source: mainline/uspace/lib/c/generic/async.c@ 4d6629f

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 4d6629f was 4d6629f, checked in by Jakub Jermar <jakub@…>, 8 years ago

Remove unused connection cloning

  • Property mode set to 100644
File size: 78.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/list.h>
109#include <assert.h>
110#include <errno.h>
111#include <sys/time.h>
112#include <libarch/barrier.h>
113#include <stdbool.h>
114#include <malloc.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <as.h>
119#include <abi/mm/as.h>
120#include "private/libc.h"
121
122/** Session data */
123struct async_sess {
124 /** List of inactive exchanges */
125 list_t exch_list;
126
127 /** Session interface */
128 iface_t iface;
129
130 /** Exchange management style */
131 exch_mgmt_t mgmt;
132
133 /** Session identification */
134 int phone;
135
136 /** First clone connection argument */
137 sysarg_t arg1;
138
139 /** Second clone connection argument */
140 sysarg_t arg2;
141
142 /** Third clone connection argument */
143 sysarg_t arg3;
144
145 /** Exchange mutex */
146 fibril_mutex_t mutex;
147
148 /** Number of opened exchanges */
149 atomic_t refcnt;
150
151 /** Mutex for stateful connections */
152 fibril_mutex_t remote_state_mtx;
153
154 /** Data for stateful connections */
155 void *remote_state_data;
156};
157
158/** Exchange data */
159struct async_exch {
160 /** Link into list of inactive exchanges */
161 link_t sess_link;
162
163 /** Link into global list of inactive exchanges */
164 link_t global_link;
165
166 /** Session pointer */
167 async_sess_t *sess;
168
169 /** Exchange identification */
170 int phone;
171};
172
173/** Async framework global futex */
174futex_t async_futex = FUTEX_INITIALIZER;
175
176/** Number of threads waiting for IPC in the kernel. */
177atomic_t threads_in_ipc_wait = { 0 };
178
179/** Naming service session */
180async_sess_t *session_ns;
181
182/** Call data */
183typedef struct {
184 link_t link;
185
186 ipc_callid_t callid;
187 ipc_call_t call;
188} msg_t;
189
190/** Message data */
191typedef struct {
192 awaiter_t wdata;
193
194 /** If reply was received. */
195 bool done;
196
197 /** If the message / reply should be discarded on arrival. */
198 bool forget;
199
200 /** If already destroyed. */
201 bool destroyed;
202
203 /** Pointer to where the answer data is stored. */
204 ipc_call_t *dataptr;
205
206 sysarg_t retval;
207} amsg_t;
208
209/* Client connection data */
210typedef struct {
211 ht_link_t link;
212
213 task_id_t in_task_id;
214 atomic_t refcnt;
215 void *data;
216} client_t;
217
218/* Server connection data */
219typedef struct {
220 awaiter_t wdata;
221
222 /** Hash table link. */
223 ht_link_t link;
224
225 /** Incoming client task ID. */
226 task_id_t in_task_id;
227
228 /** Incoming phone hash. */
229 sysarg_t in_phone_hash;
230
231 /** Link to the client tracking structure. */
232 client_t *client;
233
234 /** Messages that should be delivered to this fibril. */
235 list_t msg_queue;
236
237 /** Identification of the opening call. */
238 ipc_callid_t callid;
239
240 /** Call data of the opening call. */
241 ipc_call_t call;
242
243 /** Identification of the closing call. */
244 ipc_callid_t close_callid;
245
246 /** Fibril function that will be used to handle the connection. */
247 async_port_handler_t handler;
248
249 /** Client data */
250 void *data;
251} connection_t;
252
253/** Interface data */
254typedef struct {
255 ht_link_t link;
256
257 /** Interface ID */
258 iface_t iface;
259
260 /** Futex protecting the hash table */
261 futex_t futex;
262
263 /** Interface ports */
264 hash_table_t port_hash_table;
265
266 /** Next available port ID */
267 port_id_t port_id_avail;
268} interface_t;
269
270/* Port data */
271typedef struct {
272 ht_link_t link;
273
274 /** Port ID */
275 port_id_t id;
276
277 /** Port connection handler */
278 async_port_handler_t handler;
279
280 /** Client data */
281 void *data;
282} port_t;
283
284/* Notification data */
285typedef struct {
286 ht_link_t link;
287
288 /** Notification method */
289 sysarg_t imethod;
290
291 /** Notification handler */
292 async_notification_handler_t handler;
293
294 /** Notification data */
295 void *data;
296} notification_t;
297
298/** Identifier of the incoming connection handled by the current fibril. */
299static fibril_local connection_t *fibril_connection;
300
301static void to_event_initialize(to_event_t *to)
302{
303 struct timeval tv = { 0, 0 };
304
305 to->inlist = false;
306 to->occurred = false;
307 link_initialize(&to->link);
308 to->expires = tv;
309}
310
311static void wu_event_initialize(wu_event_t *wu)
312{
313 wu->inlist = false;
314 link_initialize(&wu->link);
315}
316
317void awaiter_initialize(awaiter_t *aw)
318{
319 aw->fid = 0;
320 aw->active = false;
321 to_event_initialize(&aw->to_event);
322 wu_event_initialize(&aw->wu_event);
323}
324
325static amsg_t *amsg_create(void)
326{
327 amsg_t *msg = malloc(sizeof(amsg_t));
328 if (msg) {
329 msg->done = false;
330 msg->forget = false;
331 msg->destroyed = false;
332 msg->dataptr = NULL;
333 msg->retval = (sysarg_t) EINVAL;
334 awaiter_initialize(&msg->wdata);
335 }
336
337 return msg;
338}
339
340static void amsg_destroy(amsg_t *msg)
341{
342 assert(!msg->destroyed);
343 msg->destroyed = true;
344 free(msg);
345}
346
347static void *default_client_data_constructor(void)
348{
349 return NULL;
350}
351
352static void default_client_data_destructor(void *data)
353{
354}
355
356static async_client_data_ctor_t async_client_data_create =
357 default_client_data_constructor;
358static async_client_data_dtor_t async_client_data_destroy =
359 default_client_data_destructor;
360
361void async_set_client_data_constructor(async_client_data_ctor_t ctor)
362{
363 assert(async_client_data_create == default_client_data_constructor);
364 async_client_data_create = ctor;
365}
366
367void async_set_client_data_destructor(async_client_data_dtor_t dtor)
368{
369 assert(async_client_data_destroy == default_client_data_destructor);
370 async_client_data_destroy = dtor;
371}
372
373/** Default fallback fibril function.
374 *
375 * This fallback fibril function gets called on incomming
376 * connections that do not have a specific handler defined.
377 *
378 * @param callid Hash of the incoming call.
379 * @param call Data of the incoming call.
380 * @param arg Local argument
381 *
382 */
383static void default_fallback_port_handler(ipc_callid_t callid, ipc_call_t *call,
384 void *arg)
385{
386 ipc_answer_0(callid, ENOENT);
387}
388
389static async_port_handler_t fallback_port_handler =
390 default_fallback_port_handler;
391static void *fallback_port_data = NULL;
392
393static hash_table_t interface_hash_table;
394
395static size_t interface_key_hash(void *key)
396{
397 iface_t iface = *(iface_t *) key;
398 return iface;
399}
400
401static size_t interface_hash(const ht_link_t *item)
402{
403 interface_t *interface = hash_table_get_inst(item, interface_t, link);
404 return interface_key_hash(&interface->iface);
405}
406
407static bool interface_key_equal(void *key, const ht_link_t *item)
408{
409 iface_t iface = *(iface_t *) key;
410 interface_t *interface = hash_table_get_inst(item, interface_t, link);
411 return iface == interface->iface;
412}
413
414/** Operations for the port hash table. */
415static hash_table_ops_t interface_hash_table_ops = {
416 .hash = interface_hash,
417 .key_hash = interface_key_hash,
418 .key_equal = interface_key_equal,
419 .equal = NULL,
420 .remove_callback = NULL
421};
422
423static size_t port_key_hash(void *key)
424{
425 port_id_t port_id = *(port_id_t *) key;
426 return port_id;
427}
428
429static size_t port_hash(const ht_link_t *item)
430{
431 port_t *port = hash_table_get_inst(item, port_t, link);
432 return port_key_hash(&port->id);
433}
434
435static bool port_key_equal(void *key, const ht_link_t *item)
436{
437 port_id_t port_id = *(port_id_t *) key;
438 port_t *port = hash_table_get_inst(item, port_t, link);
439 return port_id == port->id;
440}
441
442/** Operations for the port hash table. */
443static hash_table_ops_t port_hash_table_ops = {
444 .hash = port_hash,
445 .key_hash = port_key_hash,
446 .key_equal = port_key_equal,
447 .equal = NULL,
448 .remove_callback = NULL
449};
450
451static interface_t *async_new_interface(iface_t iface)
452{
453 interface_t *interface =
454 (interface_t *) malloc(sizeof(interface_t));
455 if (!interface)
456 return NULL;
457
458 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
459 &port_hash_table_ops);
460 if (!ret) {
461 free(interface);
462 return NULL;
463 }
464
465 interface->iface = iface;
466 futex_initialize(&interface->futex, 1);
467 interface->port_id_avail = 0;
468
469 hash_table_insert(&interface_hash_table, &interface->link);
470
471 return interface;
472}
473
474static port_t *async_new_port(interface_t *interface,
475 async_port_handler_t handler, void *data)
476{
477 port_t *port = (port_t *) malloc(sizeof(port_t));
478 if (!port)
479 return NULL;
480
481 futex_down(&interface->futex);
482
483 port_id_t id = interface->port_id_avail;
484 interface->port_id_avail++;
485
486 port->id = id;
487 port->handler = handler;
488 port->data = data;
489
490 hash_table_insert(&interface->port_hash_table, &port->link);
491
492 futex_up(&interface->futex);
493
494 return port;
495}
496
497/** Mutex protecting inactive_exch_list and avail_phone_cv.
498 *
499 */
500static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
501
502/** List of all currently inactive exchanges.
503 *
504 */
505static LIST_INITIALIZE(inactive_exch_list);
506
507/** Condition variable to wait for a phone to become available.
