source: mainline/uspace/lib/c/generic/async.c@ 24abb85d

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 24abb85d was 24abb85d, checked in by Jakub Jermar <jakub@…>, 8 years ago

Remove SYS_DEVICE_ASSIGN_DEVNO

  • Property mode set to 100644
File size: 81.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/list.h>
109#include <assert.h>
110#include <errno.h>
111#include <sys/time.h>
112#include <libarch/barrier.h>
113#include <stdbool.h>
114#include <malloc.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <as.h>
119#include <abi/mm/as.h>
120#include "private/libc.h"
121
122/** Session data */
123struct async_sess {
124 /** List of inactive exchanges */
125 list_t exch_list;
126
127 /** Session interface */
128 iface_t iface;
129
130 /** Exchange management style */
131 exch_mgmt_t mgmt;
132
133 /** Session identification */
134 int phone;
135
136 /** First clone connection argument */
137 sysarg_t arg1;
138
139 /** Second clone connection argument */
140 sysarg_t arg2;
141
142 /** Third clone connection argument */
143 sysarg_t arg3;
144
145 /** Exchange mutex */
146 fibril_mutex_t mutex;
147
148 /** Number of opened exchanges */
149 atomic_t refcnt;
150
151 /** Mutex for stateful connections */
152 fibril_mutex_t remote_state_mtx;
153
154 /** Data for stateful connections */
155 void *remote_state_data;
156};
157
158/** Exchange data */
159struct async_exch {
160 /** Link into list of inactive exchanges */
161 link_t sess_link;
162
163 /** Link into global list of inactive exchanges */
164 link_t global_link;
165
166 /** Session pointer */
167 async_sess_t *sess;
168
169 /** Exchange identification */
170 int phone;
171};
172
173/** Async framework global futex */
174futex_t async_futex = FUTEX_INITIALIZER;
175
176/** Number of threads waiting for IPC in the kernel. */
177atomic_t threads_in_ipc_wait = { 0 };
178
179/** Naming service session */
180async_sess_t *session_ns;
181
182/** Call data */
183typedef struct {
184 link_t link;
185
186 ipc_callid_t callid;
187 ipc_call_t call;
188} msg_t;
189
190/** Message data */
191typedef struct {
192 awaiter_t wdata;
193
194 /** If reply was received. */
195 bool done;
196
197 /** If the message / reply should be discarded on arrival. */
198 bool forget;
199
200 /** If already destroyed. */
201 bool destroyed;
202
203 /** Pointer to where the answer data is stored. */
204 ipc_call_t *dataptr;
205
206 sysarg_t retval;
207} amsg_t;
208
209/* Client connection data */
210typedef struct {
211 ht_link_t link;
212
213 task_id_t in_task_id;
214 atomic_t refcnt;
215 void *data;
216} client_t;
217
218/* Server connection data */
219typedef struct {
220 awaiter_t wdata;
221
222 /** Hash table link. */
223 ht_link_t link;
224
225 /** Incoming client task ID. */
226 task_id_t in_task_id;
227
228 /** Incoming phone hash. */
229 sysarg_t in_phone_hash;
230
231 /** Link to the client tracking structure. */
232 client_t *client;
233
234 /** Messages that should be delivered to this fibril. */
235 list_t msg_queue;
236
237 /** Identification of the opening call. */
238 ipc_callid_t callid;
239
240 /** Call data of the opening call. */
241 ipc_call_t call;
242
243 /** Identification of the closing call. */
244 ipc_callid_t close_callid;
245
246 /** Fibril function that will be used to handle the connection. */
247 async_port_handler_t handler;
248
249 /** Client data */
250 void *data;
251} connection_t;
252
253/** Interface data */
254typedef struct {
255 ht_link_t link;
256
257 /** Interface ID */
258 iface_t iface;
259
260 /** Futex protecting the hash table */
261 futex_t futex;
262
263 /** Interface ports */
264 hash_table_t port_hash_table;
265
266 /** Next available port ID */
267 port_id_t port_id_avail;
268} interface_t;
269
270/* Port data */
271typedef struct {
272 ht_link_t link;
273
274 /** Port ID */
275 port_id_t id;
276
277 /** Port connection handler */
278 async_port_handler_t handler;
279
280 /** Client data */
281 void *data;
282} port_t;
283
284/* Notification data */
285typedef struct {
286 ht_link_t link;
287
288 /** Notification method */
289 sysarg_t imethod;
290
291 /** Notification handler */
292 async_notification_handler_t handler;
293
294 /** Notification data */
295 void *data;
296} notification_t;
297
298/** Identifier of the incoming connection handled by the current fibril. */
299static fibril_local connection_t *fibril_connection;
300
301static void to_event_initialize(to_event_t *to)
302{
303 struct timeval tv = { 0, 0 };
304
305 to->inlist = false;
306 to->occurred = false;
307 link_initialize(&to->link);
308 to->expires = tv;
309}
310
311static void wu_event_initialize(wu_event_t *wu)
312{
313 wu->inlist = false;
314 link_initialize(&wu->link);
315}
316
317void awaiter_initialize(awaiter_t *aw)
318{
319 aw->fid = 0;
320 aw->active = false;
321 to_event_initialize(&aw->to_event);
322 wu_event_initialize(&aw->wu_event);
323}
324
325static amsg_t *amsg_create(void)
326{
327 amsg_t *msg = malloc(sizeof(amsg_t));
328 if (msg) {
329 msg->done = false;
330 msg->forget = false;
331 msg->destroyed = false;
332 msg->dataptr = NULL;
333 msg->retval = (sysarg_t) EINVAL;
334 awaiter_initialize(&msg->wdata);
335 }
336
337 return msg;
338}
339
340static void amsg_destroy(amsg_t *msg)
341{
342 assert(!msg->destroyed);
343 msg->destroyed = true;
344 free(msg);
345}
346
347static void *default_client_data_constructor(void)
348{
349 return NULL;
350}
351
352static void default_client_data_destructor(void *data)
353{
354}
355
356static async_client_data_ctor_t async_client_data_create =
357 default_client_data_constructor;
358static async_client_data_dtor_t async_client_data_destroy =
359 default_client_data_destructor;
360
361void async_set_client_data_constructor(async_client_data_ctor_t ctor)
362{
363 assert(async_client_data_create == default_client_data_constructor);
364 async_client_data_create = ctor;
365}
366
367void async_set_client_data_destructor(async_client_data_dtor_t dtor)
368{
369 assert(async_client_data_destroy == default_client_data_destructor);
370 async_client_data_destroy = dtor;
371}
372
373/** Default fallback fibril function.
374 *
375 * This fallback fibril function gets called on incomming
376 * connections that do not have a specific handler defined.
377 *
378 * @param callid Hash of the incoming call.
379 * @param call Data of the incoming call.
380 * @param arg Local argument
381 *
382 */
383static void default_fallback_port_handler(ipc_callid_t callid, ipc_call_t *call,
384 void *arg)
385{
386 ipc_answer_0(callid, ENOENT);
387}
388
389static async_port_handler_t fallback_port_handler =
390 default_fallback_port_handler;
391static void *fallback_port_data = NULL;
392
393static hash_table_t interface_hash_table;
394
395static size_t interface_key_hash(void *key)
396{
397 iface_t iface = *(iface_t *) key;
398 return iface;
399}
400
401static size_t interface_hash(const ht_link_t *item)
402{
403 interface_t *interface = hash_table_get_inst(item, interface_t, link);
404 return interface_key_hash(&interface->iface);
405}
406
407static bool interface_key_equal(void *key, const ht_link_t *item)
408{
409 iface_t iface = *(iface_t *) key;
410 interface_t *interface = hash_table_get_inst(item, interface_t, link);
411 return iface == interface->iface;
412}
413
414/** Operations for the port hash table. */
415static hash_table_ops_t interface_hash_table_ops = {
416 .hash = interface_hash,
417 .key_hash = interface_key_hash,
418 .key_equal = interface_key_equal,
419 .equal = NULL,
420 .remove_callback = NULL
421};
422
423static size_t port_key_hash(void *key)
424{
425 port_id_t port_id = *(port_id_t *) key;
426 return port_id;
427}
428
429static size_t port_hash(const ht_link_t *item)
430{
431 port_t *port = hash_table_get_inst(item, port_t, link);
432 return port_key_hash(&port->id);
433}
434
435static bool port_key_equal(void *key, const ht_link_t *item)
436{
437 port_id_t port_id = *(port_id_t *) key;
438 port_t *port = hash_table_get_inst(item, port_t, link);
439 return port_id == port->id;
440}
441
442/** Operations for the port hash table. */
443static hash_table_ops_t port_hash_table_ops = {
444 .hash = port_hash,
445 .key_hash = port_key_hash,
446 .key_equal = port_key_equal,
447 .equal = NULL,
448 .remove_callback = NULL
449};
450
451static interface_t *async_new_interface(iface_t iface)
452{
453 interface_t *interface =
454 (interface_t *) malloc(sizeof(interface_t));
455 if (!interface)
456 return NULL;
457
458 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
459 &port_hash_table_ops);
460 if (!ret) {
461 free(interface);
462 return NULL;
463 }
464
465 interface->iface = iface;
466 futex_initialize(&interface->futex, 1);
467 interface->port_id_avail = 0;
468
469 hash_table_insert(&interface_hash_table, &interface->link);
470
471 return interface;
472}
473
474static port_t *async_new_port(interface_t *interface,
475 async_port_handler_t handler, void *data)
476{
477 port_t *port = (port_t *) malloc(sizeof(port_t));
478 if (!port)
479 return NULL;
480
481 futex_down(&interface->futex);
482
483 port_id_t id = interface->port_id_avail;
484 interface->port_id_avail++;
485
486 port->id = id;
487 port->handler = handler;
488 port->data = data;
489
490 hash_table_insert(&interface->port_hash_table, &port->link);
491
492 futex_up(&interface->futex);
493
494 return port;
495}
496
497/** Mutex protecting inactive_exch_list and avail_phone_cv.
