source: mainline/uspace/lib/c/generic/async.c@ 86d7bfa

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 86d7bfa was 86d7bfa, checked in by Martin Decky <martin@…>, 14 years ago

avoid possible segfaults on error paths when a fibril fails to be created

  • Property mode set to 100644
File size: 47.3 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs, the async
43 * framework will automatically take care of most synchronization problems.
44 *
45 * Example of use (pseudo C):
46 *
47 * 1) Multithreaded client application
48 *
49 * fibril_create(fibril1, ...);
50 * fibril_create(fibril2, ...);
51 * ...
52 *
53 * int fibril1(void *arg)
54 * {
55 * conn = async_connect_me_to();
56 * c1 = async_send(conn);
57 * c2 = async_send(conn);
58 * async_wait_for(c1);
59 * async_wait_for(c2);
60 * ...
61 * }
62 *
63 *
64 * 2) Multithreaded server application
65 *
66 * main()
67 * {
68 * async_manager();
69 * }
70 *
71 * my_client_connection(icallid, *icall)
72 * {
73 * if (want_refuse) {
74 * async_answer_0(icallid, ELIMIT);
75 * return;
76 * }
77 * async_answer_0(icallid, EOK);
78 *
79 * callid = async_get_call(&call);
80 * somehow_handle_the_call(callid, call);
81 * async_answer_2(callid, 1, 2, 3);
82 *
83 * callid = async_get_call(&call);
84 * ...
85 * }
86 *
87 */
88
89#define LIBC_ASYNC_C_
90#include <ipc/ipc.h>
91#include <async.h>
92#undef LIBC_ASYNC_C_
93
94#include <futex.h>
95#include <fibril.h>
96#include <stdio.h>
97#include <adt/hash_table.h>
98#include <adt/list.h>
99#include <assert.h>
100#include <errno.h>
101#include <sys/time.h>
102#include <arch/barrier.h>
103#include <bool.h>
104#include "private/async.h"
105
106atomic_t async_futex = FUTEX_INITIALIZER;
107
108/** Number of threads waiting for IPC in the kernel. */
109atomic_t threads_in_ipc_wait = { 0 };
110
111typedef struct {
112 awaiter_t wdata;
113
114 /** If reply was received. */
115 bool done;
116
117 /** Pointer to where the answer data is stored. */
118 ipc_call_t *dataptr;
119
120 sysarg_t retval;
121} amsg_t;
122
123/**
124 * Structures of this type are used to group information about
125 * a call and about a message queue link.
126 */
127typedef struct {
128 link_t link;
129 ipc_callid_t callid;
130 ipc_call_t call;
131} msg_t;
132
133typedef struct {
134 sysarg_t in_task_hash;
135 link_t link;
136 int refcnt;
137 void *data;
138} client_t;
139
140typedef struct {
141 awaiter_t wdata;
142
143 /** Hash table link. */
144 link_t link;
145
146 /** Incoming client task hash. */
147 sysarg_t in_task_hash;
148 /** Incoming phone hash. */
149 sysarg_t in_phone_hash;
150
151 /** Link to the client tracking structure. */
152 client_t *client;
153
154 /** Messages that should be delivered to this fibril. */
155 link_t msg_queue;
156
157 /** Identification of the opening call. */
158 ipc_callid_t callid;
159 /** Call data of the opening call. */
160 ipc_call_t call;
161
162 /** Identification of the closing call. */
163 ipc_callid_t close_callid;
164
165 /** Fibril function that will be used to handle the connection. */
166 void (*cfibril)(ipc_callid_t, ipc_call_t *);
167} connection_t;
168
169/** Identifier of the incoming connection handled by the current fibril. */
170static fibril_local connection_t *FIBRIL_connection;
171
172static void *default_client_data_constructor(void)
173{
174 return NULL;
175}
176
177static void default_client_data_destructor(void *data)
178{
179}
180
181static async_client_data_ctor_t async_client_data_create =
182 default_client_data_constructor;
183static async_client_data_dtor_t async_client_data_destroy =
184 default_client_data_destructor;
185
186void async_set_client_data_constructor(async_client_data_ctor_t ctor)
187{
188 async_client_data_create = ctor;
189}
190
191void async_set_client_data_destructor(async_client_data_dtor_t dtor)
192{
193 async_client_data_destroy = dtor;
194}
195
196void *async_client_data_get(void)
197{
198 assert(FIBRIL_connection);
199 return FIBRIL_connection->client->data;
200}
201
202/** Default fibril function that gets called to handle new connection.
203 *
204 * This function is defined as a weak symbol - to be redefined in user code.
205 *
206 * @param callid Hash of the incoming call.
207 * @param call Data of the incoming call.
208 *
209 */
210static void default_client_connection(ipc_callid_t callid, ipc_call_t *call)
211{
212 ipc_answer_0(callid, ENOENT);
213}
214
215/**
216 * Pointer to a fibril function that will be used to handle connections.
217 */
218static async_client_conn_t client_connection = default_client_connection;
219
220/** Default fibril function that gets called to handle interrupt notifications.
221 *
222 * This function is defined as a weak symbol - to be redefined in user code.
223 *
224 * @param callid Hash of the incoming call.
225 * @param call Data of the incoming call.
226 *
227 */
228static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call)
229{
230}
231
232/**
233 * Pointer to a fibril function that will be used to handle interrupt
234 * notifications.
235 */
236static async_client_conn_t interrupt_received = default_interrupt_received;
237
238static hash_table_t client_hash_table;
239static hash_table_t conn_hash_table;
240static LIST_INITIALIZE(timeout_list);
241
242#define CLIENT_HASH_TABLE_BUCKETS 32
243#define CONN_HASH_TABLE_BUCKETS 32
244
245static hash_index_t client_hash(unsigned long key[])
246{
247 assert(key);
248 return (((key[0]) >> 4) % CLIENT_HASH_TABLE_BUCKETS);
249}
250
251static int client_compare(unsigned long key[], hash_count_t keys, link_t *item)
252{
253 client_t *client = hash_table_get_instance(item, client_t, link);
254 return (key[0] == client->in_task_hash);
255}
256
257static void client_remove(link_t *item)
258{
259}
260
261/** Operations for the client hash table. */
262static hash_table_operations_t client_hash_table_ops = {
263 .hash = client_hash,
264 .compare = client_compare,
265 .remove_callback = client_remove
266};
267
268/** Compute hash into the connection hash table based on the source phone hash.
269 *
270 * @param key Pointer to source phone hash.
271 *
272 * @return Index into the connection hash table.
