source: mainline/uspace/lib/c/generic/async.c@ 91b60499

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 91b60499 was 91b60499, checked in by Jakub Jermar <jakub@…>, 8 years ago

Merge support for capabilities from lp:~jakub/helenos/caps

This commit introduces capabilities as task-local names for references to kernel
objects. Kernel objects are reference-counted wrappers for a select group of
objects allocated in and by the kernel that can be made accessible to userspace
in a controlled way via integer handles.

So far, a kernel object encapsulates either an irq_t or a phone_t.

Support for the former lead to the removal of kernel-assigned devnos and
unsecure deregistration of IRQs in which a random task was able to unregister
some other task's IRQ.

  • Property mode set to 100644
File size: 78.9 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/hash.h>
109#include <adt/list.h>
110#include <assert.h>
111#include <errno.h>
112#include <sys/time.h>
113#include <libarch/barrier.h>
114#include <stdbool.h>
115#include <malloc.h>
116#include <mem.h>
117#include <stdlib.h>
118#include <macros.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "private/libc.h"
122
123/** Session data */
124struct async_sess {
125 /** List of inactive exchanges */
126 list_t exch_list;
127
128 /** Session interface */
129 iface_t iface;
130
131 /** Exchange management style */
132 exch_mgmt_t mgmt;
133
134 /** Session identification */
135 int phone;
136
137 /** First clone connection argument */
138 sysarg_t arg1;
139
140 /** Second clone connection argument */
141 sysarg_t arg2;
142
143 /** Third clone connection argument */
144 sysarg_t arg3;
145
146 /** Exchange mutex */
147 fibril_mutex_t mutex;
148
149 /** Number of opened exchanges */
150 atomic_t refcnt;
151
152 /** Mutex for stateful connections */
153 fibril_mutex_t remote_state_mtx;
154
155 /** Data for stateful connections */
156 void *remote_state_data;
157};
158
159/** Exchange data */
160struct async_exch {
161 /** Link into list of inactive exchanges */
162 link_t sess_link;
163
164 /** Link into global list of inactive exchanges */
165 link_t global_link;
166
167 /** Session pointer */
168 async_sess_t *sess;
169
170 /** Exchange identification */
171 int phone;
172};
173
174/** Async framework global futex */
175futex_t async_futex = FUTEX_INITIALIZER;
176
177/** Number of threads waiting for IPC in the kernel. */
178atomic_t threads_in_ipc_wait = { 0 };
179
180/** Naming service session */
181async_sess_t *session_ns;
182
183/** Call data */
184typedef struct {
185 link_t link;
186
187 ipc_callid_t callid;
188 ipc_call_t call;
189} msg_t;
190
191/** Message data */
192typedef struct {
193 awaiter_t wdata;
194
195 /** If reply was received. */
196 bool done;
197
198 /** If the message / reply should be discarded on arrival. */
199 bool forget;
200
201 /** If already destroyed. */
202 bool destroyed;
203
204 /** Pointer to where the answer data is stored. */
205 ipc_call_t *dataptr;
206
207 sysarg_t retval;
208} amsg_t;
209
210/* Client connection data */
211typedef struct {
212 ht_link_t link;
213
214 task_id_t in_task_id;
215 atomic_t refcnt;
216 void *data;
217} client_t;
218
219/* Server connection data */
220typedef struct {
221 awaiter_t wdata;
222
223 /** Hash table link. */
224 ht_link_t link;
225
226 /** Incoming client task ID. */
227 task_id_t in_task_id;
228
229 /** Incoming phone hash. */
230 sysarg_t in_phone_hash;
231
232 /** Link to the client tracking structure. */
233 client_t *client;
234
235 /** Messages that should be delivered to this fibril. */
236 list_t msg_queue;
237
238 /** Identification of the opening call. */
239 ipc_callid_t callid;
240
241 /** Call data of the opening call. */
242 ipc_call_t call;
243
244 /** Identification of the closing call. */
245 ipc_callid_t close_callid;
246
247 /** Fibril function that will be used to handle the connection. */
248 async_port_handler_t handler;
249
250 /** Client data */
251 void *data;
252} connection_t;
253
254/** Interface data */
255typedef struct {
256 ht_link_t link;
257
258 /** Interface ID */
259 iface_t iface;
260
261 /** Futex protecting the hash table */
262 futex_t futex;
263
264 /** Interface ports */
265 hash_table_t port_hash_table;
266
267 /** Next available port ID */
268 port_id_t port_id_avail;
269} interface_t;
270
271/* Port data */
272typedef struct {
273 ht_link_t link;
274
275 /** Port ID */
276 port_id_t id;
277
278 /** Port connection handler */
279 async_port_handler_t handler;
280
281 /** Client data */
282 void *data;
283} port_t;
284
285/* Notification data */
286typedef struct {
287 ht_link_t link;
288
289 /** Notification method */
290 sysarg_t imethod;
291
292 /** Notification handler */
293 async_notification_handler_t handler;
294
295 /** Notification data */
296 void *data;
297} notification_t;
298
299/** Identifier of the incoming connection handled by the current fibril. */
300static fibril_local connection_t *fibril_connection;
301
302static void to_event_initialize(to_event_t *to)
303{
304 struct timeval tv = { 0, 0 };
305
306 to->inlist = false;
307 to->occurred = false;
308 link_initialize(&to->link);
309 to->expires = tv;
310}
311
312static void wu_event_initialize(wu_event_t *wu)
313{
314 wu->inlist = false;
315 link_initialize(&wu->link);
316}
317
318void awaiter_initialize(awaiter_t *aw)
319{
320 aw->fid = 0;
321 aw->active = false;
322 to_event_initialize(&aw->to_event);
323 wu_event_initialize(&aw->wu_event);
324}
325
326static amsg_t *amsg_create(void)
327{
328 amsg_t *msg = malloc(sizeof(amsg_t));
329 if (msg) {
330 msg->done = false;
331 msg->forget = false;
332 msg->destroyed = false;
333 msg->dataptr = NULL;
334 msg->retval = (sysarg_t) EINVAL;
335 awaiter_initialize(&msg->wdata);
336 }
337
338 return msg;
339}
340
341static void amsg_destroy(amsg_t *msg)
342{
343 assert(!msg->destroyed);
344 msg->destroyed = true;
345 free(msg);
346}
347
348static void *default_client_data_constructor(void)
349{
350 return NULL;
351}
352
353static void default_client_data_destructor(void *data)
354{
355}
356
357static async_client_data_ctor_t async_client_data_create =
358 default_client_data_constructor;
359static async_client_data_dtor_t async_client_data_destroy =
360 default_client_data_destructor;
361
362void async_set_client_data_constructor(async_client_data_ctor_t ctor)
363{
364 assert(async_client_data_create == default_client_data_constructor);
365 async_client_data_create = ctor;
366}
367
368void async_set_client_data_destructor(async_client_data_dtor_t dtor)
369{
370 assert(async_client_data_destroy == default_client_data_destructor);
371 async_client_data_destroy = dtor;
372}
373
374/** Default fallback fibril function.
375 *
376 * This fallback fibril function gets called on incomming
377 * connections that do not have a specific handler defined.
378 *
379 * @param callid Hash of the incoming call.
380 * @param call Data of the incoming call.
381 * @param arg Local argument
382 *
383 */
384static void default_fallback_port_handler(ipc_callid_t callid, ipc_call_t *call,
385 void *arg)
386{
387 ipc_answer_0(callid, ENOENT);
388}
389
390static async_port_handler_t fallback_port_handler =
391 default_fallback_port_handler;
392static void *fallback_port_data = NULL;
393
394static hash_table_t interface_hash_table;
395
396static size_t interface_key_hash(void *key)
397{
398 iface_t iface = *(iface_t *) key;
399 return iface;
400}
401
402static size_t interface_hash(const ht_link_t *item)
403{
404 interface_t *interface = hash_table_get_inst(item, interface_t, link);
405 return interface_key_hash(&interface->iface);
406}
407
408static bool interface_key_equal(void *key, const ht_link_t *item)
409{
410 iface_t iface = *(iface_t *) key;
411 interface_t *interface = hash_table_get_inst(item, interface_t, link);
412 return iface == interface->iface;
413}
414
415/** Operations for the port hash table. */
416static hash_table_ops_t interface_hash_table_ops = {
417 .hash = interface_hash,
418 .key_hash = interface_key_hash,
419 .key_equal = interface_key_equal,
420 .equal = NULL,
421 .remove_callback = NULL
422};
423
424static size_t port_key_hash(void *key)
425{
426 port_id_t port_id = *(port_id_t *) key;
427 return port_id;
428}
429
430static size_t port_hash(const ht_link_t *item)
431{
432 port_t *port = hash_table_get_inst(item, port_t, link);
433 return port_key_hash(&port->id);
434}
435
436static bool port_key_equal(void *key, const ht_link_t *item)
437{
438 port_id_t port_id = *(port_id_t *) key;
439 port_t *port = hash_table_get_inst(item, port_t, link);
440 return port_id == port->id;
441}
442
443/** Operations for the port hash table. */
444static hash_table_ops_t port_hash_table_ops = {
445 .hash = port_hash,
446 .key_hash = port_key_hash,
447 .key_equal = port_key_equal,
448 .equal = NULL,
449 .remove_callback = NULL
450};
451
452static interface_t *async_new_interface(iface_t iface)
453{
454 interface_t *interface =
455 (interface_t *) malloc(sizeof(interface_t));
456 if (!interface)
457 return NULL;
458
459 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
460 &port_hash_table_ops);
461 if (!ret) {
462 free(interface);
463 return NULL;
464 }
465
466 interface->iface = iface;
467 futex_initialize(&interface->futex, 1);
468 interface->port_id_avail = 0;
469
470 hash_table_insert(&interface_hash_table, &interface->link);
471
472 return interface;
473}
474
475static port_t *async_new_port(interface_t *interface,
476 async_port_handler_t handler, void *data)
477{
478 port_t *port = (port_t *) malloc(sizeof(port_t));
479 if (!port)
480 return NULL;
481
482 futex_down(&interface->futex);
483
484 port_id_t id = interface->port_id_avail;
485 interface->port_id_avail++;
486
487 port->id = id;
488 port->handler = handler;
489 port->data = data;
490
491 hash_table_insert(&interface->port_hash_table, &port->link);
492
493 futex_up(&interface->futex);
494
495 return port;
496}
497
498/** Mutex protecting inactive_exch_list and avail_phone_cv.
499 *
500 */
501static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
502
503/** List of all currently inactive exchanges.
504 *
505 */
506static LIST_INITIALIZE(inactive_exch_list);
507
508/** Condition variable to wait for a phone to become available.