498 *
499 */
500static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
501
502/** List of all currently inactive exchanges.
503 *
504 */
505static LIST_INITIALIZE(inactive_exch_list);
506
507/** Condition variable to wait for a phone to become available.
508 *
509 */
510static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
511
512int async_create_port(iface_t iface, async_port_handler_t handler,
513 void *data, port_id_t *port_id)
514{
515 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
516 return EINVAL;
517
518 interface_t *interface;
519
520 futex_down(&async_futex);
521
522 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
523 if (link)
524 interface = hash_table_get_inst(link, interface_t, link);
525 else
526 interface = async_new_interface(iface);
527
528 if (!interface) {
529 futex_up(&async_futex);
530 return ENOMEM;
531 }
532
533 port_t *port = async_new_port(interface, handler, data);
534 if (!port) {
535 futex_up(&async_futex);
536 return ENOMEM;
537 }
538
539 *port_id = port->id;
540
541 futex_up(&async_futex);
542
543 return EOK;
544}
545
546void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
547{
548 assert(handler != NULL);
549
550 fallback_port_handler = handler;
551 fallback_port_data = data;
552}
553
554static hash_table_t client_hash_table;
555static hash_table_t conn_hash_table;
556static hash_table_t notification_hash_table;
557static LIST_INITIALIZE(timeout_list);
558
559static sysarg_t notification_avail = 0;
560
561static size_t client_key_hash(void *key)
562{
563 task_id_t in_task_id = *(task_id_t *) key;
564 return in_task_id;
565}
566
567static size_t client_hash(const ht_link_t *item)
568{
569 client_t *client = hash_table_get_inst(item, client_t, link);
570 return client_key_hash(&client->in_task_id);
571}
572
573static bool client_key_equal(void *key, const ht_link_t *item)
574{
575 task_id_t in_task_id = *(task_id_t *) key;
576 client_t *client = hash_table_get_inst(item, client_t, link);
577 return in_task_id == client->in_task_id;
578}
579
580/** Operations for the client hash table. */
581static hash_table_ops_t client_hash_table_ops = {
582 .hash = client_hash,
583 .key_hash = client_key_hash,
584 .key_equal = client_key_equal,
585 .equal = NULL,
586 .remove_callback = NULL
587};
588
589/** Compute hash into the connection hash table based on the source phone hash.
590 *
591 * @param key Pointer to source phone hash.
592 *
593 * @return Index into the connection hash table.
594 *
595 */
596static size_t conn_key_hash(void *key)
597{
598 sysarg_t in_phone_hash = *(sysarg_t *) key;
599 return in_phone_hash;
600}
601
602static size_t conn_hash(const ht_link_t *item)
603{
604 connection_t *conn = hash_table_get_inst(item, connection_t, link);
605 return conn_key_hash(&conn->in_phone_hash);
606}
607
608static bool conn_key_equal(void *key, const ht_link_t *item)
609{
610 sysarg_t in_phone_hash = *(sysarg_t *) key;
611 connection_t *conn = hash_table_get_inst(item, connection_t, link);
612 return (in_phone_hash == conn->in_phone_hash);
613}
614
615/** Operations for the connection hash table. */
616static hash_table_ops_t conn_hash_table_ops = {
617 .hash = conn_hash,
618 .key_hash = conn_key_hash,
619 .key_equal = conn_key_equal,
620 .equal = NULL,
621 .remove_callback = NULL
622};
623
624static client_t *async_client_get(task_id_t client_id, bool create)
625{
626 client_t *client = NULL;
627
628 futex_down(&async_futex);
629 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
630 if (link) {
631 client = hash_table_get_inst(link, client_t, link);
632 atomic_inc(&client->refcnt);
633 } else if (create) {
634 client = malloc(sizeof(client_t));
635 if (client) {
636 client->in_task_id = client_id;
637 client->data = async_client_data_create();
638
639 atomic_set(&client->refcnt, 1);
640 hash_table_insert(&client_hash_table, &client->link);
641 }
642 }
643
644 futex_up(&async_futex);
645 return client;
646}
647
648static void async_client_put(client_t *client)
649{
650 bool destroy;
651
652 futex_down(&async_futex);
653
654 if (atomic_predec(&client->refcnt) == 0) {
655 hash_table_remove(&client_hash_table, &client->in_task_id);
656 destroy = true;
657 } else
658 destroy = false;
659
660 futex_up(&async_futex);
661
662 if (destroy) {
663 if (client->data)
664 async_client_data_destroy(client->data);
665
666 free(client);
667 }
668}
669
670/** Wrapper for client connection fibril.
671 *
672 * When a new connection arrives, a fibril with this implementing
673 * function is created.
674 *
675 * @param arg Connection structure pointer.
676 *
677 * @return Always zero.
678 *
679 */
680static int connection_fibril(void *arg)
681{
682 assert(arg);
683
684 /*
685 * Setup fibril-local connection pointer.
686 */
687 fibril_connection = (connection_t *) arg;
688
689 /*
690 * Add our reference for the current connection in the client task
691 * tracking structure. If this is the first reference, create and
692 * hash in a new tracking structure.
693 */
694
695 client_t *client = async_client_get(fibril_connection->in_task_id, true);
696 if (!client) {
697 ipc_answer_0(fibril_connection->callid, ENOMEM);
698 return 0;
699 }
700
701 fibril_connection->client = client;
702
703 /*
704 * Call the connection handler function.
705 */
706 fibril_connection->handler(fibril_connection->callid,
707 &fibril_connection->call, fibril_connection->data);
708
709 /*
710 * Remove the reference for this client task connection.
711 */
712 async_client_put(client);
713
714 /*
715 * Remove myself from the connection hash table.
716 */
717 futex_down(&async_futex);
718 hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash);
719 futex_up(&async_futex);
720
721 /*
722 * Answer all remaining messages with EHANGUP.
723 */
724 while (!list_empty(&fibril_connection->msg_queue)) {
725 msg_t *msg =
726 list_get_instance(list_first(&fibril_connection->msg_queue),
727 msg_t, link);
728
729 list_remove(&msg->link);
730 ipc_answer_0(msg->callid, EHANGUP);
731 free(msg);
732 }
733
734 /*
735 * If the connection was hung-up, answer the last call,
736 * i.e. IPC_M_PHONE_HUNGUP.
737 */
738 if (fibril_connection->close_callid)
739 ipc_answer_0(fibril_connection->close_callid, EOK);
740
741 free(fibril_connection);
742 return 0;
743}
744
745/** Create a new fibril for a new connection.
746 *
747 * Create new fibril for connection, fill in connection structures
748 * and insert it into the hash table, so that later we can easily
749 * do routing of messages to particular fibrils.
750 *
751 * @param in_task_id Identification of the incoming connection.
752 * @param in_phone_hash Identification of the incoming connection.
753 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
754 * If callid is zero, the connection was opened by
755 * accepting the IPC_M_CONNECT_TO_ME call and this
756 * function is called directly by the server.
757 * @param call Call data of the opening call.
758 * @param handler Connection handler.
759 * @param data Client argument to pass to the connection handler.
760 *
761 * @return New fibril id or NULL on failure.
762 *
763 */
764static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
765 ipc_callid_t callid, ipc_call_t *call, async_port_handler_t handler,
766 void *data)
767{
768 connection_t *conn = malloc(sizeof(*conn));
769 if (!conn) {
770 if (callid)
771 ipc_answer_0(callid, ENOMEM);
772
773 return (uintptr_t) NULL;
774 }
775
776 conn->in_task_id = in_task_id;
777 conn->in_phone_hash = in_phone_hash;
778 list_initialize(&conn->msg_queue);
779 conn->callid = callid;
780 conn->close_callid = 0;
781 conn->handler = handler;
782 conn->data = data;
783
784 if (call)
785 conn->call = *call;
786
787 /* We will activate the fibril ASAP */
788 conn->wdata.active = true;
789 conn->wdata.fid = fibril_create(connection_fibril, conn);
790
791 if (conn->wdata.fid == 0) {
792 free(conn);
793
794 if (callid)
795 ipc_answer_0(callid, ENOMEM);
796
797 return (uintptr_t) NULL;
798 }
799
800 /* Add connection to the connection hash table */
801
802 futex_down(&async_futex);
803 hash_table_insert(&conn_hash_table, &conn->link);
804 futex_up(&async_futex);
805
806 fibril_add_ready(conn->wdata.fid);
807
808 return conn->wdata.fid;
809}
810
811/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
812 *
813 * Ask through phone for a new connection to some service.
814 *
815 * @param exch Exchange for sending the message.
816 * @param iface Callback interface.
817 * @param arg1 User defined argument.
818 * @param arg2 User defined argument.
819 * @param handler Callback handler.
820 * @param data Handler data.
