_t iface;
259
260 /** Futex protecting the hash table */
261 futex_t futex;
262
263 /** Interface ports */
264 hash_table_t port_hash_table;
265
266 /** Next available port ID */
267 port_id_t port_id_avail;
268} interface_t;
269
270/* Port data */
271typedef struct {
272 ht_link_t link;
273
274 /** Port ID */
275 port_id_t id;
276
277 /** Port connection handler */
278 async_port_handler_t handler;
279
280 /** Client data */
281 void *data;
282} port_t;
283
284/* Notification data */
285typedef struct {
286 ht_link_t link;
287
288 /** Notification method */
289 sysarg_t imethod;
290
291 /** Notification handler */
292 async_notification_handler_t handler;
293
294 /** Notification data */
295 void *data;
296} notification_t;
297
298/** Identifier of the incoming connection handled by the current fibril. */
299static fibril_local connection_t *fibril_connection;
300
301static void to_event_initialize(to_event_t *to)
302{
303 struct timeval tv = { 0, 0 };
304
305 to->inlist = false;
306 to->occurred = false;
307 link_initialize(&to->link);
308 to->expires = tv;
309}
310
311static void wu_event_initialize(wu_event_t *wu)
312{
313 wu->inlist = false;
314 link_initialize(&wu->link);
315}
316
317void awaiter_initialize(awaiter_t *aw)
318{
319 aw->fid = 0;
320 aw->active = false;
321 to_event_initialize(&aw->to_event);
322 wu_event_initialize(&aw->wu_event);
323}
324
325static amsg_t *amsg_create(void)
326{
327 amsg_t *msg = malloc(sizeof(amsg_t));
328 if (msg) {
329 msg->done = false;
330 msg->forget = false;
331 msg->destroyed = false;
332 msg->dataptr = NULL;
333 msg->retval = (sysarg_t) EINVAL;
334 awaiter_initialize(&msg->wdata);
335 }
336
337 return msg;
338}
339
340static void amsg_destroy(amsg_t *msg)
341{
342 assert(!msg->destroyed);
343 msg->destroyed = true;
344 free(msg);
345}
346
347static void *default_client_data_constructor(void)
348{
349 return NULL;
350}
351
352static void default_client_data_destructor(void *data)
353{
354}
355
356static async_client_data_ctor_t async_client_data_create =
357 default_client_data_constructor;
358static async_client_data_dtor_t async_client_data_destroy =
359 default_client_data_destructor;
360
361void async_set_client_data_constructor(async_client_data_ctor_t ctor)
362{
363 assert(async_client_data_create == default_client_data_constructor);
364 async_client_data_create = ctor;
365}
366
367void async_set_client_data_destructor(async_client_data_dtor_t dtor)
368{
369 assert(async_client_data_destroy == default_client_data_destructor);
370 async_client_data_destroy = dtor;
371}
372
373/** Default fallback fibril function.
374 *
375 * This fallback fibril function gets called on incomming
376 * connections that do not have a specific handler defined.
377 *
378 * @param callid Hash of the incoming call.
379 * @param call Data of the incoming call.
380 * @param arg Local argument
381 *
382 */
383static void default_fallback_port_handler(ipc_callid_t callid, ipc_call_t *call,
384 void *arg)
385{
386 ipc_answer_0(callid, ENOENT);
387}
388
389static async_port_handler_t fallback_port_handler =
390 default_fallback_port_handler;
391static void *fallback_port_data = NULL;
392
393static hash_table_t interface_hash_table;
394
395static size_t interface_key_hash(void *key)
396{
397 iface_t iface = *(iface_t *) key;
398 return iface;
399}
400
401static size_t interface_hash(const ht_link_t *item)
402{
403 interface_t *interface = hash_table_get_inst(item, interface_t, link);
404 return interface_key_hash(&interface->iface);
405}
406
407static bool interface_key_equal(void *key, const ht_link_t *item)
408{
409 iface_t iface = *(iface_t *) key;
410 interface_t *interface = hash_table_get_inst(item, interface_t, link);
411 return iface == interface->iface;
412}
413
414/** Operations for the port hash table. */
415static hash_table_ops_t interface_hash_table_ops = {
416 .hash = interface_hash,
417 .key_hash = interface_key_hash,
418 .key_equal = interface_key_equal,
419 .equal = NULL,
420 .remove_callback = NULL
421};
422
423static size_t port_key_hash(void *key)
424{
425 port_id_t port_id = *(port_id_t *) key;
426 return port_id;
427}
428
429static size_t port_hash(const ht_link_t *item)
430{
431 port_t *port = hash_table_get_inst(item, port_t, link);
432 return port_key_hash(&port->id);
433}
434
435static bool port_key_equal(void *key, const ht_link_t *item)
436{
437 port_id_t port_id = *(port_id_t *) key;
438 port_t *port = hash_table_get_inst(item, port_t, link);
439 return port_id == port->id;
440}
441
442/** Operations for the port hash table. */
443static hash_table_ops_t port_hash_table_ops = {
444 .hash = port_hash,
445 .key_hash = port_key_hash,
446 .key_equal = port_key_equal,
447 .equal = NULL,
448 .remove_callback = NULL
449};
450
451static interface_t *async_new_interface(iface_t iface)
452{
453 interface_t *interface =
454 (interface_t *) malloc(sizeof(interface_t));
455 if (!interface)
456 return NULL;
457
458 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
459 &port_hash_table_ops);
460 if (!ret) {
461 free(interface);
462 return NULL;
463 }
464
465 interface->iface = iface;
466 futex_initialize(&interface->futex, 1);
467 interface->port_id_avail = 0;
468
469 hash_table_insert(&interface_hash_table, &interface->link);
470
471 return interface;
472}
473
474static port_t *async_new_port(interface_t *interface,
475 async_port_handler_t handler, void *data)
476{
477 port_t *port = (port_t *) malloc(sizeof(port_t));
478 if (!port)
479 return NULL;
480
481 futex_down(&interface->futex);
482
483 port_id_t id = interface->port_id_avail;
484 interface->port_id_avail++;
485
486 port->id = id;
487 port->handler = handler;
488 port->data = data;
489
490 hash_table_insert(&interface->port_hash_table, &port->link);
491
492 futex_up(&interface->futex);
493
494 return port;
495}
496
497/** Mutex protecting inactive_exch_list and avail_phone_cv.
498 *
499 */
500static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
501
502/** List of all currently inactive exchanges.
503 *
504 */
505static LIST_INITIALIZE(inactive_exch_list);
506
507/** Condition variable to wait for a phone to become available.
508 *
509 */
510static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
511
512int async_create_port(iface_t iface, async_port_handler_t handler,
513 void *data, port_id_t *port_id)
514{
515 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
516 return EINVAL;
517
518 interface_t *interface;
519
520 futex_down(&async_futex);
521
522 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
523 if (link)
524 interface = hash_table_get_inst(link, interface_t, link);
525 else
526 interface = async_new_interface(iface);
527
528 if (!interface) {
529 futex_up(&async_futex);
530 return ENOMEM;
531 }
532
533 port_t *port = async_new_port(interface, handler, data);
534 if (!port) {
535 futex_up(&async_futex);
536 return ENOMEM;
537 }
538
539 *port_id = port->id;
540
541 futex_up(&async_futex);
542
543 return EOK;
544}
545
546void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
547{
548 assert(handler != NULL);
549
550 fallback_port_handler = handler;
551 fallback_port_data = data;
552}
553
554static hash_table_t client_hash_table;
555static hash_table_t conn_hash_table;
556static hash_table_t notification_hash_table;
557static LIST_INITIALIZE(timeout_list);
558
559static sysarg_t notification_avail = 0;
560
561static size_t client_key_hash(void *key)
562{
563 task_id_t in_task_id = *(task_id_t *) key;
564 return in_task_id;
565}
566
567static size_t client_hash(const ht_link_t *item)
568{
569 client_t *client = hash_table_get_inst(item, client_t, link);
570 return client_key_hash(&client->in_task_id);
571}
572
573static bool client_key_equal(void *key, const ht_link_t *item)
574{
575 task_id_t in_task_id = *(task_id_t *) key;
576 client_t *client = hash_table_get_inst(item, client_t, link);
577 return in_task_id == client->in_task_id;
578}
579
580/** Operations for the client hash table. */
581static hash_table_ops_t client_hash_table_ops = {
582 .hash = client_hash,
583 .key_hash = client_key_hash,
584 .key_equal = client_key_equal,
585 .equal = NULL,
586 .remove_callback = NULL
587};
588
589/** Compute hash into the connection hash table based on the source phone hash.
590 *
591 * @param key Pointer to source phone hash.
592 *
593 * @return Index into the connection hash table.
594 *
595 */
596static size_t conn_key_hash(void *key)
597{
598 sysarg_t in_phone_hash = *(sysarg_t *) key;
599 return in_phone_hash;
600}
601
602static size_t conn_hash(const ht_link_t *item)
603{
604 connection_t *conn = hash_table_get_inst(item, connection_t, link);
605 return conn_key_hash(&conn->in_phone_hash);
606}
607
608static bool conn_key_equal(void *key, const ht_link_t *item)
609{
610 sysarg_t in_phone_hash = *(sysarg_t *) key;
611 connection_t *conn = hash_table_get_inst(item, connection_t, link);
612 return (in_phone_hash == conn->in_phone_hash);
613}
614
615/** Operations for the connection hash table. */
616static hash_table_ops_t conn_hash_table_ops = {
617 .hash = conn_hash,
618 .key_hash = conn_key_hash,
619 .key_equal = conn_key_equal,
620 .equal = NULL,
621 .remove_callback = NULL
622};
623
624static client_t *async_client_get(task_id_t client_id, bool create)
625{
626 client_t *client = NULL;
627
628 futex_down(&async_futex);
629 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
630 if (link) {
631 client = hash_table_get_inst(link, client_t, link);
632 atomic_inc(&client->refcnt);
633 } else if (create) {
634 client = malloc(sizeof(client_t));
635 if (client) {
636 client->in_task_id = client_id;
637 client->data = async_client_data_create();
638
639 atomic_set(&client->refcnt, 1);
640 hash_table_insert(&client_hash_table, &client->link);
641 }
642 }
643
644 futex_up(&async_futex);
645 return client;
646}
647
648static void async_client_put(client_t *client)
649{
650 bool destroy;
651
652 futex_down(&async_futex);
653
654 if (atomic_predec(&client->refcnt) == 0) {
655 hash_table_remove(&client_hash_table, &client->in_task_id);
656 destroy = true;
657 } else
658 destroy = false;
659
660 futex_up(&async_futex);
661
662 if (destroy) {
663 if (client->data)
664 async_client_data_destroy(client->data);
665
666 free(client);
667 }
668}
669
670/** Wrapper for client connection fibril.