509 *
510 */
511static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
512
513int async_create_port(iface_t iface, async_port_handler_t handler,
514 void *data, port_id_t *port_id)
515{
516 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
517 return EINVAL;
518
519 interface_t *interface;
520
521 futex_down(&async_futex);
522
523 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
524 if (link)
525 interface = hash_table_get_inst(link, interface_t, link);
526 else
527 interface = async_new_interface(iface);
528
529 if (!interface) {
530 futex_up(&async_futex);
531 return ENOMEM;
532 }
533
534 port_t *port = async_new_port(interface, handler, data);
535 if (!port) {
536 futex_up(&async_futex);
537 return ENOMEM;
538 }
539
540 *port_id = port->id;
541
542 futex_up(&async_futex);
543
544 return EOK;
545}
546
547void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
548{
549 assert(handler != NULL);
550
551 fallback_port_handler = handler;
552 fallback_port_data = data;
553}
554
555static hash_table_t client_hash_table;
556static hash_table_t conn_hash_table;
557static hash_table_t notification_hash_table;
558static LIST_INITIALIZE(timeout_list);
559
560static sysarg_t notification_avail = 0;
561
562static size_t client_key_hash(void *key)
563{
564 task_id_t in_task_id = *(task_id_t *) key;
565 return in_task_id;
566}
567
568static size_t client_hash(const ht_link_t *item)
569{
570 client_t *client = hash_table_get_inst(item, client_t, link);
571 return client_key_hash(&client->in_task_id);
572}
573
574static bool client_key_equal(void *key, const ht_link_t *item)
575{
576 task_id_t in_task_id = *(task_id_t *) key;
577 client_t *client = hash_table_get_inst(item, client_t, link);
578 return in_task_id == client->in_task_id;
579}
580
581/** Operations for the client hash table. */
582static hash_table_ops_t client_hash_table_ops = {
583 .hash = client_hash,
584 .key_hash = client_key_hash,
585 .key_equal = client_key_equal,
586 .equal = NULL,
587 .remove_callback = NULL
588};
589
590typedef struct {
591 task_id_t task_id;
592 sysarg_t phone_hash;
593} conn_key_t;
594
595/** Compute hash into the connection hash table
596 *
597 * The hash is based on the source task ID and the source phone hash. The task
598 * ID is included in the hash because a phone hash alone might not be unique
599 * while we still track connections for killed tasks due to kernel's recycling
600 * of phone structures.
601 *
602 * @param key Pointer to the connection key structure.
603 *
604 * @return Index into the connection hash table.
605 *
606 */
607static size_t conn_key_hash(void *key)
608{
609 conn_key_t *ck = (conn_key_t *) key;
610
611 size_t hash = 0;
612 hash = hash_combine(hash, LOWER32(ck->task_id));
613 hash = hash_combine(hash, UPPER32(ck->task_id));
614 hash = hash_combine(hash, ck->phone_hash);
615 return hash;
616}
617
618static size_t conn_hash(const ht_link_t *item)
619{
620 connection_t *conn = hash_table_get_inst(item, connection_t, link);
621 return conn_key_hash(&(conn_key_t){
622 .task_id = conn->in_task_id,
623 .phone_hash = conn->in_phone_hash
624 });
625}
626
627static bool conn_key_equal(void *key, const ht_link_t *item)
628{
629 conn_key_t *ck = (conn_key_t *) key;
630 connection_t *conn = hash_table_get_inst(item, connection_t, link);
631 return ((ck->task_id == conn->in_task_id) &&
632 (ck->phone_hash == conn->in_phone_hash));
633}
634
635/** Operations for the connection hash table. */
636static hash_table_ops_t conn_hash_table_ops = {
637 .hash = conn_hash,
638 .key_hash = conn_key_hash,
639 .key_equal = conn_key_equal,
640 .equal = NULL,
641 .remove_callback = NULL
642};
643
644static client_t *async_client_get(task_id_t client_id, bool create)
645{
646 client_t *client = NULL;
647
648 futex_down(&async_futex);
649 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
650 if (link) {
651 client = hash_table_get_inst(link, client_t, link);
652 atomic_inc(&client->refcnt);
653 } else if (create) {
654 client = malloc(sizeof(client_t));
655 if (client) {
656 client->in_task_id = client_id;
657 client->data = async_client_data_create();
658
659 atomic_set(&client->refcnt, 1);
660 hash_table_insert(&client_hash_table, &client->link);
661 }
662 }
663
664 futex_up(&async_futex);
665 return client;
666}
667
668static void async_client_put(client_t *client)
669{
670 bool destroy;
671
672 futex_down(&async_futex);
673
674 if (atomic_predec(&client->refcnt) == 0) {
675 hash_table_remove(&client_hash_table, &client->in_task_id);
676 destroy = true;
677 } else
678 destroy = false;
679
680 futex_up(&async_futex);
681
682 if (destroy) {
683 if (client->data)
684 async_client_data_destroy(client->data);
685
686 free(client);
687 }
688}
689
690/** Wrapper for client connection fibril.
691 *
692 * When a new connection arrives, a fibril with this implementing
693 * function is created.
694 *
695 * @param arg Connection structure pointer.
696 *
697 * @return Always zero.
698 *
699 */
700static int connection_fibril(void *arg)
701{
702 assert(arg);
703
704 /*
705 * Setup fibril-local connection pointer.
706 */
707 fibril_connection = (connection_t *) arg;
708
709 /*
710 * Add our reference for the current connection in the client task
711 * tracking structure. If this is the first reference, create and
712 * hash in a new tracking structure.
713 */
714
715 client_t *client = async_client_get(fibril_connection->in_task_id, true);
716 if (!client) {
717 ipc_answer_0(fibril_connection->callid, ENOMEM);
718 return 0;
719 }
720
721 fibril_connection->client = client;
722
723 /*
724 * Call the connection handler function.
725 */
726 fibril_connection->handler(fibril_connection->callid,
727 &fibril_connection->call, fibril_connection->data);
728
729 /*
730 * Remove the reference for this client task connection.
731 */
732 async_client_put(client);
733
734 /*
735 * Remove myself from the connection hash table.
736 */
737 futex_down(&async_futex);
738 hash_table_remove(&conn_hash_table, &(conn_key_t){
739 .task_id = fibril_connection->in_task_id,
740 .phone_hash = fibril_connection->in_phone_hash
741 });
742 futex_up(&async_futex);
743
744 /*
745 * Answer all remaining messages with EHANGUP.
746 */
747 while (!list_empty(&fibril_connection->msg_queue)) {
748 msg_t *msg =
749 list_get_instance(list_first(&fibril_connection->msg_queue),
750 msg_t, link);
751
752 list_remove(&msg->link);
753 ipc_answer_0(msg->callid, EHANGUP);
754 free(msg);
755 }
756
757 /*
758 * If the connection was hung-up, answer the last call,
759 * i.e. IPC_M_PHONE_HUNGUP.
760 */
761 if (fibril_connection->close_callid)
762 ipc_answer_0(fibril_connection->close_callid, EOK);
763
764 free(fibril_connection);
765 return 0;
766}
767
768/** Create a new fibril for a new connection.
769 *
770 * Create new fibril for connection, fill in connection structures
771 * and insert it into the hash table, so that later we can easily
772 * do routing of messages to particular fibrils.
773 *
774 * @param in_task_id Identification of the incoming connection.
775 * @param in_phone_hash Identification of the incoming connection.
776 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
777 * If callid is zero, the connection was opened by
778 * accepting the IPC_M_CONNECT_TO_ME call and this
779 * function is called directly by the server.
780 * @param call Call data of the opening call.
781 * @param handler Connection handler.
782 * @param data Client argument to pass to the connection handler.
783 *
784 * @return New fibril id or NULL on failure.
785 *
786 */
787static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
788 ipc_callid_t callid, ipc_call_t *call, async_port_handler_t handler,
789 void *data)
790{
791 connection_t *conn = malloc(sizeof(*conn));
792 if (!conn) {
793 if (callid)
794 ipc_answer_0(callid, ENOMEM);
795
796 return (uintptr_t) NULL;
797 }
798
799 conn->in_task_id = in_task_id;
800 conn->in_phone_hash = in_phone_hash;
801 list_initialize(&conn->msg_queue);
802 conn->callid = callid;
803 conn->close_callid = 0;
804 conn->handler = handler;
805 conn->data = data;
806
807 if (call)
808 conn->call = *call;
809
810 /* We will activate the fibril ASAP */
811 conn->wdata.active = true;
812 conn->wdata.fid = fibril_create(connection_fibril, conn);
813
814 if (conn->wdata.fid == 0) {
815 free(conn);
816
817 if (callid)
818 ipc_answer_0(callid, ENOMEM);
819
820 return (uintptr_t) NULL;
821 }
822
823 /* Add connection to the connection hash table */
824
825 futex_down(&async_futex);
826 hash_table_insert(&conn_hash_table, &conn->link);
827 futex_up(&async_futex);
828
829 fibril_add_ready(conn->wdata.fid);
830
831 return conn->wdata.fid;
832}
833
834/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
835 *
836 * Ask through phone for a new connection to some service.
837 *
838 * @param exch Exchange for sending the message.
839 * @param iface Callback interface.
840 * @param arg1 User defined argument.
841 * @param arg2 User defined argument.
842 * @param handler Callback handler.
843 * @param data Handler data.
844 * @param port_id ID of the newly created port.
845 *
846 * @return Zero on success or a negative error code.
847 *
848 */
849int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
850 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
851{
852 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
853 return EINVAL;
854
855 if (exch == NULL)
856 return ENOENT;
857
858 ipc_call_t answer;
859 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
860 &answer);
861
862 sysarg_t ret;
863 async_wait_for(req, &ret);
864 if (ret != EOK)
865 return (int) ret;
866
867 sysarg_t phone_hash = IPC_GET_ARG5(answer);
868 interface_t *interface;
869
870 futex_down(&async_futex);
871
872 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
873 if (link)
874 interface = hash_table_get_inst(link, interface_t, link);
875 else
876 interface = async_new_interface(iface);
877
878 if (!interface) {
879 futex_up(&async_futex);
880 return ENOMEM;
881 }
882
883 port_t *port = async_new_port(interface, handler, data);
884 if (!port) {
885 futex_up(&async_futex);
886 return ENOMEM;
887 }
888
889 *port_id = port->id;
890
891 futex_up(&async_futex);
892
893 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
894 0, NULL, handler, data);
895 if (fid == (uintptr_t) NULL)
896 return ENOMEM;
897
898 return EOK;
899}
900
901static size_t notification_key_hash(void *key)
902{
903 sysarg_t id = *(sysarg_t *) key;
904 return id;
905}
906
907static size_t notification_hash(const ht_link_t *item)
908{
909 notification_t *notification =
910 hash_table_get_inst(item, notification_t, link);
911 return notification_key_hash(&notification->imethod);
912}
913
914static bool notification_key_equal(void *key, const ht_link_t *item)
915{
916 sysarg_t id = *(sysarg_t *) key;
917 notification_t *notification =
918 hash_table_get_inst(item, notification_t, link);
919 return id == notification->imethod;
920}
921
922/** Operations for the notification hash table. */
923static hash_table_ops_t notification_hash_table_ops = {
924 .hash = notification_hash,
925 .key_hash = notification_key_hash,
926 .key_equal = notification_key_equal,
927 .equal = NULL,
928 .remove_callback = NULL
929};
930
931/** Sort in current fibril's timeout request.