821 * @param port_id ID of the newly created port.
822 *
823 * @return Zero on success or a negative error code.
824 *
825 */
826int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
827 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
828{
829 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
830 return EINVAL;
831
832 if (exch == NULL)
833 return ENOENT;
834
835 ipc_call_t answer;
836 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
837 &answer);
838
839 sysarg_t ret;
840 async_wait_for(req, &ret);
841 if (ret != EOK)
842 return (int) ret;
843
844 sysarg_t phone_hash = IPC_GET_ARG5(answer);
845 interface_t *interface;
846
847 futex_down(&async_futex);
848
849 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
850 if (link)
851 interface = hash_table_get_inst(link, interface_t, link);
852 else
853 interface = async_new_interface(iface);
854
855 if (!interface) {
856 futex_up(&async_futex);
857 return ENOMEM;
858 }
859
860 port_t *port = async_new_port(interface, handler, data);
861 if (!port) {
862 futex_up(&async_futex);
863 return ENOMEM;
864 }
865
866 *port_id = port->id;
867
868 futex_up(&async_futex);
869
870 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
871 0, NULL, handler, data);
872 if (fid == (uintptr_t) NULL)
873 return ENOMEM;
874
875 return EOK;
876}
877
878static size_t notification_key_hash(void *key)
879{
880 sysarg_t id = *(sysarg_t *) key;
881 return id;
882}
883
884static size_t notification_hash(const ht_link_t *item)
885{
886 notification_t *notification =
887 hash_table_get_inst(item, notification_t, link);
888 return notification_key_hash(&notification->imethod);
889}
890
891static bool notification_key_equal(void *key, const ht_link_t *item)
892{
893 sysarg_t id = *(sysarg_t *) key;
894 notification_t *notification =
895 hash_table_get_inst(item, notification_t, link);
896 return id == notification->imethod;
897}
898
899/** Operations for the notification hash table. */
900static hash_table_ops_t notification_hash_table_ops = {
901 .hash = notification_hash,
902 .key_hash = notification_key_hash,
903 .key_equal = notification_key_equal,
904 .equal = NULL,
905 .remove_callback = NULL
906};
907
908/** Sort in current fibril's timeout request.
909 *
910 * @param wd Wait data of the current fibril.
911 *
912 */
913void async_insert_timeout(awaiter_t *wd)
914{
915 assert(wd);
916
917 wd->to_event.occurred = false;
918 wd->to_event.inlist = true;
919
920 link_t *tmp = timeout_list.head.next;
921 while (tmp != &timeout_list.head) {
922 awaiter_t *cur
923 = list_get_instance(tmp, awaiter_t, to_event.link);
924
925 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
926 break;
927
928 tmp = tmp->next;
929 }
930
931 list_insert_before(&wd->to_event.link, tmp);
932}
933
934/** Try to route a call to an appropriate connection fibril.
935 *
936 * If the proper connection fibril is found, a message with the call is added to
937 * its message queue. If the fibril was not active, it is activated and all
938 * timeouts are unregistered.
939 *
940 * @param callid Hash of the incoming call.
941 * @param call Data of the incoming call.
942 *
943 * @return False if the call doesn't match any connection.
944 * @return True if the call was passed to the respective connection fibril.
945 *
946 */
947static bool route_call(ipc_callid_t callid, ipc_call_t *call)
948{
949 assert(call);
950
951 futex_down(&async_futex);
952
953 ht_link_t *link = hash_table_find(&conn_hash_table, &call->in_phone_hash);
954 if (!link) {
955 futex_up(&async_futex);
956 return false;
957 }
958
959 connection_t *conn = hash_table_get_inst(link, connection_t, link);
960
961 msg_t *msg = malloc(sizeof(*msg));
962 if (!msg) {
963 futex_up(&async_futex);
964 return false;
965 }
966
967 msg->callid = callid;
968 msg->call = *call;
969 list_append(&msg->link, &conn->msg_queue);
970
971 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
972 conn->close_callid = callid;
973
974 /* If the connection fibril is waiting for an event, activate it */
975 if (!conn->wdata.active) {
976
977 /* If in timeout list, remove it */
978 if (conn->wdata.to_event.inlist) {
979 conn->wdata.to_event.inlist = false;
980 list_remove(&conn->wdata.to_event.link);
981 }
982
983 conn->wdata.active = true;
984 fibril_add_ready(conn->wdata.fid);
985 }
986
987 futex_up(&async_futex);
988 return true;
989}
990
991/** Process notification.
992 *
993 * @param callid Hash of the incoming call.
994 * @param call Data of the incoming call.
995 *
996 */
997static void process_notification(ipc_callid_t callid, ipc_call_t *call)
998{
999 async_notification_handler_t handler = NULL;
1000 void *data = NULL;
1001
1002 assert(call);
1003
1004 futex_down(&async_futex);
1005
1006 ht_link_t *link = hash_table_find(&notification_hash_table,
1007 &IPC_GET_IMETHOD(*call));
1008 if (link) {
1009 notification_t *notification =
1010 hash_table_get_inst(link, notification_t, link);
1011 handler = notification->handler;
1012 data = notification->data;
1013 }
1014
1015 futex_up(&async_futex);
1016
1017 if (handler)
1018 handler(callid, call, data);
1019}
1020
1021/** Subscribe to IRQ notification.
1022 *
1023 * @param inr IRQ number.
1024 * @param handler Notification handler.
1025 * @param data Notification handler client data.
1026 * @param ucode Top-half pseudocode handler.
1027 *
1028 * @return IRQ capability on success.
1029 * @return Negative error code.
1030 *
1031 */
1032int async_irq_subscribe(int inr, async_notification_handler_t handler,
1033 void *data, const irq_code_t *ucode)
1034{
1035 notification_t *notification =
1036 (notification_t *) malloc(sizeof(notification_t));
1037 if (!notification)
1038 return ENOMEM;
1039
1040 futex_down(&async_futex);
1041
1042 sysarg_t imethod = notification_avail;
1043 notification_avail++;
1044
1045 notification->imethod = imethod;
1046 notification->handler = handler;
1047 notification->data = data;
1048
1049 hash_table_insert(&notification_hash_table, &notification->link);
1050
1051 futex_up(&async_futex);
1052
1053 return ipc_irq_subscribe(inr, imethod, ucode);
1054}
1055
1056/** Unsubscribe from IRQ notification.
1057 *
1058 * @param cap IRQ capability.
1059 *
1060 * @return Zero on success or a negative error code.
1061 *
1062 */
1063int async_irq_unsubscribe(int cap)
1064{
1065 // TODO: Remove entry from hash table
1066 // to avoid memory leak
1067
1068 return ipc_irq_unsubscribe(cap);
1069}
1070
1071/** Subscribe to event notifications.
1072 *
1073 * @param evno Event type to subscribe.
1074 * @param handler Notification handler.
1075 * @param data Notification handler client data.
1076 *
1077 * @return Zero on success or a negative error code.
1078 *
1079 */
1080int async_event_subscribe(event_type_t evno,
1081 async_notification_handler_t handler, void *data)
1082{
1083 notification_t *notification =
1084 (notification_t *) malloc(sizeof(notification_t));
1085 if (!notification)
1086 return ENOMEM;
1087
1088 futex_down(&async_futex);
1089
1090 sysarg_t imethod = notification_avail;
1091 notification_avail++;
1092
1093 notification->imethod = imethod;
1094 notification->handler = handler;
1095 notification->data = data;
1096
1097 hash_table_insert(&notification_hash_table, &notification->link);
1098
1099 futex_up(&async_futex);
1100
1101 return ipc_event_subscribe(evno, imethod);
1102}
1103
1104/** Subscribe to task event notifications.
1105 *
1106 * @param evno Event type to subscribe.
1107 * @param handler Notification handler.
1108 * @param data Notification handler client data.
1109 *
1110 * @return Zero on success or a negative error code.
1111 *
1112 */
1113int async_event_task_subscribe(event_task_type_t evno,
1114 async_notification_handler_t handler, void *data)
1115{
1116 notification_t *notification =
1117 (notification_t *) malloc(sizeof(notification_t));
1118 if (!notification)
1119 return ENOMEM;
1120
1121 futex_down(&async_futex);
1122
1123 sysarg_t imethod = notification_avail;
1124 notification_avail++;
1125
1126 notification->imethod = imethod;
1127 notification->handler = handler;
1128 notification->data = data;
1129
1130 hash_table_insert(&notification_hash_table, &notification->link);
1131
1132 futex_up(&async_futex);
1133
1134 return ipc_event_task_subscribe(evno, imethod);
1135}
1136
1137/** Unmask event notifications.
1138 *
1139 * @param evno Event type to unmask.
1140 *
1141 * @return Value returned by the kernel.
1142 *
1143 */
1144int async_event_unmask(event_type_t evno)
1145{
1146 return ipc_event_unmask(evno);
1147}
1148
1149/** Unmask task event notifications.
1150 *
1151 * @param evno Event type to unmask.
1152 *
1153 * @return Value returned by the kernel.
1154 *
1155 */
1156int async_event_task_unmask(event_task_type_t evno)
1157{
1158 return ipc_event_task_unmask(evno);
1159}
1160
1161/** Return new incoming message for the current (fibril-local) connection.
1162 *
1163 * @param call Storage where the incoming call data will be stored.