671 *
672 * When a new connection arrives, a fibril with this implementing
673 * function is created.
674 *
675 * @param arg Connection structure pointer.
676 *
677 * @return Always zero.
678 *
679 */
680static int connection_fibril(void *arg)
681{
682 assert(arg);
683
684 /*
685 * Setup fibril-local connection pointer.
686 */
687 fibril_connection = (connection_t *) arg;
688
689 /*
690 * Add our reference for the current connection in the client task
691 * tracking structure. If this is the first reference, create and
692 * hash in a new tracking structure.
693 */
694
695 client_t *client = async_client_get(fibril_connection->in_task_id, true);
696 if (!client) {
697 ipc_answer_0(fibril_connection->callid, ENOMEM);
698 return 0;
699 }
700
701 fibril_connection->client = client;
702
703 /*
704 * Call the connection handler function.
705 */
706 fibril_connection->handler(fibril_connection->callid,
707 &fibril_connection->call, fibril_connection->data);
708
709 /*
710 * Remove the reference for this client task connection.
711 */
712 async_client_put(client);
713
714 /*
715 * Remove myself from the connection hash table.
716 */
717 futex_down(&async_futex);
718 hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash);
719 futex_up(&async_futex);
720
721 /*
722 * Answer all remaining messages with EHANGUP.
723 */
724 while (!list_empty(&fibril_connection->msg_queue)) {
725 msg_t *msg =
726 list_get_instance(list_first(&fibril_connection->msg_queue),
727 msg_t, link);
728
729 list_remove(&msg->link);
730 ipc_answer_0(msg->callid, EHANGUP);
731 free(msg);
732 }
733
734 /*
735 * If the connection was hung-up, answer the last call,
736 * i.e. IPC_M_PHONE_HUNGUP.
737 */
738 if (fibril_connection->close_callid)
739 ipc_answer_0(fibril_connection->close_callid, EOK);
740
741 free(fibril_connection);
742 return 0;
743}
744
745/** Create a new fibril for a new connection.
746 *
747 * Create new fibril for connection, fill in connection structures
748 * and insert it into the hash table, so that later we can easily
749 * do routing of messages to particular fibrils.
750 *
751 * @param in_task_id Identification of the incoming connection.
752 * @param in_phone_hash Identification of the incoming connection.
753 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
754 * If callid is zero, the connection was opened by
755 * accepting the IPC_M_CONNECT_TO_ME call and this
756 * function is called directly by the server.
757 * @param call Call data of the opening call.
758 * @param handler Connection handler.
759 * @param data Client argument to pass to the connection handler.
760 *
761 * @return New fibril id or NULL on failure.
762 *
763 */
764static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
765 ipc_callid_t callid, ipc_call_t *call, async_port_handler_t handler,
766 void *data)
767{
768 connection_t *conn = malloc(sizeof(*conn));
769 if (!conn) {
770 if (callid)
771 ipc_answer_0(callid, ENOMEM);
772
773 return (uintptr_t) NULL;
774 }
775
776 conn->in_task_id = in_task_id;
777 conn->in_phone_hash = in_phone_hash;
778 list_initialize(&conn->msg_queue);
779 conn->callid = callid;
780 conn->close_callid = 0;
781 conn->handler = handler;
782 conn->data = data;
783
784 if (call)
785 conn->call = *call;
786
787 /* We will activate the fibril ASAP */
788 conn->wdata.active = true;
789 conn->wdata.fid = fibril_create(connection_fibril, conn);
790
791 if (conn->wdata.fid == 0) {
792 free(conn);
793
794 if (callid)
795 ipc_answer_0(callid, ENOMEM);
796
797 return (uintptr_t) NULL;
798 }
799
800 /* Add connection to the connection hash table */
801
802 futex_down(&async_futex);
803 hash_table_insert(&conn_hash_table, &conn->link);
804 futex_up(&async_futex);
805
806 fibril_add_ready(conn->wdata.fid);
807
808 return conn->wdata.fid;
809}
810
811/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
812 *
813 * Ask through phone for a new connection to some service.
814 *
815 * @param exch Exchange for sending the message.
816 * @param iface Callback interface.
817 * @param arg1 User defined argument.
818 * @param arg2 User defined argument.
819 * @param handler Callback handler.
820 * @param data Handler data.
821 * @param port_id ID of the newly created port.
822 *
823 * @return Zero on success or a negative error code.
824 *
825 */
826int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
827 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
828{
829 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
830 return EINVAL;
831
832 if (exch == NULL)
833 return ENOENT;
834
835 ipc_call_t answer;
836 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
837 &answer);
838
839 sysarg_t ret;
840 async_wait_for(req, &ret);
841 if (ret != EOK)
842 return (int) ret;
843
844 sysarg_t phone_hash = IPC_GET_ARG5(answer);
845 interface_t *interface;
846
847 futex_down(&async_futex);
848
849 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
850 if (link)
851 interface = hash_table_get_inst(link, interface_t, link);
852 else
853 interface = async_new_interface(iface);
854
855 if (!interface) {
856 futex_up(&async_futex);
857 return ENOMEM;
858 }
859
860 port_t *port = async_new_port(interface, handler, data);
861 if (!port) {
862 futex_up(&async_futex);
863 return ENOMEM;
864 }
865
866 *port_id = port->id;
867
868 futex_up(&async_futex);
869
870 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
871 0, NULL, handler, data);
872 if (fid == (uintptr_t) NULL)
873 return ENOMEM;
874
875 return EOK;
876}
877
878static size_t notification_key_hash(void *key)
879{
880 sysarg_t id = *(sysarg_t *) key;
881 return id;
882}
883
884static size_t notification_hash(const ht_link_t *item)
885{
886 notification_t *notification =
887 hash_table_get_inst(item, notification_t, link);
888 return notification_key_hash(&notification->imethod);
889}
890
891static bool notification_key_equal(void *key, const ht_link_t *item)
892{
893 sysarg_t id = *(sysarg_t *) key;
894 notification_t *notification =
895 hash_table_get_inst(item, notification_t, link);
896 return id == notification->imethod;
897}
898
899/** Operations for the notification hash table. */
900static hash_table_ops_t notification_hash_table_ops = {
901 .hash = notification_hash,
902 .key_hash = notification_key_hash,
903 .key_equal = notification_key_equal,
904 .equal = NULL,
905 .remove_callback = NULL
906};
907
908/** Sort in current fibril's timeout request.
909 *
910 * @param wd Wait data of the current fibril.
911 *
912 */
913void async_insert_timeout(awaiter_t *wd)
914{
915 assert(wd);
916
917 wd->to_event.occurred = false;
918 wd->to_event.inlist = true;
919
920 link_t *tmp = timeout_list.head.next;
921 while (tmp != &timeout_list.head) {
922 awaiter_t *cur
923 = list_get_instance(tmp, awaiter_t, to_event.link);
924
925 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
926 break;
927
928 tmp = tmp->next;
929 }
930
931 list_insert_before(&wd->to_event.link, tmp);
932}
933
934/** Try to route a call to an appropriate connection fibril.
935 *
936 * If the proper connection fibril is found, a message with the call is added to
937 * its message queue. If the fibril was not active, it is activated and all
938 * timeouts are unregistered.
939 *
940 * @param callid Hash of the incoming call.
941 * @param call Data of the incoming call.
942 *
943 * @return False if the call doesn't match any connection.
944 * @return True if the call was passed to the respective connection fibril.
945 *
946 */
947static bool route_call(ipc_callid_t callid, ipc_call_t *call)
948{
949 assert(call);
950
951 futex_down(&async_futex);
952
953 ht_link_t *link = hash_table_find(&conn_hash_table, &call->in_phone_hash);
954 if (!link) {
955 futex_up(&async_futex);
956 return false;
957 }
958
959 connection_t *conn = hash_table_get_inst(link, connection_t, link);
960
961 msg_t *msg = malloc(sizeof(*msg));
962 if (!msg) {
963 futex_up(&async_futex);
964 return false;
965 }
966
967 msg->callid = callid;
968 msg->call = *call;
969 list_append(&msg->link, &conn->msg_queue);
970
971 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
972 conn->close_callid = callid;
973
974 /* If the connection fibril is waiting for an event, activate it */
975 if (!conn->wdata.active) {
976
977 /* If in timeout list, remove it */
978 if (conn->wdata.to_event.inlist) {
979 conn->wdata.to_event.inlist = false;
980 list_remove(&conn->wdata.to_event.link);
981 }
982
983 conn->wdata.active = true;
984 fibril_add_ready(conn->wdata.fid);
985 }
986
987 futex_up(&async_futex);
988 return true;
989}
990
991/** Process notification.
992 *
993 * @param callid Hash of the incoming call.
994 * @param call Data of the incoming call.
995 *
996 */
997static void process_notification(ipc_callid_t callid, ipc_call_t *call)
998{
999 async_notification_handler_t handler = NULL;
1000 void *data = NULL;
1001
1002 assert(call);
1003
1004 futex_down(&async_futex);
1005
1006 ht_link_t *link = hash_table_find(&notification_hash_table,
1007 &IPC_GET_IMETHOD(*call));
1008 if (link) {
1009 notification_t *notification =
1010 hash_table_get_inst(link, notification_t, link);
1011 handler = notification->handler;
1012 data = notification->data;
1013 }
1014
1015 futex_up(&async_futex);
1016
1017 if (handler)
1018 handler(callid, call, data);
1019}
1020
1021/** Subscribe to IRQ notification.
1022 *
1023 * @param inr IRQ number.
1024 * @param devno Device number of the device generating inr.
1025 * @param handler Notification handler.
1026 * @param data Notification handler client data.
1027 * @param ucode Top-half pseudocode handler.
1028 *
1029 * @return Zero on success or a negative error code.
1030 *
1031 */
1032int async_irq_subscribe(int inr, int devno,
1033 async_notification_handler_t handler, void *data, const irq_code_t *ucode)
1034{
1035 notification_t *notification =
1036 (notification_t *) malloc(sizeof(notification_t));
1037 if (!notification)
1038 return ENOMEM;
1039
1040 futex_down(&async_futex);
1041
1042 sysarg_t imethod = notification_avail;
1043 notification_avail++;
1044
1045 notification->imethod = imethod;
1046 notification->handler = handler;
1047 notification->data = data;
1048
1049 hash_table_insert(&notification_hash_table, &notification->link);
1050
1051 futex_up(&async_futex);
1052
1053 return ipc_irq_subscribe(inr, devno, imethod, ucode);
1054}
1055
1056/** Unsubscribe from IRQ notification.