273 *
274 */
275static hash_index_t conn_hash(unsigned long key[])
276{
277 assert(key);
278 return (((key[0]) >> 4) % CONN_HASH_TABLE_BUCKETS);
279}
280
281/** Compare hash table item with a key.
282 *
283 * @param key Array containing the source phone hash as the only item.
284 * @param keys Expected 1 but ignored.
285 * @param item Connection hash table item.
286 *
287 * @return True on match, false otherwise.
288 *
289 */
290static int conn_compare(unsigned long key[], hash_count_t keys, link_t *item)
291{
292 connection_t *conn = hash_table_get_instance(item, connection_t, link);
293 return (key[0] == conn->in_phone_hash);
294}
295
296/** Connection hash table removal callback function.
297 *
298 * This function is called whenever a connection is removed from the connection
299 * hash table.
300 *
301 * @param item Connection hash table item being removed.
302 *
303 */
304static void conn_remove(link_t *item)
305{
306 free(hash_table_get_instance(item, connection_t, link));
307}
308
309/** Operations for the connection hash table. */
310static hash_table_operations_t conn_hash_table_ops = {
311 .hash = conn_hash,
312 .compare = conn_compare,
313 .remove_callback = conn_remove
314};
315
316/** Sort in current fibril's timeout request.
317 *
318 * @param wd Wait data of the current fibril.
319 *
320 */
321void async_insert_timeout(awaiter_t *wd)
322{
323 wd->to_event.occurred = false;
324 wd->to_event.inlist = true;
325
326 link_t *tmp = timeout_list.next;
327 while (tmp != &timeout_list) {
328 awaiter_t *cur
329 = list_get_instance(tmp, awaiter_t, to_event.link);
330
331 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
332 break;
333
334 tmp = tmp->next;
335 }
336
337 list_append(&wd->to_event.link, tmp);
338}
339
340/** Try to route a call to an appropriate connection fibril.
341 *
342 * If the proper connection fibril is found, a message with the call is added to
343 * its message queue. If the fibril was not active, it is activated and all
344 * timeouts are unregistered.
345 *
346 * @param callid Hash of the incoming call.
347 * @param call Data of the incoming call.
348 *
349 * @return False if the call doesn't match any connection.
350 * @return True if the call was passed to the respective connection fibril.
351 *
352 */
353static bool route_call(ipc_callid_t callid, ipc_call_t *call)
354{
355 futex_down(&async_futex);
356
357 unsigned long key = call->in_phone_hash;
358 link_t *hlp = hash_table_find(&conn_hash_table, &key);
359
360 if (!hlp) {
361 futex_up(&async_futex);
362 return false;
363 }
364
365 connection_t *conn = hash_table_get_instance(hlp, connection_t, link);
366
367 msg_t *msg = malloc(sizeof(*msg));
368 if (!msg) {
369 futex_up(&async_futex);
370 return false;
371 }
372
373 msg->callid = callid;
374 msg->call = *call;
375 list_append(&msg->link, &conn->msg_queue);
376
377 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
378 conn->close_callid = callid;
379
380 /* If the connection fibril is waiting for an event, activate it */
381 if (!conn->wdata.active) {
382
383 /* If in timeout list, remove it */
384 if (conn->wdata.to_event.inlist) {
385 conn->wdata.to_event.inlist = false;
386 list_remove(&conn->wdata.to_event.link);
387 }
388
389 conn->wdata.active = true;
390 fibril_add_ready(conn->wdata.fid);
391 }
392
393 futex_up(&async_futex);
394 return true;
395}
396
397/** Notification fibril.
398 *
399 * When a notification arrives, a fibril with this implementing function is
400 * created. It calls interrupt_received() and does the final cleanup.
401 *
402 * @param arg Message structure pointer.
403 *
404 * @return Always zero.
405 *
406 */
407static int notification_fibril(void *arg)
408{
409 msg_t *msg = (msg_t *) arg;
410 interrupt_received(msg->callid, &msg->call);
411
412 free(msg);
413 return 0;
414}
415
416/** Process interrupt notification.
417 *
418 * A new fibril is created which would process the notification.
419 *
420 * @param callid Hash of the incoming call.
421 * @param call Data of the incoming call.
422 *
423 * @return False if an error occured.
424 * True if the call was passed to the notification fibril.
425 *
426 */
427static bool process_notification(ipc_callid_t callid, ipc_call_t *call)
428{
429 futex_down(&async_futex);
430
431 msg_t *msg = malloc(sizeof(*msg));
432 if (!msg) {
433 futex_up(&async_futex);
434 return false;
435 }
436
437 msg->callid = callid;
438 msg->call = *call;
439
440 fid_t fid = fibril_create(notification_fibril, msg);
441 if (fid == 0) {
442 free(msg);
443 futex_up(&async_futex);
444 return false;
445 }
446
447 fibril_add_ready(fid);
448
449 futex_up(&async_futex);
450 return true;
451}
452
453/** Return new incoming message for the current (fibril-local) connection.
454 *
455 * @param call Storage where the incoming call data will be stored.
456 * @param usecs Timeout in microseconds. Zero denotes no timeout.
457 *
458 * @return If no timeout was specified, then a hash of the
459 * incoming call is returned. If a timeout is specified,
460 * then a hash of the incoming call is returned unless
461 * the timeout expires prior to receiving a message. In
462 * that case zero is returned.
463 *
464 */
465ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
466{
467 assert(FIBRIL_connection);
468
469 /* Why doing this?
470 * GCC 4.1.0 coughs on FIBRIL_connection-> dereference.
471 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
472 * I would never expect to find so many errors in
473 * a compiler.
474 */
475 connection_t *conn = FIBRIL_connection;
476
477 futex_down(&async_futex);
478
479 if (usecs) {
480 gettimeofday(&conn->wdata.to_event.expires, NULL);
481 tv_add(&conn->wdata.to_event.expires, usecs);
482 } else
483 conn->wdata.to_event.inlist = false;
484
485 /* If nothing in queue, wait until something arrives */
486 while (list_empty(&conn->msg_queue)) {
487 if (conn->close_callid) {
488 /*
489 * Handle the case when the connection was already
490 * closed by the client but the server did not notice
491 * the first IPC_M_PHONE_HUNGUP call and continues to
492 * call async_get_call_timeout(). Repeat
493 * IPC_M_PHONE_HUNGUP until the caller notices.
494 */
495 memset(call, 0, sizeof(ipc_call_t));
496 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
497 futex_up(&async_futex);
498 return conn->close_callid;
499 }
500
501 if (usecs)
502 async_insert_timeout(&conn->wdata);
503
504 conn->wdata.active = false;
505
506 /*
507 * Note: the current fibril will be rescheduled either due to a
508 * timeout or due to an arriving message destined to it. In the
509 * former case, handle_expired_timeouts() and, in the latter
510 * case, route_call() will perform the wakeup.