1164 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1165 *
1166 * @return If no timeout was specified, then a hash of the
1167 * incoming call is returned. If a timeout is specified,
1168 * then a hash of the incoming call is returned unless
1169 * the timeout expires prior to receiving a message. In
1170 * that case zero is returned.
1171 *
1172 */
1173ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1174{
1175 assert(call);
1176 assert(fibril_connection);
1177
1178 /* Why doing this?
1179 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1180 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1181 * I would never expect to find so many errors in
1182 * a compiler.
1183 */
1184 connection_t *conn = fibril_connection;
1185
1186 futex_down(&async_futex);
1187
1188 if (usecs) {
1189 getuptime(&conn->wdata.to_event.expires);
1190 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1191 } else
1192 conn->wdata.to_event.inlist = false;
1193
1194 /* If nothing in queue, wait until something arrives */
1195 while (list_empty(&conn->msg_queue)) {
1196 if (conn->close_callid) {
1197 /*
1198 * Handle the case when the connection was already
1199 * closed by the client but the server did not notice
1200 * the first IPC_M_PHONE_HUNGUP call and continues to
1201 * call async_get_call_timeout(). Repeat
1202 * IPC_M_PHONE_HUNGUP until the caller notices.
1203 */
1204 memset(call, 0, sizeof(ipc_call_t));
1205 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1206 futex_up(&async_futex);
1207 return conn->close_callid;
1208 }
1209
1210 if (usecs)
1211 async_insert_timeout(&conn->wdata);
1212
1213 conn->wdata.active = false;
1214
1215 /*
1216 * Note: the current fibril will be rescheduled either due to a
1217 * timeout or due to an arriving message destined to it. In the
1218 * former case, handle_expired_timeouts() and, in the latter
1219 * case, route_call() will perform the wakeup.
1220 */
1221 fibril_switch(FIBRIL_TO_MANAGER);
1222
1223 /*
1224 * Futex is up after getting back from async_manager.
1225 * Get it again.
1226 */
1227 futex_down(&async_futex);
1228 if ((usecs) && (conn->wdata.to_event.occurred)
1229 && (list_empty(&conn->msg_queue))) {
1230 /* If we timed out -> exit */
1231 futex_up(&async_futex);
1232 return 0;
1233 }
1234 }
1235
1236 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1237 msg_t, link);
1238 list_remove(&msg->link);
1239
1240 ipc_callid_t callid = msg->callid;
1241 *call = msg->call;
1242 free(msg);
1243
1244 futex_up(&async_futex);
1245 return callid;
1246}
1247
1248void *async_get_client_data(void)
1249{
1250 assert(fibril_connection);
1251 return fibril_connection->client->data;
1252}
1253
1254void *async_get_client_data_by_id(task_id_t client_id)
1255{
1256 client_t *client = async_client_get(client_id, false);
1257 if (!client)
1258 return NULL;
1259
1260 if (!client->data) {
1261 async_client_put(client);
1262 return NULL;
1263 }
1264
1265 return client->data;
1266}
1267
1268void async_put_client_data_by_id(task_id_t client_id)
1269{
1270 client_t *client = async_client_get(client_id, false);
1271
1272 assert(client);
1273 assert(client->data);
1274
1275 /* Drop the reference we got in async_get_client_data_by_hash(). */
1276 async_client_put(client);
1277
1278 /* Drop our own reference we got at the beginning of this function. */
1279 async_client_put(client);
1280}
1281
1282static port_t *async_find_port(iface_t iface, port_id_t port_id)
1283{
1284 port_t *port = NULL;
1285
1286 futex_down(&async_futex);
1287
1288 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1289 if (link) {
1290 interface_t *interface =
1291 hash_table_get_inst(link, interface_t, link);
1292
1293 link = hash_table_find(&interface->port_hash_table, &port_id);
1294 if (link)
1295 port = hash_table_get_inst(link, port_t, link);
1296 }
1297
1298 futex_up(&async_futex);
1299
1300 return port;
1301}
1302
1303/** Handle a call that was received.
1304 *
1305 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1306 * Otherwise the call is routed to its connection fibril.
1307 *
1308 * @param callid Hash of the incoming call.
1309 * @param call Data of the incoming call.
1310 *
1311 */
1312static void handle_call(ipc_callid_t callid, ipc_call_t *call)
1313{
1314 assert(call);
1315
1316 /* Kernel notification */
1317 if ((callid & IPC_CALLID_NOTIFICATION)) {
1318 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1319 unsigned oldsw = fibril->switches;
1320
1321 process_notification(callid, call);
1322
1323 if (oldsw != fibril->switches) {
1324 /*
1325 * The notification handler did not execute atomically
1326 * and so the current manager fibril assumed the role of
1327 * a notification fibril. While waiting for its
1328 * resources, it switched to another manager fibril that
1329 * had already existed or it created a new one. We
1330 * therefore know there is at least yet another
1331 * manager fibril that can take over. We now kill the
1332 * current 'notification' fibril to prevent fibril
1333 * population explosion.
1334 */
1335 futex_down(&async_futex);
1336 fibril_switch(FIBRIL_FROM_DEAD);
1337 }
1338
1339 return;
1340 }
1341
1342 /* New connection */
1343 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1344 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1345 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1346
1347 async_notification_handler_t handler = fallback_port_handler;
1348 void *data = fallback_port_data;
1349
1350 // TODO: Currently ignores all ports but the first one
1351 port_t *port = async_find_port(iface, 0);
1352 if (port) {
1353 handler = port->handler;
1354 data = port->data;
1355 }
1356
1357 async_new_connection(call->in_task_id, in_phone_hash, callid,
1358 call, handler, data);
1359 return;
1360 }
1361
1362 /* Cloned connection */
1363 if (IPC_GET_IMETHOD(*call) == IPC_M_CLONE_ESTABLISH) {
1364 // TODO: Currently ignores ports altogether
1365
1366 /* Open new connection with fibril, etc. */
1367 async_new_connection(call->in_task_id, IPC_GET_ARG5(*call),
1368 callid, call, fallback_port_handler, fallback_port_data);
1369 return;
1370 }
1371
1372 /* Try to route the call through the connection hash table */
1373 if (route_call(callid, call))
1374 return;
1375
1376 /* Unknown call from unknown phone - hang it up */
1377 ipc_answer_0(callid, EHANGUP);
1378}
1379
1380/** Fire all timeouts that expired. */
1381static void handle_expired_timeouts(void)
1382{
1383 struct timeval tv;
1384 getuptime(&tv);
1385
1386 futex_down(&async_futex);
1387
1388 link_t *cur = list_first(&timeout_list);
1389 while (cur != NULL) {
1390 awaiter_t *waiter =
1391 list_get_instance(cur, awaiter_t, to_event.link);
1392
1393 if (tv_gt(&waiter->to_event.expires, &tv))
1394 break;
1395
1396 list_remove(&waiter->to_event.link);
1397 waiter->to_event.inlist = false;
1398 waiter->to_event.occurred = true;
1399
1400 /*
1401 * Redundant condition?
1402 * The fibril should not be active when it gets here.
1403 */
1404 if (!waiter->active) {
1405 waiter->active = true;
1406 fibril_add_ready(waiter->fid);
1407 }
1408
1409 cur = list_first(&timeout_list);
1410 }
1411
1412 futex_up(&async_futex);
1413}
1414
1415/** Endless loop dispatching incoming calls and answers.
1416 *
1417 * @return Never returns.
1418 *
1419 */
1420static int async_manager_worker(void)
1421{
1422 while (true) {
1423 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1424 futex_up(&async_futex);
1425 /*
1426 * async_futex is always held when entering a manager
1427 * fibril.
1428 */
1429 continue;
1430 }
1431
1432 futex_down(&async_futex);
1433
1434 suseconds_t timeout;
1435 unsigned int flags = SYNCH_FLAGS_NONE;
1436 if (!list_empty(&timeout_list)) {
1437 awaiter_t *waiter = list_get_instance(
1438 list_first(&timeout_list), awaiter_t, to_event.link);
1439
1440 struct timeval tv;
1441 getuptime(&tv);
1442
1443 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1444 futex_up(&async_futex);
1445 handle_expired_timeouts();
1446 /*
1447 * Notice that even if the event(s) already
1448 * expired (and thus the other fibril was
1449 * supposed to be running already),
1450 * we check for incoming IPC.
1451 *
1452 * Otherwise, a fibril that continuously
1453 * creates (almost) expired events could
1454 * prevent IPC retrieval from the kernel.
1455 */
1456 timeout = 0;
1457 flags = SYNCH_FLAGS_NON_BLOCKING;
1458
1459 } else {
1460 timeout = tv_sub_diff(&waiter->to_event.expires,
1461 &tv);
1462 futex_up(&async_futex);
1463 }
1464 } else {
1465 futex_up(&async_futex);
1466 timeout = SYNCH_NO_TIMEOUT;
1467 }
1468
1469 atomic_inc(&threads_in_ipc_wait);
1470
1471 ipc_call_t call;
1472 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1473
1474 atomic_dec(&threads_in_ipc_wait);
1475
1476 if (!callid) {
1477 handle_expired_timeouts();
1478 continue;
1479 }
1480
1481 if (callid & IPC_CALLID_ANSWERED)
1482 continue;
1483
1484 handle_call(callid, &call);
1485 }
1486
1487 return 0;
1488}
1489
1490/** Function to start async_manager as a standalone fibril.
1491 *
1492 * When more kernel threads are used, one async manager should exist per thread.