1057 *
1058 * @param inr IRQ number.
1059 * @param devno Device number of the device generating inr.
1060 *
1061 * @return Zero on success or a negative error code.
1062 *
1063 */
1064int async_irq_unsubscribe(int inr, int devno)
1065{
1066 // TODO: Remove entry from hash table
1067 // to avoid memory leak
1068
1069 return ipc_irq_unsubscribe(inr, devno);
1070}
1071
1072/** Subscribe to event notifications.
1073 *
1074 * @param evno Event type to subscribe.
1075 * @param handler Notification handler.
1076 * @param data Notification handler client data.
1077 *
1078 * @return Zero on success or a negative error code.
1079 *
1080 */
1081int async_event_subscribe(event_type_t evno,
1082 async_notification_handler_t handler, void *data)
1083{
1084 notification_t *notification =
1085 (notification_t *) malloc(sizeof(notification_t));
1086 if (!notification)
1087 return ENOMEM;
1088
1089 futex_down(&async_futex);
1090
1091 sysarg_t imethod = notification_avail;
1092 notification_avail++;
1093
1094 notification->imethod = imethod;
1095 notification->handler = handler;
1096 notification->data = data;
1097
1098 hash_table_insert(&notification_hash_table, &notification->link);
1099
1100 futex_up(&async_futex);
1101
1102 return ipc_event_subscribe(evno, imethod);
1103}
1104
1105/** Subscribe to task event notifications.
1106 *
1107 * @param evno Event type to subscribe.
1108 * @param handler Notification handler.
1109 * @param data Notification handler client data.
1110 *
1111 * @return Zero on success or a negative error code.
1112 *
1113 */
1114int async_event_task_subscribe(event_task_type_t evno,
1115 async_notification_handler_t handler, void *data)
1116{
1117 notification_t *notification =
1118 (notification_t *) malloc(sizeof(notification_t));
1119 if (!notification)
1120 return ENOMEM;
1121
1122 futex_down(&async_futex);
1123
1124 sysarg_t imethod = notification_avail;
1125 notification_avail++;
1126
1127 notification->imethod = imethod;
1128 notification->handler = handler;
1129 notification->data = data;
1130
1131 hash_table_insert(&notification_hash_table, &notification->link);
1132
1133 futex_up(&async_futex);
1134
1135 return ipc_event_task_subscribe(evno, imethod);
1136}
1137
1138/** Unmask event notifications.
1139 *
1140 * @param evno Event type to unmask.
1141 *
1142 * @return Value returned by the kernel.
1143 *
1144 */
1145int async_event_unmask(event_type_t evno)
1146{
1147 return ipc_event_unmask(evno);
1148}
1149
1150/** Unmask task event notifications.
1151 *
1152 * @param evno Event type to unmask.
1153 *
1154 * @return Value returned by the kernel.
1155 *
1156 */
1157int async_event_task_unmask(event_task_type_t evno)
1158{
1159 return ipc_event_task_unmask(evno);
1160}
1161
1162/** Return new incoming message for the current (fibril-local) connection.
1163 *
1164 * @param call Storage where the incoming call data will be stored.
1165 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1166 *
1167 * @return If no timeout was specified, then a hash of the
1168 * incoming call is returned. If a timeout is specified,
1169 * then a hash of the incoming call is returned unless
1170 * the timeout expires prior to receiving a message. In
1171 * that case zero is returned.
1172 *
1173 */
1174ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1175{
1176 assert(call);
1177 assert(fibril_connection);
1178
1179 /* Why doing this?
1180 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1181 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1182 * I would never expect to find so many errors in
1183 * a compiler.
1184 */
1185 connection_t *conn = fibril_connection;
1186
1187 futex_down(&async_futex);
1188
1189 if (usecs) {
1190 getuptime(&conn->wdata.to_event.expires);
1191 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1192 } else
1193 conn->wdata.to_event.inlist = false;
1194
1195 /* If nothing in queue, wait until something arrives */
1196 while (list_empty(&conn->msg_queue)) {
1197 if (conn->close_callid) {
1198 /*
1199 * Handle the case when the connection was already
1200 * closed by the client but the server did not notice
1201 * the first IPC_M_PHONE_HUNGUP call and continues to
1202 * call async_get_call_timeout(). Repeat
1203 * IPC_M_PHONE_HUNGUP until the caller notices.
1204 */
1205 memset(call, 0, sizeof(ipc_call_t));
1206 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1207 futex_up(&async_futex);
1208 return conn->close_callid;
1209 }
1210
1211 if (usecs)
1212 async_insert_timeout(&conn->wdata);
1213
1214 conn->wdata.active = false;
1215
1216 /*
1217 * Note: the current fibril will be rescheduled either due to a
1218 * timeout or due to an arriving message destined to it. In the
1219 * former case, handle_expired_timeouts() and, in the latter
1220 * case, route_call() will perform the wakeup.
1221 */
1222 fibril_switch(FIBRIL_TO_MANAGER);
1223
1224 /*
1225 * Futex is up after getting back from async_manager.
1226 * Get it again.
1227 */
1228 futex_down(&async_futex);
1229 if ((usecs) && (conn->wdata.to_event.occurred)
1230 && (list_empty(&conn->msg_queue))) {
1231 /* If we timed out -> exit */
1232 futex_up(&async_futex);
1233 return 0;
1234 }
1235 }
1236
1237 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1238 msg_t, link);
1239 list_remove(&msg->link);
1240
1241 ipc_callid_t callid = msg->callid;
1242 *call = msg->call;
1243 free(msg);
1244
1245 futex_up(&async_futex);
1246 return callid;
1247}
1248
1249void *async_get_client_data(void)
1250{
1251 assert(fibril_connection);
1252 return fibril_connection->client->data;
1253}
1254
1255void *async_get_client_data_by_id(task_id_t client_id)
1256{
1257 client_t *client = async_client_get(client_id, false);
1258 if (!client)
1259 return NULL;
1260
1261 if (!client->data) {
1262 async_client_put(client);
1263 return NULL;
1264 }
1265
1266 return client->data;
1267}
1268
1269void async_put_client_data_by_id(task_id_t client_id)
1270{
1271 client_t *client = async_client_get(client_id, false);
1272
1273 assert(client);
1274 assert(client->data);
1275
1276 /* Drop the reference we got in async_get_client_data_by_hash(). */
1277 async_client_put(client);
1278
1279 /* Drop our own reference we got at the beginning of this function. */
1280 async_client_put(client);
1281}
1282
1283static port_t *async_find_port(iface_t iface, port_id_t port_id)
1284{
1285 port_t *port = NULL;
1286
1287 futex_down(&async_futex);
1288
1289 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1290 if (link) {
1291 interface_t *interface =
1292 hash_table_get_inst(link, interface_t, link);
1293
1294 link = hash_table_find(&interface->port_hash_table, &port_id);
1295 if (link)
1296 port = hash_table_get_inst(link, port_t, link);
1297 }
1298
1299 futex_up(&async_futex);
1300
1301 return port;
1302}
1303
1304/** Handle a call that was received.
1305 *
1306 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1307 * Otherwise the call is routed to its connection fibril.
1308 *
1309 * @param callid Hash of the incoming call.
1310 * @param call Data of the incoming call.
1311 *
1312 */
1313static void handle_call(ipc_callid_t callid, ipc_call_t *call)
1314{
1315 assert(call);
1316
1317 /* Kernel notification */
1318 if ((callid & IPC_CALLID_NOTIFICATION)) {
1319 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1320 unsigned oldsw = fibril->switches;
1321
1322 process_notification(callid, call);
1323
1324 if (oldsw != fibril->switches) {
1325 /*
1326 * The notification handler did not execute atomically
1327 * and so the current manager fibril assumed the role of
1328 * a notification fibril. While waiting for its
1329 * resources, it switched to another manager fibril that
1330 * had already existed or it created a new one. We
1331 * therefore know there is at least yet another
1332 * manager fibril that can take over. We now kill the
1333 * current 'notification' fibril to prevent fibril
1334 * population explosion.
1335 */
1336 futex_down(&async_futex);
1337 fibril_switch(FIBRIL_FROM_DEAD);
1338 }
1339
1340 return;
1341 }
1342
1343 /* New connection */
1344 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1345 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1346 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1347
1348 async_notification_handler_t handler = fallback_port_handler;
1349 void *data = fallback_port_data;
1350
1351 // TODO: Currently ignores all ports but the first one
1352 port_t *port = async_find_port(iface, 0);
1353 if (port) {
1354 handler = port->handler;
1355 data = port->data;
1356 }
1357
1358 async_new_connection(call->in_task_id, in_phone_hash, callid,
1359 call, handler, data);
1360 return;
1361 }
1362
1363 /* Cloned connection */
1364 if (IPC_GET_IMETHOD(*call) == IPC_M_CLONE_ESTABLISH) {
1365 // TODO: Currently ignores ports altogether
1366
1367 /* Open new connection with fibril, etc. */
1368 async_new_connection(call->in_task_id, IPC_GET_ARG5(*call),
1369 callid, call, fallback_port_handler, fallback_port_data);
1370 return;
1371 }
1372
1373 /* Try to route the call through the connection hash table */
1374 if (route_call(callid, call))
1375 return;
1376
1377 /* Unknown call from unknown phone - hang it up */
1378 ipc_answer_0(callid, EHANGUP);
1379}
1380
1381/** Fire all timeouts that expired. */
1382static void handle_expired_timeouts(void)
1383{
1384 struct timeval tv;
1385 getuptime(&tv);
1386
1387 futex_down(&async_futex);
1388
1389 link_t *cur = list_first(&timeout_list);
1390 while (cur != NULL) {
1391 awaiter_t *waiter =
1392 list_get_instance(cur, awaiter_t, to_event.link);
1393
1394 if (tv_gt(&waiter->to_event.expires, &tv))
1395 break;
1396
1397 list_remove(&waiter->to_event.link);
1398 waiter->to_event.inlist = false;
1399 waiter->to_event.occurred = true;
1400
1401 /*
1402 * Redundant condition?
1403 * The fibril should not be active when it gets here.
1404 */
1405 if (!waiter->active) {
1406 waiter->active = true;
1407 fibril_add_ready(waiter->fid);
1408 }
1409
1410 cur = list_first(&timeout_list);
1411 }
1412
1413 futex_up(&async_futex);
1414}
1415
1416/** Endless loop dispatching incoming calls and answers.
1417 *
1418 * @return Never returns.