511 */
512 fibril_switch(FIBRIL_TO_MANAGER);
513
514 /*
515 * Futex is up after getting back from async_manager.
516 * Get it again.
517 */
518 futex_down(&async_futex);
519 if ((usecs) && (conn->wdata.to_event.occurred)
520 && (list_empty(&conn->msg_queue))) {
521 /* If we timed out -> exit */
522 futex_up(&async_futex);
523 return 0;
524 }
525 }
526
527 msg_t *msg = list_get_instance(conn->msg_queue.next, msg_t, link);
528 list_remove(&msg->link);
529
530 ipc_callid_t callid = msg->callid;
531 *call = msg->call;
532 free(msg);
533
534 futex_up(&async_futex);
535 return callid;
536}
537
538/** Wrapper for client connection fibril.
539 *
540 * When a new connection arrives, a fibril with this implementing function is
541 * created. It calls client_connection() and does the final cleanup.
542 *
543 * @param arg Connection structure pointer.
544 *
545 * @return Always zero.
546 *
547 */
548static int connection_fibril(void *arg)
549{
550 /*
551 * Setup fibril-local connection pointer.
552 */
553 FIBRIL_connection = (connection_t *) arg;
554
555 futex_down(&async_futex);
556
557 /*
558 * Add our reference for the current connection in the client task
559 * tracking structure. If this is the first reference, create and
560 * hash in a new tracking structure.
561 */
562
563 unsigned long key = FIBRIL_connection->in_task_hash;
564 link_t *lnk = hash_table_find(&client_hash_table, &key);
565
566 client_t *client;
567
568 if (lnk) {
569 client = hash_table_get_instance(lnk, client_t, link);
570 client->refcnt++;
571 } else {
572 client = malloc(sizeof(client_t));
573 if (!client) {
574 ipc_answer_0(FIBRIL_connection->callid, ENOMEM);
575 futex_up(&async_futex);
576 return 0;
577 }
578
579 client->in_task_hash = FIBRIL_connection->in_task_hash;
580
581 async_serialize_start();
582 client->data = async_client_data_create();
583 async_serialize_end();
584
585 client->refcnt = 1;
586 hash_table_insert(&client_hash_table, &key, &client->link);
587 }
588
589 futex_up(&async_futex);
590
591 FIBRIL_connection->client = client;
592
593 /*
594 * Call the connection handler function.
595 */
596 FIBRIL_connection->cfibril(FIBRIL_connection->callid,
597 &FIBRIL_connection->call);
598
599 /*
600 * Remove the reference for this client task connection.
601 */
602 bool destroy;
603
604 futex_down(&async_futex);
605
606 if (--client->refcnt == 0) {
607 hash_table_remove(&client_hash_table, &key, 1);
608 destroy = true;
609 } else
610 destroy = false;
611
612 futex_up(&async_futex);
613
614 if (destroy) {
615 if (client->data)
616 async_client_data_destroy(client->data);
617
618 free(client);
619 }
620
621 /*
622 * Remove myself from the connection hash table.
623 */
624 futex_down(&async_futex);
625 key = FIBRIL_connection->in_phone_hash;
626 hash_table_remove(&conn_hash_table, &key, 1);
627 futex_up(&async_futex);
628
629 /*
630 * Answer all remaining messages with EHANGUP.
631 */
632 while (!list_empty(&FIBRIL_connection->msg_queue)) {
633 msg_t *msg =
634 list_get_instance(FIBRIL_connection->msg_queue.next, msg_t,
635 link);
636
637 list_remove(&msg->link);
638 ipc_answer_0(msg->callid, EHANGUP);
639 free(msg);
640 }
641
642 /*
643 * If the connection was hung-up, answer the last call,
644 * i.e. IPC_M_PHONE_HUNGUP.
645 */
646 if (FIBRIL_connection->close_callid)
647 ipc_answer_0(FIBRIL_connection->close_callid, EOK);
648
649 return 0;
650}
651
652/** Create a new fibril for a new connection.
653 *
654 * Create new fibril for connection, fill in connection structures and inserts
655 * it into the hash table, so that later we can easily do routing of messages to
656 * particular fibrils.
657 *
658 * @param in_task_hash Identification of the incoming connection.
659 * @param in_phone_hash Identification of the incoming connection.
660 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
661 * If callid is zero, the connection was opened by
662 * accepting the IPC_M_CONNECT_TO_ME call and this function
663 * is called directly by the server.
664 * @param call Call data of the opening call.
665 * @param cfibril Fibril function that should be called upon opening the
666 * connection.
667 *
668 * @return New fibril id or NULL on failure.
669 *
670 */
671fid_t async_new_connection(sysarg_t in_task_hash, sysarg_t in_phone_hash,
672 ipc_callid_t callid, ipc_call_t *call,
673 void (*cfibril)(ipc_callid_t, ipc_call_t *))
674{
675 connection_t *conn = malloc(sizeof(*conn));
676 if (!conn) {
677 if (callid)
678 ipc_answer_0(callid, ENOMEM);
679
680 return (uintptr_t) NULL;
681 }
682
683 conn->in_task_hash = in_task_hash;
684 conn->in_phone_hash = in_phone_hash;
685 list_initialize(&conn->msg_queue);
686 conn->callid = callid;
687 conn->close_callid = 0;
688
689 if (call)
690 conn->call = *call;
691
692 /* We will activate the fibril ASAP */
693 conn->wdata.active = true;
694 conn->cfibril = cfibril;
695 conn->wdata.fid = fibril_create(connection_fibril, conn);
696
697 if (conn->wdata.fid == 0) {
698 free(conn);
699
700 if (callid)
701 ipc_answer_0(callid, ENOMEM);
702
703 return (uintptr_t) NULL;
704 }
705
706 /* Add connection to the connection hash table */
707 unsigned long key = conn->in_phone_hash;
708
709 futex_down(&async_futex);
710 hash_table_insert(&conn_hash_table, &key, &conn->link);
711 futex_up(&async_futex);
712
713 fibril_add_ready(conn->wdata.fid);
714
715 return conn->wdata.fid;
716}
717
718/** Handle a call that was received.
719 *
720 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
721 * Otherwise the call is routed to its connection fibril.
722 *
723 * @param callid Hash of the incoming call.
724 * @param call Data of the incoming call.