508 *
509 */
510static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
511
512int async_create_port(iface_t iface, async_port_handler_t handler,
513 void *data, port_id_t *port_id)
514{
515 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
516 return EINVAL;
517
518 interface_t *interface;
519
520 futex_down(&async_futex);
521
522 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
523 if (link)
524 interface = hash_table_get_inst(link, interface_t, link);
525 else
526 interface = async_new_interface(iface);
527
528 if (!interface) {
529 futex_up(&async_futex);
530 return ENOMEM;
531 }
532
533 port_t *port = async_new_port(interface, handler, data);
534 if (!port) {
535 futex_up(&async_futex);
536 return ENOMEM;
537 }
538
539 *port_id = port->id;
540
541 futex_up(&async_futex);
542
543 return EOK;
544}
545
546void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
547{
548 assert(handler != NULL);
549
550 fallback_port_handler = handler;
551 fallback_port_data = data;
552}
553
554static hash_table_t client_hash_table;
555static hash_table_t conn_hash_table;
556static hash_table_t notification_hash_table;
557static LIST_INITIALIZE(timeout_list);
558
559static sysarg_t notification_avail = 0;
560
561static size_t client_key_hash(void *key)
562{
563 task_id_t in_task_id = *(task_id_t *) key;
564 return in_task_id;
565}
566
567static size_t client_hash(const ht_link_t *item)
568{
569 client_t *client = hash_table_get_inst(item, client_t, link);
570 return client_key_hash(&client->in_task_id);
571}
572
573static bool client_key_equal(void *key, const ht_link_t *item)
574{
575 task_id_t in_task_id = *(task_id_t *) key;
576 client_t *client = hash_table_get_inst(item, client_t, link);
577 return in_task_id == client->in_task_id;
578}
579
580/** Operations for the client hash table. */
581static hash_table_ops_t client_hash_table_ops = {
582 .hash = client_hash,
583 .key_hash = client_key_hash,
584 .key_equal = client_key_equal,
585 .equal = NULL,
586 .remove_callback = NULL
587};
588
589/** Compute hash into the connection hash table based on the source phone hash.
590 *
591 * @param key Pointer to source phone hash.
592 *
593 * @return Index into the connection hash table.
594 *
595 */
596static size_t conn_key_hash(void *key)
597{
598 sysarg_t in_phone_hash = *(sysarg_t *) key;
599 return in_phone_hash;
600}
601
602static size_t conn_hash(const ht_link_t *item)
603{
604 connection_t *conn = hash_table_get_inst(item, connection_t, link);
605 return conn_key_hash(&conn->in_phone_hash);
606}
607
608static bool conn_key_equal(void *key, const ht_link_t *item)
609{
610 sysarg_t in_phone_hash = *(sysarg_t *) key;
611 connection_t *conn = hash_table_get_inst(item, connection_t, link);
612 return (in_phone_hash == conn->in_phone_hash);
613}
614
615/** Operations for the connection hash table. */
616static hash_table_ops_t conn_hash_table_ops = {
617 .hash = conn_hash,
618 .key_hash = conn_key_hash,
619 .key_equal = conn_key_equal,
620 .equal = NULL,
621 .remove_callback = NULL
622};
623
624static client_t *async_client_get(task_id_t client_id, bool create)
625{
626 client_t *client = NULL;
627
628 futex_down(&async_futex);
629 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
630 if (link) {
631 client = hash_table_get_inst(link, client_t, link);
632 atomic_inc(&client->refcnt);
633 } else if (create) {
634 client = malloc(sizeof(client_t));
635 if (client) {
636 client->in_task_id = client_id;
637 client->data = async_client_data_create();
638
639 atomic_set(&client->refcnt, 1);
640 hash_table_insert(&client_hash_table, &client->link);
641 }
642 }
643
644 futex_up(&async_futex);
645 return client;
646}
647
648static void async_client_put(client_t *client)
649{
650 bool destroy;
651
652 futex_down(&async_futex);
653
654 if (atomic_predec(&client->refcnt) == 0) {
655 hash_table_remove(&client_hash_table, &client->in_task_id);
656 destroy = true;
657 } else
658 destroy = false;
659
660 futex_up(&async_futex);
661
662 if (destroy) {
663 if (client->data)
664 async_client_data_destroy(client->data);
665
666 free(client);
667 }
668}
669
670/** Wrapper for client connection fibril.
671 *
672 * When a new connection arrives, a fibril with this implementing
673 * function is created.
674 *
675 * @param arg Connection structure pointer.
676 *
677 * @return Always zero.
678 *
679 */
680static int connection_fibril(void *arg)
681{
682 assert(arg);
683
684 /*
685 * Setup fibril-local connection pointer.
686 */
687 fibril_connection = (connection_t *) arg;
688
689 /*
690 * Add our reference for the current connection in the client task
691 * tracking structure. If this is the first reference, create and
692 * hash in a new tracking structure.
693 */
694
695 client_t *client = async_client_get(fibril_connection->in_task_id, true);
696 if (!client) {
697 ipc_answer_0(fibril_connection->callid, ENOMEM);
698 return 0;
699 }
700
701 fibril_connection->client = client;
702
703 /*
704 * Call the connection handler function.
705 */
706 fibril_connection->handler(fibril_connection->callid,
707 &fibril_connection->call, fibril_connection->data);
708
709 /*
710 * Remove the reference for this client task connection.
711 */
712 async_client_put(client);
713
714 /*
715 * Remove myself from the connection hash table.
716 */
717 futex_down(&async_futex);
718 hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash);
719 futex_up(&async_futex);
720
721 /*
722 * Answer all remaining messages with EHANGUP.
723 */
724 while (!list_empty(&fibril_connection->msg_queue)) {
725 msg_t *msg =
726 list_get_instance(list_first(&fibril_connection->msg_queue),
727 msg_t, link);
728
729 list_remove(&msg->link);
730 ipc_answer_0(msg->callid, EHANGUP);
731 free(msg);
732 }
733
734 /*
735 * If the connection was hung-up, answer the last call,
736 * i.e. IPC_M_PHONE_HUNGUP.
737 */
738 if (fibril_connection->close_callid)
739 ipc_answer_0(fibril_connection->close_callid, EOK);
740
741 free(fibril_connection);
742 return 0;
743}
744
745/** Create a new fibril for a new connection.
746 *
747 * Create new fibril for connection, fill in connection structures
748 * and insert it into the hash table, so that later we can easily
749 * do routing of messages to particular fibrils.
750 *
751 * @param in_task_id Identification of the incoming connection.
752 * @param in_phone_hash Identification of the incoming connection.
753 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
754 * If callid is zero, the connection was opened by
755 * accepting the IPC_M_CONNECT_TO_ME call and this
756 * function is called directly by the server.
757 * @param call Call data of the opening call.
758 * @param handler Connection handler.
759 * @param data Client argument to pass to the connection handler.
760 *
761 * @return New fibril id or NULL on failure.
762 *
763 */
764static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
765 ipc_callid_t callid, ipc_call_t *call, async_port_handler_t handler,
766 void *data)
767{
768 connection_t *conn = malloc(sizeof(*conn));
769 if (!conn) {
770 if (callid)
771 ipc_answer_0(callid, ENOMEM);
772
773 return (uintptr_t) NULL;
774 }
775
776 conn->in_task_id = in_task_id;
777 conn->in_phone_hash = in_phone_hash;
778 list_initialize(&conn->msg_queue);
779 conn->callid = callid;
780 conn->close_callid = 0;
781 conn->handler = handler;
782 conn->data = data;
783
784 if (call)
785 conn->call = *call;
786
787 /* We will activate the fibril ASAP */
788 conn->wdata.active = true;
789 conn->wdata.fid = fibril_create(connection_fibril, conn);
790
791 if (conn->wdata.fid == 0) {
792 free(conn);
793
794 if (callid)
795 ipc_answer_0(callid, ENOMEM);
796
797 return (uintptr_t) NULL;
798 }
799
800 /* Add connection to the connection hash table */
801
802 futex_down(&async_futex);
803 hash_table_insert(&conn_hash_table, &conn->link);
804 futex_up(&async_futex);
805
806 fibril_add_ready(conn->wdata.fid);
807
808 return conn->wdata.fid;
809}
810
811/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
812 *
813 * Ask through phone for a new connection to some service.
814 *
815 * @param exch Exchange for sending the message.
816 * @param iface Callback interface.
817 * @param arg1 User defined argument.
818 * @param arg2 User defined argument.
819 * @param handler Callback handler.
820 * @param data Handler data.
821 * @param port_id ID of the newly created port.
822 *
823 * @return Zero on success or a negative error code.
824 *
825 */
826int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
827 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
828{
829 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
830 return EINVAL;
831
832 if (exch == NULL)
833 return ENOENT;
834
835 ipc_call_t answer;
836 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
837 &answer);
838
839 sysarg_t ret;
840 async_wait_for(req, &ret);
841 if (ret != EOK)
842 return (int) ret;
843
844 sysarg_t phone_hash = IPC_GET_ARG5(answer);
845 interface_t *interface;
846
847 futex_down(&async_futex);
848
849 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
850 if (link)
851 interface = hash_table_get_inst(link, interface_t, link);
852 else
853 interface = async_new_interface(iface);
854
855 if (!interface) {
856 futex_up(&async_futex);
857 return ENOMEM;
858 }
859
860 port_t *port = async_new_port(interface, handler, data);
861 if (!port) {
862 futex_up(&async_futex);
863 return ENOMEM;
864 }
865
866 *port_id = port->id;
867
868 futex_up(&async_futex);
869
870 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
871 0, NULL, handler, data);
872 if (fid == (uintptr_t) NULL)
873 return ENOMEM;
874
875 return EOK;
876}
877
878static size_t notification_key_hash(void *key)
879{
880 sysarg_t id = *(sysarg_t *) key;
881 return id;
882}
883
884static size_t notification_hash(const ht_link_t *item)
885{
886 notification_t *notification =
887 hash_table_get_inst(item, notification_t, link);
888 return notification_key_hash(&notification->imethod);
889}
890
891static bool notification_key_equal(void *key, const ht_link_t *item)
892{
893 sysarg_t id = *(sysarg_t *) key;
894 notification_t *notification =
895 hash_table_get_inst(item, notification_t, link);
896 return id == notification->imethod;
897}
898
899/** Operations for the notification hash table. */
900static hash_table_ops_t notification_hash_table_ops = {
901 .hash = notification_hash,
902 .key_hash = notification_key_hash,
903 .key_equal = notification_key_equal,
904 .equal = NULL,
905 .remove_callback = NULL
906};
907
908/** Sort in current fibril's timeout request.
909 *
910 * @param wd Wait data of the current fibril.