1419 *
1420 */
1421static int async_manager_worker(void)
1422{
1423 while (true) {
1424 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1425 futex_up(&async_futex);
1426 /*
1427 * async_futex is always held when entering a manager
1428 * fibril.
1429 */
1430 continue;
1431 }
1432
1433 futex_down(&async_futex);
1434
1435 suseconds_t timeout;
1436 unsigned int flags = SYNCH_FLAGS_NONE;
1437 if (!list_empty(&timeout_list)) {
1438 awaiter_t *waiter = list_get_instance(
1439 list_first(&timeout_list), awaiter_t, to_event.link);
1440
1441 struct timeval tv;
1442 getuptime(&tv);
1443
1444 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1445 futex_up(&async_futex);
1446 handle_expired_timeouts();
1447 /*
1448 * Notice that even if the event(s) already
1449 * expired (and thus the other fibril was
1450 * supposed to be running already),
1451 * we check for incoming IPC.
1452 *
1453 * Otherwise, a fibril that continuously
1454 * creates (almost) expired events could
1455 * prevent IPC retrieval from the kernel.
1456 */
1457 timeout = 0;
1458 flags = SYNCH_FLAGS_NON_BLOCKING;
1459
1460 } else {
1461 timeout = tv_sub_diff(&waiter->to_event.expires,
1462 &tv);
1463 futex_up(&async_futex);
1464 }
1465 } else {
1466 futex_up(&async_futex);
1467 timeout = SYNCH_NO_TIMEOUT;
1468 }
1469
1470 atomic_inc(&threads_in_ipc_wait);
1471
1472 ipc_call_t call;
1473 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1474
1475 atomic_dec(&threads_in_ipc_wait);
1476
1477 if (!callid) {
1478 handle_expired_timeouts();
1479 continue;
1480 }
1481
1482 if (callid & IPC_CALLID_ANSWERED)
1483 continue;
1484
1485 handle_call(callid, &call);
1486 }
1487
1488 return 0;
1489}
1490
1491/** Function to start async_manager as a standalone fibril.
1492 *
1493 * When more kernel threads are used, one async manager should exist per thread.
1494 *
1495 * @param arg Unused.
1496 * @return Never returns.
1497 *
1498 */
1499static int async_manager_fibril(void *arg)
1500{
1501 futex_up(&async_futex);
1502
1503 /*
1504 * async_futex is always locked when entering manager
1505 */
1506 async_manager_worker();
1507
1508 return 0;
1509}
1510
1511/** Add one manager to manager list. */
1512void async_create_manager(void)
1513{
1514 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1515 if (fid != 0)
1516 fibril_add_manager(fid);
1517}
1518
1519/** Remove one manager from manager list */
1520void async_destroy_manager(void)
1521{
1522 fibril_remove_manager();
1523}
1524
1525/** Initialize the async framework.
1526 *
1527 */
1528void __async_init(void)
1529{
1530 if (!hash_table_create(&interface_hash_table, 0, 0,
1531 &interface_hash_table_ops))
1532 abort();
1533
1534 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1535 abort();
1536
1537 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1538 abort();
1539
1540 if (!hash_table_create(&notification_hash_table, 0, 0,
1541 &notification_hash_table_ops))
1542 abort();
1543
1544 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1545 if (session_ns == NULL)
1546 abort();
1547
1548 session_ns->iface = 0;
1549 session_ns->mgmt = EXCHANGE_ATOMIC;
1550 session_ns->phone = PHONE_NS;
1551 session_ns->arg1 = 0;
1552 session_ns->arg2 = 0;
1553 session_ns->arg3 = 0;
1554
1555 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1556 session_ns->remote_state_data = NULL;
1557
1558 list_initialize(&session_ns->exch_list);
1559 fibril_mutex_initialize(&session_ns->mutex);
1560 atomic_set(&session_ns->refcnt, 0);
1561}
1562
1563/** Reply received callback.
1564 *
1565 * This function is called whenever a reply for an asynchronous message sent out
1566 * by the asynchronous framework is received.
1567 *
1568 * Notify the fibril which is waiting for this message that it has arrived.
1569 *
1570 * @param arg Pointer to the asynchronous message record.
1571 * @param retval Value returned in the answer.
1572 * @param data Call data of the answer.
1573 *
1574 */
1575void reply_received(void *arg, int retval, ipc_call_t *data)
1576{
1577 assert(arg);
1578
1579 futex_down(&async_futex);
1580
1581 amsg_t *msg = (amsg_t *) arg;
1582 msg->retval = retval;
1583
1584 /* Copy data after futex_down, just in case the call was detached */
1585 if ((msg->dataptr) && (data))
1586 *msg->dataptr = *data;
1587
1588 write_barrier();
1589
1590 /* Remove message from timeout list */
1591 if (msg->wdata.to_event.inlist)
1592 list_remove(&msg->wdata.to_event.link);
1593
1594 msg->done = true;
1595
1596 if (msg->forget) {
1597 assert(msg->wdata.active);
1598 amsg_destroy(msg);
1599 } else if (!msg->wdata.active) {
1600 msg->wdata.active = true;
1601 fibril_add_ready(msg->wdata.fid);
1602 }
1603
1604 futex_up(&async_futex);
1605}
1606
1607/** Send message and return id of the sent message.
1608 *
1609 * The return value can be used as input for async_wait() to wait for
1610 * completion.
1611 *
1612 * @param exch Exchange for sending the message.
1613 * @param imethod Service-defined interface and method.
1614 * @param arg1 Service-defined payload argument.
1615 * @param arg2 Service-defined payload argument.
1616 * @param arg3 Service-defined payload argument.
1617 * @param arg4 Service-defined payload argument.
1618 * @param dataptr If non-NULL, storage where the reply data will be
1619 * stored.
1620 *
1621 * @return Hash of the sent message or 0 on error.
1622 *
1623 */
1624aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1625 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1626{
1627 if (exch == NULL)
1628 return 0;
1629
1630 amsg_t *msg = amsg_create();
1631 if (msg == NULL)
1632 return 0;
1633
1634 msg->dataptr = dataptr;
1635 msg->wdata.active = true;
1636
1637 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1638 reply_received);
1639
1640 return (aid_t) msg;
1641}
1642
1643/** Send message and return id of the sent message
1644 *
1645 * The return value can be used as input for async_wait() to wait for
1646 * completion.
1647 *
1648 * @param exch Exchange for sending the message.
1649 * @param imethod Service-defined interface and method.
1650 * @param arg1 Service-defined payload argument.
1651 * @param arg2 Service-defined payload argument.
1652 * @param arg3 Service-defined payload argument.
1653 * @param arg4 Service-defined payload argument.
1654 * @param arg5 Service-defined payload argument.
1655 * @param dataptr If non-NULL, storage where the reply data will be
1656 * stored.
1657 *
1658 * @return Hash of the sent message or 0 on error.
1659 *
1660 */
1661aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1662 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1663 ipc_call_t *dataptr)
1664{
1665 if (exch == NULL)
1666 return 0;
1667
1668 amsg_t *msg = amsg_create();
1669 if (msg == NULL)
1670 return 0;
1671
1672 msg->dataptr = dataptr;
1673 msg->wdata.active = true;
1674
1675 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1676 msg, reply_received);
1677
1678 return (aid_t) msg;
1679}
1680
1681/** Wait for a message sent by the async framework.
1682 *
1683 * @param amsgid Hash of the message to wait for.
1684 * @param retval Pointer to storage where the retval of the answer will
1685 * be stored.
1686 *
1687 */
1688void async_wait_for(aid_t amsgid, sysarg_t *retval)
1689{
1690 assert(amsgid);
1691
1692 amsg_t *msg = (amsg_t *) amsgid;
1693
1694 futex_down(&async_futex);
1695
1696 assert(!msg->forget);
1697 assert(!msg->destroyed);
1698
1699 if (msg->done) {
1700 futex_up(&async_futex);
1701 goto done;
1702 }
1703
1704 msg->wdata.fid = fibril_get_id();
1705 msg->wdata.active = false;
1706 msg->wdata.to_event.inlist = false;
1707
1708 /* Leave the async_futex locked when entering this function */
1709 fibril_switch(FIBRIL_TO_MANAGER);
1710
1711 /* Futex is up automatically after fibril_switch */
1712
1713done:
1714 if (retval)
1715 *retval = msg->retval;
1716
1717 amsg_destroy(msg);
1718}
1719
1720/** Wait for a message sent by the async framework, timeout variant.
1721 *
1722 * If the wait times out, the caller may choose to either wait again by calling
1723 * async_wait_for() or async_wait_timeout(), or forget the message via
1724 * async_forget().
1725 *
1726 * @param amsgid Hash of the message to wait for.
1727 * @param retval Pointer to storage where the retval of the answer will
1728 * be stored.
1729 * @param timeout Timeout in microseconds.
1730 *
1731 * @return Zero on success, ETIMEOUT if the timeout has expired.
1732 *
1733 */
1734int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1735{
1736 assert(amsgid);
1737
1738 amsg_t *msg = (amsg_t *) amsgid;
1739
1740 futex_down(&async_futex);
1741
1742 assert(!msg->forget);
1743 assert(!msg->destroyed);
1744
1745 if (msg->done) {
1746 futex_up(&async_futex);
1747 goto done;
1748 }
1749
1750 /*
1751 * Negative timeout is converted to zero timeout to avoid
1752 * using tv_add with negative augmenter.
1753 */
1754 if (timeout < 0)
1755 timeout = 0;
1756
1757 getuptime(&msg->wdata.to_event.expires);
1758 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1759
1760 /*
1761 * Current fibril is inserted as waiting regardless of the
1762 * "size" of the timeout.
1763 *
1764 * Checking for msg->done and immediately bailing out when
1765 * timeout == 0 would mean that the manager fibril would never
1766 * run (consider single threaded program).
1767 * Thus the IPC answer would be never retrieved from the kernel.
1768 *
1769 * Notice that the actual delay would be very small because we
1770 * - switch to manager fibril
1771 * - the manager sees expired timeout
1772 * - and thus adds us back to ready queue
1773 * - manager switches back to some ready fibril
1774 * (prior it, it checks for incoming IPC).
1775 *
1776 */
1777 msg->wdata.fid = fibril_get_id();
1778 msg->wdata.active = false;
1779 async_insert_timeout(&msg->wdata);
1780
1781 /* Leave the async_futex locked when entering this function */
1782 fibril_switch(FIBRIL_TO_MANAGER);
1783
1784 /* Futex is up automatically after fibril_switch */
1785
1786 if (!msg->done)
1787 return ETIMEOUT;
1788
1789done:
1790 if (retval)
1791 *retval = msg->retval;
1792
1793 amsg_destroy(msg);
1794
1795 return 0;
1796}
1797
1798/** Discard the message / reply on arrival.