932 *
933 * @param wd Wait data of the current fibril.
934 *
935 */
936void async_insert_timeout(awaiter_t *wd)
937{
938 assert(wd);
939
940 wd->to_event.occurred = false;
941 wd->to_event.inlist = true;
942
943 link_t *tmp = timeout_list.head.next;
944 while (tmp != &timeout_list.head) {
945 awaiter_t *cur
946 = list_get_instance(tmp, awaiter_t, to_event.link);
947
948 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
949 break;
950
951 tmp = tmp->next;
952 }
953
954 list_insert_before(&wd->to_event.link, tmp);
955}
956
957/** Try to route a call to an appropriate connection fibril.
958 *
959 * If the proper connection fibril is found, a message with the call is added to
960 * its message queue. If the fibril was not active, it is activated and all
961 * timeouts are unregistered.
962 *
963 * @param callid Hash of the incoming call.
964 * @param call Data of the incoming call.
965 *
966 * @return False if the call doesn't match any connection.
967 * @return True if the call was passed to the respective connection fibril.
968 *
969 */
970static bool route_call(ipc_callid_t callid, ipc_call_t *call)
971{
972 assert(call);
973
974 futex_down(&async_futex);
975
976 ht_link_t *link = hash_table_find(&conn_hash_table, &(conn_key_t){
977 .task_id = call->in_task_id,
978 .phone_hash = call->in_phone_hash
979 });
980 if (!link) {
981 futex_up(&async_futex);
982 return false;
983 }
984
985 connection_t *conn = hash_table_get_inst(link, connection_t, link);
986
987 msg_t *msg = malloc(sizeof(*msg));
988 if (!msg) {
989 futex_up(&async_futex);
990 return false;
991 }
992
993 msg->callid = callid;
994 msg->call = *call;
995 list_append(&msg->link, &conn->msg_queue);
996
997 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
998 conn->close_callid = callid;
999
1000 /* If the connection fibril is waiting for an event, activate it */
1001 if (!conn->wdata.active) {
1002
1003 /* If in timeout list, remove it */
1004 if (conn->wdata.to_event.inlist) {
1005 conn->wdata.to_event.inlist = false;
1006 list_remove(&conn->wdata.to_event.link);
1007 }
1008
1009 conn->wdata.active = true;
1010 fibril_add_ready(conn->wdata.fid);
1011 }
1012
1013 futex_up(&async_futex);
1014 return true;
1015}
1016
1017/** Process notification.
1018 *
1019 * @param callid Hash of the incoming call.
1020 * @param call Data of the incoming call.
1021 *
1022 */
1023static void process_notification(ipc_callid_t callid, ipc_call_t *call)
1024{
1025 async_notification_handler_t handler = NULL;
1026 void *data = NULL;
1027
1028 assert(call);
1029
1030 futex_down(&async_futex);
1031
1032 ht_link_t *link = hash_table_find(&notification_hash_table,
1033 &IPC_GET_IMETHOD(*call));
1034 if (link) {
1035 notification_t *notification =
1036 hash_table_get_inst(link, notification_t, link);
1037 handler = notification->handler;
1038 data = notification->data;
1039 }
1040
1041 futex_up(&async_futex);
1042
1043 if (handler)
1044 handler(callid, call, data);
1045}
1046
1047/** Subscribe to IRQ notification.
1048 *
1049 * @param inr IRQ number.
1050 * @param handler Notification handler.
1051 * @param data Notification handler client data.
1052 * @param ucode Top-half pseudocode handler.
1053 *
1054 * @return IRQ capability handle on success.
1055 * @return Negative error code.
1056 *
1057 */
1058int async_irq_subscribe(int inr, async_notification_handler_t handler,
1059 void *data, const irq_code_t *ucode)
1060{
1061 notification_t *notification =
1062 (notification_t *) malloc(sizeof(notification_t));
1063 if (!notification)
1064 return ENOMEM;
1065
1066 futex_down(&async_futex);
1067
1068 sysarg_t imethod = notification_avail;
1069 notification_avail++;
1070
1071 notification->imethod = imethod;
1072 notification->handler = handler;
1073 notification->data = data;
1074
1075 hash_table_insert(&notification_hash_table, &notification->link);
1076
1077 futex_up(&async_futex);
1078
1079 return ipc_irq_subscribe(inr, imethod, ucode);
1080}
1081
1082/** Unsubscribe from IRQ notification.
1083 *
1084 * @param cap IRQ capability handle.
1085 *
1086 * @return Zero on success or a negative error code.
1087 *
1088 */
1089int async_irq_unsubscribe(int cap)
1090{
1091 // TODO: Remove entry from hash table
1092 // to avoid memory leak
1093
1094 return ipc_irq_unsubscribe(cap);
1095}
1096
1097/** Subscribe to event notifications.
1098 *
1099 * @param evno Event type to subscribe.
1100 * @param handler Notification handler.
1101 * @param data Notification handler client data.
1102 *
1103 * @return Zero on success or a negative error code.
1104 *
1105 */
1106int async_event_subscribe(event_type_t evno,
1107 async_notification_handler_t handler, void *data)
1108{
1109 notification_t *notification =
1110 (notification_t *) malloc(sizeof(notification_t));
1111 if (!notification)
1112 return ENOMEM;
1113
1114 futex_down(&async_futex);
1115
1116 sysarg_t imethod = notification_avail;
1117 notification_avail++;
1118
1119 notification->imethod = imethod;
1120 notification->handler = handler;
1121 notification->data = data;
1122
1123 hash_table_insert(&notification_hash_table, &notification->link);
1124
1125 futex_up(&async_futex);
1126
1127 return ipc_event_subscribe(evno, imethod);
1128}
1129
1130/** Subscribe to task event notifications.
1131 *
1132 * @param evno Event type to subscribe.
1133 * @param handler Notification handler.
1134 * @param data Notification handler client data.
1135 *
1136 * @return Zero on success or a negative error code.
1137 *
1138 */
1139int async_event_task_subscribe(event_task_type_t evno,
1140 async_notification_handler_t handler, void *data)
1141{
1142 notification_t *notification =
1143 (notification_t *) malloc(sizeof(notification_t));
1144 if (!notification)
1145 return ENOMEM;
1146
1147 futex_down(&async_futex);
1148
1149 sysarg_t imethod = notification_avail;
1150 notification_avail++;
1151
1152 notification->imethod = imethod;
1153 notification->handler = handler;
1154 notification->data = data;
1155
1156 hash_table_insert(&notification_hash_table, &notification->link);
1157
1158 futex_up(&async_futex);
1159
1160 return ipc_event_task_subscribe(evno, imethod);
1161}
1162
1163/** Unmask event notifications.
1164 *
1165 * @param evno Event type to unmask.
1166 *
1167 * @return Value returned by the kernel.
1168 *
1169 */
1170int async_event_unmask(event_type_t evno)
1171{
1172 return ipc_event_unmask(evno);
1173}
1174
1175/** Unmask task event notifications.
1176 *
1177 * @param evno Event type to unmask.
1178 *
1179 * @return Value returned by the kernel.
1180 *
1181 */
1182int async_event_task_unmask(event_task_type_t evno)
1183{
1184 return ipc_event_task_unmask(evno);
1185}
1186
1187/** Return new incoming message for the current (fibril-local) connection.
1188 *
1189 * @param call Storage where the incoming call data will be stored.
1190 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1191 *
1192 * @return If no timeout was specified, then a hash of the
1193 * incoming call is returned. If a timeout is specified,
1194 * then a hash of the incoming call is returned unless
1195 * the timeout expires prior to receiving a message. In
1196 * that case zero is returned.
1197 *
1198 */
1199ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1200{
1201 assert(call);
1202 assert(fibril_connection);
1203
1204 /* Why doing this?
1205 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1206 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1207 * I would never expect to find so many errors in
1208 * a compiler.
1209 */
1210 connection_t *conn = fibril_connection;
1211
1212 futex_down(&async_futex);
1213
1214 if (usecs) {
1215 getuptime(&conn->wdata.to_event.expires);
1216 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1217 } else
1218 conn->wdata.to_event.inlist = false;
1219
1220 /* If nothing in queue, wait until something arrives */
1221 while (list_empty(&conn->msg_queue)) {
1222 if (conn->close_callid) {
1223 /*
1224 * Handle the case when the connection was already
1225 * closed by the client but the server did not notice
1226 * the first IPC_M_PHONE_HUNGUP call and continues to
1227 * call async_get_call_timeout(). Repeat
1228 * IPC_M_PHONE_HUNGUP until the caller notices.
1229 */
1230 memset(call, 0, sizeof(ipc_call_t));
1231 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1232 futex_up(&async_futex);
1233 return conn->close_callid;
1234 }
1235
1236 if (usecs)
1237 async_insert_timeout(&conn->wdata);
1238
1239 conn->wdata.active = false;
1240
1241 /*
1242 * Note: the current fibril will be rescheduled either due to a
1243 * timeout or due to an arriving message destined to it. In the
1244 * former case, handle_expired_timeouts() and, in the latter
1245 * case, route_call() will perform the wakeup.
1246 */
1247 fibril_switch(FIBRIL_TO_MANAGER);
1248
1249 /*
1250 * Futex is up after getting back from async_manager.
1251 * Get it again.