1493 *
1494 * @param arg Unused.
1495 * @return Never returns.
1496 *
1497 */
1498static int async_manager_fibril(void *arg)
1499{
1500 futex_up(&async_futex);
1501
1502 /*
1503 * async_futex is always locked when entering manager
1504 */
1505 async_manager_worker();
1506
1507 return 0;
1508}
1509
1510/** Add one manager to manager list. */
1511void async_create_manager(void)
1512{
1513 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1514 if (fid != 0)
1515 fibril_add_manager(fid);
1516}
1517
1518/** Remove one manager from manager list */
1519void async_destroy_manager(void)
1520{
1521 fibril_remove_manager();
1522}
1523
1524/** Initialize the async framework.
1525 *
1526 */
1527void __async_init(void)
1528{
1529 if (!hash_table_create(&interface_hash_table, 0, 0,
1530 &interface_hash_table_ops))
1531 abort();
1532
1533 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1534 abort();
1535
1536 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1537 abort();
1538
1539 if (!hash_table_create(&notification_hash_table, 0, 0,
1540 &notification_hash_table_ops))
1541 abort();
1542
1543 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1544 if (session_ns == NULL)
1545 abort();
1546
1547 session_ns->iface = 0;
1548 session_ns->mgmt = EXCHANGE_ATOMIC;
1549 session_ns->phone = PHONE_NS;
1550 session_ns->arg1 = 0;
1551 session_ns->arg2 = 0;
1552 session_ns->arg3 = 0;
1553
1554 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1555 session_ns->remote_state_data = NULL;
1556
1557 list_initialize(&session_ns->exch_list);
1558 fibril_mutex_initialize(&session_ns->mutex);
1559 atomic_set(&session_ns->refcnt, 0);
1560}
1561
1562/** Reply received callback.
1563 *
1564 * This function is called whenever a reply for an asynchronous message sent out
1565 * by the asynchronous framework is received.
1566 *
1567 * Notify the fibril which is waiting for this message that it has arrived.
1568 *
1569 * @param arg Pointer to the asynchronous message record.
1570 * @param retval Value returned in the answer.
1571 * @param data Call data of the answer.
1572 *
1573 */
1574void reply_received(void *arg, int retval, ipc_call_t *data)
1575{
1576 assert(arg);
1577
1578 futex_down(&async_futex);
1579
1580 amsg_t *msg = (amsg_t *) arg;
1581 msg->retval = retval;
1582
1583 /* Copy data after futex_down, just in case the call was detached */
1584 if ((msg->dataptr) && (data))
1585 *msg->dataptr = *data;
1586
1587 write_barrier();
1588
1589 /* Remove message from timeout list */
1590 if (msg->wdata.to_event.inlist)
1591 list_remove(&msg->wdata.to_event.link);
1592
1593 msg->done = true;
1594
1595 if (msg->forget) {
1596 assert(msg->wdata.active);
1597 amsg_destroy(msg);
1598 } else if (!msg->wdata.active) {
1599 msg->wdata.active = true;
1600 fibril_add_ready(msg->wdata.fid);
1601 }
1602
1603 futex_up(&async_futex);
1604}
1605
1606/** Send message and return id of the sent message.
1607 *
1608 * The return value can be used as input for async_wait() to wait for
1609 * completion.
1610 *
1611 * @param exch Exchange for sending the message.
1612 * @param imethod Service-defined interface and method.
1613 * @param arg1 Service-defined payload argument.
1614 * @param arg2 Service-defined payload argument.
1615 * @param arg3 Service-defined payload argument.
1616 * @param arg4 Service-defined payload argument.
1617 * @param dataptr If non-NULL, storage where the reply data will be
1618 * stored.
1619 *
1620 * @return Hash of the sent message or 0 on error.
1621 *
1622 */
1623aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1624 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1625{
1626 if (exch == NULL)
1627 return 0;
1628
1629 amsg_t *msg = amsg_create();
1630 if (msg == NULL)
1631 return 0;
1632
1633 msg->dataptr = dataptr;
1634 msg->wdata.active = true;
1635
1636 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1637 reply_received);
1638
1639 return (aid_t) msg;
1640}
1641
1642/** Send message and return id of the sent message
1643 *
1644 * The return value can be used as input for async_wait() to wait for
1645 * completion.
1646 *
1647 * @param exch Exchange for sending the message.
1648 * @param imethod Service-defined interface and method.
1649 * @param arg1 Service-defined payload argument.
1650 * @param arg2 Service-defined payload argument.
1651 * @param arg3 Service-defined payload argument.
1652 * @param arg4 Service-defined payload argument.
1653 * @param arg5 Service-defined payload argument.
1654 * @param dataptr If non-NULL, storage where the reply data will be
1655 * stored.
1656 *
1657 * @return Hash of the sent message or 0 on error.
1658 *
1659 */
1660aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1661 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1662 ipc_call_t *dataptr)
1663{
1664 if (exch == NULL)
1665 return 0;
1666
1667 amsg_t *msg = amsg_create();
1668 if (msg == NULL)
1669 return 0;
1670
1671 msg->dataptr = dataptr;
1672 msg->wdata.active = true;
1673
1674 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1675 msg, reply_received);
1676
1677 return (aid_t) msg;
1678}
1679
1680/** Wait for a message sent by the async framework.
1681 *
1682 * @param amsgid Hash of the message to wait for.
1683 * @param retval Pointer to storage where the retval of the answer will
1684 * be stored.
1685 *
1686 */
1687void async_wait_for(aid_t amsgid, sysarg_t *retval)
1688{
1689 assert(amsgid);
1690
1691 amsg_t *msg = (amsg_t *) amsgid;
1692
1693 futex_down(&async_futex);
1694
1695 assert(!msg->forget);
1696 assert(!msg->destroyed);
1697
1698 if (msg->done) {
1699 futex_up(&async_futex);
1700 goto done;
1701 }
1702
1703 msg->wdata.fid = fibril_get_id();
1704 msg->wdata.active = false;
1705 msg->wdata.to_event.inlist = false;
1706
1707 /* Leave the async_futex locked when entering this function */
1708 fibril_switch(FIBRIL_TO_MANAGER);
1709
1710 /* Futex is up automatically after fibril_switch */
1711
1712done:
1713 if (retval)
1714 *retval = msg->retval;
1715
1716 amsg_destroy(msg);
1717}
1718
1719/** Wait for a message sent by the async framework, timeout variant.
1720 *
1721 * If the wait times out, the caller may choose to either wait again by calling
1722 * async_wait_for() or async_wait_timeout(), or forget the message via
1723 * async_forget().
1724 *
1725 * @param amsgid Hash of the message to wait for.
1726 * @param retval Pointer to storage where the retval of the answer will
1727 * be stored.
1728 * @param timeout Timeout in microseconds.
1729 *
1730 * @return Zero on success, ETIMEOUT if the timeout has expired.
1731 *
1732 */
1733int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1734{
1735 assert(amsgid);
1736
1737 amsg_t *msg = (amsg_t *) amsgid;
1738
1739 futex_down(&async_futex);
1740
1741 assert(!msg->forget);
1742 assert(!msg->destroyed);
1743
1744 if (msg->done) {
1745 futex_up(&async_futex);
1746 goto done;
1747 }
1748
1749 /*
1750 * Negative timeout is converted to zero timeout to avoid
1751 * using tv_add with negative augmenter.
1752 */
1753 if (timeout < 0)
1754 timeout = 0;
1755
1756 getuptime(&msg->wdata.to_event.expires);
1757 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1758
1759 /*
1760 * Current fibril is inserted as waiting regardless of the
1761 * "size" of the timeout.
1762 *
1763 * Checking for msg->done and immediately bailing out when
1764 * timeout == 0 would mean that the manager fibril would never
1765 * run (consider single threaded program).
1766 * Thus the IPC answer would be never retrieved from the kernel.
1767 *
1768 * Notice that the actual delay would be very small because we
1769 * - switch to manager fibril
1770 * - the manager sees expired timeout
1771 * - and thus adds us back to ready queue
1772 * - manager switches back to some ready fibril
1773 * (prior it, it checks for incoming IPC).
1774 *
1775 */
1776 msg->wdata.fid = fibril_get_id();
1777 msg->wdata.active = false;
1778 async_insert_timeout(&msg->wdata);
1779
1780 /* Leave the async_futex locked when entering this function */
1781 fibril_switch(FIBRIL_TO_MANAGER);
1782
1783 /* Futex is up automatically after fibril_switch */
1784
1785 if (!msg->done)
1786 return ETIMEOUT;
1787
1788done:
1789 if (retval)
1790 *retval = msg->retval;
1791
1792 amsg_destroy(msg);
1793
1794 return 0;
1795}
1796
1797/** Discard the message / reply on arrival.
1798 *
1799 * The message will be marked to be discarded once the reply arrives in
1800 * reply_received(). It is not allowed to call async_wait_for() or
1801 * async_wait_timeout() on this message after a call to this function.
1802 *
1803 * @param amsgid Hash of the message to forget.
1804 */
1805void async_forget(aid_t amsgid)
1806{
1807 amsg_t *msg = (amsg_t *) amsgid;
1808
1809 assert(msg);
1810 assert(!msg->forget);
1811 assert(!msg->destroyed);
1812
1813 futex_down(&async_futex);
1814
1815 if (msg->done) {
1816 amsg_destroy(msg);
1817 } else {
1818 msg->dataptr = NULL;
1819 msg->forget = true;
1820 }
1821
1822 futex_up(&async_futex);
1823}
1824
1825/** Wait for specified time.