1799 *
1800 * The message will be marked to be discarded once the reply arrives in
1801 * reply_received(). It is not allowed to call async_wait_for() or
1802 * async_wait_timeout() on this message after a call to this function.
1803 *
1804 * @param amsgid Hash of the message to forget.
1805 */
1806void async_forget(aid_t amsgid)
1807{
1808 amsg_t *msg = (amsg_t *) amsgid;
1809
1810 assert(msg);
1811 assert(!msg->forget);
1812 assert(!msg->destroyed);
1813
1814 futex_down(&async_futex);
1815
1816 if (msg->done) {
1817 amsg_destroy(msg);
1818 } else {
1819 msg->dataptr = NULL;
1820 msg->forget = true;
1821 }
1822
1823 futex_up(&async_futex);
1824}
1825
1826/** Wait for specified time.
1827 *
1828 * The current fibril is suspended but the thread continues to execute.
1829 *
1830 * @param timeout Duration of the wait in microseconds.
1831 *
1832 */
1833void async_usleep(suseconds_t timeout)
1834{
1835 amsg_t *msg = amsg_create();
1836 if (!msg)
1837 return;
1838
1839 msg->wdata.fid = fibril_get_id();
1840
1841 getuptime(&msg->wdata.to_event.expires);
1842 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1843
1844 futex_down(&async_futex);
1845
1846 async_insert_timeout(&msg->wdata);
1847
1848 /* Leave the async_futex locked when entering this function */
1849 fibril_switch(FIBRIL_TO_MANAGER);
1850
1851 /* Futex is up automatically after fibril_switch() */
1852
1853 amsg_destroy(msg);
1854}
1855
1856/** Pseudo-synchronous message sending - fast version.
1857 *
1858 * Send message asynchronously and return only after the reply arrives.
1859 *
1860 * This function can only transfer 4 register payload arguments. For
1861 * transferring more arguments, see the slower async_req_slow().
1862 *
1863 * @param exch Exchange for sending the message.
1864 * @param imethod Interface and method of the call.
1865 * @param arg1 Service-defined payload argument.
1866 * @param arg2 Service-defined payload argument.
1867 * @param arg3 Service-defined payload argument.
1868 * @param arg4 Service-defined payload argument.
1869 * @param r1 If non-NULL, storage for the 1st reply argument.
1870 * @param r2 If non-NULL, storage for the 2nd reply argument.
1871 * @param r3 If non-NULL, storage for the 3rd reply argument.
1872 * @param r4 If non-NULL, storage for the 4th reply argument.
1873 * @param r5 If non-NULL, storage for the 5th reply argument.
1874 *
1875 * @return Return code of the reply or a negative error code.
1876 *
1877 */
1878sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1879 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1880 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1881{
1882 if (exch == NULL)
1883 return ENOENT;
1884
1885 ipc_call_t result;
1886 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1887 &result);
1888
1889 sysarg_t rc;
1890 async_wait_for(aid, &rc);
1891
1892 if (r1)
1893 *r1 = IPC_GET_ARG1(result);
1894
1895 if (r2)
1896 *r2 = IPC_GET_ARG2(result);
1897
1898 if (r3)
1899 *r3 = IPC_GET_ARG3(result);
1900
1901 if (r4)
1902 *r4 = IPC_GET_ARG4(result);
1903
1904 if (r5)
1905 *r5 = IPC_GET_ARG5(result);
1906
1907 return rc;
1908}
1909
1910/** Pseudo-synchronous message sending - slow version.
1911 *
1912 * Send message asynchronously and return only after the reply arrives.
1913 *
1914 * @param exch Exchange for sending the message.
1915 * @param imethod Interface and method of the call.
1916 * @param arg1 Service-defined payload argument.
1917 * @param arg2 Service-defined payload argument.
1918 * @param arg3 Service-defined payload argument.
1919 * @param arg4 Service-defined payload argument.
1920 * @param arg5 Service-defined payload argument.
1921 * @param r1 If non-NULL, storage for the 1st reply argument.
1922 * @param r2 If non-NULL, storage for the 2nd reply argument.
1923 * @param r3 If non-NULL, storage for the 3rd reply argument.
1924 * @param r4 If non-NULL, storage for the 4th reply argument.
1925 * @param r5 If non-NULL, storage for the 5th reply argument.
1926 *
1927 * @return Return code of the reply or a negative error code.
1928 *
1929 */
1930sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1931 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1932 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1933{
1934 if (exch == NULL)
1935 return ENOENT;
1936
1937 ipc_call_t result;
1938 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1939 &result);
1940
1941 sysarg_t rc;
1942 async_wait_for(aid, &rc);
1943
1944 if (r1)
1945 *r1 = IPC_GET_ARG1(result);
1946
1947 if (r2)
1948 *r2 = IPC_GET_ARG2(result);
1949
1950 if (r3)
1951 *r3 = IPC_GET_ARG3(result);
1952
1953 if (r4)
1954 *r4 = IPC_GET_ARG4(result);
1955
1956 if (r5)
1957 *r5 = IPC_GET_ARG5(result);
1958
1959 return rc;
1960}
1961
1962void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1963{
1964 if (exch != NULL)
1965 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
1966}
1967
1968void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1969{
1970 if (exch != NULL)
1971 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
1972}
1973
1974void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1975 sysarg_t arg2)
1976{
1977 if (exch != NULL)
1978 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
1979}
1980
1981void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1982 sysarg_t arg2, sysarg_t arg3)
1983{
1984 if (exch != NULL)
1985 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1986 NULL);
1987}
1988
1989void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1990 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1991{
1992 if (exch != NULL)
1993 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1994 NULL, NULL);
1995}
1996
1997void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1998 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1999{
2000 if (exch != NULL)
2001 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
2002 arg5, NULL, NULL);
2003}
2004
2005sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
2006{
2007 return ipc_answer_0(callid, retval);
2008}
2009
2010sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
2011{
2012 return ipc_answer_1(callid, retval, arg1);
2013}
2014
2015sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2016 sysarg_t arg2)
2017{
2018 return ipc_answer_2(callid, retval, arg1, arg2);
2019}
2020
2021sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2022 sysarg_t arg2, sysarg_t arg3)
2023{
2024 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
2025}
2026
2027sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2028 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2029{
2030 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
2031}
2032
2033sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2034 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2035{
2036 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
2037}
2038
2039int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
2040 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2041{
2042 if (exch == NULL)
2043 return ENOENT;
2044
2045 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
2046}
2047
2048int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
2049 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2050 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2051{
2052 if (exch == NULL)
2053 return ENOENT;
2054
2055 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
2056 arg4, arg5, mode);
2057}
2058
2059/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2060 *
2061 * Ask through phone for a new connection to some service.
2062 *
2063 * @param exch Exchange for sending the message.
2064 * @param arg1 User defined argument.
2065 * @param arg2 User defined argument.
2066 * @param arg3 User defined argument.
2067 *
2068 * @return Zero on success or a negative error code.
2069 *
2070 */
2071int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2072 sysarg_t arg3)
2073{
2074 if (exch == NULL)
2075 return ENOENT;
2076
2077 ipc_call_t answer;
2078 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2079 &answer);
2080
2081 sysarg_t rc;
2082 async_wait_for(req, &rc);
2083 if (rc != EOK)
2084 return (int) rc;
2085
2086 return EOK;
2087}
2088
2089/** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework.
2090 *
2091 * Ask for a cloned connection to some service.
2092 *
2093 * @param mgmt Exchange management style.
2094 * @param exch Exchange for sending the message.
2095 *
2096 * @return New session on success or NULL on error.
2097 *
2098 */
2099async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch)
2100{
2101 if (exch == NULL) {
2102 errno = ENOENT;
2103 return NULL;
2104 }
2105
2106 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2107 if (sess == NULL) {
2108 errno = ENOMEM;
2109 return NULL;
2110 }
2111
2112 ipc_call_t result;
2113
2114 amsg_t *msg = amsg_create();
2115 if (!msg) {
2116 free(sess);
2117 errno = ENOMEM;
2118 return NULL;
2119 }
2120
2121 msg->dataptr = &result;
2122 msg->wdata.active = true;
2123
2124 ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg,
2125 reply_received);
2126
2127 sysarg_t rc;
2128 async_wait_for((aid_t) msg, &rc);
2129
2130 if (rc != EOK) {
2131 errno = rc;
2132 free(sess);
2133 return NULL;
2134 }
2135
2136 int phone = (int) IPC_GET_ARG5(result);
2137
2138 if (phone < 0) {
2139 errno = phone;
2140 free(sess);
2141 return NULL;
2142 }
2143
2144 sess->iface = 0;
2145 sess->mgmt = mgmt;
2146 sess->phone = phone;
2147 sess->arg1 = 0;
2148 sess->arg2 = 0;
2149 sess->arg3 = 0;
2150
2151 fibril_mutex_initialize(&sess->remote_state_mtx);
2152 sess->remote_state_data = NULL;
2153
2154 list_initialize(&sess->exch_list);
2155 fibril_mutex_initialize(&sess->mutex);
2156 atomic_set(&sess->refcnt, 0);
2157
2158 return sess;
2159}
2160
2161static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2162 sysarg_t arg3, sysarg_t arg4)
2163{
2164 ipc_call_t result;
2165
2166 amsg_t *msg = amsg_create();
2167 if (!msg)
2168 return ENOENT;
2169
2170 msg->dataptr = &result;
2171 msg->wdata.active = true;
2172
2173 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2174 msg, reply_received);
2175
2176 sysarg_t rc;
2177 async_wait_for((aid_t) msg, &rc);
2178
2179 if (rc != EOK)
2180 return rc;
2181
2182 return (int) IPC_GET_ARG5(result);
2183}
2184
2185/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2186 *
2187 * Ask through for a new connection to some service.
2188 *
2189 * @param mgmt Exchange management style.
2190 * @param exch Exchange for sending the message.
2191 * @param arg1 User defined argument.
2192 * @param arg2 User defined argument.
2193 * @param arg3 User defined argument.
2194 *
2195 * @return New session on success or NULL on error.