911 *
912 */
913void async_insert_timeout(awaiter_t *wd)
914{
915 assert(wd);
916
917 wd->to_event.occurred = false;
918 wd->to_event.inlist = true;
919
920 link_t *tmp = timeout_list.head.next;
921 while (tmp != &timeout_list.head) {
922 awaiter_t *cur
923 = list_get_instance(tmp, awaiter_t, to_event.link);
924
925 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
926 break;
927
928 tmp = tmp->next;
929 }
930
931 list_insert_before(&wd->to_event.link, tmp);
932}
933
934/** Try to route a call to an appropriate connection fibril.
935 *
936 * If the proper connection fibril is found, a message with the call is added to
937 * its message queue. If the fibril was not active, it is activated and all
938 * timeouts are unregistered.
939 *
940 * @param callid Hash of the incoming call.
941 * @param call Data of the incoming call.
942 *
943 * @return False if the call doesn't match any connection.
944 * @return True if the call was passed to the respective connection fibril.
945 *
946 */
947static bool route_call(ipc_callid_t callid, ipc_call_t *call)
948{
949 assert(call);
950
951 futex_down(&async_futex);
952
953 ht_link_t *link = hash_table_find(&conn_hash_table, &call->in_phone_hash);
954 if (!link) {
955 futex_up(&async_futex);
956 return false;
957 }
958
959 connection_t *conn = hash_table_get_inst(link, connection_t, link);
960
961 msg_t *msg = malloc(sizeof(*msg));
962 if (!msg) {
963 futex_up(&async_futex);
964 return false;
965 }
966
967 msg->callid = callid;
968 msg->call = *call;
969 list_append(&msg->link, &conn->msg_queue);
970
971 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
972 conn->close_callid = callid;
973
974 /* If the connection fibril is waiting for an event, activate it */
975 if (!conn->wdata.active) {
976
977 /* If in timeout list, remove it */
978 if (conn->wdata.to_event.inlist) {
979 conn->wdata.to_event.inlist = false;
980 list_remove(&conn->wdata.to_event.link);
981 }
982
983 conn->wdata.active = true;
984 fibril_add_ready(conn->wdata.fid);
985 }
986
987 futex_up(&async_futex);
988 return true;
989}
990
991/** Process notification.
992 *
993 * @param callid Hash of the incoming call.
994 * @param call Data of the incoming call.
995 *
996 */
997static void process_notification(ipc_callid_t callid, ipc_call_t *call)
998{
999 async_notification_handler_t handler = NULL;
1000 void *data = NULL;
1001
1002 assert(call);
1003
1004 futex_down(&async_futex);
1005
1006 ht_link_t *link = hash_table_find(&notification_hash_table,
1007 &IPC_GET_IMETHOD(*call));
1008 if (link) {
1009 notification_t *notification =
1010 hash_table_get_inst(link, notification_t, link);
1011 handler = notification->handler;
1012 data = notification->data;
1013 }
1014
1015 futex_up(&async_futex);
1016
1017 if (handler)
1018 handler(callid, call, data);
1019}
1020
1021/** Subscribe to IRQ notification.
1022 *
1023 * @param inr IRQ number.
1024 * @param handler Notification handler.
1025 * @param data Notification handler client data.
1026 * @param ucode Top-half pseudocode handler.
1027 *
1028 * @return IRQ capability handle on success.
1029 * @return Negative error code.
1030 *
1031 */
1032int async_irq_subscribe(int inr, async_notification_handler_t handler,
1033 void *data, const irq_code_t *ucode)
1034{
1035 notification_t *notification =
1036 (notification_t *) malloc(sizeof(notification_t));
1037 if (!notification)
1038 return ENOMEM;
1039
1040 futex_down(&async_futex);
1041
1042 sysarg_t imethod = notification_avail;
1043 notification_avail++;
1044
1045 notification->imethod = imethod;
1046 notification->handler = handler;
1047 notification->data = data;
1048
1049 hash_table_insert(&notification_hash_table, &notification->link);
1050
1051 futex_up(&async_futex);
1052
1053 return ipc_irq_subscribe(inr, imethod, ucode);
1054}
1055
1056/** Unsubscribe from IRQ notification.
1057 *
1058 * @param cap IRQ capability handle.
1059 *
1060 * @return Zero on success or a negative error code.
1061 *
1062 */
1063int async_irq_unsubscribe(int cap)
1064{
1065 // TODO: Remove entry from hash table
1066 // to avoid memory leak
1067
1068 return ipc_irq_unsubscribe(cap);
1069}
1070
1071/** Subscribe to event notifications.
1072 *
1073 * @param evno Event type to subscribe.
1074 * @param handler Notification handler.
1075 * @param data Notification handler client data.
1076 *
1077 * @return Zero on success or a negative error code.
1078 *
1079 */
1080int async_event_subscribe(event_type_t evno,
1081 async_notification_handler_t handler, void *data)
1082{
1083 notification_t *notification =
1084 (notification_t *) malloc(sizeof(notification_t));
1085 if (!notification)
1086 return ENOMEM;
1087
1088 futex_down(&async_futex);
1089
1090 sysarg_t imethod = notification_avail;
1091 notification_avail++;
1092
1093 notification->imethod = imethod;
1094 notification->handler = handler;
1095 notification->data = data;
1096
1097 hash_table_insert(&notification_hash_table, &notification->link);
1098
1099 futex_up(&async_futex);
1100
1101 return ipc_event_subscribe(evno, imethod);
1102}
1103
1104/** Subscribe to task event notifications.
1105 *
1106 * @param evno Event type to subscribe.
1107 * @param handler Notification handler.
1108 * @param data Notification handler client data.
1109 *
1110 * @return Zero on success or a negative error code.
1111 *
1112 */
1113int async_event_task_subscribe(event_task_type_t evno,
1114 async_notification_handler_t handler, void *data)
1115{
1116 notification_t *notification =
1117 (notification_t *) malloc(sizeof(notification_t));
1118 if (!notification)
1119 return ENOMEM;
1120
1121 futex_down(&async_futex);
1122
1123 sysarg_t imethod = notification_avail;
1124 notification_avail++;
1125
1126 notification->imethod = imethod;
1127 notification->handler = handler;
1128 notification->data = data;
1129
1130 hash_table_insert(&notification_hash_table, &notification->link);
1131
1132 futex_up(&async_futex);
1133
1134 return ipc_event_task_subscribe(evno, imethod);
1135}
1136
1137/** Unmask event notifications.
1138 *
1139 * @param evno Event type to unmask.
1140 *
1141 * @return Value returned by the kernel.
1142 *
1143 */
1144int async_event_unmask(event_type_t evno)
1145{
1146 return ipc_event_unmask(evno);
1147}
1148
1149/** Unmask task event notifications.
1150 *
1151 * @param evno Event type to unmask.
1152 *
1153 * @return Value returned by the kernel.
1154 *
1155 */
1156int async_event_task_unmask(event_task_type_t evno)
1157{
1158 return ipc_event_task_unmask(evno);
1159}
1160
1161/** Return new incoming message for the current (fibril-local) connection.
1162 *
1163 * @param call Storage where the incoming call data will be stored.
1164 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1165 *
1166 * @return If no timeout was specified, then a hash of the
1167 * incoming call is returned. If a timeout is specified,
1168 * then a hash of the incoming call is returned unless
1169 * the timeout expires prior to receiving a message. In
1170 * that case zero is returned.
1171 *
1172 */
1173ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1174{
1175 assert(call);
1176 assert(fibril_connection);
1177
1178 /* Why doing this?
1179 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1180 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1181 * I would never expect to find so many errors in
1182 * a compiler.
1183 */
1184 connection_t *conn = fibril_connection;
1185
1186 futex_down(&async_futex);
1187
1188 if (usecs) {
1189 getuptime(&conn->wdata.to_event.expires);
1190 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1191 } else
1192 conn->wdata.to_event.inlist = false;
1193
1194 /* If nothing in queue, wait until something arrives */
1195 while (list_empty(&conn->msg_queue)) {
1196 if (conn->close_callid) {
1197 /*
1198 * Handle the case when the connection was already
1199 * closed by the client but the server did not notice
1200 * the first IPC_M_PHONE_HUNGUP call and continues to
1201 * call async_get_call_timeout(). Repeat
1202 * IPC_M_PHONE_HUNGUP until the caller notices.
1203 */
1204 memset(call, 0, sizeof(ipc_call_t));
1205 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1206 futex_up(&async_futex);
1207 return conn->close_callid;
1208 }
1209
1210 if (usecs)
1211 async_insert_timeout(&conn->wdata);
1212
1213 conn->wdata.active = false;
1214
1215 /*
1216 * Note: the current fibril will be rescheduled either due to a
1217 * timeout or due to an arriving message destined to it. In the
1218 * former case, handle_expired_timeouts() and, in the latter
1219 * case, route_call() will perform the wakeup.
1220 */
1221 fibril_switch(FIBRIL_TO_MANAGER);
1222
1223 /*
1224 * Futex is up after getting back from async_manager.
1225 * Get it again.
1226 */
1227 futex_down(&async_futex);
1228 if ((usecs) && (conn->wdata.to_event.occurred)
1229 && (list_empty(&conn->msg_queue))) {
1230 /* If we timed out -> exit */
1231 futex_up(&async_futex);
1232 return 0;
1233 }
1234 }
1235
1236 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1237 msg_t, link);
1238 list_remove(&msg->link);
1239
1240 ipc_callid_t callid = msg->callid;
1241 *call = msg->call;
1242 free(msg);
1243
1244 futex_up(&async_futex);
1245 return callid;
1246}
1247
1248void *async_get_client_data(void)
1249{
1250 assert(fibril_connection);
1251 return fibril_connection->client->data;
1252}
1253
1254void *async_get_client_data_by_id(task_id_t client_id)
1255{
1256 client_t *client = async_client_get(client_id, false);
1257 if (!client)
1258 return NULL;
1259
1260 if (!client->data) {
1261 async_client_put(client);
1262 return NULL;
1263 }
1264
1265 return client->data;
1266}
1267
1268void async_put_client_data_by_id(task_id_t client_id)
1269{
1270 client_t *client = async_client_get(client_id, false);
1271
1272 assert(client);
1273 assert(client->data);
1274
1275 /* Drop the reference we got in async_get_client_data_by_hash(). */
1276 async_client_put(client);
1277
1278 /* Drop our own reference we got at the beginning of this function. */
1279 async_client_put(client);
1280}
1281
1282static port_t *async_find_port(iface_t iface, port_id_t port_id)
1283{
1284 port_t *port = NULL;
1285
1286 futex_down(&async_futex);
1287
1288 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1289 if (link) {
1290 interface_t *interface =
1291 hash_table_get_inst(link, interface_t, link);
1292
1293 link = hash_table_find(&interface->port_hash_table, &port_id);
1294 if (link)
1295 port = hash_table_get_inst(link, port_t, link);
1296 }
1297
1298 futex_up(&async_futex);
1299
1300 return port;
1301}
1302
1303/** Handle a call that was received.