1826 *
1827 * The current fibril is suspended but the thread continues to execute.
1828 *
1829 * @param timeout Duration of the wait in microseconds.
1830 *
1831 */
1832void async_usleep(suseconds_t timeout)
1833{
1834 amsg_t *msg = amsg_create();
1835 if (!msg)
1836 return;
1837
1838 msg->wdata.fid = fibril_get_id();
1839
1840 getuptime(&msg->wdata.to_event.expires);
1841 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1842
1843 futex_down(&async_futex);
1844
1845 async_insert_timeout(&msg->wdata);
1846
1847 /* Leave the async_futex locked when entering this function */
1848 fibril_switch(FIBRIL_TO_MANAGER);
1849
1850 /* Futex is up automatically after fibril_switch() */
1851
1852 amsg_destroy(msg);
1853}
1854
1855/** Pseudo-synchronous message sending - fast version.
1856 *
1857 * Send message asynchronously and return only after the reply arrives.
1858 *
1859 * This function can only transfer 4 register payload arguments. For
1860 * transferring more arguments, see the slower async_req_slow().
1861 *
1862 * @param exch Exchange for sending the message.
1863 * @param imethod Interface and method of the call.
1864 * @param arg1 Service-defined payload argument.
1865 * @param arg2 Service-defined payload argument.
1866 * @param arg3 Service-defined payload argument.
1867 * @param arg4 Service-defined payload argument.
1868 * @param r1 If non-NULL, storage for the 1st reply argument.
1869 * @param r2 If non-NULL, storage for the 2nd reply argument.
1870 * @param r3 If non-NULL, storage for the 3rd reply argument.
1871 * @param r4 If non-NULL, storage for the 4th reply argument.
1872 * @param r5 If non-NULL, storage for the 5th reply argument.
1873 *
1874 * @return Return code of the reply or a negative error code.
1875 *
1876 */
1877sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1878 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1879 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1880{
1881 if (exch == NULL)
1882 return ENOENT;
1883
1884 ipc_call_t result;
1885 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1886 &result);
1887
1888 sysarg_t rc;
1889 async_wait_for(aid, &rc);
1890
1891 if (r1)
1892 *r1 = IPC_GET_ARG1(result);
1893
1894 if (r2)
1895 *r2 = IPC_GET_ARG2(result);
1896
1897 if (r3)
1898 *r3 = IPC_GET_ARG3(result);
1899
1900 if (r4)
1901 *r4 = IPC_GET_ARG4(result);
1902
1903 if (r5)
1904 *r5 = IPC_GET_ARG5(result);
1905
1906 return rc;
1907}
1908
1909/** Pseudo-synchronous message sending - slow version.
1910 *
1911 * Send message asynchronously and return only after the reply arrives.
1912 *
1913 * @param exch Exchange for sending the message.
1914 * @param imethod Interface and method of the call.
1915 * @param arg1 Service-defined payload argument.
1916 * @param arg2 Service-defined payload argument.
1917 * @param arg3 Service-defined payload argument.
1918 * @param arg4 Service-defined payload argument.
1919 * @param arg5 Service-defined payload argument.
1920 * @param r1 If non-NULL, storage for the 1st reply argument.
1921 * @param r2 If non-NULL, storage for the 2nd reply argument.
1922 * @param r3 If non-NULL, storage for the 3rd reply argument.
1923 * @param r4 If non-NULL, storage for the 4th reply argument.
1924 * @param r5 If non-NULL, storage for the 5th reply argument.
1925 *
1926 * @return Return code of the reply or a negative error code.
1927 *
1928 */
1929sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1930 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1931 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1932{
1933 if (exch == NULL)
1934 return ENOENT;
1935
1936 ipc_call_t result;
1937 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1938 &result);
1939
1940 sysarg_t rc;
1941 async_wait_for(aid, &rc);
1942
1943 if (r1)
1944 *r1 = IPC_GET_ARG1(result);
1945
1946 if (r2)
1947 *r2 = IPC_GET_ARG2(result);
1948
1949 if (r3)
1950 *r3 = IPC_GET_ARG3(result);
1951
1952 if (r4)
1953 *r4 = IPC_GET_ARG4(result);
1954
1955 if (r5)
1956 *r5 = IPC_GET_ARG5(result);
1957
1958 return rc;
1959}
1960
1961void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1962{
1963 if (exch != NULL)
1964 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
1965}
1966
1967void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1968{
1969 if (exch != NULL)
1970 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
1971}
1972
1973void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1974 sysarg_t arg2)
1975{
1976 if (exch != NULL)
1977 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
1978}
1979
1980void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1981 sysarg_t arg2, sysarg_t arg3)
1982{
1983 if (exch != NULL)
1984 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1985 NULL);
1986}
1987
1988void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1989 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1990{
1991 if (exch != NULL)
1992 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1993 NULL, NULL);
1994}
1995
1996void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1997 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1998{
1999 if (exch != NULL)
2000 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
2001 arg5, NULL, NULL);
2002}
2003
2004sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
2005{
2006 return ipc_answer_0(callid, retval);
2007}
2008
2009sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
2010{
2011 return ipc_answer_1(callid, retval, arg1);
2012}
2013
2014sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2015 sysarg_t arg2)
2016{
2017 return ipc_answer_2(callid, retval, arg1, arg2);
2018}
2019
2020sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2021 sysarg_t arg2, sysarg_t arg3)
2022{
2023 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
2024}
2025
2026sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2027 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2028{
2029 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
2030}
2031
2032sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2033 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2034{
2035 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
2036}
2037
2038int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
2039 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2040{
2041 if (exch == NULL)
2042 return ENOENT;
2043
2044 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
2045}
2046
2047int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
2048 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2049 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2050{
2051 if (exch == NULL)
2052 return ENOENT;
2053
2054 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
2055 arg4, arg5, mode);
2056}
2057
2058/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2059 *
2060 * Ask through phone for a new connection to some service.
2061 *
2062 * @param exch Exchange for sending the message.
2063 * @param arg1 User defined argument.
2064 * @param arg2 User defined argument.
2065 * @param arg3 User defined argument.
2066 *
2067 * @return Zero on success or a negative error code.
2068 *
2069 */
2070int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2071 sysarg_t arg3)
2072{
2073 if (exch == NULL)
2074 return ENOENT;
2075
2076 ipc_call_t answer;
2077 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2078 &answer);
2079
2080 sysarg_t rc;
2081 async_wait_for(req, &rc);
2082 if (rc != EOK)
2083 return (int) rc;
2084
2085 return EOK;
2086}
2087
2088/** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework.
2089 *
2090 * Ask for a cloned connection to some service.
2091 *
2092 * @param mgmt Exchange management style.
2093 * @param exch Exchange for sending the message.
2094 *
2095 * @return New session on success or NULL on error.
2096 *
2097 */
2098async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch)
2099{
2100 if (exch == NULL) {
2101 errno = ENOENT;
2102 return NULL;
2103 }
2104
2105 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2106 if (sess == NULL) {
2107 errno = ENOMEM;
2108 return NULL;
2109 }
2110
2111 ipc_call_t result;
2112
2113 amsg_t *msg = amsg_create();
2114 if (!msg) {
2115 free(sess);
2116 errno = ENOMEM;
2117 return NULL;
2118 }
2119
2120 msg->dataptr = &result;
2121 msg->wdata.active = true;
2122
2123 ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg,
2124 reply_received);
2125
2126 sysarg_t rc;
2127 async_wait_for((aid_t) msg, &rc);
2128
2129 if (rc != EOK) {
2130 errno = rc;
2131 free(sess);
2132 return NULL;
2133 }
2134
2135 int phone = (int) IPC_GET_ARG5(result);
2136
2137 if (phone < 0) {
2138 errno = phone;
2139 free(sess);
2140 return NULL;
2141 }
2142
2143 sess->iface = 0;
2144 sess->mgmt = mgmt;
2145 sess->phone = phone;
2146 sess->arg1 = 0;
2147 sess->arg2 = 0;
2148 sess->arg3 = 0;
2149
2150 fibril_mutex_initialize(&sess->remote_state_mtx);
2151 sess->remote_state_data = NULL;
2152
2153 list_initialize(&sess->exch_list);
2154 fibril_mutex_initialize(&sess->mutex);
2155 atomic_set(&sess->refcnt, 0);
2156
2157 return sess;
2158}
2159
2160static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2161 sysarg_t arg3, sysarg_t arg4)
2162{
2163 ipc_call_t result;
2164
2165 amsg_t *msg = amsg_create();
2166 if (!msg)
2167 return ENOENT;
2168
2169 msg->dataptr = &result;
2170 msg->wdata.active = true;
2171
2172 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2173 msg, reply_received);
2174
2175 sysarg_t rc;
2176 async_wait_for((aid_t) msg, &rc);
2177
2178 if (rc != EOK)
2179 return rc;
2180
2181 return (int) IPC_GET_ARG5(result);
2182}
2183
2184/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2185 *
2186 * Ask through for a new connection to some service.
2187 *
2188 * @param mgmt Exchange management style.
2189 * @param exch Exchange for sending the message.
2190 * @param arg1 User defined argument.
2191 * @param arg2 User defined argument.
2192 * @param arg3 User defined argument.