2196 *
2197 */
2198async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2199 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2200{
2201 if (exch == NULL) {
2202 errno = ENOENT;
2203 return NULL;
2204 }
2205
2206 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2207 if (sess == NULL) {
2208 errno = ENOMEM;
2209 return NULL;
2210 }
2211
2212 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2213 0);
2214 if (phone < 0) {
2215 errno = phone;
2216 free(sess);
2217 return NULL;
2218 }
2219
2220 sess->iface = 0;
2221 sess->mgmt = mgmt;
2222 sess->phone = phone;
2223 sess->arg1 = arg1;
2224 sess->arg2 = arg2;
2225 sess->arg3 = arg3;
2226
2227 fibril_mutex_initialize(&sess->remote_state_mtx);
2228 sess->remote_state_data = NULL;
2229
2230 list_initialize(&sess->exch_list);
2231 fibril_mutex_initialize(&sess->mutex);
2232 atomic_set(&sess->refcnt, 0);
2233
2234 return sess;
2235}
2236
2237/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2238 *
2239 * Ask through phone for a new connection to some service and block until
2240 * success.
2241 *
2242 * @param exch Exchange for sending the message.
2243 * @param iface Connection interface.
2244 * @param arg2 User defined argument.
2245 * @param arg3 User defined argument.
2246 *
2247 * @return New session on success or NULL on error.
2248 *
2249 */
2250async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2251 sysarg_t arg2, sysarg_t arg3)
2252{
2253 if (exch == NULL) {
2254 errno = ENOENT;
2255 return NULL;
2256 }
2257
2258 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2259 if (sess == NULL) {
2260 errno = ENOMEM;
2261 return NULL;
2262 }
2263
2264 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2265 arg3, 0);
2266 if (phone < 0) {
2267 errno = phone;
2268 free(sess);
2269 return NULL;
2270 }
2271
2272 sess->iface = iface;
2273 sess->phone = phone;
2274 sess->arg1 = iface;
2275 sess->arg2 = arg2;
2276 sess->arg3 = arg3;
2277
2278 fibril_mutex_initialize(&sess->remote_state_mtx);
2279 sess->remote_state_data = NULL;
2280
2281 list_initialize(&sess->exch_list);
2282 fibril_mutex_initialize(&sess->mutex);
2283 atomic_set(&sess->refcnt, 0);
2284
2285 return sess;
2286}
2287
2288/** Set arguments for new connections.
2289 *
2290 * FIXME This is an ugly hack to work around the problem that parallel
2291 * exchanges are implemented using parallel connections. When we create
2292 * a callback session, the framework does not know arguments for the new
2293 * connections.
2294 *
2295 * The proper solution seems to be to implement parallel exchanges using
2296 * tagging.
2297 */
2298void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2299 sysarg_t arg3)
2300{
2301 sess->arg1 = arg1;
2302 sess->arg2 = arg2;
2303 sess->arg3 = arg3;
2304}
2305
2306/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2307 *
2308 * Ask through phone for a new connection to some service and block until
2309 * success.
2310 *
2311 * @param mgmt Exchange management style.
2312 * @param exch Exchange for sending the message.
2313 * @param arg1 User defined argument.
2314 * @param arg2 User defined argument.
2315 * @param arg3 User defined argument.
2316 *
2317 * @return New session on success or NULL on error.
2318 *
2319 */
2320async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2321 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2322{
2323 if (exch == NULL) {
2324 errno = ENOENT;
2325 return NULL;
2326 }
2327
2328 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2329 if (sess == NULL) {
2330 errno = ENOMEM;
2331 return NULL;
2332 }
2333
2334 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2335 IPC_FLAG_BLOCKING);
2336
2337 if (phone < 0) {
2338 errno = phone;
2339 free(sess);
2340 return NULL;
2341 }
2342
2343 sess->iface = 0;
2344 sess->mgmt = mgmt;
2345 sess->phone = phone;
2346 sess->arg1 = arg1;
2347 sess->arg2 = arg2;
2348 sess->arg3 = arg3;
2349
2350 fibril_mutex_initialize(&sess->remote_state_mtx);
2351 sess->remote_state_data = NULL;
2352
2353 list_initialize(&sess->exch_list);
2354 fibril_mutex_initialize(&sess->mutex);
2355 atomic_set(&sess->refcnt, 0);
2356
2357 return sess;
2358}
2359
2360/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2361 *
2362 * Ask through phone for a new connection to some service and block until
2363 * success.
2364 *
2365 * @param exch Exchange for sending the message.
2366 * @param iface Connection interface.
2367 * @param arg2 User defined argument.
2368 * @param arg3 User defined argument.
2369 *
2370 * @return New session on success or NULL on error.
2371 *
2372 */
2373async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2374 sysarg_t arg2, sysarg_t arg3)
2375{
2376 if (exch == NULL) {
2377 errno = ENOENT;
2378 return NULL;
2379 }
2380
2381 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2382 if (sess == NULL) {
2383 errno = ENOMEM;
2384 return NULL;
2385 }
2386
2387 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2388 arg3, IPC_FLAG_BLOCKING);
2389 if (phone < 0) {
2390 errno = phone;
2391 free(sess);
2392 return NULL;
2393 }
2394
2395 sess->iface = iface;
2396 sess->phone = phone;
2397 sess->arg1 = iface;
2398 sess->arg2 = arg2;
2399 sess->arg3 = arg3;
2400
2401 fibril_mutex_initialize(&sess->remote_state_mtx);
2402 sess->remote_state_data = NULL;
2403
2404 list_initialize(&sess->exch_list);
2405 fibril_mutex_initialize(&sess->mutex);
2406 atomic_set(&sess->refcnt, 0);
2407
2408 return sess;
2409}
2410
2411/** Connect to a task specified by id.
2412 *
2413 */
2414async_sess_t *async_connect_kbox(task_id_t id)
2415{
2416 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2417 if (sess == NULL) {
2418 errno = ENOMEM;
2419 return NULL;
2420 }
2421
2422 int phone = ipc_connect_kbox(id);
2423 if (phone < 0) {
2424 errno = phone;
2425 free(sess);
2426 return NULL;
2427 }
2428
2429 sess->iface = 0;
2430 sess->mgmt = EXCHANGE_ATOMIC;
2431 sess->phone = phone;
2432 sess->arg1 = 0;
2433 sess->arg2 = 0;
2434 sess->arg3 = 0;
2435
2436 fibril_mutex_initialize(&sess->remote_state_mtx);
2437 sess->remote_state_data = NULL;
2438
2439 list_initialize(&sess->exch_list);
2440 fibril_mutex_initialize(&sess->mutex);
2441 atomic_set(&sess->refcnt, 0);
2442
2443 return sess;
2444}
2445
2446static int async_hangup_internal(int phone)
2447{
2448 return ipc_hangup(phone);
2449}
2450
2451/** Wrapper for ipc_hangup.
2452 *
2453 * @param sess Session to hung up.
2454 *
2455 * @return Zero on success or a negative error code.
2456 *
2457 */
2458int async_hangup(async_sess_t *sess)
2459{
2460 async_exch_t *exch;
2461
2462 assert(sess);
2463
2464 if (atomic_get(&sess->refcnt) > 0)
2465 return EBUSY;
2466
2467 fibril_mutex_lock(&async_sess_mutex);
2468
2469 int rc = async_hangup_internal(sess->phone);
2470
2471 while (!list_empty(&sess->exch_list)) {
2472 exch = (async_exch_t *)
2473 list_get_instance(list_first(&sess->exch_list),
2474 async_exch_t, sess_link);
2475
2476 list_remove(&exch->sess_link);
2477 list_remove(&exch->global_link);
2478 async_hangup_internal(exch->phone);
2479 free(exch);
2480 }
2481
2482 free(sess);
2483
2484 fibril_mutex_unlock(&async_sess_mutex);
2485
2486 return rc;
2487}
2488
2489/** Interrupt one thread of this task from waiting for IPC. */
2490void async_poke(void)
2491{
2492 ipc_poke();
2493}
2494
2495/** Start new exchange in a session.
2496 *
2497 * @param session Session.
2498 *
2499 * @return New exchange or NULL on error.
2500 *
2501 */
2502async_exch_t *async_exchange_begin(async_sess_t *sess)
2503{
2504 if (sess == NULL)
2505 return NULL;
2506
2507 exch_mgmt_t mgmt = sess->mgmt;
2508 if (sess->iface != 0)
2509 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2510
2511 async_exch_t *exch = NULL;
2512
2513 fibril_mutex_lock(&async_sess_mutex);
2514
2515 if (!list_empty(&sess->exch_list)) {
2516 /*
2517 * There are inactive exchanges in the session.
2518 */
2519 exch = (async_exch_t *)
2520 list_get_instance(list_first(&sess->exch_list),
2521 async_exch_t, sess_link);
2522
2523 list_remove(&exch->sess_link);
2524 list_remove(&exch->global_link);
2525 } else {
2526 /*
2527 * There are no available exchanges in the session.
2528 */
2529
2530 if ((mgmt == EXCHANGE_ATOMIC) ||
2531 (mgmt == EXCHANGE_SERIALIZE)) {
2532 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2533 if (exch != NULL) {
2534 link_initialize(&exch->sess_link);
2535 link_initialize(&exch->global_link);
2536 exch->sess = sess;
2537 exch->phone = sess->phone;
2538 }
2539 } else if (mgmt == EXCHANGE_PARALLEL) {
2540 int phone;
2541
2542 retry:
2543 /*
2544 * Make a one-time attempt to connect a new data phone.
2545 */
2546 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2547 sess->arg2, sess->arg3, 0);
2548 if (phone >= 0) {
2549 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2550 if (exch != NULL) {
2551 link_initialize(&exch->sess_link);
2552 link_initialize(&exch->global_link);
2553 exch->sess = sess;
2554 exch->phone = phone;
2555 } else
2556 async_hangup_internal(phone);
2557 } else if (!list_empty(&inactive_exch_list)) {
2558 /*
2559 * We did not manage to connect a new phone. But we
2560 * can try to close some of the currently inactive
2561 * connections in other sessions and try again.
2562 */
2563 exch = (async_exch_t *)
2564 list_get_instance(list_first(&inactive_exch_list),
2565 async_exch_t, global_link);
2566
2567 list_remove(&exch->sess_link);
2568 list_remove(&exch->global_link);
2569 async_hangup_internal(exch->phone);
2570 free(exch);
2571 goto retry;
2572 } else {
2573 /*
2574 * Wait for a phone to become available.
2575 */
2576 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2577 goto retry;
2578 }
2579 }
2580 }
2581
2582 fibril_mutex_unlock(&async_sess_mutex);
2583
2584 if (exch != NULL) {
2585 atomic_inc(&sess->refcnt);
2586
2587 if (mgmt == EXCHANGE_SERIALIZE)
2588 fibril_mutex_lock(&sess->mutex);
2589 }
2590
2591 return exch;
2592}
2593
2594/** Finish an exchange.
2595 *
2596 * @param exch Exchange to finish.