1252 */
1253 futex_down(&async_futex);
1254 if ((usecs) && (conn->wdata.to_event.occurred)
1255 && (list_empty(&conn->msg_queue))) {
1256 /* If we timed out -> exit */
1257 futex_up(&async_futex);
1258 return 0;
1259 }
1260 }
1261
1262 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1263 msg_t, link);
1264 list_remove(&msg->link);
1265
1266 ipc_callid_t callid = msg->callid;
1267 *call = msg->call;
1268 free(msg);
1269
1270 futex_up(&async_futex);
1271 return callid;
1272}
1273
1274void *async_get_client_data(void)
1275{
1276 assert(fibril_connection);
1277 return fibril_connection->client->data;
1278}
1279
1280void *async_get_client_data_by_id(task_id_t client_id)
1281{
1282 client_t *client = async_client_get(client_id, false);
1283 if (!client)
1284 return NULL;
1285
1286 if (!client->data) {
1287 async_client_put(client);
1288 return NULL;
1289 }
1290
1291 return client->data;
1292}
1293
1294void async_put_client_data_by_id(task_id_t client_id)
1295{
1296 client_t *client = async_client_get(client_id, false);
1297
1298 assert(client);
1299 assert(client->data);
1300
1301 /* Drop the reference we got in async_get_client_data_by_hash(). */
1302 async_client_put(client);
1303
1304 /* Drop our own reference we got at the beginning of this function. */
1305 async_client_put(client);
1306}
1307
1308static port_t *async_find_port(iface_t iface, port_id_t port_id)
1309{
1310 port_t *port = NULL;
1311
1312 futex_down(&async_futex);
1313
1314 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1315 if (link) {
1316 interface_t *interface =
1317 hash_table_get_inst(link, interface_t, link);
1318
1319 link = hash_table_find(&interface->port_hash_table, &port_id);
1320 if (link)
1321 port = hash_table_get_inst(link, port_t, link);
1322 }
1323
1324 futex_up(&async_futex);
1325
1326 return port;
1327}
1328
1329/** Handle a call that was received.
1330 *
1331 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1332 * Otherwise the call is routed to its connection fibril.
1333 *
1334 * @param callid Hash of the incoming call.
1335 * @param call Data of the incoming call.
1336 *
1337 */
1338static void handle_call(ipc_callid_t callid, ipc_call_t *call)
1339{
1340 assert(call);
1341
1342 /* Kernel notification */
1343 if ((callid & IPC_CALLID_NOTIFICATION)) {
1344 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1345 unsigned oldsw = fibril->switches;
1346
1347 process_notification(callid, call);
1348
1349 if (oldsw != fibril->switches) {
1350 /*
1351 * The notification handler did not execute atomically
1352 * and so the current manager fibril assumed the role of
1353 * a notification fibril. While waiting for its
1354 * resources, it switched to another manager fibril that
1355 * had already existed or it created a new one. We
1356 * therefore know there is at least yet another
1357 * manager fibril that can take over. We now kill the
1358 * current 'notification' fibril to prevent fibril
1359 * population explosion.
1360 */
1361 futex_down(&async_futex);
1362 fibril_switch(FIBRIL_FROM_DEAD);
1363 }
1364
1365 return;
1366 }
1367
1368 /* New connection */
1369 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1370 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1371 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1372
1373 async_notification_handler_t handler = fallback_port_handler;
1374 void *data = fallback_port_data;
1375
1376 // TODO: Currently ignores all ports but the first one
1377 port_t *port = async_find_port(iface, 0);
1378 if (port) {
1379 handler = port->handler;
1380 data = port->data;
1381 }
1382
1383 async_new_connection(call->in_task_id, in_phone_hash, callid,
1384 call, handler, data);
1385 return;
1386 }
1387
1388 /* Try to route the call through the connection hash table */
1389 if (route_call(callid, call))
1390 return;
1391
1392 /* Unknown call from unknown phone - hang it up */
1393 ipc_answer_0(callid, EHANGUP);
1394}
1395
1396/** Fire all timeouts that expired. */
1397static void handle_expired_timeouts(void)
1398{
1399 struct timeval tv;
1400 getuptime(&tv);
1401
1402 futex_down(&async_futex);
1403
1404 link_t *cur = list_first(&timeout_list);
1405 while (cur != NULL) {
1406 awaiter_t *waiter =
1407 list_get_instance(cur, awaiter_t, to_event.link);
1408
1409 if (tv_gt(&waiter->to_event.expires, &tv))
1410 break;
1411
1412 list_remove(&waiter->to_event.link);
1413 waiter->to_event.inlist = false;
1414 waiter->to_event.occurred = true;
1415
1416 /*
1417 * Redundant condition?
1418 * The fibril should not be active when it gets here.
1419 */
1420 if (!waiter->active) {
1421 waiter->active = true;
1422 fibril_add_ready(waiter->fid);
1423 }
1424
1425 cur = list_first(&timeout_list);
1426 }
1427
1428 futex_up(&async_futex);
1429}
1430
1431/** Endless loop dispatching incoming calls and answers.
1432 *
1433 * @return Never returns.
1434 *
1435 */
1436static int async_manager_worker(void)
1437{
1438 while (true) {
1439 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1440 futex_up(&async_futex);
1441 /*
1442 * async_futex is always held when entering a manager
1443 * fibril.
1444 */
1445 continue;
1446 }
1447
1448 futex_down(&async_futex);
1449
1450 suseconds_t timeout;
1451 unsigned int flags = SYNCH_FLAGS_NONE;
1452 if (!list_empty(&timeout_list)) {
1453 awaiter_t *waiter = list_get_instance(
1454 list_first(&timeout_list), awaiter_t, to_event.link);
1455
1456 struct timeval tv;
1457 getuptime(&tv);
1458
1459 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1460 futex_up(&async_futex);
1461 handle_expired_timeouts();
1462 /*
1463 * Notice that even if the event(s) already
1464 * expired (and thus the other fibril was
1465 * supposed to be running already),
1466 * we check for incoming IPC.
1467 *
1468 * Otherwise, a fibril that continuously
1469 * creates (almost) expired events could
1470 * prevent IPC retrieval from the kernel.
1471 */
1472 timeout = 0;
1473 flags = SYNCH_FLAGS_NON_BLOCKING;
1474
1475 } else {
1476 timeout = tv_sub_diff(&waiter->to_event.expires,
1477 &tv);
1478 futex_up(&async_futex);
1479 }
1480 } else {
1481 futex_up(&async_futex);
1482 timeout = SYNCH_NO_TIMEOUT;
1483 }
1484
1485 atomic_inc(&threads_in_ipc_wait);
1486
1487 ipc_call_t call;
1488 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1489
1490 atomic_dec(&threads_in_ipc_wait);
1491
1492 if (!callid) {
1493 handle_expired_timeouts();
1494 continue;
1495 }
1496
1497 if (callid & IPC_CALLID_ANSWERED)
1498 continue;
1499
1500 handle_call(callid, &call);
1501 }
1502
1503 return 0;
1504}
1505
1506/** Function to start async_manager as a standalone fibril.
1507 *
1508 * When more kernel threads are used, one async manager should exist per thread.
1509 *
1510 * @param arg Unused.
1511 * @return Never returns.
1512 *
1513 */
1514static int async_manager_fibril(void *arg)
1515{
1516 futex_up(&async_futex);
1517
1518 /*
1519 * async_futex is always locked when entering manager
1520 */
1521 async_manager_worker();
1522
1523 return 0;
1524}
1525
1526/** Add one manager to manager list. */
1527void async_create_manager(void)
1528{
1529 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1530 if (fid != 0)
1531 fibril_add_manager(fid);
1532}
1533
1534/** Remove one manager from manager list */
1535void async_destroy_manager(void)
1536{
1537 fibril_remove_manager();
1538}
1539
1540/** Initialize the async framework.
1541 *
1542 */
1543void __async_init(void)
1544{
1545 if (!hash_table_create(&interface_hash_table, 0, 0,
1546 &interface_hash_table_ops))
1547 abort();
1548
1549 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1550 abort();
1551
1552 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1553 abort();
1554
1555 if (!hash_table_create(&notification_hash_table, 0, 0,
1556 &notification_hash_table_ops))
1557 abort();
1558
1559 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1560 if (session_ns == NULL)
1561 abort();
1562
1563 session_ns->iface = 0;
1564 session_ns->mgmt = EXCHANGE_ATOMIC;
1565 session_ns->phone = PHONE_NS;
1566 session_ns->arg1 = 0;
1567 session_ns->arg2 = 0;
1568 session_ns->arg3 = 0;
1569
1570 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1571 session_ns->remote_state_data = NULL;
1572
1573 list_initialize(&session_ns->exch_list);
1574 fibril_mutex_initialize(&session_ns->mutex);
1575 atomic_set(&session_ns->refcnt, 0);
1576}
1577
1578/** Reply received callback.
1579 *
1580 * This function is called whenever a reply for an asynchronous message sent out
1581 * by the asynchronous framework is received.
1582 *
1583 * Notify the fibril which is waiting for this message that it has arrived.
1584 *
1585 * @param arg Pointer to the asynchronous message record.
1586 * @param retval Value returned in the answer.
1587 * @param data Call data of the answer.
1588 *
1589 */
1590void reply_received(void *arg, int retval, ipc_call_t *data)
1591{
1592 assert(arg);
1593
1594 futex_down(&async_futex);
1595
1596 amsg_t *msg = (amsg_t *) arg;
1597 msg->retval = retval;
1598
1599 /* Copy data after futex_down, just in case the call was detached */
1600 if ((msg->dataptr) && (data))
1601 *msg->dataptr = *data;
1602
1603 write_barrier();
1604
1605 /* Remove message from timeout list */
1606 if (msg->wdata.to_event.inlist)
1607 list_remove(&msg->wdata.to_event.link);
1608
1609 msg->done = true;
1610
1611 if (msg->forget) {
1612 assert(msg->wdata.active);
1613 amsg_destroy(msg);
1614 } else if (!msg->wdata.active) {
1615 msg->wdata.active = true;
1616 fibril_add_ready(msg->wdata.fid);
1617 }
1618
1619 futex_up(&async_futex);
1620}
1621
1622/** Send message and return id of the sent message.
1623 *
1624 * The return value can be used as input for async_wait() to wait for
1625 * completion.
1626 *
1627 * @param exch Exchange for sending the message.
1628 * @param imethod Service-defined interface and method.
1629 * @param arg1 Service-defined payload argument.
1630 * @param arg2 Service-defined payload argument.
1631 * @param arg3 Service-defined payload argument.
1632 * @param arg4 Service-defined payload argument.
1633 * @param dataptr If non-NULL, storage where the reply data will be
1634 * stored.
1635 *
1636 * @return Hash of the sent message or 0 on error.
1637 *
1638 */
1639aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1640 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1641{
1642 if (exch == NULL)
1643 return 0;
1644
1645 amsg_t *msg = amsg_create();
1646 if (msg == NULL)
1647 return 0;
1648
1649 msg->dataptr = dataptr;
1650 msg->wdata.active = true;
1651
1652 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1653 reply_received);
1654
1655 return (aid_t) msg;
1656}
1657
1658/** Send message and return id of the sent message
1659 *
1660 * The return value can be used as input for async_wait() to wait for
1661 * completion.
1662 *
1663 * @param exch Exchange for sending the message.
1664 * @param imethod Service-defined interface and method.
1665 * @param arg1 Service-defined payload argument.
1666 * @param arg2 Service-defined payload argument.
1667 * @param arg3 Service-defined payload argument.
1668 * @param arg4 Service-defined payload argument.