2193 *
2194 * @return New session on success or NULL on error.
2195 *
2196 */
2197async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2198 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2199{
2200 if (exch == NULL) {
2201 errno = ENOENT;
2202 return NULL;
2203 }
2204
2205 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2206 if (sess == NULL) {
2207 errno = ENOMEM;
2208 return NULL;
2209 }
2210
2211 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2212 0);
2213 if (phone < 0) {
2214 errno = phone;
2215 free(sess);
2216 return NULL;
2217 }
2218
2219 sess->iface = 0;
2220 sess->mgmt = mgmt;
2221 sess->phone = phone;
2222 sess->arg1 = arg1;
2223 sess->arg2 = arg2;
2224 sess->arg3 = arg3;
2225
2226 fibril_mutex_initialize(&sess->remote_state_mtx);
2227 sess->remote_state_data = NULL;
2228
2229 list_initialize(&sess->exch_list);
2230 fibril_mutex_initialize(&sess->mutex);
2231 atomic_set(&sess->refcnt, 0);
2232
2233 return sess;
2234}
2235
2236/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2237 *
2238 * Ask through phone for a new connection to some service and block until
2239 * success.
2240 *
2241 * @param exch Exchange for sending the message.
2242 * @param iface Connection interface.
2243 * @param arg2 User defined argument.
2244 * @param arg3 User defined argument.
2245 *
2246 * @return New session on success or NULL on error.
2247 *
2248 */
2249async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2250 sysarg_t arg2, sysarg_t arg3)
2251{
2252 if (exch == NULL) {
2253 errno = ENOENT;
2254 return NULL;
2255 }
2256
2257 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2258 if (sess == NULL) {
2259 errno = ENOMEM;
2260 return NULL;
2261 }
2262
2263 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2264 arg3, 0);
2265 if (phone < 0) {
2266 errno = phone;
2267 free(sess);
2268 return NULL;
2269 }
2270
2271 sess->iface = iface;
2272 sess->phone = phone;
2273 sess->arg1 = iface;
2274 sess->arg2 = arg2;
2275 sess->arg3 = arg3;
2276
2277 fibril_mutex_initialize(&sess->remote_state_mtx);
2278 sess->remote_state_data = NULL;
2279
2280 list_initialize(&sess->exch_list);
2281 fibril_mutex_initialize(&sess->mutex);
2282 atomic_set(&sess->refcnt, 0);
2283
2284 return sess;
2285}
2286
2287/** Set arguments for new connections.
2288 *
2289 * FIXME This is an ugly hack to work around the problem that parallel
2290 * exchanges are implemented using parallel connections. When we create
2291 * a callback session, the framework does not know arguments for the new
2292 * connections.
2293 *
2294 * The proper solution seems to be to implement parallel exchanges using
2295 * tagging.
2296 */
2297void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2298 sysarg_t arg3)
2299{
2300 sess->arg1 = arg1;
2301 sess->arg2 = arg2;
2302 sess->arg3 = arg3;
2303}
2304
2305/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2306 *
2307 * Ask through phone for a new connection to some service and block until
2308 * success.
2309 *
2310 * @param mgmt Exchange management style.
2311 * @param exch Exchange for sending the message.
2312 * @param arg1 User defined argument.
2313 * @param arg2 User defined argument.
2314 * @param arg3 User defined argument.
2315 *
2316 * @return New session on success or NULL on error.
2317 *
2318 */
2319async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2320 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2321{
2322 if (exch == NULL) {
2323 errno = ENOENT;
2324 return NULL;
2325 }
2326
2327 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2328 if (sess == NULL) {
2329 errno = ENOMEM;
2330 return NULL;
2331 }
2332
2333 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2334 IPC_FLAG_BLOCKING);
2335
2336 if (phone < 0) {
2337 errno = phone;
2338 free(sess);
2339 return NULL;
2340 }
2341
2342 sess->iface = 0;
2343 sess->mgmt = mgmt;
2344 sess->phone = phone;
2345 sess->arg1 = arg1;
2346 sess->arg2 = arg2;
2347 sess->arg3 = arg3;
2348
2349 fibril_mutex_initialize(&sess->remote_state_mtx);
2350 sess->remote_state_data = NULL;
2351
2352 list_initialize(&sess->exch_list);
2353 fibril_mutex_initialize(&sess->mutex);
2354 atomic_set(&sess->refcnt, 0);
2355
2356 return sess;
2357}
2358
2359/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2360 *
2361 * Ask through phone for a new connection to some service and block until
2362 * success.
2363 *
2364 * @param exch Exchange for sending the message.
2365 * @param iface Connection interface.
2366 * @param arg2 User defined argument.
2367 * @param arg3 User defined argument.
2368 *
2369 * @return New session on success or NULL on error.
2370 *
2371 */
2372async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2373 sysarg_t arg2, sysarg_t arg3)
2374{
2375 if (exch == NULL) {
2376 errno = ENOENT;
2377 return NULL;
2378 }
2379
2380 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2381 if (sess == NULL) {
2382 errno = ENOMEM;
2383 return NULL;
2384 }
2385
2386 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2387 arg3, IPC_FLAG_BLOCKING);
2388 if (phone < 0) {
2389 errno = phone;
2390 free(sess);
2391 return NULL;
2392 }
2393
2394 sess->iface = iface;
2395 sess->phone = phone;
2396 sess->arg1 = iface;
2397 sess->arg2 = arg2;
2398 sess->arg3 = arg3;
2399
2400 fibril_mutex_initialize(&sess->remote_state_mtx);
2401 sess->remote_state_data = NULL;
2402
2403 list_initialize(&sess->exch_list);
2404 fibril_mutex_initialize(&sess->mutex);
2405 atomic_set(&sess->refcnt, 0);
2406
2407 return sess;
2408}
2409
2410/** Connect to a task specified by id.
2411 *
2412 */
2413async_sess_t *async_connect_kbox(task_id_t id)
2414{
2415 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2416 if (sess == NULL) {
2417 errno = ENOMEM;
2418 return NULL;
2419 }
2420
2421 int phone = ipc_connect_kbox(id);
2422 if (phone < 0) {
2423 errno = phone;
2424 free(sess);
2425 return NULL;
2426 }
2427
2428 sess->iface = 0;
2429 sess->mgmt = EXCHANGE_ATOMIC;
2430 sess->phone = phone;
2431 sess->arg1 = 0;
2432 sess->arg2 = 0;
2433 sess->arg3 = 0;
2434
2435 fibril_mutex_initialize(&sess->remote_state_mtx);
2436 sess->remote_state_data = NULL;
2437
2438 list_initialize(&sess->exch_list);
2439 fibril_mutex_initialize(&sess->mutex);
2440 atomic_set(&sess->refcnt, 0);
2441
2442 return sess;
2443}
2444
2445static int async_hangup_internal(int phone)
2446{
2447 return ipc_hangup(phone);
2448}
2449
2450/** Wrapper for ipc_hangup.
2451 *
2452 * @param sess Session to hung up.
2453 *
2454 * @return Zero on success or a negative error code.
2455 *
2456 */
2457int async_hangup(async_sess_t *sess)
2458{
2459 async_exch_t *exch;
2460
2461 assert(sess);
2462
2463 if (atomic_get(&sess->refcnt) > 0)
2464 return EBUSY;
2465
2466 fibril_mutex_lock(&async_sess_mutex);
2467
2468 int rc = async_hangup_internal(sess->phone);
2469
2470 while (!list_empty(&sess->exch_list)) {
2471 exch = (async_exch_t *)
2472 list_get_instance(list_first(&sess->exch_list),
2473 async_exch_t, sess_link);
2474
2475 list_remove(&exch->sess_link);
2476 list_remove(&exch->global_link);
2477 async_hangup_internal(exch->phone);
2478 free(exch);
2479 }
2480
2481 free(sess);
2482
2483 fibril_mutex_unlock(&async_sess_mutex);
2484
2485 return rc;
2486}
2487
2488/** Interrupt one thread of this task from waiting for IPC. */
2489void async_poke(void)
2490{
2491 ipc_poke();
2492}
2493
2494/** Start new exchange in a session.
2495 *
2496 * @param session Session.
2497 *
2498 * @return New exchange or NULL on error.
2499 *
2500 */
2501async_exch_t *async_exchange_begin(async_sess_t *sess)
2502{
2503 if (sess == NULL)
2504 return NULL;
2505
2506 exch_mgmt_t mgmt = sess->mgmt;
2507 if (sess->iface != 0)
2508 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2509
2510 async_exch_t *exch = NULL;
2511
2512 fibril_mutex_lock(&async_sess_mutex);
2513
2514 if (!list_empty(&sess->exch_list)) {
2515 /*
2516 * There are inactive exchanges in the session.
2517 */
2518 exch = (async_exch_t *)
2519 list_get_instance(list_first(&sess->exch_list),
2520 async_exch_t, sess_link);
2521
2522 list_remove(&exch->sess_link);
2523 list_remove(&exch->global_link);
2524 } else {
2525 /*
2526 * There are no available exchanges in the session.
2527 */
2528
2529 if ((mgmt == EXCHANGE_ATOMIC) ||
2530 (mgmt == EXCHANGE_SERIALIZE)) {
2531 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2532 if (exch != NULL) {
2533 link_initialize(&exch->sess_link);
2534 link_initialize(&exch->global_link);
2535 exch->sess = sess;
2536 exch->phone = sess->phone;
2537 }
2538 } else if (mgmt == EXCHANGE_PARALLEL) {
2539 int phone;
2540
2541 retry:
2542 /*
2543 * Make a one-time attempt to connect a new data phone.