725 *
726 */
727static void handle_call(ipc_callid_t callid, ipc_call_t *call)
728{
729 /* Unrouted call - take some default action */
730 if ((callid & IPC_CALLID_NOTIFICATION)) {
731 process_notification(callid, call);
732 return;
733 }
734
735 switch (IPC_GET_IMETHOD(*call)) {
736 case IPC_M_CONNECT_ME:
737 case IPC_M_CONNECT_ME_TO:
738 /* Open new connection with fibril, etc. */
739 async_new_connection(call->in_task_hash, IPC_GET_ARG5(*call),
740 callid, call, client_connection);
741 return;
742 }
743
744 /* Try to route the call through the connection hash table */
745 if (route_call(callid, call))
746 return;
747
748 /* Unknown call from unknown phone - hang it up */
749 ipc_answer_0(callid, EHANGUP);
750}
751
752/** Fire all timeouts that expired. */
753static void handle_expired_timeouts(void)
754{
755 struct timeval tv;
756 gettimeofday(&tv, NULL);
757
758 futex_down(&async_futex);
759
760 link_t *cur = timeout_list.next;
761 while (cur != &timeout_list) {
762 awaiter_t *waiter =
763 list_get_instance(cur, awaiter_t, to_event.link);
764
765 if (tv_gt(&waiter->to_event.expires, &tv))
766 break;
767
768 cur = cur->next;
769
770 list_remove(&waiter->to_event.link);
771 waiter->to_event.inlist = false;
772 waiter->to_event.occurred = true;
773
774 /*
775 * Redundant condition?
776 * The fibril should not be active when it gets here.
777 */
778 if (!waiter->active) {
779 waiter->active = true;
780 fibril_add_ready(waiter->fid);
781 }
782 }
783
784 futex_up(&async_futex);
785}
786
787/** Endless loop dispatching incoming calls and answers.
788 *
789 * @return Never returns.
790 *
791 */
792static int async_manager_worker(void)
793{
794 while (true) {
795 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
796 futex_up(&async_futex);
797 /*
798 * async_futex is always held when entering a manager
799 * fibril.
800 */
801 continue;
802 }
803
804 futex_down(&async_futex);
805
806 suseconds_t timeout;
807 if (!list_empty(&timeout_list)) {
808 awaiter_t *waiter = list_get_instance(timeout_list.next,
809 awaiter_t, to_event.link);
810
811 struct timeval tv;
812 gettimeofday(&tv, NULL);
813
814 if (tv_gteq(&tv, &waiter->to_event.expires)) {
815 futex_up(&async_futex);
816 handle_expired_timeouts();
817 continue;
818 } else
819 timeout = tv_sub(&waiter->to_event.expires, &tv);
820 } else
821 timeout = SYNCH_NO_TIMEOUT;
822
823 futex_up(&async_futex);
824
825 atomic_inc(&threads_in_ipc_wait);
826
827 ipc_call_t call;
828 ipc_callid_t callid = ipc_wait_cycle(&call, timeout,
829 SYNCH_FLAGS_NONE);
830
831 atomic_dec(&threads_in_ipc_wait);
832
833 if (!callid) {
834 handle_expired_timeouts();
835 continue;
836 }
837
838 if (callid & IPC_CALLID_ANSWERED)
839 continue;
840
841 handle_call(callid, &call);
842 }
843
844 return 0;
845}
846
847/** Function to start async_manager as a standalone fibril.
848 *
849 * When more kernel threads are used, one async manager should exist per thread.
850 *
851 * @param arg Unused.
852 * @return Never returns.
853 *
854 */
855static int async_manager_fibril(void *arg)
856{
857 futex_up(&async_futex);
858
859 /*
860 * async_futex is always locked when entering manager
861 */
862 async_manager_worker();
863
864 return 0;
865}
866
867/** Add one manager to manager list. */
868void async_create_manager(void)
869{
870 fid_t fid = fibril_create(async_manager_fibril, NULL);
871 if (fid != 0)
872 fibril_add_manager(fid);
873}
874
875/** Remove one manager from manager list */
876void async_destroy_manager(void)
877{
878 fibril_remove_manager();
879}
880
881/** Initialize the async framework.
882 *
883 */
884void __async_init(void)
885{
886 if (!hash_table_create(&client_hash_table, CLIENT_HASH_TABLE_BUCKETS, 1,
887 &client_hash_table_ops))
888 abort();
889
890 if (!hash_table_create(&conn_hash_table, CONN_HASH_TABLE_BUCKETS, 1,
891 &conn_hash_table_ops))
892 abort();
893}
894
895/** Reply received callback.
896 *
897 * This function is called whenever a reply for an asynchronous message sent out
898 * by the asynchronous framework is received.
899 *
900 * Notify the fibril which is waiting for this message that it has arrived.
901 *
902 * @param arg Pointer to the asynchronous message record.
903 * @param retval Value returned in the answer.
904 * @param data Call data of the answer.
905 *
906 */
907static void reply_received(void *arg, int retval, ipc_call_t *data)
908{
909 futex_down(&async_futex);
910
911 amsg_t *msg = (amsg_t *) arg;
912 msg->retval = retval;
913
914 /* Copy data after futex_down, just in case the call was detached */
915 if ((msg->dataptr) && (data))
916 *msg->dataptr = *data;
917
918 write_barrier();
919
920 /* Remove message from timeout list */
921 if (msg->wdata.to_event.inlist)
922 list_remove(&msg->wdata.to_event.link);
923
924 msg->done = true;
925 if (!msg->wdata.active) {
926 msg->wdata.active = true;
927 fibril_add_ready(msg->wdata.fid);
928 }
929
930 futex_up(&async_futex);
931}
932
933/** Send message and return id of the sent message.
934 *
935 * The return value can be used as input for async_wait() to wait for
936 * completion.
937 *
938 * @param phoneid Handle of the phone that will be used for the send.
939 * @param method Service-defined method.
940 * @param arg1 Service-defined payload argument.
941 * @param arg2 Service-defined payload argument.
942 * @param arg3 Service-defined payload argument.
943 * @param arg4 Service-defined payload argument.
944 * @param dataptr If non-NULL, storage where the reply data will be
945 * stored.
946 *
947 * @return Hash of the sent message or 0 on error.
948 *
949 */
950aid_t async_send_fast(int phoneid, sysarg_t method, sysarg_t arg1,
951 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
952{
953 amsg_t *msg = malloc(sizeof(amsg_t));
954
955 if (!msg)
956 return 0;
957
958 msg->done = false;
959 msg->dataptr = dataptr;
960
961 msg->wdata.to_event.inlist = false;
962
963 /*
964 * We may sleep in the next method,
965 * but it will use its own means
966 */
967 msg->wdata.active = true;
968
969 ipc_call_async_4(phoneid, method, arg1, arg2, arg3, arg4, msg,
970 reply_received, true);
971
972 return (aid_t) msg;
973}
974
975/** Send message and return id of the sent message
976 *
977 * The return value can be used as input for async_wait() to wait for
978 * completion.