1304 *
1305 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1306 * Otherwise the call is routed to its connection fibril.
1307 *
1308 * @param callid Hash of the incoming call.
1309 * @param call Data of the incoming call.
1310 *
1311 */
1312static void handle_call(ipc_callid_t callid, ipc_call_t *call)
1313{
1314 assert(call);
1315
1316 /* Kernel notification */
1317 if ((callid & IPC_CALLID_NOTIFICATION)) {
1318 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1319 unsigned oldsw = fibril->switches;
1320
1321 process_notification(callid, call);
1322
1323 if (oldsw != fibril->switches) {
1324 /*
1325 * The notification handler did not execute atomically
1326 * and so the current manager fibril assumed the role of
1327 * a notification fibril. While waiting for its
1328 * resources, it switched to another manager fibril that
1329 * had already existed or it created a new one. We
1330 * therefore know there is at least yet another
1331 * manager fibril that can take over. We now kill the
1332 * current 'notification' fibril to prevent fibril
1333 * population explosion.
1334 */
1335 futex_down(&async_futex);
1336 fibril_switch(FIBRIL_FROM_DEAD);
1337 }
1338
1339 return;
1340 }
1341
1342 /* New connection */
1343 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1344 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1345 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1346
1347 async_notification_handler_t handler = fallback_port_handler;
1348 void *data = fallback_port_data;
1349
1350 // TODO: Currently ignores all ports but the first one
1351 port_t *port = async_find_port(iface, 0);
1352 if (port) {
1353 handler = port->handler;
1354 data = port->data;
1355 }
1356
1357 async_new_connection(call->in_task_id, in_phone_hash, callid,
1358 call, handler, data);
1359 return;
1360 }
1361
1362 /* Try to route the call through the connection hash table */
1363 if (route_call(callid, call))
1364 return;
1365
1366 /* Unknown call from unknown phone - hang it up */
1367 ipc_answer_0(callid, EHANGUP);
1368}
1369
1370/** Fire all timeouts that expired. */
1371static void handle_expired_timeouts(void)
1372{
1373 struct timeval tv;
1374 getuptime(&tv);
1375
1376 futex_down(&async_futex);
1377
1378 link_t *cur = list_first(&timeout_list);
1379 while (cur != NULL) {
1380 awaiter_t *waiter =
1381 list_get_instance(cur, awaiter_t, to_event.link);
1382
1383 if (tv_gt(&waiter->to_event.expires, &tv))
1384 break;
1385
1386 list_remove(&waiter->to_event.link);
1387 waiter->to_event.inlist = false;
1388 waiter->to_event.occurred = true;
1389
1390 /*
1391 * Redundant condition?
1392 * The fibril should not be active when it gets here.
1393 */
1394 if (!waiter->active) {
1395 waiter->active = true;
1396 fibril_add_ready(waiter->fid);
1397 }
1398
1399 cur = list_first(&timeout_list);
1400 }
1401
1402 futex_up(&async_futex);
1403}
1404
1405/** Endless loop dispatching incoming calls and answers.
1406 *
1407 * @return Never returns.
1408 *
1409 */
1410static int async_manager_worker(void)
1411{
1412 while (true) {
1413 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1414 futex_up(&async_futex);
1415 /*
1416 * async_futex is always held when entering a manager
1417 * fibril.
1418 */
1419 continue;
1420 }
1421
1422 futex_down(&async_futex);
1423
1424 suseconds_t timeout;
1425 unsigned int flags = SYNCH_FLAGS_NONE;
1426 if (!list_empty(&timeout_list)) {
1427 awaiter_t *waiter = list_get_instance(
1428 list_first(&timeout_list), awaiter_t, to_event.link);
1429
1430 struct timeval tv;
1431 getuptime(&tv);
1432
1433 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1434 futex_up(&async_futex);
1435 handle_expired_timeouts();
1436 /*
1437 * Notice that even if the event(s) already
1438 * expired (and thus the other fibril was
1439 * supposed to be running already),
1440 * we check for incoming IPC.
1441 *
1442 * Otherwise, a fibril that continuously
1443 * creates (almost) expired events could
1444 * prevent IPC retrieval from the kernel.
1445 */
1446 timeout = 0;
1447 flags = SYNCH_FLAGS_NON_BLOCKING;
1448
1449 } else {
1450 timeout = tv_sub_diff(&waiter->to_event.expires,
1451 &tv);
1452 futex_up(&async_futex);
1453 }
1454 } else {
1455 futex_up(&async_futex);
1456 timeout = SYNCH_NO_TIMEOUT;
1457 }
1458
1459 atomic_inc(&threads_in_ipc_wait);
1460
1461 ipc_call_t call;
1462 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1463
1464 atomic_dec(&threads_in_ipc_wait);
1465
1466 if (!callid) {
1467 handle_expired_timeouts();
1468 continue;
1469 }
1470
1471 if (callid & IPC_CALLID_ANSWERED)
1472 continue;
1473
1474 handle_call(callid, &call);
1475 }
1476
1477 return 0;
1478}
1479
1480/** Function to start async_manager as a standalone fibril.
1481 *
1482 * When more kernel threads are used, one async manager should exist per thread.
1483 *
1484 * @param arg Unused.
1485 * @return Never returns.
1486 *
1487 */
1488static int async_manager_fibril(void *arg)
1489{
1490 futex_up(&async_futex);
1491
1492 /*
1493 * async_futex is always locked when entering manager
1494 */
1495 async_manager_worker();
1496
1497 return 0;
1498}
1499
1500/** Add one manager to manager list. */
1501void async_create_manager(void)
1502{
1503 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1504 if (fid != 0)
1505 fibril_add_manager(fid);
1506}
1507
1508/** Remove one manager from manager list */
1509void async_destroy_manager(void)
1510{
1511 fibril_remove_manager();
1512}
1513
1514/** Initialize the async framework.
1515 *
1516 */
1517void __async_init(void)
1518{
1519 if (!hash_table_create(&interface_hash_table, 0, 0,
1520 &interface_hash_table_ops))
1521 abort();
1522
1523 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1524 abort();
1525
1526 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1527 abort();
1528
1529 if (!hash_table_create(&notification_hash_table, 0, 0,
1530 &notification_hash_table_ops))
1531 abort();
1532
1533 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1534 if (session_ns == NULL)
1535 abort();
1536
1537 session_ns->iface = 0;
1538 session_ns->mgmt = EXCHANGE_ATOMIC;
1539 session_ns->phone = PHONE_NS;
1540 session_ns->arg1 = 0;
1541 session_ns->arg2 = 0;
1542 session_ns->arg3 = 0;
1543
1544 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1545 session_ns->remote_state_data = NULL;
1546
1547 list_initialize(&session_ns->exch_list);
1548 fibril_mutex_initialize(&session_ns->mutex);
1549 atomic_set(&session_ns->refcnt, 0);
1550}
1551
1552/** Reply received callback.
1553 *
1554 * This function is called whenever a reply for an asynchronous message sent out
1555 * by the asynchronous framework is received.
1556 *
1557 * Notify the fibril which is waiting for this message that it has arrived.
1558 *
1559 * @param arg Pointer to the asynchronous message record.
1560 * @param retval Value returned in the answer.
1561 * @param data Call data of the answer.
1562 *
1563 */
1564void reply_received(void *arg, int retval, ipc_call_t *data)
1565{
1566 assert(arg);
1567
1568 futex_down(&async_futex);
1569
1570 amsg_t *msg = (amsg_t *) arg;
1571 msg->retval = retval;
1572
1573 /* Copy data after futex_down, just in case the call was detached */
1574 if ((msg->dataptr) && (data))
1575 *msg->dataptr = *data;
1576
1577 write_barrier();
1578
1579 /* Remove message from timeout list */
1580 if (msg->wdata.to_event.inlist)
1581 list_remove(&msg->wdata.to_event.link);
1582
1583 msg->done = true;
1584
1585 if (msg->forget) {
1586 assert(msg->wdata.active);
1587 amsg_destroy(msg);
1588 } else if (!msg->wdata.active) {
1589 msg->wdata.active = true;
1590 fibril_add_ready(msg->wdata.fid);
1591 }
1592
1593 futex_up(&async_futex);
1594}
1595
1596/** Send message and return id of the sent message.
1597 *
1598 * The return value can be used as input for async_wait() to wait for
1599 * completion.
1600 *
1601 * @param exch Exchange for sending the message.
1602 * @param imethod Service-defined interface and method.
1603 * @param arg1 Service-defined payload argument.
1604 * @param arg2 Service-defined payload argument.
1605 * @param arg3 Service-defined payload argument.
1606 * @param arg4 Service-defined payload argument.
1607 * @param dataptr If non-NULL, storage where the reply data will be
1608 * stored.
1609 *
1610 * @return Hash of the sent message or 0 on error.
1611 *
1612 */
1613aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1614 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1615{
1616 if (exch == NULL)
1617 return 0;
1618
1619 amsg_t *msg = amsg_create();
1620 if (msg == NULL)
1621 return 0;
1622
1623 msg->dataptr = dataptr;
1624 msg->wdata.active = true;
1625
1626 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1627 reply_received);
1628
1629 return (aid_t) msg;
1630}
1631
1632/** Send message and return id of the sent message
1633 *
1634 * The return value can be used as input for async_wait() to wait for
1635 * completion.
1636 *
1637 * @param exch Exchange for sending the message.
1638 * @param imethod Service-defined interface and method.
1639 * @param arg1 Service-defined payload argument.
1640 * @param arg2 Service-defined payload argument.
1641 * @param arg3 Service-defined payload argument.
1642 * @param arg4 Service-defined payload argument.
1643 * @param arg5 Service-defined payload argument.
1644 * @param dataptr If non-NULL, storage where the reply data will be
1645 * stored.
1646 *
1647 * @return Hash of the sent message or 0 on error.
1648 *
1649 */
1650aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1651 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1652 ipc_call_t *dataptr)
1653{
1654 if (exch == NULL)
1655 return 0;
1656
1657 amsg_t *msg = amsg_create();
1658 if (msg == NULL)
1659 return 0;
1660
1661 msg->dataptr = dataptr;
1662 msg->wdata.active = true;
1663
1664 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1665 msg, reply_received);
1666
1667 return (aid_t) msg;
1668}
1669
1670/** Wait for a message sent by the async framework.
1671 *
1672 * @param amsgid Hash of the message to wait for.