2597 *
2598 */
2599void async_exchange_end(async_exch_t *exch)
2600{
2601 if (exch == NULL)
2602 return;
2603
2604 async_sess_t *sess = exch->sess;
2605 assert(sess != NULL);
2606
2607 exch_mgmt_t mgmt = sess->mgmt;
2608 if (sess->iface != 0)
2609 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2610
2611 atomic_dec(&sess->refcnt);
2612
2613 if (mgmt == EXCHANGE_SERIALIZE)
2614 fibril_mutex_unlock(&sess->mutex);
2615
2616 fibril_mutex_lock(&async_sess_mutex);
2617
2618 list_append(&exch->sess_link, &sess->exch_list);
2619 list_append(&exch->global_link, &inactive_exch_list);
2620 fibril_condvar_signal(&avail_phone_cv);
2621
2622 fibril_mutex_unlock(&async_sess_mutex);
2623}
2624
2625/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2626 *
2627 * @param exch Exchange for sending the message.
2628 * @param size Size of the destination address space area.
2629 * @param arg User defined argument.
2630 * @param flags Storage for the received flags. Can be NULL.
2631 * @param dst Address of the storage for the destination address space area
2632 * base address. Cannot be NULL.
2633 *
2634 * @return Zero on success or a negative error code from errno.h.
2635 *
2636 */
2637int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2638 unsigned int *flags, void **dst)
2639{
2640 if (exch == NULL)
2641 return ENOENT;
2642
2643 sysarg_t _flags = 0;
2644 sysarg_t _dst = (sysarg_t) -1;
2645 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2646 arg, NULL, &_flags, NULL, &_dst);
2647
2648 if (flags)
2649 *flags = (unsigned int) _flags;
2650
2651 *dst = (void *) _dst;
2652 return res;
2653}
2654
2655/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2656 *
2657 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2658 * calls so that the user doesn't have to remember the meaning of each IPC
2659 * argument.
2660 *
2661 * So far, this wrapper is to be used from within a connection fibril.
2662 *
2663 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2664 * @param size Destination address space area size.
2665 *
2666 * @return True on success, false on failure.
2667 *
2668 */
2669bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2670{
2671 assert(callid);
2672 assert(size);
2673
2674 ipc_call_t data;
2675 *callid = async_get_call(&data);
2676
2677 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2678 return false;
2679
2680 *size = (size_t) IPC_GET_ARG1(data);
2681 return true;
2682}
2683
2684/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2685 *
2686 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2687 * calls so that the user doesn't have to remember the meaning of each IPC
2688 * argument.
2689 *
2690 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2691 * @param src Source address space base.
2692 * @param flags Flags to be used for sharing. Bits can be only cleared.
2693 *
2694 * @return Zero on success or a value from @ref errno.h on failure.
2695 *
2696 */
2697int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2698{
2699 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2700 (sysarg_t) __entry);
2701}
2702
2703/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2704 *
2705 * @param exch Exchange for sending the message.
2706 * @param src Source address space area base address.
2707 * @param flags Flags to be used for sharing. Bits can be only cleared.
2708 *
2709 * @return Zero on success or a negative error code from errno.h.
2710 *
2711 */
2712int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2713{
2714 if (exch == NULL)
2715 return ENOENT;
2716
2717 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2718 (sysarg_t) flags);
2719}
2720
2721/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2722 *
2723 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2724 * calls so that the user doesn't have to remember the meaning of each IPC
2725 * argument.
2726 *
2727 * So far, this wrapper is to be used from within a connection fibril.
2728 *
2729 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2730 * @param size Storage for the source address space area size.
2731 * @param flags Storage for the sharing flags.
2732 *
2733 * @return True on success, false on failure.
2734 *
2735 */
2736bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2737{
2738 assert(callid);
2739 assert(size);
2740 assert(flags);
2741
2742 ipc_call_t data;
2743 *callid = async_get_call(&data);
2744
2745 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2746 return false;
2747
2748 *size = (size_t) IPC_GET_ARG2(data);
2749 *flags = (unsigned int) IPC_GET_ARG3(data);
2750 return true;
2751}
2752
2753/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2754 *
2755 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2756 * calls so that the user doesn't have to remember the meaning of each IPC
2757 * argument.
2758 *
2759 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2760 * @param dst Address of the storage for the destination address space area
2761 * base address.
2762 *
2763 * @return Zero on success or a value from @ref errno.h on failure.
2764 *
2765 */
2766int async_share_out_finalize(ipc_callid_t callid, void **dst)
2767{
2768 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2769}
2770
2771/** Start IPC_M_DATA_READ using the async framework.
2772 *
2773 * @param exch Exchange for sending the message.
2774 * @param dst Address of the beginning of the destination buffer.
2775 * @param size Size of the destination buffer (in bytes).
2776 * @param dataptr Storage of call data (arg 2 holds actual data size).
2777 *
2778 * @return Hash of the sent message or 0 on error.
2779 *
2780 */
2781aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2782 ipc_call_t *dataptr)
2783{
2784 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2785 (sysarg_t) size, dataptr);
2786}
2787
2788/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2789 *
2790 * @param exch Exchange for sending the message.
2791 * @param dst Address of the beginning of the destination buffer.
2792 * @param size Size of the destination buffer.
2793 *
2794 * @return Zero on success or a negative error code from errno.h.
2795 *
2796 */
2797int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2798{
2799 if (exch == NULL)
2800 return ENOENT;
2801
2802 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2803 (sysarg_t) size);
2804}
2805
2806/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2807 *
2808 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2809 * calls so that the user doesn't have to remember the meaning of each IPC
2810 * argument.
2811 *
2812 * So far, this wrapper is to be used from within a connection fibril.
2813 *
2814 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2815 * @param size Storage for the maximum size. Can be NULL.
2816 *
2817 * @return True on success, false on failure.
2818 *
2819 */
2820bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2821{
2822 ipc_call_t data;
2823 return async_data_read_receive_call(callid, &data, size);
2824}
2825
2826/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2827 *
2828 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2829 * calls so that the user doesn't have to remember the meaning of each IPC
2830 * argument.
2831 *
2832 * So far, this wrapper is to be used from within a connection fibril.
2833 *
2834 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2835 * @param size Storage for the maximum size. Can be NULL.
2836 *
2837 * @return True on success, false on failure.
2838 *
2839 */
2840bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2841 size_t *size)
2842{
2843 assert(callid);
2844 assert(data);
2845
2846 *callid = async_get_call(data);
2847
2848 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2849 return false;
2850
2851 if (size)
2852 *size = (size_t) IPC_GET_ARG2(*data);
2853
2854 return true;
2855}
2856
2857/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2858 *
2859 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2860 * calls so that the user doesn't have to remember the meaning of each IPC
2861 * argument.
2862 *
2863 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2864 * @param src Source address for the IPC_M_DATA_READ call.
2865 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2866 * the maximum size announced by the sender.
2867 *
2868 * @return Zero on success or a value from @ref errno.h on failure.
2869 *
2870 */
2871int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2872{
2873 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2874}
2875
2876/** Wrapper for forwarding any read request
2877 *
2878 */
2879int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2880 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2881 ipc_call_t *dataptr)
2882{
2883 if (exch == NULL)
2884 return ENOENT;
2885
2886 ipc_callid_t callid;
2887 if (!async_data_read_receive(&callid, NULL)) {
2888 ipc_answer_0(callid, EINVAL);
2889 return EINVAL;
2890 }
2891
2892 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2893 dataptr);
2894 if (msg == 0) {
2895 ipc_answer_0(callid, EINVAL);
2896 return EINVAL;
2897 }
2898
2899 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2900 IPC_FF_ROUTE_FROM_ME);
2901 if (retval != EOK) {
2902 async_forget(msg);
2903 ipc_answer_0(callid, retval);
2904 return retval;
2905 }
2906
2907 sysarg_t rc;
2908 async_wait_for(msg, &rc);
2909
2910 return (int) rc;
2911}
2912
2913/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2914 *
2915 * @param exch Exchange for sending the message.
2916 * @param src Address of the beginning of the source buffer.
2917 * @param size Size of the source buffer.
2918 *
2919 * @return Zero on success or a negative error code from errno.h.
2920 *
2921 */
2922int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2923{
2924 if (exch == NULL)
2925 return ENOENT;
2926
2927 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2928 (sysarg_t) size);
2929}
2930
2931/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2932 *
2933 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2934 * calls so that the user doesn't have to remember the meaning of each IPC
2935 * argument.
2936 *
2937 * So far, this wrapper is to be used from within a connection fibril.
2938 *
2939 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2940 * @param size Storage for the suggested size. May be NULL.
2941 *
2942 * @return True on success, false on failure.
2943 *
2944 */
2945bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2946{
2947 ipc_call_t data;
2948 return async_data_write_receive_call(callid, &data, size);
2949}
2950
2951/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2952 *
2953 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2954 * calls so that the user doesn't have to remember the meaning of each IPC
2955 * argument.
2956 *
2957 * So far, this wrapper is to be used from within a connection fibril.
2958 *
2959 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2960 * @param data Storage for the ipc call data.
2961 * @param size Storage for the suggested size. May be NULL.
2962 *
2963 * @return True on success, false on failure.
2964 *
2965 */
2966bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2967 size_t *size)
2968{
2969 assert(callid);
2970 assert(data);
2971
2972 *callid = async_get_call(data);
2973
2974 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2975 return false;
2976
2977 if (size)
2978 *size = (size_t) IPC_GET_ARG2(*data);
2979
2980 return true;
2981}
2982
2983/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2984 *
2985 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2986 * calls so that the user doesn't have to remember the meaning of each IPC
2987 * argument.
2988 *
2989 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2990 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2991 * @param size Final size for the IPC_M_DATA_WRITE call.
2992 *
2993 * @return Zero on success or a value from @ref errno.h on failure.
2994 *
2995 */
2996int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2997{
2998 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2999}
3000
3001/** Wrapper for receiving binary data or strings
3002 *
3003 * This wrapper only makes it more comfortable to use async_data_write_*
3004 * functions to receive binary data or strings.
3005 *
3006 * @param data Pointer to data pointer (which should be later disposed
3007 * by free()). If the operation fails, the pointer is not
3008 * touched.
3009 * @param nullterm If true then the received data is always zero terminated.
3010 * This also causes to allocate one extra byte beyond the
3011 * raw transmitted data.
3012 * @param min_size Minimum size (in bytes) of the data to receive.
3013 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
3014 * no limit.
3015 * @param granulariy If non-zero then the size of the received data has to
3016 * be divisible by this value.
3017 * @param received If not NULL, the size of the received data is stored here.
3018 *
3019 * @return Zero on success or a value from @ref errno.h on failure.