1669 * @param arg5 Service-defined payload argument.
1670 * @param dataptr If non-NULL, storage where the reply data will be
1671 * stored.
1672 *
1673 * @return Hash of the sent message or 0 on error.
1674 *
1675 */
1676aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1677 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1678 ipc_call_t *dataptr)
1679{
1680 if (exch == NULL)
1681 return 0;
1682
1683 amsg_t *msg = amsg_create();
1684 if (msg == NULL)
1685 return 0;
1686
1687 msg->dataptr = dataptr;
1688 msg->wdata.active = true;
1689
1690 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1691 msg, reply_received);
1692
1693 return (aid_t) msg;
1694}
1695
1696/** Wait for a message sent by the async framework.
1697 *
1698 * @param amsgid Hash of the message to wait for.
1699 * @param retval Pointer to storage where the retval of the answer will
1700 * be stored.
1701 *
1702 */
1703void async_wait_for(aid_t amsgid, sysarg_t *retval)
1704{
1705 assert(amsgid);
1706
1707 amsg_t *msg = (amsg_t *) amsgid;
1708
1709 futex_down(&async_futex);
1710
1711 assert(!msg->forget);
1712 assert(!msg->destroyed);
1713
1714 if (msg->done) {
1715 futex_up(&async_futex);
1716 goto done;
1717 }
1718
1719 msg->wdata.fid = fibril_get_id();
1720 msg->wdata.active = false;
1721 msg->wdata.to_event.inlist = false;
1722
1723 /* Leave the async_futex locked when entering this function */
1724 fibril_switch(FIBRIL_TO_MANAGER);
1725
1726 /* Futex is up automatically after fibril_switch */
1727
1728done:
1729 if (retval)
1730 *retval = msg->retval;
1731
1732 amsg_destroy(msg);
1733}
1734
1735/** Wait for a message sent by the async framework, timeout variant.
1736 *
1737 * If the wait times out, the caller may choose to either wait again by calling
1738 * async_wait_for() or async_wait_timeout(), or forget the message via
1739 * async_forget().
1740 *
1741 * @param amsgid Hash of the message to wait for.
1742 * @param retval Pointer to storage where the retval of the answer will
1743 * be stored.
1744 * @param timeout Timeout in microseconds.
1745 *
1746 * @return Zero on success, ETIMEOUT if the timeout has expired.
1747 *
1748 */
1749int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1750{
1751 assert(amsgid);
1752
1753 amsg_t *msg = (amsg_t *) amsgid;
1754
1755 futex_down(&async_futex);
1756
1757 assert(!msg->forget);
1758 assert(!msg->destroyed);
1759
1760 if (msg->done) {
1761 futex_up(&async_futex);
1762 goto done;
1763 }
1764
1765 /*
1766 * Negative timeout is converted to zero timeout to avoid
1767 * using tv_add with negative augmenter.
1768 */
1769 if (timeout < 0)
1770 timeout = 0;
1771
1772 getuptime(&msg->wdata.to_event.expires);
1773 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1774
1775 /*
1776 * Current fibril is inserted as waiting regardless of the
1777 * "size" of the timeout.
1778 *
1779 * Checking for msg->done and immediately bailing out when
1780 * timeout == 0 would mean that the manager fibril would never
1781 * run (consider single threaded program).
1782 * Thus the IPC answer would be never retrieved from the kernel.
1783 *
1784 * Notice that the actual delay would be very small because we
1785 * - switch to manager fibril
1786 * - the manager sees expired timeout
1787 * - and thus adds us back to ready queue
1788 * - manager switches back to some ready fibril
1789 * (prior it, it checks for incoming IPC).
1790 *
1791 */
1792 msg->wdata.fid = fibril_get_id();
1793 msg->wdata.active = false;
1794 async_insert_timeout(&msg->wdata);
1795
1796 /* Leave the async_futex locked when entering this function */
1797 fibril_switch(FIBRIL_TO_MANAGER);
1798
1799 /* Futex is up automatically after fibril_switch */
1800
1801 if (!msg->done)
1802 return ETIMEOUT;
1803
1804done:
1805 if (retval)
1806 *retval = msg->retval;
1807
1808 amsg_destroy(msg);
1809
1810 return 0;
1811}
1812
1813/** Discard the message / reply on arrival.
1814 *
1815 * The message will be marked to be discarded once the reply arrives in
1816 * reply_received(). It is not allowed to call async_wait_for() or
1817 * async_wait_timeout() on this message after a call to this function.
1818 *
1819 * @param amsgid Hash of the message to forget.
1820 */
1821void async_forget(aid_t amsgid)
1822{
1823 amsg_t *msg = (amsg_t *) amsgid;
1824
1825 assert(msg);
1826 assert(!msg->forget);
1827 assert(!msg->destroyed);
1828
1829 futex_down(&async_futex);
1830
1831 if (msg->done) {
1832 amsg_destroy(msg);
1833 } else {
1834 msg->dataptr = NULL;
1835 msg->forget = true;
1836 }
1837
1838 futex_up(&async_futex);
1839}
1840
1841/** Wait for specified time.
1842 *
1843 * The current fibril is suspended but the thread continues to execute.
1844 *
1845 * @param timeout Duration of the wait in microseconds.
1846 *
1847 */
1848void async_usleep(suseconds_t timeout)
1849{
1850 amsg_t *msg = amsg_create();
1851 if (!msg)
1852 return;
1853
1854 msg->wdata.fid = fibril_get_id();
1855
1856 getuptime(&msg->wdata.to_event.expires);
1857 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1858
1859 futex_down(&async_futex);
1860
1861 async_insert_timeout(&msg->wdata);
1862
1863 /* Leave the async_futex locked when entering this function */
1864 fibril_switch(FIBRIL_TO_MANAGER);
1865
1866 /* Futex is up automatically after fibril_switch() */
1867
1868 amsg_destroy(msg);
1869}
1870
1871/** Pseudo-synchronous message sending - fast version.
1872 *
1873 * Send message asynchronously and return only after the reply arrives.
1874 *
1875 * This function can only transfer 4 register payload arguments. For
1876 * transferring more arguments, see the slower async_req_slow().
1877 *
1878 * @param exch Exchange for sending the message.
1879 * @param imethod Interface and method of the call.
1880 * @param arg1 Service-defined payload argument.
1881 * @param arg2 Service-defined payload argument.
1882 * @param arg3 Service-defined payload argument.
1883 * @param arg4 Service-defined payload argument.
1884 * @param r1 If non-NULL, storage for the 1st reply argument.
1885 * @param r2 If non-NULL, storage for the 2nd reply argument.
1886 * @param r3 If non-NULL, storage for the 3rd reply argument.
1887 * @param r4 If non-NULL, storage for the 4th reply argument.
1888 * @param r5 If non-NULL, storage for the 5th reply argument.
1889 *
1890 * @return Return code of the reply or a negative error code.
1891 *
1892 */
1893sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1894 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1895 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1896{
1897 if (exch == NULL)
1898 return ENOENT;
1899
1900 ipc_call_t result;
1901 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1902 &result);
1903
1904 sysarg_t rc;
1905 async_wait_for(aid, &rc);
1906
1907 if (r1)
1908 *r1 = IPC_GET_ARG1(result);
1909
1910 if (r2)
1911 *r2 = IPC_GET_ARG2(result);
1912
1913 if (r3)
1914 *r3 = IPC_GET_ARG3(result);
1915
1916 if (r4)
1917 *r4 = IPC_GET_ARG4(result);
1918
1919 if (r5)
1920 *r5 = IPC_GET_ARG5(result);
1921
1922 return rc;
1923}
1924
1925/** Pseudo-synchronous message sending - slow version.
1926 *
1927 * Send message asynchronously and return only after the reply arrives.
1928 *
1929 * @param exch Exchange for sending the message.
1930 * @param imethod Interface and method of the call.
1931 * @param arg1 Service-defined payload argument.
1932 * @param arg2 Service-defined payload argument.
1933 * @param arg3 Service-defined payload argument.
1934 * @param arg4 Service-defined payload argument.
1935 * @param arg5 Service-defined payload argument.
1936 * @param r1 If non-NULL, storage for the 1st reply argument.
1937 * @param r2 If non-NULL, storage for the 2nd reply argument.
1938 * @param r3 If non-NULL, storage for the 3rd reply argument.
1939 * @param r4 If non-NULL, storage for the 4th reply argument.
1940 * @param r5 If non-NULL, storage for the 5th reply argument.
1941 *
1942 * @return Return code of the reply or a negative error code.
1943 *
1944 */
1945sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1946 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1947 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1948{
1949 if (exch == NULL)
1950 return ENOENT;
1951
1952 ipc_call_t result;
1953 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1954 &result);
1955
1956 sysarg_t rc;
1957 async_wait_for(aid, &rc);
1958
1959 if (r1)
1960 *r1 = IPC_GET_ARG1(result);
1961
1962 if (r2)
1963 *r2 = IPC_GET_ARG2(result);
1964
1965 if (r3)
1966 *r3 = IPC_GET_ARG3(result);
1967
1968 if (r4)
1969 *r4 = IPC_GET_ARG4(result);
1970
1971 if (r5)
1972 *r5 = IPC_GET_ARG5(result);
1973
1974 return rc;
1975}
1976
1977void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1978{
1979 if (exch != NULL)
1980 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
1981}
1982
1983void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1984{
1985 if (exch != NULL)
1986 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
1987}
1988
1989void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1990 sysarg_t arg2)
1991{
1992 if (exch != NULL)
1993 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
1994}
1995
1996void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1997 sysarg_t arg2, sysarg_t arg3)
1998{
1999 if (exch != NULL)
2000 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
2001 NULL);
2002}
2003
2004void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2005 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2006{
2007 if (exch != NULL)
2008 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
2009 NULL, NULL);
2010}
2011
2012void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2013 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2014{
2015 if (exch != NULL)
2016 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
2017 arg5, NULL, NULL);
2018}
2019
2020sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
2021{
2022 return ipc_answer_0(callid, retval);
2023}
2024
2025sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
2026{
2027 return ipc_answer_1(callid, retval, arg1);
2028}
2029
2030sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2031 sysarg_t arg2)
2032{
2033 return ipc_answer_2(callid, retval, arg1, arg2);
2034}
2035
2036sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2037 sysarg_t arg2, sysarg_t arg3)
2038{
2039 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
2040}
2041
2042sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2043 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2044{
2045 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
2046}
2047
2048sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2049 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2050{
2051 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
2052}
2053
2054int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
2055 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2056{
2057 if (exch == NULL)
2058 return ENOENT;
2059
2060 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
2061}
2062
2063int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
2064 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2065 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2066{
2067 if (exch == NULL)
2068 return ENOENT;
2069
2070 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
2071 arg4, arg5, mode);
2072}
2073
2074/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2075 *
2076 * Ask through phone for a new connection to some service.