1673 * @param retval Pointer to storage where the retval of the answer will
1674 * be stored.
1675 *
1676 */
1677void async_wait_for(aid_t amsgid, sysarg_t *retval)
1678{
1679 assert(amsgid);
1680
1681 amsg_t *msg = (amsg_t *) amsgid;
1682
1683 futex_down(&async_futex);
1684
1685 assert(!msg->forget);
1686 assert(!msg->destroyed);
1687
1688 if (msg->done) {
1689 futex_up(&async_futex);
1690 goto done;
1691 }
1692
1693 msg->wdata.fid = fibril_get_id();
1694 msg->wdata.active = false;
1695 msg->wdata.to_event.inlist = false;
1696
1697 /* Leave the async_futex locked when entering this function */
1698 fibril_switch(FIBRIL_TO_MANAGER);
1699
1700 /* Futex is up automatically after fibril_switch */
1701
1702done:
1703 if (retval)
1704 *retval = msg->retval;
1705
1706 amsg_destroy(msg);
1707}
1708
1709/** Wait for a message sent by the async framework, timeout variant.
1710 *
1711 * If the wait times out, the caller may choose to either wait again by calling
1712 * async_wait_for() or async_wait_timeout(), or forget the message via
1713 * async_forget().
1714 *
1715 * @param amsgid Hash of the message to wait for.
1716 * @param retval Pointer to storage where the retval of the answer will
1717 * be stored.
1718 * @param timeout Timeout in microseconds.
1719 *
1720 * @return Zero on success, ETIMEOUT if the timeout has expired.
1721 *
1722 */
1723int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1724{
1725 assert(amsgid);
1726
1727 amsg_t *msg = (amsg_t *) amsgid;
1728
1729 futex_down(&async_futex);
1730
1731 assert(!msg->forget);
1732 assert(!msg->destroyed);
1733
1734 if (msg->done) {
1735 futex_up(&async_futex);
1736 goto done;
1737 }
1738
1739 /*
1740 * Negative timeout is converted to zero timeout to avoid
1741 * using tv_add with negative augmenter.
1742 */
1743 if (timeout < 0)
1744 timeout = 0;
1745
1746 getuptime(&msg->wdata.to_event.expires);
1747 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1748
1749 /*
1750 * Current fibril is inserted as waiting regardless of the
1751 * "size" of the timeout.
1752 *
1753 * Checking for msg->done and immediately bailing out when
1754 * timeout == 0 would mean that the manager fibril would never
1755 * run (consider single threaded program).
1756 * Thus the IPC answer would be never retrieved from the kernel.
1757 *
1758 * Notice that the actual delay would be very small because we
1759 * - switch to manager fibril
1760 * - the manager sees expired timeout
1761 * - and thus adds us back to ready queue
1762 * - manager switches back to some ready fibril
1763 * (prior it, it checks for incoming IPC).
1764 *
1765 */
1766 msg->wdata.fid = fibril_get_id();
1767 msg->wdata.active = false;
1768 async_insert_timeout(&msg->wdata);
1769
1770 /* Leave the async_futex locked when entering this function */
1771 fibril_switch(FIBRIL_TO_MANAGER);
1772
1773 /* Futex is up automatically after fibril_switch */
1774
1775 if (!msg->done)
1776 return ETIMEOUT;
1777
1778done:
1779 if (retval)
1780 *retval = msg->retval;
1781
1782 amsg_destroy(msg);
1783
1784 return 0;
1785}
1786
1787/** Discard the message / reply on arrival.
1788 *
1789 * The message will be marked to be discarded once the reply arrives in
1790 * reply_received(). It is not allowed to call async_wait_for() or
1791 * async_wait_timeout() on this message after a call to this function.
1792 *
1793 * @param amsgid Hash of the message to forget.
1794 */
1795void async_forget(aid_t amsgid)
1796{
1797 amsg_t *msg = (amsg_t *) amsgid;
1798
1799 assert(msg);
1800 assert(!msg->forget);
1801 assert(!msg->destroyed);
1802
1803 futex_down(&async_futex);
1804
1805 if (msg->done) {
1806 amsg_destroy(msg);
1807 } else {
1808 msg->dataptr = NULL;
1809 msg->forget = true;
1810 }
1811
1812 futex_up(&async_futex);
1813}
1814
1815/** Wait for specified time.
1816 *
1817 * The current fibril is suspended but the thread continues to execute.
1818 *
1819 * @param timeout Duration of the wait in microseconds.
1820 *
1821 */
1822void async_usleep(suseconds_t timeout)
1823{
1824 amsg_t *msg = amsg_create();
1825 if (!msg)
1826 return;
1827
1828 msg->wdata.fid = fibril_get_id();
1829
1830 getuptime(&msg->wdata.to_event.expires);
1831 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1832
1833 futex_down(&async_futex);
1834
1835 async_insert_timeout(&msg->wdata);
1836
1837 /* Leave the async_futex locked when entering this function */
1838 fibril_switch(FIBRIL_TO_MANAGER);
1839
1840 /* Futex is up automatically after fibril_switch() */
1841
1842 amsg_destroy(msg);
1843}
1844
1845/** Pseudo-synchronous message sending - fast version.
1846 *
1847 * Send message asynchronously and return only after the reply arrives.
1848 *
1849 * This function can only transfer 4 register payload arguments. For
1850 * transferring more arguments, see the slower async_req_slow().
1851 *
1852 * @param exch Exchange for sending the message.
1853 * @param imethod Interface and method of the call.
1854 * @param arg1 Service-defined payload argument.
1855 * @param arg2 Service-defined payload argument.
1856 * @param arg3 Service-defined payload argument.
1857 * @param arg4 Service-defined payload argument.
1858 * @param r1 If non-NULL, storage for the 1st reply argument.
1859 * @param r2 If non-NULL, storage for the 2nd reply argument.
1860 * @param r3 If non-NULL, storage for the 3rd reply argument.
1861 * @param r4 If non-NULL, storage for the 4th reply argument.
1862 * @param r5 If non-NULL, storage for the 5th reply argument.
1863 *
1864 * @return Return code of the reply or a negative error code.
1865 *
1866 */
1867sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1868 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1869 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1870{
1871 if (exch == NULL)
1872 return ENOENT;
1873
1874 ipc_call_t result;
1875 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1876 &result);
1877
1878 sysarg_t rc;
1879 async_wait_for(aid, &rc);
1880
1881 if (r1)
1882 *r1 = IPC_GET_ARG1(result);
1883
1884 if (r2)
1885 *r2 = IPC_GET_ARG2(result);
1886
1887 if (r3)
1888 *r3 = IPC_GET_ARG3(result);
1889
1890 if (r4)
1891 *r4 = IPC_GET_ARG4(result);
1892
1893 if (r5)
1894 *r5 = IPC_GET_ARG5(result);
1895
1896 return rc;
1897}
1898
1899/** Pseudo-synchronous message sending - slow version.
1900 *
1901 * Send message asynchronously and return only after the reply arrives.
1902 *
1903 * @param exch Exchange for sending the message.
1904 * @param imethod Interface and method of the call.
1905 * @param arg1 Service-defined payload argument.
1906 * @param arg2 Service-defined payload argument.
1907 * @param arg3 Service-defined payload argument.
1908 * @param arg4 Service-defined payload argument.
1909 * @param arg5 Service-defined payload argument.
1910 * @param r1 If non-NULL, storage for the 1st reply argument.
1911 * @param r2 If non-NULL, storage for the 2nd reply argument.
1912 * @param r3 If non-NULL, storage for the 3rd reply argument.
1913 * @param r4 If non-NULL, storage for the 4th reply argument.
1914 * @param r5 If non-NULL, storage for the 5th reply argument.
1915 *
1916 * @return Return code of the reply or a negative error code.
1917 *
1918 */
1919sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1920 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1921 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1922{
1923 if (exch == NULL)
1924 return ENOENT;
1925
1926 ipc_call_t result;
1927 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1928 &result);
1929
1930 sysarg_t rc;
1931 async_wait_for(aid, &rc);
1932
1933 if (r1)
1934 *r1 = IPC_GET_ARG1(result);
1935
1936 if (r2)
1937 *r2 = IPC_GET_ARG2(result);
1938
1939 if (r3)
1940 *r3 = IPC_GET_ARG3(result);
1941
1942 if (r4)
1943 *r4 = IPC_GET_ARG4(result);
1944
1945 if (r5)
1946 *r5 = IPC_GET_ARG5(result);
1947
1948 return rc;
1949}
1950
1951void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1952{
1953 if (exch != NULL)
1954 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
1955}
1956
1957void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1958{
1959 if (exch != NULL)
1960 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
1961}
1962
1963void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1964 sysarg_t arg2)
1965{
1966 if (exch != NULL)
1967 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
1968}
1969
1970void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1971 sysarg_t arg2, sysarg_t arg3)
1972{
1973 if (exch != NULL)
1974 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1975 NULL);
1976}
1977
1978void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1979 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1980{
1981 if (exch != NULL)
1982 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1983 NULL, NULL);
1984}
1985
1986void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1987 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1988{
1989 if (exch != NULL)
1990 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
1991 arg5, NULL, NULL);
1992}
1993
1994sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
1995{
1996 return ipc_answer_0(callid, retval);
1997}
1998
1999sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
2000{
2001 return ipc_answer_1(callid, retval, arg1);
2002}
2003
2004sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2005 sysarg_t arg2)
2006{
2007 return ipc_answer_2(callid, retval, arg1, arg2);
2008}
2009
2010sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2011 sysarg_t arg2, sysarg_t arg3)
2012{
2013 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
2014}
2015
2016sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2017 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2018{
2019 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
2020}
2021
2022sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2023 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2024{
2025 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
2026}
2027
2028int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
2029 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2030{
2031 if (exch == NULL)
2032 return ENOENT;
2033
2034 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
2035}
2036
2037int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
2038 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2039 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2040{
2041 if (exch == NULL)
2042 return ENOENT;
2043
2044 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
2045 arg4, arg5, mode);
2046}
2047
2048/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2049 *
2050 * Ask through phone for a new connection to some service.
2051 *
2052 * @param exch Exchange for sending the message.
2053 * @param arg1 User defined argument.
2054 * @param arg2 User defined argument.
2055 * @param arg3 User defined argument.
2056 *
2057 * @return Zero on success or a negative error code.