979 *
980 * @param phoneid Handle of the phone that will be used for the send.
981 * @param method Service-defined method.
982 * @param arg1 Service-defined payload argument.
983 * @param arg2 Service-defined payload argument.
984 * @param arg3 Service-defined payload argument.
985 * @param arg4 Service-defined payload argument.
986 * @param arg5 Service-defined payload argument.
987 * @param dataptr If non-NULL, storage where the reply data will be
988 * stored.
989 *
990 * @return Hash of the sent message or 0 on error.
991 *
992 */
993aid_t async_send_slow(int phoneid, sysarg_t method, sysarg_t arg1,
994 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
995 ipc_call_t *dataptr)
996{
997 amsg_t *msg = malloc(sizeof(amsg_t));
998
999 if (!msg)
1000 return 0;
1001
1002 msg->done = false;
1003 msg->dataptr = dataptr;
1004
1005 msg->wdata.to_event.inlist = false;
1006
1007 /*
1008 * We may sleep in the next method,
1009 * but it will use its own means
1010 */
1011 msg->wdata.active = true;
1012
1013 ipc_call_async_5(phoneid, method, arg1, arg2, arg3, arg4, arg5, msg,
1014 reply_received, true);
1015
1016 return (aid_t) msg;
1017}
1018
1019/** Wait for a message sent by the async framework.
1020 *
1021 * @param amsgid Hash of the message to wait for.
1022 * @param retval Pointer to storage where the retval of the answer will
1023 * be stored.
1024 *
1025 */
1026void async_wait_for(aid_t amsgid, sysarg_t *retval)
1027{
1028 amsg_t *msg = (amsg_t *) amsgid;
1029
1030 futex_down(&async_futex);
1031 if (msg->done) {
1032 futex_up(&async_futex);
1033 goto done;
1034 }
1035
1036 msg->wdata.fid = fibril_get_id();
1037 msg->wdata.active = false;
1038 msg->wdata.to_event.inlist = false;
1039
1040 /* Leave the async_futex locked when entering this function */
1041 fibril_switch(FIBRIL_TO_MANAGER);
1042
1043 /* Futex is up automatically after fibril_switch */
1044
1045done:
1046 if (retval)
1047 *retval = msg->retval;
1048
1049 free(msg);
1050}
1051
1052/** Wait for a message sent by the async framework, timeout variant.
1053 *
1054 * @param amsgid Hash of the message to wait for.
1055 * @param retval Pointer to storage where the retval of the answer will
1056 * be stored.
1057 * @param timeout Timeout in microseconds.
1058 *
1059 * @return Zero on success, ETIMEOUT if the timeout has expired.
1060 *
1061 */
1062int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1063{
1064 amsg_t *msg = (amsg_t *) amsgid;
1065
1066 /* TODO: Let it go through the event read at least once */
1067 if (timeout < 0)
1068 return ETIMEOUT;
1069
1070 futex_down(&async_futex);
1071 if (msg->done) {
1072 futex_up(&async_futex);
1073 goto done;
1074 }
1075
1076 gettimeofday(&msg->wdata.to_event.expires, NULL);
1077 tv_add(&msg->wdata.to_event.expires, timeout);
1078
1079 msg->wdata.fid = fibril_get_id();
1080 msg->wdata.active = false;
1081 async_insert_timeout(&msg->wdata);
1082
1083 /* Leave the async_futex locked when entering this function */
1084 fibril_switch(FIBRIL_TO_MANAGER);
1085
1086 /* Futex is up automatically after fibril_switch */
1087
1088 if (!msg->done)
1089 return ETIMEOUT;
1090
1091done:
1092 if (retval)
1093 *retval = msg->retval;
1094
1095 free(msg);
1096
1097 return 0;
1098}
1099
1100/** Wait for specified time.
1101 *
1102 * The current fibril is suspended but the thread continues to execute.
1103 *
1104 * @param timeout Duration of the wait in microseconds.
1105 *
1106 */
1107void async_usleep(suseconds_t timeout)
1108{
1109 amsg_t *msg = malloc(sizeof(amsg_t));
1110
1111 if (!msg)
1112 return;
1113
1114 msg->wdata.fid = fibril_get_id();
1115 msg->wdata.active = false;
1116
1117 gettimeofday(&msg->wdata.to_event.expires, NULL);
1118 tv_add(&msg->wdata.to_event.expires, timeout);
1119
1120 futex_down(&async_futex);
1121
1122 async_insert_timeout(&msg->wdata);
1123
1124 /* Leave the async_futex locked when entering this function */
1125 fibril_switch(FIBRIL_TO_MANAGER);
1126
1127 /* Futex is up automatically after fibril_switch() */
1128
1129 free(msg);
1130}
1131
1132/** Setter for client_connection function pointer.
1133 *
1134 * @param conn Function that will implement a new connection fibril.
1135 *
1136 */
1137void async_set_client_connection(async_client_conn_t conn)
1138{
1139 client_connection = conn;
1140}
1141
1142/** Setter for interrupt_received function pointer.
1143 *
1144 * @param intr Function that will implement a new interrupt
1145 * notification fibril.
1146 */
1147void async_set_interrupt_received(async_client_conn_t intr)
1148{
1149 interrupt_received = intr;
1150}
1151
1152/** Pseudo-synchronous message sending - fast version.
1153 *
1154 * Send message asynchronously and return only after the reply arrives.
1155 *
1156 * This function can only transfer 4 register payload arguments. For
1157 * transferring more arguments, see the slower async_req_slow().
1158 *
1159 * @param phoneid Hash of the phone through which to make the call.
1160 * @param method Method of the call.
1161 * @param arg1 Service-defined payload argument.
1162 * @param arg2 Service-defined payload argument.
1163 * @param arg3 Service-defined payload argument.
1164 * @param arg4 Service-defined payload argument.
1165 * @param r1 If non-NULL, storage for the 1st reply argument.
1166 * @param r2 If non-NULL, storage for the 2nd reply argument.
1167 * @param r3 If non-NULL, storage for the 3rd reply argument.
1168 * @param r4 If non-NULL, storage for the 4th reply argument.
1169 * @param r5 If non-NULL, storage for the 5th reply argument.
1170 *
1171 * @return Return code of the reply or a negative error code.