2077 *
2078 * @param exch Exchange for sending the message.
2079 * @param arg1 User defined argument.
2080 * @param arg2 User defined argument.
2081 * @param arg3 User defined argument.
2082 *
2083 * @return Zero on success or a negative error code.
2084 *
2085 */
2086int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2087 sysarg_t arg3)
2088{
2089 if (exch == NULL)
2090 return ENOENT;
2091
2092 ipc_call_t answer;
2093 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2094 &answer);
2095
2096 sysarg_t rc;
2097 async_wait_for(req, &rc);
2098 if (rc != EOK)
2099 return (int) rc;
2100
2101 return EOK;
2102}
2103
2104static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2105 sysarg_t arg3, sysarg_t arg4)
2106{
2107 ipc_call_t result;
2108
2109 amsg_t *msg = amsg_create();
2110 if (!msg)
2111 return ENOENT;
2112
2113 msg->dataptr = &result;
2114 msg->wdata.active = true;
2115
2116 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2117 msg, reply_received);
2118
2119 sysarg_t rc;
2120 async_wait_for((aid_t) msg, &rc);
2121
2122 if (rc != EOK)
2123 return rc;
2124
2125 return (int) IPC_GET_ARG5(result);
2126}
2127
2128/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2129 *
2130 * Ask through for a new connection to some service.
2131 *
2132 * @param mgmt Exchange management style.
2133 * @param exch Exchange for sending the message.
2134 * @param arg1 User defined argument.
2135 * @param arg2 User defined argument.
2136 * @param arg3 User defined argument.
2137 *
2138 * @return New session on success or NULL on error.
2139 *
2140 */
2141async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2142 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2143{
2144 if (exch == NULL) {
2145 errno = ENOENT;
2146 return NULL;
2147 }
2148
2149 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2150 if (sess == NULL) {
2151 errno = ENOMEM;
2152 return NULL;
2153 }
2154
2155 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2156 0);
2157 if (phone < 0) {
2158 errno = phone;
2159 free(sess);
2160 return NULL;
2161 }
2162
2163 sess->iface = 0;
2164 sess->mgmt = mgmt;
2165 sess->phone = phone;
2166 sess->arg1 = arg1;
2167 sess->arg2 = arg2;
2168 sess->arg3 = arg3;
2169
2170 fibril_mutex_initialize(&sess->remote_state_mtx);
2171 sess->remote_state_data = NULL;
2172
2173 list_initialize(&sess->exch_list);
2174 fibril_mutex_initialize(&sess->mutex);
2175 atomic_set(&sess->refcnt, 0);
2176
2177 return sess;
2178}
2179
2180/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2181 *
2182 * Ask through phone for a new connection to some service and block until
2183 * success.
2184 *
2185 * @param exch Exchange for sending the message.
2186 * @param iface Connection interface.
2187 * @param arg2 User defined argument.
2188 * @param arg3 User defined argument.
2189 *
2190 * @return New session on success or NULL on error.
2191 *
2192 */
2193async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2194 sysarg_t arg2, sysarg_t arg3)
2195{
2196 if (exch == NULL) {
2197 errno = ENOENT;
2198 return NULL;
2199 }
2200
2201 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2202 if (sess == NULL) {
2203 errno = ENOMEM;
2204 return NULL;
2205 }
2206
2207 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2208 arg3, 0);
2209 if (phone < 0) {
2210 errno = phone;
2211 free(sess);
2212 return NULL;
2213 }
2214
2215 sess->iface = iface;
2216 sess->phone = phone;
2217 sess->arg1 = iface;
2218 sess->arg2 = arg2;
2219 sess->arg3 = arg3;
2220
2221 fibril_mutex_initialize(&sess->remote_state_mtx);
2222 sess->remote_state_data = NULL;
2223
2224 list_initialize(&sess->exch_list);
2225 fibril_mutex_initialize(&sess->mutex);
2226 atomic_set(&sess->refcnt, 0);
2227
2228 return sess;
2229}
2230
2231/** Set arguments for new connections.
2232 *
2233 * FIXME This is an ugly hack to work around the problem that parallel
2234 * exchanges are implemented using parallel connections. When we create
2235 * a callback session, the framework does not know arguments for the new
2236 * connections.
2237 *
2238 * The proper solution seems to be to implement parallel exchanges using
2239 * tagging.
2240 */
2241void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2242 sysarg_t arg3)
2243{
2244 sess->arg1 = arg1;
2245 sess->arg2 = arg2;
2246 sess->arg3 = arg3;
2247}
2248
2249/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2250 *
2251 * Ask through phone for a new connection to some service and block until
2252 * success.
2253 *
2254 * @param mgmt Exchange management style.
2255 * @param exch Exchange for sending the message.
2256 * @param arg1 User defined argument.
2257 * @param arg2 User defined argument.
2258 * @param arg3 User defined argument.
2259 *
2260 * @return New session on success or NULL on error.
2261 *
2262 */
2263async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2264 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2265{
2266 if (exch == NULL) {
2267 errno = ENOENT;
2268 return NULL;
2269 }
2270
2271 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2272 if (sess == NULL) {
2273 errno = ENOMEM;
2274 return NULL;
2275 }
2276
2277 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2278 IPC_FLAG_BLOCKING);
2279
2280 if (phone < 0) {
2281 errno = phone;
2282 free(sess);
2283 return NULL;
2284 }
2285
2286 sess->iface = 0;
2287 sess->mgmt = mgmt;
2288 sess->phone = phone;
2289 sess->arg1 = arg1;
2290 sess->arg2 = arg2;
2291 sess->arg3 = arg3;
2292
2293 fibril_mutex_initialize(&sess->remote_state_mtx);
2294 sess->remote_state_data = NULL;
2295
2296 list_initialize(&sess->exch_list);
2297 fibril_mutex_initialize(&sess->mutex);
2298 atomic_set(&sess->refcnt, 0);
2299
2300 return sess;
2301}
2302
2303/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2304 *
2305 * Ask through phone for a new connection to some service and block until
2306 * success.
2307 *
2308 * @param exch Exchange for sending the message.
2309 * @param iface Connection interface.
2310 * @param arg2 User defined argument.
2311 * @param arg3 User defined argument.
2312 *
2313 * @return New session on success or NULL on error.
2314 *
2315 */
2316async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2317 sysarg_t arg2, sysarg_t arg3)
2318{
2319 if (exch == NULL) {
2320 errno = ENOENT;
2321 return NULL;
2322 }
2323
2324 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2325 if (sess == NULL) {
2326 errno = ENOMEM;
2327 return NULL;
2328 }
2329
2330 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2331 arg3, IPC_FLAG_BLOCKING);
2332 if (phone < 0) {
2333 errno = phone;
2334 free(sess);
2335 return NULL;
2336 }
2337
2338 sess->iface = iface;
2339 sess->phone = phone;
2340 sess->arg1 = iface;
2341 sess->arg2 = arg2;
2342 sess->arg3 = arg3;
2343
2344 fibril_mutex_initialize(&sess->remote_state_mtx);
2345 sess->remote_state_data = NULL;
2346
2347 list_initialize(&sess->exch_list);
2348 fibril_mutex_initialize(&sess->mutex);
2349 atomic_set(&sess->refcnt, 0);
2350
2351 return sess;
2352}
2353
2354/** Connect to a task specified by id.
2355 *
2356 */
2357async_sess_t *async_connect_kbox(task_id_t id)
2358{
2359 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2360 if (sess == NULL) {
2361 errno = ENOMEM;
2362 return NULL;
2363 }
2364
2365 int phone = ipc_connect_kbox(id);
2366 if (phone < 0) {
2367 errno = phone;
2368 free(sess);
2369 return NULL;
2370 }
2371
2372 sess->iface = 0;
2373 sess->mgmt = EXCHANGE_ATOMIC;
2374 sess->phone = phone;
2375 sess->arg1 = 0;
2376 sess->arg2 = 0;
2377 sess->arg3 = 0;
2378
2379 fibril_mutex_initialize(&sess->remote_state_mtx);
2380 sess->remote_state_data = NULL;
2381
2382 list_initialize(&sess->exch_list);
2383 fibril_mutex_initialize(&sess->mutex);
2384 atomic_set(&sess->refcnt, 0);
2385
2386 return sess;
2387}
2388
2389static int async_hangup_internal(int phone)
2390{
2391 return ipc_hangup(phone);
2392}
2393
2394/** Wrapper for ipc_hangup.
2395 *
2396 * @param sess Session to hung up.
2397 *
2398 * @return Zero on success or a negative error code.
2399 *
2400 */
2401int async_hangup(async_sess_t *sess)
2402{
2403 async_exch_t *exch;
2404
2405 assert(sess);
2406
2407 if (atomic_get(&sess->refcnt) > 0)
2408 return EBUSY;
2409
2410 fibril_mutex_lock(&async_sess_mutex);
2411
2412 int rc = async_hangup_internal(sess->phone);
2413
2414 while (!list_empty(&sess->exch_list)) {
2415 exch = (async_exch_t *)
2416 list_get_instance(list_first(&sess->exch_list),
2417 async_exch_t, sess_link);
2418
2419 list_remove(&exch->sess_link);
2420 list_remove(&exch->global_link);
2421 async_hangup_internal(exch->phone);
2422 free(exch);
2423 }
2424
2425 free(sess);
2426
2427 fibril_mutex_unlock(&async_sess_mutex);
2428
2429 return rc;
2430}
2431
2432/** Interrupt one thread of this task from waiting for IPC. */
2433void async_poke(void)
2434{
2435 ipc_poke();
2436}
2437
2438/** Start new exchange in a session.
2439 *
2440 * @param session Session.
2441 *
2442 * @return New exchange or NULL on error.
2443 *
2444 */
2445async_exch_t *async_exchange_begin(async_sess_t *sess)
2446{
2447 if (sess == NULL)
2448 return NULL;
2449
2450 exch_mgmt_t mgmt = sess->mgmt;
2451 if (sess->iface != 0)
2452 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2453
2454 async_exch_t *exch = NULL;
2455
2456 fibril_mutex_lock(&async_sess_mutex);
2457
2458 if (!list_empty(&sess->exch_list)) {
2459 /*
2460 * There are inactive exchanges in the session.
2461 */
2462 exch = (async_exch_t *)
2463 list_get_instance(list_first(&sess->exch_list),
2464 async_exch_t, sess_link);
2465
2466 list_remove(&exch->sess_link);
2467 list_remove(&exch->global_link);
2468 } else {
2469 /*
2470 * There are no available exchanges in the session.