2058 *
2059 */
2060int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2061 sysarg_t arg3)
2062{
2063 if (exch == NULL)
2064 return ENOENT;
2065
2066 ipc_call_t answer;
2067 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2068 &answer);
2069
2070 sysarg_t rc;
2071 async_wait_for(req, &rc);
2072 if (rc != EOK)
2073 return (int) rc;
2074
2075 return EOK;
2076}
2077
2078static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2079 sysarg_t arg3, sysarg_t arg4)
2080{
2081 ipc_call_t result;
2082
2083 amsg_t *msg = amsg_create();
2084 if (!msg)
2085 return ENOENT;
2086
2087 msg->dataptr = &result;
2088 msg->wdata.active = true;
2089
2090 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2091 msg, reply_received);
2092
2093 sysarg_t rc;
2094 async_wait_for((aid_t) msg, &rc);
2095
2096 if (rc != EOK)
2097 return rc;
2098
2099 return (int) IPC_GET_ARG5(result);
2100}
2101
2102/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2103 *
2104 * Ask through for a new connection to some service.
2105 *
2106 * @param mgmt Exchange management style.
2107 * @param exch Exchange for sending the message.
2108 * @param arg1 User defined argument.
2109 * @param arg2 User defined argument.
2110 * @param arg3 User defined argument.
2111 *
2112 * @return New session on success or NULL on error.
2113 *
2114 */
2115async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2116 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2117{
2118 if (exch == NULL) {
2119 errno = ENOENT;
2120 return NULL;
2121 }
2122
2123 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2124 if (sess == NULL) {
2125 errno = ENOMEM;
2126 return NULL;
2127 }
2128
2129 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2130 0);
2131 if (phone < 0) {
2132 errno = phone;
2133 free(sess);
2134 return NULL;
2135 }
2136
2137 sess->iface = 0;
2138 sess->mgmt = mgmt;
2139 sess->phone = phone;
2140 sess->arg1 = arg1;
2141 sess->arg2 = arg2;
2142 sess->arg3 = arg3;
2143
2144 fibril_mutex_initialize(&sess->remote_state_mtx);
2145 sess->remote_state_data = NULL;
2146
2147 list_initialize(&sess->exch_list);
2148 fibril_mutex_initialize(&sess->mutex);
2149 atomic_set(&sess->refcnt, 0);
2150
2151 return sess;
2152}
2153
2154/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2155 *
2156 * Ask through phone for a new connection to some service and block until
2157 * success.
2158 *
2159 * @param exch Exchange for sending the message.
2160 * @param iface Connection interface.
2161 * @param arg2 User defined argument.
2162 * @param arg3 User defined argument.
2163 *
2164 * @return New session on success or NULL on error.
2165 *
2166 */
2167async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2168 sysarg_t arg2, sysarg_t arg3)
2169{
2170 if (exch == NULL) {
2171 errno = ENOENT;
2172 return NULL;
2173 }
2174
2175 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2176 if (sess == NULL) {
2177 errno = ENOMEM;
2178 return NULL;
2179 }
2180
2181 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2182 arg3, 0);
2183 if (phone < 0) {
2184 errno = phone;
2185 free(sess);
2186 return NULL;
2187 }
2188
2189 sess->iface = iface;
2190 sess->phone = phone;
2191 sess->arg1 = iface;
2192 sess->arg2 = arg2;
2193 sess->arg3 = arg3;
2194
2195 fibril_mutex_initialize(&sess->remote_state_mtx);
2196 sess->remote_state_data = NULL;
2197
2198 list_initialize(&sess->exch_list);
2199 fibril_mutex_initialize(&sess->mutex);
2200 atomic_set(&sess->refcnt, 0);
2201
2202 return sess;
2203}
2204
2205/** Set arguments for new connections.
2206 *
2207 * FIXME This is an ugly hack to work around the problem that parallel
2208 * exchanges are implemented using parallel connections. When we create
2209 * a callback session, the framework does not know arguments for the new
2210 * connections.
2211 *
2212 * The proper solution seems to be to implement parallel exchanges using
2213 * tagging.
2214 */
2215void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2216 sysarg_t arg3)
2217{
2218 sess->arg1 = arg1;
2219 sess->arg2 = arg2;
2220 sess->arg3 = arg3;
2221}
2222
2223/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2224 *
2225 * Ask through phone for a new connection to some service and block until
2226 * success.
2227 *
2228 * @param mgmt Exchange management style.
2229 * @param exch Exchange for sending the message.
2230 * @param arg1 User defined argument.
2231 * @param arg2 User defined argument.
2232 * @param arg3 User defined argument.
2233 *
2234 * @return New session on success or NULL on error.
2235 *
2236 */
2237async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2238 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2239{
2240 if (exch == NULL) {
2241 errno = ENOENT;
2242 return NULL;
2243 }
2244
2245 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2246 if (sess == NULL) {
2247 errno = ENOMEM;
2248 return NULL;
2249 }
2250
2251 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2252 IPC_FLAG_BLOCKING);
2253
2254 if (phone < 0) {
2255 errno = phone;
2256 free(sess);
2257 return NULL;
2258 }
2259
2260 sess->iface = 0;
2261 sess->mgmt = mgmt;
2262 sess->phone = phone;
2263 sess->arg1 = arg1;
2264 sess->arg2 = arg2;
2265 sess->arg3 = arg3;
2266
2267 fibril_mutex_initialize(&sess->remote_state_mtx);
2268 sess->remote_state_data = NULL;
2269
2270 list_initialize(&sess->exch_list);
2271 fibril_mutex_initialize(&sess->mutex);
2272 atomic_set(&sess->refcnt, 0);
2273
2274 return sess;
2275}
2276
2277/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2278 *
2279 * Ask through phone for a new connection to some service and block until
2280 * success.
2281 *
2282 * @param exch Exchange for sending the message.
2283 * @param iface Connection interface.
2284 * @param arg2 User defined argument.
2285 * @param arg3 User defined argument.
2286 *
2287 * @return New session on success or NULL on error.
2288 *
2289 */
2290async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2291 sysarg_t arg2, sysarg_t arg3)
2292{
2293 if (exch == NULL) {
2294 errno = ENOENT;
2295 return NULL;
2296 }
2297
2298 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2299 if (sess == NULL) {
2300 errno = ENOMEM;
2301 return NULL;
2302 }
2303
2304 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2305 arg3, IPC_FLAG_BLOCKING);
2306 if (phone < 0) {
2307 errno = phone;
2308 free(sess);
2309 return NULL;
2310 }
2311
2312 sess->iface = iface;
2313 sess->phone = phone;
2314 sess->arg1 = iface;
2315 sess->arg2 = arg2;
2316 sess->arg3 = arg3;
2317
2318 fibril_mutex_initialize(&sess->remote_state_mtx);
2319 sess->remote_state_data = NULL;
2320
2321 list_initialize(&sess->exch_list);
2322 fibril_mutex_initialize(&sess->mutex);
2323 atomic_set(&sess->refcnt, 0);
2324
2325 return sess;
2326}
2327
2328/** Connect to a task specified by id.
2329 *
2330 */
2331async_sess_t *async_connect_kbox(task_id_t id)
2332{
2333 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2334 if (sess == NULL) {
2335 errno = ENOMEM;
2336 return NULL;
2337 }
2338
2339 int phone = ipc_connect_kbox(id);
2340 if (phone < 0) {
2341 errno = phone;
2342 free(sess);
2343 return NULL;
2344 }
2345
2346 sess->iface = 0;
2347 sess->mgmt = EXCHANGE_ATOMIC;
2348 sess->phone = phone;
2349 sess->arg1 = 0;
2350 sess->arg2 = 0;
2351 sess->arg3 = 0;
2352
2353 fibril_mutex_initialize(&sess->remote_state_mtx);
2354 sess->remote_state_data = NULL;
2355
2356 list_initialize(&sess->exch_list);
2357 fibril_mutex_initialize(&sess->mutex);
2358 atomic_set(&sess->refcnt, 0);
2359
2360 return sess;
2361}
2362
2363static int async_hangup_internal(int phone)
2364{
2365 return ipc_hangup(phone);
2366}
2367
2368/** Wrapper for ipc_hangup.
2369 *
2370 * @param sess Session to hung up.
2371 *
2372 * @return Zero on success or a negative error code.
2373 *
2374 */
2375int async_hangup(async_sess_t *sess)
2376{
2377 async_exch_t *exch;
2378
2379 assert(sess);
2380
2381 if (atomic_get(&sess->refcnt) > 0)
2382 return EBUSY;
2383
2384 fibril_mutex_lock(&async_sess_mutex);
2385
2386 int rc = async_hangup_internal(sess->phone);
2387
2388 while (!list_empty(&sess->exch_list)) {
2389 exch = (async_exch_t *)
2390 list_get_instance(list_first(&sess->exch_list),
2391 async_exch_t, sess_link);
2392
2393 list_remove(&exch->sess_link);
2394 list_remove(&exch->global_link);
2395 async_hangup_internal(exch->phone);
2396 free(exch);
2397 }
2398
2399 free(sess);
2400
2401 fibril_mutex_unlock(&async_sess_mutex);
2402
2403 return rc;
2404}
2405
2406/** Interrupt one thread of this task from waiting for IPC. */
2407void async_poke(void)
2408{
2409 ipc_poke();
2410}
2411
2412/** Start new exchange in a session.
2413 *
2414 * @param session Session.
2415 *
2416 * @return New exchange or NULL on error.
2417 *
2418 */
2419async_exch_t *async_exchange_begin(async_sess_t *sess)
2420{
2421 if (sess == NULL)
2422 return NULL;
2423
2424 exch_mgmt_t mgmt = sess->mgmt;
2425 if (sess->iface != 0)
2426 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2427
2428 async_exch_t *exch = NULL;
2429
2430 fibril_mutex_lock(&async_sess_mutex);
2431
2432 if (!list_empty(&sess->exch_list)) {
2433 /*
2434 * There are inactive exchanges in the session.
2435 */
2436 exch = (async_exch_t *)
2437 list_get_instance(list_first(&sess->exch_list),
2438 async_exch_t, sess_link);
2439
2440 list_remove(&exch->sess_link);
2441 list_remove(&exch->global_link);
2442 } else {
2443 /*
2444 * There are no available exchanges in the session.
2445 */
2446
2447 if ((mgmt == EXCHANGE_ATOMIC) ||
2448 (mgmt == EXCHANGE_SERIALIZE)) {
2449 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2450 if (exch != NULL) {
2451 link_initialize(&exch->sess_link);
2452 link_initialize(&exch->global_link);
2453 exch->sess = sess;
2454 exch->phone = sess->phone;
2455 }
2456 } else if (mgmt == EXCHANGE_PARALLEL) {
2457 int phone;
2458
2459 retry:
2460 /*
2461 * Make a one-time attempt to connect a new data phone.