1172 *
1173 */
1174sysarg_t async_req_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1175 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1176 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1177{
1178 ipc_call_t result;
1179 aid_t eid = async_send_4(phoneid, method, arg1, arg2, arg3, arg4,
1180 &result);
1181
1182 sysarg_t rc;
1183 async_wait_for(eid, &rc);
1184
1185 if (r1)
1186 *r1 = IPC_GET_ARG1(result);
1187
1188 if (r2)
1189 *r2 = IPC_GET_ARG2(result);
1190
1191 if (r3)
1192 *r3 = IPC_GET_ARG3(result);
1193
1194 if (r4)
1195 *r4 = IPC_GET_ARG4(result);
1196
1197 if (r5)
1198 *r5 = IPC_GET_ARG5(result);
1199
1200 return rc;
1201}
1202
1203/** Pseudo-synchronous message sending - slow version.
1204 *
1205 * Send message asynchronously and return only after the reply arrives.
1206 *
1207 * @param phoneid Hash of the phone through which to make the call.
1208 * @param method Method of the call.
1209 * @param arg1 Service-defined payload argument.
1210 * @param arg2 Service-defined payload argument.
1211 * @param arg3 Service-defined payload argument.
1212 * @param arg4 Service-defined payload argument.
1213 * @param arg5 Service-defined payload argument.
1214 * @param r1 If non-NULL, storage for the 1st reply argument.
1215 * @param r2 If non-NULL, storage for the 2nd reply argument.
1216 * @param r3 If non-NULL, storage for the 3rd reply argument.
1217 * @param r4 If non-NULL, storage for the 4th reply argument.
1218 * @param r5 If non-NULL, storage for the 5th reply argument.
1219 *
1220 * @return Return code of the reply or a negative error code.
1221 *
1222 */
1223sysarg_t async_req_slow(int phoneid, sysarg_t method, sysarg_t arg1,
1224 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1225 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1226{
1227 ipc_call_t result;
1228 aid_t eid = async_send_5(phoneid, method, arg1, arg2, arg3, arg4, arg5,
1229 &result);
1230
1231 sysarg_t rc;
1232 async_wait_for(eid, &rc);
1233
1234 if (r1)
1235 *r1 = IPC_GET_ARG1(result);
1236
1237 if (r2)
1238 *r2 = IPC_GET_ARG2(result);
1239
1240 if (r3)
1241 *r3 = IPC_GET_ARG3(result);
1242
1243 if (r4)
1244 *r4 = IPC_GET_ARG4(result);
1245
1246 if (r5)
1247 *r5 = IPC_GET_ARG5(result);
1248
1249 return rc;
1250}
1251
1252void async_msg_0(int phone, sysarg_t imethod)
1253{
1254 ipc_call_async_0(phone, imethod, NULL, NULL, true);
1255}
1256
1257void async_msg_1(int phone, sysarg_t imethod, sysarg_t arg1)
1258{
1259 ipc_call_async_1(phone, imethod, arg1, NULL, NULL, true);
1260}
1261
1262void async_msg_2(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2)
1263{
1264 ipc_call_async_2(phone, imethod, arg1, arg2, NULL, NULL, true);
1265}
1266
1267void async_msg_3(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1268 sysarg_t arg3)
1269{
1270 ipc_call_async_3(phone, imethod, arg1, arg2, arg3, NULL, NULL, true);
1271}
1272
1273void async_msg_4(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1274 sysarg_t arg3, sysarg_t arg4)
1275{
1276 ipc_call_async_4(phone, imethod, arg1, arg2, arg3, arg4, NULL, NULL,
1277 true);
1278}
1279
1280void async_msg_5(int phone, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2,
1281 sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1282{
1283 ipc_call_async_5(phone, imethod, arg1, arg2, arg3, arg4, arg5, NULL,
1284 NULL, true);
1285}
1286
1287sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
1288{
1289 return ipc_answer_0(callid, retval);
1290}
1291
1292sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
1293{
1294 return ipc_answer_1(callid, retval, arg1);
1295}
1296
1297sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1298 sysarg_t arg2)
1299{
1300 return ipc_answer_2(callid, retval, arg1, arg2);
1301}
1302
1303sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1304 sysarg_t arg2, sysarg_t arg3)
1305{
1306 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
1307}
1308
1309sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1310 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1311{
1312 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
1313}
1314
1315sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
1316 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1317{
1318 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
1319}
1320
1321int async_forward_fast(ipc_callid_t callid, int phoneid, sysarg_t imethod,
1322 sysarg_t arg1, sysarg_t arg2, unsigned int mode)
1323{
1324 return ipc_forward_fast(callid, phoneid, imethod, arg1, arg2, mode);
1325}
1326
1327int async_forward_slow(ipc_callid_t callid, int phoneid, sysarg_t imethod,
1328 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1329 unsigned int mode)
1330{
1331 return ipc_forward_slow(callid, phoneid, imethod, arg1, arg2, arg3, arg4,
1332 arg5, mode);
1333}
1334
1335/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
1336 *
1337 * Ask through phone for a new connection to some service.
1338 *
1339 * @param phone Phone handle used for contacting the other side.
1340 * @param arg1 User defined argument.
1341 * @param arg2 User defined argument.
1342 * @param arg3 User defined argument.
1343 * @param client_receiver Connection handing routine.
1344 *
1345 * @return New phone handle on success or a negative error code.
1346 *
1347 */
1348int async_connect_to_me(int phone, sysarg_t arg1, sysarg_t arg2,
1349 sysarg_t arg3, async_client_conn_t client_receiver)
1350{
1351 sysarg_t task_hash;
1352 sysarg_t phone_hash;
1353 int rc = async_req_3_5(phone, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
1354 NULL, NULL, NULL, &task_hash, &phone_hash);
1355 if (rc != EOK)
1356 return rc;
1357
1358 if (client_receiver != NULL)
1359 async_new_connection(task_hash, phone_hash, 0, NULL,
1360 client_receiver);
1361
1362 return EOK;
1363}
1364
1365/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1366 *
1367 * Ask through phone for a new connection to some service.
1368 *
1369 * @param phone Phone handle used for contacting the other side.
1370 * @param arg1 User defined argument.
1371 * @param arg2 User defined argument.
1372 * @param arg3 User defined argument.
1373 *
1374 * @return New phone handle on success or a negative error code.
1375 *
1376 */
1377int async_connect_me_to(int phone, sysarg_t arg1, sysarg_t arg2,
1378 sysarg_t arg3)
1379{
1380 sysarg_t newphid;
1381 int rc = async_req_3_5(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3,
1382 NULL, NULL, NULL, NULL, &newphid);
1383
1384 if (rc != EOK)
1385 return rc;
1386
1387 return newphid;
1388}
1389
1390/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
1391 *
1392 * Ask through phone for a new connection to some service and block until
1393 * success.
1394 *
1395 * @param phoneid Phone handle used for contacting the other side.
1396 * @param arg1 User defined argument.
1397 * @param arg2 User defined argument.