2471 */
2472
2473 if ((mgmt == EXCHANGE_ATOMIC) ||
2474 (mgmt == EXCHANGE_SERIALIZE)) {
2475 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2476 if (exch != NULL) {
2477 link_initialize(&exch->sess_link);
2478 link_initialize(&exch->global_link);
2479 exch->sess = sess;
2480 exch->phone = sess->phone;
2481 }
2482 } else if (mgmt == EXCHANGE_PARALLEL) {
2483 int phone;
2484
2485 retry:
2486 /*
2487 * Make a one-time attempt to connect a new data phone.
2488 */
2489 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2490 sess->arg2, sess->arg3, 0);
2491 if (phone >= 0) {
2492 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2493 if (exch != NULL) {
2494 link_initialize(&exch->sess_link);
2495 link_initialize(&exch->global_link);
2496 exch->sess = sess;
2497 exch->phone = phone;
2498 } else
2499 async_hangup_internal(phone);
2500 } else if (!list_empty(&inactive_exch_list)) {
2501 /*
2502 * We did not manage to connect a new phone. But we
2503 * can try to close some of the currently inactive
2504 * connections in other sessions and try again.
2505 */
2506 exch = (async_exch_t *)
2507 list_get_instance(list_first(&inactive_exch_list),
2508 async_exch_t, global_link);
2509
2510 list_remove(&exch->sess_link);
2511 list_remove(&exch->global_link);
2512 async_hangup_internal(exch->phone);
2513 free(exch);
2514 goto retry;
2515 } else {
2516 /*
2517 * Wait for a phone to become available.
2518 */
2519 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2520 goto retry;
2521 }
2522 }
2523 }
2524
2525 fibril_mutex_unlock(&async_sess_mutex);
2526
2527 if (exch != NULL) {
2528 atomic_inc(&sess->refcnt);
2529
2530 if (mgmt == EXCHANGE_SERIALIZE)
2531 fibril_mutex_lock(&sess->mutex);
2532 }
2533
2534 return exch;
2535}
2536
2537/** Finish an exchange.
2538 *
2539 * @param exch Exchange to finish.
2540 *
2541 */
2542void async_exchange_end(async_exch_t *exch)
2543{
2544 if (exch == NULL)
2545 return;
2546
2547 async_sess_t *sess = exch->sess;
2548 assert(sess != NULL);
2549
2550 exch_mgmt_t mgmt = sess->mgmt;
2551 if (sess->iface != 0)
2552 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2553
2554 atomic_dec(&sess->refcnt);
2555
2556 if (mgmt == EXCHANGE_SERIALIZE)
2557 fibril_mutex_unlock(&sess->mutex);
2558
2559 fibril_mutex_lock(&async_sess_mutex);
2560
2561 list_append(&exch->sess_link, &sess->exch_list);
2562 list_append(&exch->global_link, &inactive_exch_list);
2563 fibril_condvar_signal(&avail_phone_cv);
2564
2565 fibril_mutex_unlock(&async_sess_mutex);
2566}
2567
2568/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2569 *
2570 * @param exch Exchange for sending the message.
2571 * @param size Size of the destination address space area.
2572 * @param arg User defined argument.
2573 * @param flags Storage for the received flags. Can be NULL.
2574 * @param dst Address of the storage for the destination address space area
2575 * base address. Cannot be NULL.
2576 *
2577 * @return Zero on success or a negative error code from errno.h.
2578 *
2579 */
2580int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2581 unsigned int *flags, void **dst)
2582{
2583 if (exch == NULL)
2584 return ENOENT;
2585
2586 sysarg_t _flags = 0;
2587 sysarg_t _dst = (sysarg_t) -1;
2588 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2589 arg, NULL, &_flags, NULL, &_dst);
2590
2591 if (flags)
2592 *flags = (unsigned int) _flags;
2593
2594 *dst = (void *) _dst;
2595 return res;
2596}
2597
2598/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2599 *
2600 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2601 * calls so that the user doesn't have to remember the meaning of each IPC
2602 * argument.
2603 *
2604 * So far, this wrapper is to be used from within a connection fibril.
2605 *
2606 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2607 * @param size Destination address space area size.
2608 *
2609 * @return True on success, false on failure.
2610 *
2611 */
2612bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2613{
2614 assert(callid);
2615 assert(size);
2616
2617 ipc_call_t data;
2618 *callid = async_get_call(&data);
2619
2620 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2621 return false;
2622
2623 *size = (size_t) IPC_GET_ARG1(data);
2624 return true;
2625}
2626
2627/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2628 *
2629 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2630 * calls so that the user doesn't have to remember the meaning of each IPC
2631 * argument.
2632 *
2633 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2634 * @param src Source address space base.
2635 * @param flags Flags to be used for sharing. Bits can be only cleared.
2636 *
2637 * @return Zero on success or a value from @ref errno.h on failure.
2638 *
2639 */
2640int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2641{
2642 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2643 (sysarg_t) __entry);
2644}
2645
2646/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2647 *
2648 * @param exch Exchange for sending the message.
2649 * @param src Source address space area base address.
2650 * @param flags Flags to be used for sharing. Bits can be only cleared.
2651 *
2652 * @return Zero on success or a negative error code from errno.h.
2653 *
2654 */
2655int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2656{
2657 if (exch == NULL)
2658 return ENOENT;
2659
2660 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2661 (sysarg_t) flags);
2662}
2663
2664/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2665 *
2666 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2667 * calls so that the user doesn't have to remember the meaning of each IPC
2668 * argument.
2669 *
2670 * So far, this wrapper is to be used from within a connection fibril.
2671 *
2672 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2673 * @param size Storage for the source address space area size.
2674 * @param flags Storage for the sharing flags.
2675 *
2676 * @return True on success, false on failure.
2677 *
2678 */
2679bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2680{
2681 assert(callid);
2682 assert(size);
2683 assert(flags);
2684
2685 ipc_call_t data;
2686 *callid = async_get_call(&data);
2687
2688 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2689 return false;
2690
2691 *size = (size_t) IPC_GET_ARG2(data);
2692 *flags = (unsigned int) IPC_GET_ARG3(data);
2693 return true;
2694}
2695
2696/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2697 *
2698 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2699 * calls so that the user doesn't have to remember the meaning of each IPC
2700 * argument.
2701 *
2702 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2703 * @param dst Address of the storage for the destination address space area
2704 * base address.
2705 *
2706 * @return Zero on success or a value from @ref errno.h on failure.
2707 *
2708 */
2709int async_share_out_finalize(ipc_callid_t callid, void **dst)
2710{
2711 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2712}
2713
2714/** Start IPC_M_DATA_READ using the async framework.
2715 *
2716 * @param exch Exchange for sending the message.
2717 * @param dst Address of the beginning of the destination buffer.
2718 * @param size Size of the destination buffer (in bytes).
2719 * @param dataptr Storage of call data (arg 2 holds actual data size).
2720 *
2721 * @return Hash of the sent message or 0 on error.
2722 *
2723 */
2724aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2725 ipc_call_t *dataptr)
2726{
2727 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2728 (sysarg_t) size, dataptr);
2729}
2730
2731/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2732 *
2733 * @param exch Exchange for sending the message.
2734 * @param dst Address of the beginning of the destination buffer.
2735 * @param size Size of the destination buffer.
2736 *
2737 * @return Zero on success or a negative error code from errno.h.
2738 *
2739 */
2740int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2741{
2742 if (exch == NULL)
2743 return ENOENT;
2744
2745 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2746 (sysarg_t) size);
2747}
2748
2749/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2750 *
2751 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2752 * calls so that the user doesn't have to remember the meaning of each IPC
2753 * argument.
2754 *
2755 * So far, this wrapper is to be used from within a connection fibril.
2756 *
2757 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2758 * @param size Storage for the maximum size. Can be NULL.
2759 *
2760 * @return True on success, false on failure.
2761 *
2762 */
2763bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2764{
2765 ipc_call_t data;
2766 return async_data_read_receive_call(callid, &data, size);
2767}
2768
2769/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2770 *
2771 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2772 * calls so that the user doesn't have to remember the meaning of each IPC
2773 * argument.
2774 *
2775 * So far, this wrapper is to be used from within a connection fibril.
2776 *
2777 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2778 * @param size Storage for the maximum size. Can be NULL.
2779 *
2780 * @return True on success, false on failure.
2781 *
2782 */
2783bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2784 size_t *size)
2785{
2786 assert(callid);
2787 assert(data);
2788
2789 *callid = async_get_call(data);
2790
2791 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2792 return false;
2793
2794 if (size)
2795 *size = (size_t) IPC_GET_ARG2(*data);
2796
2797 return true;
2798}
2799
2800/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2801 *
2802 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2803 * calls so that the user doesn't have to remember the meaning of each IPC
2804 * argument.
2805 *
2806 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2807 * @param src Source address for the IPC_M_DATA_READ call.
2808 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2809 * the maximum size announced by the sender.
2810 *
2811 * @return Zero on success or a value from @ref errno.h on failure.
2812 *
2813 */
2814int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2815{
2816 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2817}
2818
2819/** Wrapper for forwarding any read request
2820 *
2821 */
2822int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2823 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2824 ipc_call_t *dataptr)
2825{
2826 if (exch == NULL)
2827 return ENOENT;
2828
2829 ipc_callid_t callid;
2830 if (!async_data_read_receive(&callid, NULL)) {
2831 ipc_answer_0(callid, EINVAL);
2832 return EINVAL;
2833 }
2834
2835 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2836 dataptr);
2837 if (msg == 0) {
2838 ipc_answer_0(callid, EINVAL);
2839 return EINVAL;
2840 }
2841
2842 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2843 IPC_FF_ROUTE_FROM_ME);
2844 if (retval != EOK) {
2845 async_forget(msg);
2846 ipc_answer_0(callid, retval);
2847 return retval;
2848 }
2849
2850 sysarg_t rc;
2851 async_wait_for(msg, &rc);
2852
2853 return (int) rc;
2854}
2855
2856/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2857 *
2858 * @param exch Exchange for sending the message.
2859 * @param src Address of the beginning of the source buffer.
2860 * @param size Size of the source buffer.
2861 *
2862 * @return Zero on success or a negative error code from errno.h.
2863 *
2864 */
2865int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2866{
2867 if (exch == NULL)
2868 return ENOENT;
2869
2870 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2871 (sysarg_t) size);
2872}
2873
2874/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2875 *
2876 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2877 * calls so that the user doesn't have to remember the meaning of each IPC
2878 * argument.
2879 *
2880 * So far, this wrapper is to be used from within a connection fibril.
2881 *
2882 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2883 * @param size Storage for the suggested size. May be NULL.
2884 *
2885 * @return True on success, false on failure.
2886 *
2887 */
2888bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2889{
2890 ipc_call_t data;
2891 return async_data_write_receive_call(callid, &data, size);
2892}
2893
2894/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2895 *
2896 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2897 * calls so that the user doesn't have to remember the meaning of each IPC
2898 * argument.