2462 */
2463 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2464 sess->arg2, sess->arg3, 0);
2465 if (phone >= 0) {
2466 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2467 if (exch != NULL) {
2468 link_initialize(&exch->sess_link);
2469 link_initialize(&exch->global_link);
2470 exch->sess = sess;
2471 exch->phone = phone;
2472 } else
2473 async_hangup_internal(phone);
2474 } else if (!list_empty(&inactive_exch_list)) {
2475 /*
2476 * We did not manage to connect a new phone. But we
2477 * can try to close some of the currently inactive
2478 * connections in other sessions and try again.
2479 */
2480 exch = (async_exch_t *)
2481 list_get_instance(list_first(&inactive_exch_list),
2482 async_exch_t, global_link);
2483
2484 list_remove(&exch->sess_link);
2485 list_remove(&exch->global_link);
2486 async_hangup_internal(exch->phone);
2487 free(exch);
2488 goto retry;
2489 } else {
2490 /*
2491 * Wait for a phone to become available.
2492 */
2493 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2494 goto retry;
2495 }
2496 }
2497 }
2498
2499 fibril_mutex_unlock(&async_sess_mutex);
2500
2501 if (exch != NULL) {
2502 atomic_inc(&sess->refcnt);
2503
2504 if (mgmt == EXCHANGE_SERIALIZE)
2505 fibril_mutex_lock(&sess->mutex);
2506 }
2507
2508 return exch;
2509}
2510
2511/** Finish an exchange.
2512 *
2513 * @param exch Exchange to finish.
2514 *
2515 */
2516void async_exchange_end(async_exch_t *exch)
2517{
2518 if (exch == NULL)
2519 return;
2520
2521 async_sess_t *sess = exch->sess;
2522 assert(sess != NULL);
2523
2524 exch_mgmt_t mgmt = sess->mgmt;
2525 if (sess->iface != 0)
2526 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2527
2528 atomic_dec(&sess->refcnt);
2529
2530 if (mgmt == EXCHANGE_SERIALIZE)
2531 fibril_mutex_unlock(&sess->mutex);
2532
2533 fibril_mutex_lock(&async_sess_mutex);
2534
2535 list_append(&exch->sess_link, &sess->exch_list);
2536 list_append(&exch->global_link, &inactive_exch_list);
2537 fibril_condvar_signal(&avail_phone_cv);
2538
2539 fibril_mutex_unlock(&async_sess_mutex);
2540}
2541
2542/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2543 *
2544 * @param exch Exchange for sending the message.
2545 * @param size Size of the destination address space area.
2546 * @param arg User defined argument.
2547 * @param flags Storage for the received flags. Can be NULL.
2548 * @param dst Address of the storage for the destination address space area
2549 * base address. Cannot be NULL.
2550 *
2551 * @return Zero on success or a negative error code from errno.h.
2552 *
2553 */
2554int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2555 unsigned int *flags, void **dst)
2556{
2557 if (exch == NULL)
2558 return ENOENT;
2559
2560 sysarg_t _flags = 0;
2561 sysarg_t _dst = (sysarg_t) -1;
2562 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2563 arg, NULL, &_flags, NULL, &_dst);
2564
2565 if (flags)
2566 *flags = (unsigned int) _flags;
2567
2568 *dst = (void *) _dst;
2569 return res;
2570}
2571
2572/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2573 *
2574 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2575 * calls so that the user doesn't have to remember the meaning of each IPC
2576 * argument.
2577 *
2578 * So far, this wrapper is to be used from within a connection fibril.
2579 *
2580 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2581 * @param size Destination address space area size.
2582 *
2583 * @return True on success, false on failure.
2584 *
2585 */
2586bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2587{
2588 assert(callid);
2589 assert(size);
2590
2591 ipc_call_t data;
2592 *callid = async_get_call(&data);
2593
2594 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2595 return false;
2596
2597 *size = (size_t) IPC_GET_ARG1(data);
2598 return true;
2599}
2600
2601/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2602 *
2603 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2604 * calls so that the user doesn't have to remember the meaning of each IPC
2605 * argument.
2606 *
2607 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2608 * @param src Source address space base.
2609 * @param flags Flags to be used for sharing. Bits can be only cleared.
2610 *
2611 * @return Zero on success or a value from @ref errno.h on failure.
2612 *
2613 */
2614int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2615{
2616 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2617 (sysarg_t) __entry);
2618}
2619
2620/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2621 *
2622 * @param exch Exchange for sending the message.
2623 * @param src Source address space area base address.
2624 * @param flags Flags to be used for sharing. Bits can be only cleared.
2625 *
2626 * @return Zero on success or a negative error code from errno.h.
2627 *
2628 */
2629int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2630{
2631 if (exch == NULL)
2632 return ENOENT;
2633
2634 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2635 (sysarg_t) flags);
2636}
2637
2638/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2639 *
2640 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2641 * calls so that the user doesn't have to remember the meaning of each IPC
2642 * argument.
2643 *
2644 * So far, this wrapper is to be used from within a connection fibril.
2645 *
2646 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2647 * @param size Storage for the source address space area size.
2648 * @param flags Storage for the sharing flags.
2649 *
2650 * @return True on success, false on failure.
2651 *
2652 */
2653bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2654{
2655 assert(callid);
2656 assert(size);
2657 assert(flags);
2658
2659 ipc_call_t data;
2660 *callid = async_get_call(&data);
2661
2662 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2663 return false;
2664
2665 *size = (size_t) IPC_GET_ARG2(data);
2666 *flags = (unsigned int) IPC_GET_ARG3(data);
2667 return true;
2668}
2669
2670/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2671 *
2672 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2673 * calls so that the user doesn't have to remember the meaning of each IPC
2674 * argument.
2675 *
2676 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2677 * @param dst Address of the storage for the destination address space area
2678 * base address.
2679 *
2680 * @return Zero on success or a value from @ref errno.h on failure.
2681 *
2682 */
2683int async_share_out_finalize(ipc_callid_t callid, void **dst)
2684{
2685 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2686}
2687
2688/** Start IPC_M_DATA_READ using the async framework.
2689 *
2690 * @param exch Exchange for sending the message.
2691 * @param dst Address of the beginning of the destination buffer.
2692 * @param size Size of the destination buffer (in bytes).
2693 * @param dataptr Storage of call data (arg 2 holds actual data size).
2694 *
2695 * @return Hash of the sent message or 0 on error.
2696 *
2697 */
2698aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2699 ipc_call_t *dataptr)
2700{
2701 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2702 (sysarg_t) size, dataptr);
2703}
2704
2705/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2706 *
2707 * @param exch Exchange for sending the message.
2708 * @param dst Address of the beginning of the destination buffer.
2709 * @param size Size of the destination buffer.
2710 *
2711 * @return Zero on success or a negative error code from errno.h.
2712 *
2713 */
2714int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2715{
2716 if (exch == NULL)
2717 return ENOENT;
2718
2719 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2720 (sysarg_t) size);
2721}
2722
2723/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2724 *
2725 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2726 * calls so that the user doesn't have to remember the meaning of each IPC
2727 * argument.
2728 *
2729 * So far, this wrapper is to be used from within a connection fibril.
2730 *
2731 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2732 * @param size Storage for the maximum size. Can be NULL.
2733 *
2734 * @return True on success, false on failure.
2735 *
2736 */
2737bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2738{
2739 ipc_call_t data;
2740 return async_data_read_receive_call(callid, &data, size);
2741}
2742
2743/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2744 *
2745 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2746 * calls so that the user doesn't have to remember the meaning of each IPC
2747 * argument.
2748 *
2749 * So far, this wrapper is to be used from within a connection fibril.
2750 *
2751 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2752 * @param size Storage for the maximum size. Can be NULL.
2753 *
2754 * @return True on success, false on failure.
2755 *
2756 */
2757bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2758 size_t *size)
2759{
2760 assert(callid);
2761 assert(data);
2762
2763 *callid = async_get_call(data);
2764
2765 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2766 return false;
2767
2768 if (size)
2769 *size = (size_t) IPC_GET_ARG2(*data);
2770
2771 return true;
2772}
2773
2774/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2775 *
2776 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2777 * calls so that the user doesn't have to remember the meaning of each IPC
2778 * argument.
2779 *
2780 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2781 * @param src Source address for the IPC_M_DATA_READ call.
2782 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2783 * the maximum size announced by the sender.
2784 *
2785 * @return Zero on success or a value from @ref errno.h on failure.
2786 *
2787 */
2788int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2789{
2790 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2791}
2792
2793/** Wrapper for forwarding any read request
2794 *
2795 */
2796int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2797 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2798 ipc_call_t *dataptr)
2799{
2800 if (exch == NULL)
2801 return ENOENT;
2802
2803 ipc_callid_t callid;
2804 if (!async_data_read_receive(&callid, NULL)) {
2805 ipc_answer_0(callid, EINVAL);
2806 return EINVAL;
2807 }
2808
2809 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2810 dataptr);
2811 if (msg == 0) {
2812 ipc_answer_0(callid, EINVAL);
2813 return EINVAL;
2814 }
2815
2816 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2817 IPC_FF_ROUTE_FROM_ME);
2818 if (retval != EOK) {
2819 async_forget(msg);
2820 ipc_answer_0(callid, retval);
2821 return retval;
2822 }
2823
2824 sysarg_t rc;
2825 async_wait_for(msg, &rc);
2826
2827 return (int) rc;
2828}
2829
2830/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2831 *
2832 * @param exch Exchange for sending the message.
2833 * @param src Address of the beginning of the source buffer.
2834 * @param size Size of the source buffer.
2835 *
2836 * @return Zero on success or a negative error code from errno.h.
2837 *
2838 */
2839int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2840{
2841 if (exch == NULL)
2842 return ENOENT;
2843
2844 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2845 (sysarg_t) size);
2846}
2847
2848/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2849 *
2850 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2851 * calls so that the user doesn't have to remember the meaning of each IPC
2852 * argument.
2853 *
2854 * So far, this wrapper is to be used from within a connection fibril.
2855 *
2856 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2857 * @param size Storage for the suggested size. May be NULL.
2858 *
2859 * @return True on success, false on failure.
2860 *
2861 */
2862bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2863{
2864 ipc_call_t data;
2865 return async_data_write_receive_call(callid, &data, size);
2866}
2867
2868/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2869 *
2870 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2871 * calls so that the user doesn't have to remember the meaning of each IPC
2872 * argument.
2873 *
2874 * So far, this wrapper is to be used from within a connection fibril.