1398 * @param arg3 User defined argument.
1399 *
1400 * @return New phone handle on success or a negative error code.
1401 *
1402 */
1403int async_connect_me_to_blocking(int phoneid, sysarg_t arg1, sysarg_t arg2,
1404 sysarg_t arg3)
1405{
1406 sysarg_t newphid;
1407 int rc = async_req_4_5(phoneid, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3,
1408 IPC_FLAG_BLOCKING, NULL, NULL, NULL, NULL, &newphid);
1409
1410 if (rc != EOK)
1411 return rc;
1412
1413 return newphid;
1414}
1415
1416/** Connect to a task specified by id.
1417 *
1418 */
1419int async_connect_kbox(task_id_t id)
1420{
1421 return ipc_connect_kbox(id);
1422}
1423
1424/** Wrapper for ipc_hangup.
1425 *
1426 * @param phone Phone handle to hung up.
1427 *
1428 * @return Zero on success or a negative error code.
1429 *
1430 */
1431int async_hangup(int phone)
1432{
1433 return ipc_hangup(phone);
1434}
1435
1436/** Interrupt one thread of this task from waiting for IPC. */
1437void async_poke(void)
1438{
1439 ipc_poke();
1440}
1441
1442/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
1443 *
1444 * @param phoneid Phone that will be used to contact the receiving side.
1445 * @param dst Destination address space area base.
1446 * @param size Size of the destination address space area.
1447 * @param arg User defined argument.
1448 * @param flags Storage for the received flags. Can be NULL.
1449 *
1450 * @return Zero on success or a negative error code from errno.h.
1451 *
1452 */
1453int async_share_in_start(int phoneid, void *dst, size_t size, sysarg_t arg,
1454 unsigned int *flags)
1455{
1456 sysarg_t tmp_flags;
1457 int res = async_req_3_2(phoneid, IPC_M_SHARE_IN, (sysarg_t) dst,
1458 (sysarg_t) size, arg, NULL, &tmp_flags);
1459
1460 if (flags)
1461 *flags = (unsigned int) tmp_flags;
1462
1463 return res;
1464}
1465
1466/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
1467 *
1468 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
1469 * calls so that the user doesn't have to remember the meaning of each IPC
1470 * argument.
1471 *
1472 * So far, this wrapper is to be used from within a connection fibril.
1473 *
1474 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
1475 * @param size Destination address space area size.
1476 *
1477 * @return True on success, false on failure.
1478 *
1479 */
1480bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
1481{
1482 assert(callid);
1483 assert(size);
1484
1485 ipc_call_t data;
1486 *callid = async_get_call(&data);
1487
1488 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
1489 return false;
1490
1491 *size = (size_t) IPC_GET_ARG2(data);
1492 return true;
1493}
1494
1495/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
1496 *
1497 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1498 * calls so that the user doesn't have to remember the meaning of each IPC
1499 * argument.
1500 *
1501 * @param callid Hash of the IPC_M_DATA_READ call to answer.
1502 * @param src Source address space base.
1503 * @param flags Flags to be used for sharing. Bits can be only cleared.
1504 *
1505 * @return Zero on success or a value from @ref errno.h on failure.
1506 *
1507 */
1508int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
1509{
1510 return ipc_share_in_finalize(callid, src, flags);
1511}
1512
1513/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
1514 *
1515 * @param phoneid Phone that will be used to contact the receiving side.
1516 * @param src Source address space area base address.
1517 * @param flags Flags to be used for sharing. Bits can be only cleared.
1518 *
1519 * @return Zero on success or a negative error code from errno.h.
1520 *
1521 */
1522int async_share_out_start(int phoneid, void *src, unsigned int flags)
1523{
1524 return async_req_3_0(phoneid, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
1525 (sysarg_t) flags);
1526}
1527
1528/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
1529 *
1530 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
1531 * calls so that the user doesn't have to remember the meaning of each IPC
1532 * argument.
1533 *
1534 * So far, this wrapper is to be used from within a connection fibril.
1535 *
1536 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
1537 * @param size Storage for the source address space area size.
1538 * @param flags Storage for the sharing flags.
1539 *
1540 * @return True on success, false on failure.
1541 *
1542 */
1543bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
1544{
1545 assert(callid);
1546 assert(size);
1547 assert(flags);
1548
1549 ipc_call_t data;
1550 *callid = async_get_call(&data);
1551
1552 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
1553 return false;
1554
1555 *size = (size_t) IPC_GET_ARG2(data);
1556 *flags = (unsigned int) IPC_GET_ARG3(data);
1557 return true;
1558}
1559
1560/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
1561 *
1562 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
1563 * calls so that the user doesn't have to remember the meaning of each IPC
1564 * argument.
1565 *
1566 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
1567 * @param dst Destination address space area base address.
1568 *
1569 * @return Zero on success or a value from @ref errno.h on failure.
1570 *
1571 */
1572int async_share_out_finalize(ipc_callid_t callid, void *dst)
1573{
1574 return ipc_share_out_finalize(callid, dst);
1575}
1576
1577/** Wrapper for IPC_M_DATA_READ calls using the async framework.
1578 *
1579 * @param phoneid Phone that will be used to contact the receiving side.
1580 * @param dst Address of the beginning of the destination buffer.
1581 * @param size Size of the destination buffer.
1582 *
1583 * @return Zero on success or a negative error code from errno.h.
1584 *
1585 */
1586int async_data_read_start(int phoneid, void *dst, size_t size)
1587{
1588 return async_req_2_0(phoneid, IPC_M_DATA_READ, (sysarg_t) dst,
1589 (sysarg_t) size);
1590}
1591
1592/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
1593 *
1594 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
1595 * calls so that the user doesn't have to remember the meaning of each IPC
1596 * argument.
1597 *
1598 * So far, this wrapper is to be used from within a connection fibril.
1599 *
1600 * @param callid Storage for the hash of the IPC_M_DATA_READ.
1601 * @param size Storage for the maximum size. Can be NULL.
1602 *
1603 * @return True on success, false on failure.
1604 *
1605 */
1606bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
1607{
1608 assert(callid);
1609
1610 ipc_call_t data;
1611 *callid = async_get_call(&data);
1612
1613 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_READ)
1614 return false;
1615
1616 if (size)
1617 *size = (size_t) IPC_GET_ARG2(data);
1618
1619 return true;
1620}
1621
1622/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
1623 *
1624 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
1625 * calls so that the user doesn't have to remember the meaning of each IPC
1626 * argument.
1627 *
1628 * @param callid Hash of the IPC_M_DATA_READ call to answer.
1629 * @param src Source address for the IPC_M_DATA_READ call.
1630 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
1631 * the maximum size announced by the sender.