2899 *
2900 * So far, this wrapper is to be used from within a connection fibril.
2901 *
2902 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2903 * @param data Storage for the ipc call data.
2904 * @param size Storage for the suggested size. May be NULL.
2905 *
2906 * @return True on success, false on failure.
2907 *
2908 */
2909bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2910 size_t *size)
2911{
2912 assert(callid);
2913 assert(data);
2914
2915 *callid = async_get_call(data);
2916
2917 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2918 return false;
2919
2920 if (size)
2921 *size = (size_t) IPC_GET_ARG2(*data);
2922
2923 return true;
2924}
2925
2926/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2927 *
2928 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2929 * calls so that the user doesn't have to remember the meaning of each IPC
2930 * argument.
2931 *
2932 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2933 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2934 * @param size Final size for the IPC_M_DATA_WRITE call.
2935 *
2936 * @return Zero on success or a value from @ref errno.h on failure.
2937 *
2938 */
2939int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2940{
2941 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2942}
2943
2944/** Wrapper for receiving binary data or strings
2945 *
2946 * This wrapper only makes it more comfortable to use async_data_write_*
2947 * functions to receive binary data or strings.
2948 *
2949 * @param data Pointer to data pointer (which should be later disposed
2950 * by free()). If the operation fails, the pointer is not
2951 * touched.
2952 * @param nullterm If true then the received data is always zero terminated.
2953 * This also causes to allocate one extra byte beyond the
2954 * raw transmitted data.
2955 * @param min_size Minimum size (in bytes) of the data to receive.
2956 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2957 * no limit.
2958 * @param granulariy If non-zero then the size of the received data has to
2959 * be divisible by this value.
2960 * @param received If not NULL, the size of the received data is stored here.
2961 *
2962 * @return Zero on success or a value from @ref errno.h on failure.
2963 *
2964 */
2965int async_data_write_accept(void **data, const bool nullterm,
2966 const size_t min_size, const size_t max_size, const size_t granularity,
2967 size_t *received)
2968{
2969 assert(data);
2970
2971 ipc_callid_t callid;
2972 size_t size;
2973 if (!async_data_write_receive(&callid, &size)) {
2974 ipc_answer_0(callid, EINVAL);
2975 return EINVAL;
2976 }
2977
2978 if (size < min_size) {
2979 ipc_answer_0(callid, EINVAL);
2980 return EINVAL;
2981 }
2982
2983 if ((max_size > 0) && (size > max_size)) {
2984 ipc_answer_0(callid, EINVAL);
2985 return EINVAL;
2986 }
2987
2988 if ((granularity > 0) && ((size % granularity) != 0)) {
2989 ipc_answer_0(callid, EINVAL);
2990 return EINVAL;
2991 }
2992
2993 void *arg_data;
2994
2995 if (nullterm)
2996 arg_data = malloc(size + 1);
2997 else
2998 arg_data = malloc(size);
2999
3000 if (arg_data == NULL) {
3001 ipc_answer_0(callid, ENOMEM);
3002 return ENOMEM;
3003 }
3004
3005 int rc = async_data_write_finalize(callid, arg_data, size);
3006 if (rc != EOK) {
3007 free(arg_data);
3008 return rc;
3009 }
3010
3011 if (nullterm)
3012 ((char *) arg_data)[size] = 0;
3013
3014 *data = arg_data;
3015 if (received != NULL)
3016 *received = size;
3017
3018 return EOK;
3019}
3020
3021/** Wrapper for voiding any data that is about to be received
3022 *
3023 * This wrapper can be used to void any pending data
3024 *
3025 * @param retval Error value from @ref errno.h to be returned to the caller.
3026 *
3027 */
3028void async_data_write_void(sysarg_t retval)
3029{
3030 ipc_callid_t callid;
3031 async_data_write_receive(&callid, NULL);
3032 ipc_answer_0(callid, retval);
3033}
3034
3035/** Wrapper for forwarding any data that is about to be received
3036 *
3037 */
3038int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3039 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3040 ipc_call_t *dataptr)
3041{
3042 if (exch == NULL)
3043 return ENOENT;
3044
3045 ipc_callid_t callid;
3046 if (!async_data_write_receive(&callid, NULL)) {
3047 ipc_answer_0(callid, EINVAL);
3048 return EINVAL;
3049 }
3050
3051 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3052 dataptr);
3053 if (msg == 0) {
3054 ipc_answer_0(callid, EINVAL);
3055 return EINVAL;
3056 }
3057
3058 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
3059 IPC_FF_ROUTE_FROM_ME);
3060 if (retval != EOK) {
3061 async_forget(msg);
3062 ipc_answer_0(callid, retval);
3063 return retval;
3064 }
3065
3066 sysarg_t rc;
3067 async_wait_for(msg, &rc);
3068
3069 return (int) rc;
3070}
3071
3072/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3073 *
3074 * If the current call is IPC_M_CONNECT_TO_ME then a new
3075 * async session is created for the accepted phone.
3076 *
3077 * @param mgmt Exchange management style.
3078 *
3079 * @return New async session.
3080 * @return NULL on failure.
3081 *
3082 */
3083async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3084{
3085 /* Accept the phone */
3086 ipc_call_t call;
3087 ipc_callid_t callid = async_get_call(&call);
3088 int phone = (int) IPC_GET_ARG5(call);
3089
3090 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
3091 (phone < 0)) {
3092 async_answer_0(callid, EINVAL);
3093 return NULL;
3094 }
3095
3096 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3097 if (sess == NULL) {
3098 async_answer_0(callid, ENOMEM);
3099 return NULL;
3100 }
3101
3102 sess->iface = 0;
3103 sess->mgmt = mgmt;
3104 sess->phone = phone;
3105 sess->arg1 = 0;
3106 sess->arg2 = 0;
3107 sess->arg3 = 0;
3108
3109 fibril_mutex_initialize(&sess->remote_state_mtx);
3110 sess->remote_state_data = NULL;
3111
3112 list_initialize(&sess->exch_list);
3113 fibril_mutex_initialize(&sess->mutex);
3114 atomic_set(&sess->refcnt, 0);
3115
3116 /* Acknowledge the connected phone */
3117 async_answer_0(callid, EOK);
3118
3119 return sess;
3120}
3121
3122/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3123 *
3124 * If the call is IPC_M_CONNECT_TO_ME then a new
3125 * async session is created. However, the phone is
3126 * not accepted automatically.
3127 *
3128 * @param mgmt Exchange management style.
3129 * @param call Call data.
3130 *
3131 * @return New async session.
3132 * @return NULL on failure.
3133 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3134 *
3135 */
3136async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3137{
3138 int phone = (int) IPC_GET_ARG5(*call);
3139
3140 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
3141 (phone < 0))
3142 return NULL;
3143
3144 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3145 if (sess == NULL)
3146 return NULL;
3147
3148 sess->iface = 0;
3149 sess->mgmt = mgmt;
3150 sess->phone = phone;
3151 sess->arg1 = 0;
3152 sess->arg2 = 0;
3153 sess->arg3 = 0;
3154
3155 fibril_mutex_initialize(&sess->remote_state_mtx);
3156 sess->remote_state_data = NULL;
3157
3158 list_initialize(&sess->exch_list);
3159 fibril_mutex_initialize(&sess->mutex);
3160 atomic_set(&sess->refcnt, 0);
3161
3162 return sess;
3163}
3164
3165int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3166 sysarg_t arg3, async_exch_t *other_exch)
3167{
3168 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3169 arg1, arg2, arg3, 0, other_exch->phone);
3170}
3171
3172bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
3173 sysarg_t *arg2, sysarg_t *arg3)
3174{
3175 assert(callid);
3176
3177 ipc_call_t call;
3178 *callid = async_get_call(&call);
3179
3180 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3181 return false;
3182
3183 if (arg1)
3184 *arg1 = IPC_GET_ARG1(call);
3185 if (arg2)
3186 *arg2 = IPC_GET_ARG2(call);
3187 if (arg3)
3188 *arg3 = IPC_GET_ARG3(call);
3189
3190 return true;
3191}
3192
3193int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
3194{
3195 return ipc_answer_1(callid, EOK, other_exch->phone);
3196}
3197
3198/** Lock and get session remote state
3199 *
3200 * Lock and get the local replica of the remote state
3201 * in stateful sessions. The call should be paired
3202 * with async_remote_state_release*().
3203 *
3204 * @param[in] sess Stateful session.
3205 *
3206 * @return Local replica of the remote state.
3207 *
3208 */
3209void *async_remote_state_acquire(async_sess_t *sess)
3210{
3211 fibril_mutex_lock(&sess->remote_state_mtx);
3212 return sess->remote_state_data;
3213}
3214
3215/** Update the session remote state
3216 *
3217 * Update the local replica of the remote state
3218 * in stateful sessions. The remote state must
3219 * be already locked.
3220 *
3221 * @param[in] sess Stateful session.
3222 * @param[in] state New local replica of the remote state.
3223 *
3224 */
3225void async_remote_state_update(async_sess_t *sess, void *state)
3226{
3227 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3228 sess->remote_state_data = state;
3229}
3230
3231/** Release the session remote state
3232 *
3233 * Unlock the local replica of the remote state
3234 * in stateful sessions.
3235 *
3236 * @param[in] sess Stateful session.
3237 *
3238 */
3239void async_remote_state_release(async_sess_t *sess)
3240{
3241 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3242
3243 fibril_mutex_unlock(&sess->remote_state_mtx);
3244}
3245
3246/** Release the session remote state and end an exchange
3247 *
3248 * Unlock the local replica of the remote state
3249 * in stateful sessions. This is convenience function
3250 * which gets the session pointer from the exchange
3251 * and also ends the exchange.
3252 *
3253 * @param[in] exch Stateful session's exchange.
3254 *
3255 */
3256void async_remote_state_release_exchange(async_exch_t *exch)
3257{
3258 if (exch == NULL)
3259 return;
3260
3261 async_sess_t *sess = exch->sess;
3262 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3263
3264 async_exchange_end(exch);
3265 fibril_mutex_unlock(&sess->remote_state_mtx);
3266}
3267
3268void *async_as_area_create(void *base, size_t size, unsigned int flags,
3269 async_sess_t *pager, sysarg_t id1, sysarg_t id2, sysarg_t id3)
3270{
3271 as_area_pager_info_t pager_info = {
3272 .pager = pager->phone,
3273 .id1 = id1,
3274 .id2 = id2,
3275 .id3 = id3
3276 };
3277 return as_area_create(base, size, flags, &pager_info);
3278}
3279
3280/** @}
3281 */
Note: See TracBrowser for help on using the repository browser.