2875 *
2876 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2877 * @param data Storage for the ipc call data.
2878 * @param size Storage for the suggested size. May be NULL.
2879 *
2880 * @return True on success, false on failure.
2881 *
2882 */
2883bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2884 size_t *size)
2885{
2886 assert(callid);
2887 assert(data);
2888
2889 *callid = async_get_call(data);
2890
2891 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2892 return false;
2893
2894 if (size)
2895 *size = (size_t) IPC_GET_ARG2(*data);
2896
2897 return true;
2898}
2899
2900/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2901 *
2902 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2903 * calls so that the user doesn't have to remember the meaning of each IPC
2904 * argument.
2905 *
2906 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2907 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2908 * @param size Final size for the IPC_M_DATA_WRITE call.
2909 *
2910 * @return Zero on success or a value from @ref errno.h on failure.
2911 *
2912 */
2913int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2914{
2915 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2916}
2917
2918/** Wrapper for receiving binary data or strings
2919 *
2920 * This wrapper only makes it more comfortable to use async_data_write_*
2921 * functions to receive binary data or strings.
2922 *
2923 * @param data Pointer to data pointer (which should be later disposed
2924 * by free()). If the operation fails, the pointer is not
2925 * touched.
2926 * @param nullterm If true then the received data is always zero terminated.
2927 * This also causes to allocate one extra byte beyond the
2928 * raw transmitted data.
2929 * @param min_size Minimum size (in bytes) of the data to receive.
2930 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2931 * no limit.
2932 * @param granulariy If non-zero then the size of the received data has to
2933 * be divisible by this value.
2934 * @param received If not NULL, the size of the received data is stored here.
2935 *
2936 * @return Zero on success or a value from @ref errno.h on failure.
2937 *
2938 */
2939int async_data_write_accept(void **data, const bool nullterm,
2940 const size_t min_size, const size_t max_size, const size_t granularity,
2941 size_t *received)
2942{
2943 assert(data);
2944
2945 ipc_callid_t callid;
2946 size_t size;
2947 if (!async_data_write_receive(&callid, &size)) {
2948 ipc_answer_0(callid, EINVAL);
2949 return EINVAL;
2950 }
2951
2952 if (size < min_size) {
2953 ipc_answer_0(callid, EINVAL);
2954 return EINVAL;
2955 }
2956
2957 if ((max_size > 0) && (size > max_size)) {
2958 ipc_answer_0(callid, EINVAL);
2959 return EINVAL;
2960 }
2961
2962 if ((granularity > 0) && ((size % granularity) != 0)) {
2963 ipc_answer_0(callid, EINVAL);
2964 return EINVAL;
2965 }
2966
2967 void *arg_data;
2968
2969 if (nullterm)
2970 arg_data = malloc(size + 1);
2971 else
2972 arg_data = malloc(size);
2973
2974 if (arg_data == NULL) {
2975 ipc_answer_0(callid, ENOMEM);
2976 return ENOMEM;
2977 }
2978
2979 int rc = async_data_write_finalize(callid, arg_data, size);
2980 if (rc != EOK) {
2981 free(arg_data);
2982 return rc;
2983 }
2984
2985 if (nullterm)
2986 ((char *) arg_data)[size] = 0;
2987
2988 *data = arg_data;
2989 if (received != NULL)
2990 *received = size;
2991
2992 return EOK;
2993}
2994
2995/** Wrapper for voiding any data that is about to be received
2996 *
2997 * This wrapper can be used to void any pending data
2998 *
2999 * @param retval Error value from @ref errno.h to be returned to the caller.
3000 *
3001 */
3002void async_data_write_void(sysarg_t retval)
3003{
3004 ipc_callid_t callid;
3005 async_data_write_receive(&callid, NULL);
3006 ipc_answer_0(callid, retval);
3007}
3008
3009/** Wrapper for forwarding any data that is about to be received
3010 *
3011 */
3012int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3013 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3014 ipc_call_t *dataptr)
3015{
3016 if (exch == NULL)
3017 return ENOENT;
3018
3019 ipc_callid_t callid;
3020 if (!async_data_write_receive(&callid, NULL)) {
3021 ipc_answer_0(callid, EINVAL);
3022 return EINVAL;
3023 }
3024
3025 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3026 dataptr);
3027 if (msg == 0) {
3028 ipc_answer_0(callid, EINVAL);
3029 return EINVAL;
3030 }
3031
3032 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
3033 IPC_FF_ROUTE_FROM_ME);
3034 if (retval != EOK) {
3035 async_forget(msg);
3036 ipc_answer_0(callid, retval);
3037 return retval;
3038 }
3039
3040 sysarg_t rc;
3041 async_wait_for(msg, &rc);
3042
3043 return (int) rc;
3044}
3045
3046/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3047 *
3048 * If the current call is IPC_M_CONNECT_TO_ME then a new
3049 * async session is created for the accepted phone.
3050 *
3051 * @param mgmt Exchange management style.
3052 *
3053 * @return New async session.
3054 * @return NULL on failure.
3055 *
3056 */
3057async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3058{
3059 /* Accept the phone */
3060 ipc_call_t call;
3061 ipc_callid_t callid = async_get_call(&call);
3062 int phone = (int) IPC_GET_ARG5(call);
3063
3064 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
3065 (phone < 0)) {
3066 async_answer_0(callid, EINVAL);
3067 return NULL;
3068 }
3069
3070 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3071 if (sess == NULL) {
3072 async_answer_0(callid, ENOMEM);
3073 return NULL;
3074 }
3075
3076 sess->iface = 0;
3077 sess->mgmt = mgmt;
3078 sess->phone = phone;
3079 sess->arg1 = 0;
3080 sess->arg2 = 0;
3081 sess->arg3 = 0;
3082
3083 fibril_mutex_initialize(&sess->remote_state_mtx);
3084 sess->remote_state_data = NULL;
3085
3086 list_initialize(&sess->exch_list);
3087 fibril_mutex_initialize(&sess->mutex);
3088 atomic_set(&sess->refcnt, 0);
3089
3090 /* Acknowledge the connected phone */
3091 async_answer_0(callid, EOK);
3092
3093 return sess;
3094}
3095
3096/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3097 *
3098 * If the call is IPC_M_CONNECT_TO_ME then a new
3099 * async session is created. However, the phone is
3100 * not accepted automatically.
3101 *
3102 * @param mgmt Exchange management style.
3103 * @param call Call data.
3104 *
3105 * @return New async session.
3106 * @return NULL on failure.
3107 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3108 *
3109 */
3110async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3111{
3112 int phone = (int) IPC_GET_ARG5(*call);
3113
3114 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
3115 (phone < 0))
3116 return NULL;
3117
3118 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3119 if (sess == NULL)
3120 return NULL;
3121
3122 sess->iface = 0;
3123 sess->mgmt = mgmt;
3124 sess->phone = phone;
3125 sess->arg1 = 0;
3126 sess->arg2 = 0;
3127 sess->arg3 = 0;
3128
3129 fibril_mutex_initialize(&sess->remote_state_mtx);
3130 sess->remote_state_data = NULL;
3131
3132 list_initialize(&sess->exch_list);
3133 fibril_mutex_initialize(&sess->mutex);
3134 atomic_set(&sess->refcnt, 0);
3135
3136 return sess;
3137}
3138
3139int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3140 sysarg_t arg3, async_exch_t *other_exch)
3141{
3142 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3143 arg1, arg2, arg3, 0, other_exch->phone);
3144}
3145
3146bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
3147 sysarg_t *arg2, sysarg_t *arg3)
3148{
3149 assert(callid);
3150
3151 ipc_call_t call;
3152 *callid = async_get_call(&call);
3153
3154 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3155 return false;
3156
3157 if (arg1)
3158 *arg1 = IPC_GET_ARG1(call);
3159 if (arg2)
3160 *arg2 = IPC_GET_ARG2(call);
3161 if (arg3)
3162 *arg3 = IPC_GET_ARG3(call);
3163
3164 return true;
3165}
3166
3167int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
3168{
3169 return ipc_answer_1(callid, EOK, other_exch->phone);
3170}
3171
3172/** Lock and get session remote state
3173 *
3174 * Lock and get the local replica of the remote state
3175 * in stateful sessions. The call should be paired
3176 * with async_remote_state_release*().
3177 *
3178 * @param[in] sess Stateful session.
3179 *
3180 * @return Local replica of the remote state.
3181 *
3182 */
3183void *async_remote_state_acquire(async_sess_t *sess)
3184{
3185 fibril_mutex_lock(&sess->remote_state_mtx);
3186 return sess->remote_state_data;
3187}
3188
3189/** Update the session remote state
3190 *
3191 * Update the local replica of the remote state
3192 * in stateful sessions. The remote state must
3193 * be already locked.
3194 *
3195 * @param[in] sess Stateful session.
3196 * @param[in] state New local replica of the remote state.
3197 *
3198 */
3199void async_remote_state_update(async_sess_t *sess, void *state)
3200{
3201 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3202 sess->remote_state_data = state;
3203}
3204
3205/** Release the session remote state
3206 *
3207 * Unlock the local replica of the remote state
3208 * in stateful sessions.
3209 *
3210 * @param[in] sess Stateful session.
3211 *
3212 */
3213void async_remote_state_release(async_sess_t *sess)
3214{
3215 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3216
3217 fibril_mutex_unlock(&sess->remote_state_mtx);
3218}
3219
3220/** Release the session remote state and end an exchange
3221 *
3222 * Unlock the local replica of the remote state
3223 * in stateful sessions. This is convenience function
3224 * which gets the session pointer from the exchange
3225 * and also ends the exchange.
3226 *
3227 * @param[in] exch Stateful session's exchange.
3228 *
3229 */
3230void async_remote_state_release_exchange(async_exch_t *exch)
3231{
3232 if (exch == NULL)
3233 return;
3234
3235 async_sess_t *sess = exch->sess;
3236 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3237
3238 async_exchange_end(exch);
3239 fibril_mutex_unlock(&sess->remote_state_mtx);
3240}
3241
3242void *async_as_area_create(void *base, size_t size, unsigned int flags,
3243 async_sess_t *pager, sysarg_t id1, sysarg_t id2, sysarg_t id3)
3244{
3245 as_area_pager_info_t pager_info = {
3246 .pager = pager->phone,
3247 .id1 = id1,
3248 .id2 = id2,
3249 .id3 = id3
3250 };
3251 return as_area_create(base, size, flags, &pager_info);
3252}
3253
3254/** @}
3255 */
Note: See TracBrowser for help on using the repository browser.