1632 *
1633 * @return Zero on success or a value from @ref errno.h on failure.
1634 *
1635 */
1636int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
1637{
1638 return ipc_data_read_finalize(callid, src, size);
1639}
1640
1641/** Wrapper for forwarding any read request
1642 *
1643 */
1644int async_data_read_forward_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1645 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1646{
1647 ipc_callid_t callid;
1648 if (!async_data_read_receive(&callid, NULL)) {
1649 ipc_answer_0(callid, EINVAL);
1650 return EINVAL;
1651 }
1652
1653 aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4,
1654 dataptr);
1655 if (msg == 0) {
1656 ipc_answer_0(callid, EINVAL);
1657 return EINVAL;
1658 }
1659
1660 int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0,
1661 IPC_FF_ROUTE_FROM_ME);
1662 if (retval != EOK) {
1663 async_wait_for(msg, NULL);
1664 ipc_answer_0(callid, retval);
1665 return retval;
1666 }
1667
1668 sysarg_t rc;
1669 async_wait_for(msg, &rc);
1670
1671 return (int) rc;
1672}
1673
1674/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
1675 *
1676 * @param phoneid Phone that will be used to contact the receiving side.
1677 * @param src Address of the beginning of the source buffer.
1678 * @param size Size of the source buffer.
1679 *
1680 * @return Zero on success or a negative error code from errno.h.
1681 *
1682 */
1683int async_data_write_start(int phoneid, const void *src, size_t size)
1684{
1685 return async_req_2_0(phoneid, IPC_M_DATA_WRITE, (sysarg_t) src,
1686 (sysarg_t) size);
1687}
1688
1689/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
1690 *
1691 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
1692 * calls so that the user doesn't have to remember the meaning of each IPC
1693 * argument.
1694 *
1695 * So far, this wrapper is to be used from within a connection fibril.
1696 *
1697 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
1698 * @param size Storage for the suggested size. May be NULL.
1699 *
1700 * @return True on success, false on failure.
1701 *
1702 */
1703bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
1704{
1705 assert(callid);
1706
1707 ipc_call_t data;
1708 *callid = async_get_call(&data);
1709
1710 if (IPC_GET_IMETHOD(data) != IPC_M_DATA_WRITE)
1711 return false;
1712
1713 if (size)
1714 *size = (size_t) IPC_GET_ARG2(data);
1715
1716 return true;
1717}
1718
1719/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
1720 *
1721 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
1722 * calls so that the user doesn't have to remember the meaning of each IPC
1723 * argument.
1724 *
1725 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
1726 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
1727 * @param size Final size for the IPC_M_DATA_WRITE call.
1728 *
1729 * @return Zero on success or a value from @ref errno.h on failure.
1730 *
1731 */
1732int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
1733{
1734 return ipc_data_write_finalize(callid, dst, size);
1735}
1736
1737/** Wrapper for receiving binary data or strings
1738 *
1739 * This wrapper only makes it more comfortable to use async_data_write_*
1740 * functions to receive binary data or strings.
1741 *
1742 * @param data Pointer to data pointer (which should be later disposed
1743 * by free()). If the operation fails, the pointer is not
1744 * touched.
1745 * @param nullterm If true then the received data is always zero terminated.
1746 * This also causes to allocate one extra byte beyond the
1747 * raw transmitted data.
1748 * @param min_size Minimum size (in bytes) of the data to receive.
1749 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
1750 * no limit.
1751 * @param granulariy If non-zero then the size of the received data has to
1752 * be divisible by this value.
1753 * @param received If not NULL, the size of the received data is stored here.
1754 *
1755 * @return Zero on success or a value from @ref errno.h on failure.
1756 *
1757 */
1758int async_data_write_accept(void **data, const bool nullterm,
1759 const size_t min_size, const size_t max_size, const size_t granularity,
1760 size_t *received)
1761{
1762 ipc_callid_t callid;
1763 size_t size;
1764 if (!async_data_write_receive(&callid, &size)) {
1765 ipc_answer_0(callid, EINVAL);
1766 return EINVAL;
1767 }
1768
1769 if (size < min_size) {
1770 ipc_answer_0(callid, EINVAL);
1771 return EINVAL;
1772 }
1773
1774 if ((max_size > 0) && (size > max_size)) {
1775 ipc_answer_0(callid, EINVAL);
1776 return EINVAL;
1777 }
1778
1779 if ((granularity > 0) && ((size % granularity) != 0)) {
1780 ipc_answer_0(callid, EINVAL);
1781 return EINVAL;
1782 }
1783
1784 void *_data;
1785
1786 if (nullterm)
1787 _data = malloc(size + 1);
1788 else
1789 _data = malloc(size);
1790
1791 if (_data == NULL) {
1792 ipc_answer_0(callid, ENOMEM);
1793 return ENOMEM;
1794 }
1795
1796 int rc = async_data_write_finalize(callid, _data, size);
1797 if (rc != EOK) {
1798 free(_data);
1799 return rc;
1800 }
1801
1802 if (nullterm)
1803 ((char *) _data)[size] = 0;
1804
1805 *data = _data;
1806 if (received != NULL)
1807 *received = size;
1808
1809 return EOK;
1810}
1811
1812/** Wrapper for voiding any data that is about to be received
1813 *
1814 * This wrapper can be used to void any pending data
1815 *
1816 * @param retval Error value from @ref errno.h to be returned to the caller.
1817 *
1818 */
1819void async_data_write_void(sysarg_t retval)
1820{
1821 ipc_callid_t callid;
1822 async_data_write_receive(&callid, NULL);
1823 ipc_answer_0(callid, retval);
1824}
1825
1826/** Wrapper for forwarding any data that is about to be received
1827 *
1828 */
1829int async_data_write_forward_fast(int phoneid, sysarg_t method, sysarg_t arg1,
1830 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1831{
1832 ipc_callid_t callid;
1833 if (!async_data_write_receive(&callid, NULL)) {
1834 ipc_answer_0(callid, EINVAL);
1835 return EINVAL;
1836 }
1837
1838 aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4,
1839 dataptr);
1840 if (msg == 0) {
1841 ipc_answer_0(callid, EINVAL);
1842 return EINVAL;
1843 }
1844
1845 int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0,
1846 IPC_FF_ROUTE_FROM_ME);
1847 if (retval != EOK) {
1848 async_wait_for(msg, NULL);
1849 ipc_answer_0(callid, retval);
1850 return retval;
1851 }
1852
1853 sysarg_t rc;
1854 async_wait_for(msg, &rc);
1855
1856 return (int) rc;
1857}
1858
1859/** @}
1860 */
Note: See TracBrowser for help on using the repository browser.