3020 *
3021 */
3022int async_data_write_accept(void **data, const bool nullterm,
3023 const size_t min_size, const size_t max_size, const size_t granularity,
3024 size_t *received)
3025{
3026 assert(data);
3027
3028 ipc_callid_t callid;
3029 size_t size;
3030 if (!async_data_write_receive(&callid, &size)) {
3031 ipc_answer_0(callid, EINVAL);
3032 return EINVAL;
3033 }
3034
3035 if (size < min_size) {
3036 ipc_answer_0(callid, EINVAL);
3037 return EINVAL;
3038 }
3039
3040 if ((max_size > 0) && (size > max_size)) {
3041 ipc_answer_0(callid, EINVAL);
3042 return EINVAL;
3043 }
3044
3045 if ((granularity > 0) && ((size % granularity) != 0)) {
3046 ipc_answer_0(callid, EINVAL);
3047 return EINVAL;
3048 }
3049
3050 void *arg_data;
3051
3052 if (nullterm)
3053 arg_data = malloc(size + 1);
3054 else
3055 arg_data = malloc(size);
3056
3057 if (arg_data == NULL) {
3058 ipc_answer_0(callid, ENOMEM);
3059 return ENOMEM;
3060 }
3061
3062 int rc = async_data_write_finalize(callid, arg_data, size);
3063 if (rc != EOK) {
3064 free(arg_data);
3065 return rc;
3066 }
3067
3068 if (nullterm)
3069 ((char *) arg_data)[size] = 0;
3070
3071 *data = arg_data;
3072 if (received != NULL)
3073 *received = size;
3074
3075 return EOK;
3076}
3077
3078/** Wrapper for voiding any data that is about to be received
3079 *
3080 * This wrapper can be used to void any pending data
3081 *
3082 * @param retval Error value from @ref errno.h to be returned to the caller.
3083 *
3084 */
3085void async_data_write_void(sysarg_t retval)
3086{
3087 ipc_callid_t callid;
3088 async_data_write_receive(&callid, NULL);
3089 ipc_answer_0(callid, retval);
3090}
3091
3092/** Wrapper for forwarding any data that is about to be received
3093 *
3094 */
3095int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3096 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3097 ipc_call_t *dataptr)
3098{
3099 if (exch == NULL)
3100 return ENOENT;
3101
3102 ipc_callid_t callid;
3103 if (!async_data_write_receive(&callid, NULL)) {
3104 ipc_answer_0(callid, EINVAL);
3105 return EINVAL;
3106 }
3107
3108 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3109 dataptr);
3110 if (msg == 0) {
3111 ipc_answer_0(callid, EINVAL);
3112 return EINVAL;
3113 }
3114
3115 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
3116 IPC_FF_ROUTE_FROM_ME);
3117 if (retval != EOK) {
3118 async_forget(msg);
3119 ipc_answer_0(callid, retval);
3120 return retval;
3121 }
3122
3123 sysarg_t rc;
3124 async_wait_for(msg, &rc);
3125
3126 return (int) rc;
3127}
3128
3129/** Wrapper for sending an exchange over different exchange for cloning
3130 *
3131 * @param exch Exchange to be used for sending.
3132 * @param clone_exch Exchange to be cloned.
3133 *
3134 */
3135int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch)
3136{
3137 return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone);
3138}
3139
3140/** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls.
3141 *
3142 * If the current call is IPC_M_CONNECTION_CLONE then a new
3143 * async session is created for the accepted phone.
3144 *
3145 * @param mgmt Exchange management style.
3146 *
3147 * @return New async session or NULL on failure.
3148 *
3149 */
3150async_sess_t *async_clone_receive(exch_mgmt_t mgmt)
3151{
3152 /* Accept the phone */
3153 ipc_call_t call;
3154 ipc_callid_t callid = async_get_call(&call);
3155 int phone = (int) IPC_GET_ARG1(call);
3156
3157 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) ||
3158 (phone < 0)) {
3159 async_answer_0(callid, EINVAL);
3160 return NULL;
3161 }
3162
3163 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3164 if (sess == NULL) {
3165 async_answer_0(callid, ENOMEM);
3166 return NULL;
3167 }
3168
3169 sess->iface = 0;
3170 sess->mgmt = mgmt;
3171 sess->phone = phone;
3172 sess->arg1 = 0;
3173 sess->arg2 = 0;
3174 sess->arg3 = 0;
3175
3176 fibril_mutex_initialize(&sess->remote_state_mtx);
3177 sess->remote_state_data = NULL;
3178
3179 list_initialize(&sess->exch_list);
3180 fibril_mutex_initialize(&sess->mutex);
3181 atomic_set(&sess->refcnt, 0);
3182
3183 /* Acknowledge the cloned phone */
3184 async_answer_0(callid, EOK);
3185
3186 return sess;
3187}
3188
3189/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3190 *
3191 * If the current call is IPC_M_CONNECT_TO_ME then a new
3192 * async session is created for the accepted phone.
3193 *
3194 * @param mgmt Exchange management style.
3195 *
3196 * @return New async session.
3197 * @return NULL on failure.
3198 *
3199 */
3200async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3201{
3202 /* Accept the phone */
3203 ipc_call_t call;
3204 ipc_callid_t callid = async_get_call(&call);
3205 int phone = (int) IPC_GET_ARG5(call);
3206
3207 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
3208 (phone < 0)) {
3209 async_answer_0(callid, EINVAL);
3210 return NULL;
3211 }
3212
3213 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3214 if (sess == NULL) {
3215 async_answer_0(callid, ENOMEM);
3216 return NULL;
3217 }
3218
3219 sess->iface = 0;
3220 sess->mgmt = mgmt;
3221 sess->phone = phone;
3222 sess->arg1 = 0;
3223 sess->arg2 = 0;
3224 sess->arg3 = 0;
3225
3226 fibril_mutex_initialize(&sess->remote_state_mtx);
3227 sess->remote_state_data = NULL;
3228
3229 list_initialize(&sess->exch_list);
3230 fibril_mutex_initialize(&sess->mutex);
3231 atomic_set(&sess->refcnt, 0);
3232
3233 /* Acknowledge the connected phone */
3234 async_answer_0(callid, EOK);
3235
3236 return sess;
3237}
3238
3239/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3240 *
3241 * If the call is IPC_M_CONNECT_TO_ME then a new
3242 * async session is created. However, the phone is
3243 * not accepted automatically.
3244 *
3245 * @param mgmt Exchange management style.
3246 * @param call Call data.
3247 *
3248 * @return New async session.
3249 * @return NULL on failure.
3250 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3251 *
3252 */
3253async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3254{
3255 int phone = (int) IPC_GET_ARG5(*call);
3256
3257 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
3258 (phone < 0))
3259 return NULL;
3260
3261 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3262 if (sess == NULL)
3263 return NULL;
3264
3265 sess->iface = 0;
3266 sess->mgmt = mgmt;
3267 sess->phone = phone;
3268 sess->arg1 = 0;
3269 sess->arg2 = 0;
3270 sess->arg3 = 0;
3271
3272 fibril_mutex_initialize(&sess->remote_state_mtx);
3273 sess->remote_state_data = NULL;
3274
3275 list_initialize(&sess->exch_list);
3276 fibril_mutex_initialize(&sess->mutex);
3277 atomic_set(&sess->refcnt, 0);
3278
3279 return sess;
3280}
3281
3282int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3283 sysarg_t arg3, async_exch_t *other_exch)
3284{
3285 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3286 arg1, arg2, arg3, 0, other_exch->phone);
3287}
3288
3289bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
3290 sysarg_t *arg2, sysarg_t *arg3)
3291{
3292 assert(callid);
3293
3294 ipc_call_t call;
3295 *callid = async_get_call(&call);
3296
3297 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3298 return false;
3299
3300 if (arg1)
3301 *arg1 = IPC_GET_ARG1(call);
3302 if (arg2)
3303 *arg2 = IPC_GET_ARG2(call);
3304 if (arg3)
3305 *arg3 = IPC_GET_ARG3(call);
3306
3307 return true;
3308}
3309
3310int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
3311{
3312 return ipc_answer_1(callid, EOK, other_exch->phone);
3313}
3314
3315/** Lock and get session remote state
3316 *
3317 * Lock and get the local replica of the remote state
3318 * in stateful sessions. The call should be paired
3319 * with async_remote_state_release*().
3320 *
3321 * @param[in] sess Stateful session.
3322 *
3323 * @return Local replica of the remote state.
3324 *
3325 */
3326void *async_remote_state_acquire(async_sess_t *sess)
3327{
3328 fibril_mutex_lock(&sess->remote_state_mtx);
3329 return sess->remote_state_data;
3330}
3331
3332/** Update the session remote state
3333 *
3334 * Update the local replica of the remote state
3335 * in stateful sessions. The remote state must
3336 * be already locked.
3337 *
3338 * @param[in] sess Stateful session.
3339 * @param[in] state New local replica of the remote state.
3340 *
3341 */
3342void async_remote_state_update(async_sess_t *sess, void *state)
3343{
3344 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3345 sess->remote_state_data = state;
3346}
3347
3348/** Release the session remote state
3349 *
3350 * Unlock the local replica of the remote state
3351 * in stateful sessions.
3352 *
3353 * @param[in] sess Stateful session.
3354 *
3355 */
3356void async_remote_state_release(async_sess_t *sess)
3357{
3358 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3359
3360 fibril_mutex_unlock(&sess->remote_state_mtx);
3361}
3362
3363/** Release the session remote state and end an exchange
3364 *
3365 * Unlock the local replica of the remote state
3366 * in stateful sessions. This is convenience function
3367 * which gets the session pointer from the exchange
3368 * and also ends the exchange.
3369 *
3370 * @param[in] exch Stateful session's exchange.
3371 *
3372 */
3373void async_remote_state_release_exchange(async_exch_t *exch)
3374{
3375 if (exch == NULL)
3376 return;
3377
3378 async_sess_t *sess = exch->sess;
3379 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3380
3381 async_exchange_end(exch);
3382 fibril_mutex_unlock(&sess->remote_state_mtx);
3383}
3384
3385void *async_as_area_create(void *base, size_t size, unsigned int flags,
3386 async_sess_t *pager, sysarg_t id1, sysarg_t id2, sysarg_t id3)
3387{
3388 as_area_pager_info_t pager_info = {
3389 .pager = pager->phone,
3390 .id1 = id1,
3391 .id2 = id2,
3392 .id3 = id3
3393 };
3394 return as_area_create(base, size, flags, &pager_info);
3395}
3396
3397/** @}
3398 */
Note: See TracBrowser for help on using the repository browser.