2544 */
2545 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2546 sess->arg2, sess->arg3, 0);
2547 if (phone >= 0) {
2548 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2549 if (exch != NULL) {
2550 link_initialize(&exch->sess_link);
2551 link_initialize(&exch->global_link);
2552 exch->sess = sess;
2553 exch->phone = phone;
2554 } else
2555 async_hangup_internal(phone);
2556 } else if (!list_empty(&inactive_exch_list)) {
2557 /*
2558 * We did not manage to connect a new phone. But we
2559 * can try to close some of the currently inactive
2560 * connections in other sessions and try again.
2561 */
2562 exch = (async_exch_t *)
2563 list_get_instance(list_first(&inactive_exch_list),
2564 async_exch_t, global_link);
2565
2566 list_remove(&exch->sess_link);
2567 list_remove(&exch->global_link);
2568 async_hangup_internal(exch->phone);
2569 free(exch);
2570 goto retry;
2571 } else {
2572 /*
2573 * Wait for a phone to become available.
2574 */
2575 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2576 goto retry;
2577 }
2578 }
2579 }
2580
2581 fibril_mutex_unlock(&async_sess_mutex);
2582
2583 if (exch != NULL) {
2584 atomic_inc(&sess->refcnt);
2585
2586 if (mgmt == EXCHANGE_SERIALIZE)
2587 fibril_mutex_lock(&sess->mutex);
2588 }
2589
2590 return exch;
2591}
2592
2593/** Finish an exchange.
2594 *
2595 * @param exch Exchange to finish.
2596 *
2597 */
2598void async_exchange_end(async_exch_t *exch)
2599{
2600 if (exch == NULL)
2601 return;
2602
2603 async_sess_t *sess = exch->sess;
2604 assert(sess != NULL);
2605
2606 exch_mgmt_t mgmt = sess->mgmt;
2607 if (sess->iface != 0)
2608 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2609
2610 atomic_dec(&sess->refcnt);
2611
2612 if (mgmt == EXCHANGE_SERIALIZE)
2613 fibril_mutex_unlock(&sess->mutex);
2614
2615 fibril_mutex_lock(&async_sess_mutex);
2616
2617 list_append(&exch->sess_link, &sess->exch_list);
2618 list_append(&exch->global_link, &inactive_exch_list);
2619 fibril_condvar_signal(&avail_phone_cv);
2620
2621 fibril_mutex_unlock(&async_sess_mutex);
2622}
2623
2624/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2625 *
2626 * @param exch Exchange for sending the message.
2627 * @param size Size of the destination address space area.
2628 * @param arg User defined argument.
2629 * @param flags Storage for the received flags. Can be NULL.
2630 * @param dst Address of the storage for the destination address space area
2631 * base address. Cannot be NULL.
2632 *
2633 * @return Zero on success or a negative error code from errno.h.
2634 *
2635 */
2636int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2637 unsigned int *flags, void **dst)
2638{
2639 if (exch == NULL)
2640 return ENOENT;
2641
2642 sysarg_t _flags = 0;
2643 sysarg_t _dst = (sysarg_t) -1;
2644 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2645 arg, NULL, &_flags, NULL, &_dst);
2646
2647 if (flags)
2648 *flags = (unsigned int) _flags;
2649
2650 *dst = (void *) _dst;
2651 return res;
2652}
2653
2654/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2655 *
2656 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2657 * calls so that the user doesn't have to remember the meaning of each IPC
2658 * argument.
2659 *
2660 * So far, this wrapper is to be used from within a connection fibril.
2661 *
2662 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2663 * @param size Destination address space area size.
2664 *
2665 * @return True on success, false on failure.
2666 *
2667 */
2668bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2669{
2670 assert(callid);
2671 assert(size);
2672
2673 ipc_call_t data;
2674 *callid = async_get_call(&data);
2675
2676 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2677 return false;
2678
2679 *size = (size_t) IPC_GET_ARG1(data);
2680 return true;
2681}
2682
2683/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2684 *
2685 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2686 * calls so that the user doesn't have to remember the meaning of each IPC
2687 * argument.
2688 *
2689 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2690 * @param src Source address space base.
2691 * @param flags Flags to be used for sharing. Bits can be only cleared.
2692 *
2693 * @return Zero on success or a value from @ref errno.h on failure.
2694 *
2695 */
2696int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2697{
2698 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2699 (sysarg_t) __entry);
2700}
2701
2702/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2703 *
2704 * @param exch Exchange for sending the message.
2705 * @param src Source address space area base address.
2706 * @param flags Flags to be used for sharing. Bits can be only cleared.
2707 *
2708 * @return Zero on success or a negative error code from errno.h.
2709 *
2710 */
2711int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2712{
2713 if (exch == NULL)
2714 return ENOENT;
2715
2716 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2717 (sysarg_t) flags);
2718}
2719
2720/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2721 *
2722 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2723 * calls so that the user doesn't have to remember the meaning of each IPC
2724 * argument.
2725 *
2726 * So far, this wrapper is to be used from within a connection fibril.
2727 *
2728 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2729 * @param size Storage for the source address space area size.
2730 * @param flags Storage for the sharing flags.
2731 *
2732 * @return True on success, false on failure.
2733 *
2734 */
2735bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2736{
2737 assert(callid);
2738 assert(size);
2739 assert(flags);
2740
2741 ipc_call_t data;
2742 *callid = async_get_call(&data);
2743
2744 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2745 return false;
2746
2747 *size = (size_t) IPC_GET_ARG2(data);
2748 *flags = (unsigned int) IPC_GET_ARG3(data);
2749 return true;
2750}
2751
2752/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2753 *
2754 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2755 * calls so that the user doesn't have to remember the meaning of each IPC
2756 * argument.
2757 *
2758 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2759 * @param dst Address of the storage for the destination address space area
2760 * base address.
2761 *
2762 * @return Zero on success or a value from @ref errno.h on failure.
2763 *
2764 */
2765int async_share_out_finalize(ipc_callid_t callid, void **dst)
2766{
2767 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2768}
2769
2770/** Start IPC_M_DATA_READ using the async framework.
2771 *
2772 * @param exch Exchange for sending the message.
2773 * @param dst Address of the beginning of the destination buffer.
2774 * @param size Size of the destination buffer (in bytes).
2775 * @param dataptr Storage of call data (arg 2 holds actual data size).
2776 *
2777 * @return Hash of the sent message or 0 on error.
2778 *
2779 */
2780aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2781 ipc_call_t *dataptr)
2782{
2783 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2784 (sysarg_t) size, dataptr);
2785}
2786
2787/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2788 *
2789 * @param exch Exchange for sending the message.
2790 * @param dst Address of the beginning of the destination buffer.
2791 * @param size Size of the destination buffer.
2792 *
2793 * @return Zero on success or a negative error code from errno.h.
2794 *
2795 */
2796int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2797{
2798 if (exch == NULL)
2799 return ENOENT;
2800
2801 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2802 (sysarg_t) size);
2803}
2804
2805/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2806 *
2807 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2808 * calls so that the user doesn't have to remember the meaning of each IPC
2809 * argument.
2810 *
2811 * So far, this wrapper is to be used from within a connection fibril.
2812 *
2813 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2814 * @param size Storage for the maximum size. Can be NULL.
2815 *
2816 * @return True on success, false on failure.
2817 *
2818 */
2819bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2820{
2821 ipc_call_t data;
2822 return async_data_read_receive_call(callid, &data, size);
2823}
2824
2825/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2826 *
2827 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2828 * calls so that the user doesn't have to remember the meaning of each IPC
2829 * argument.
2830 *
2831 * So far, this wrapper is to be used from within a connection fibril.
2832 *
2833 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2834 * @param size Storage for the maximum size. Can be NULL.
2835 *
2836 * @return True on success, false on failure.
2837 *
2838 */
2839bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2840 size_t *size)
2841{
2842 assert(callid);
2843 assert(data);
2844
2845 *callid = async_get_call(data);
2846
2847 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2848 return false;
2849
2850 if (size)
2851 *size = (size_t) IPC_GET_ARG2(*data);
2852
2853 return true;
2854}
2855
2856/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2857 *
2858 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2859 * calls so that the user doesn't have to remember the meaning of each IPC
2860 * argument.
2861 *
2862 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2863 * @param src Source address for the IPC_M_DATA_READ call.
2864 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2865 * the maximum size announced by the sender.
2866 *
2867 * @return Zero on success or a value from @ref errno.h on failure.
2868 *
2869 */
2870int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2871{
2872 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2873}
2874
2875/** Wrapper for forwarding any read request
2876 *
2877 */
2878int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2879 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2880 ipc_call_t *dataptr)
2881{
2882 if (exch == NULL)
2883 return ENOENT;
2884
2885 ipc_callid_t callid;
2886 if (!async_data_read_receive(&callid, NULL)) {
2887 ipc_answer_0(callid, EINVAL);
2888 return EINVAL;
2889 }
2890
2891 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2892 dataptr);
2893 if (msg == 0) {
2894 ipc_answer_0(callid, EINVAL);
2895 return EINVAL;
2896 }
2897
2898 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2899 IPC_FF_ROUTE_FROM_ME);
2900 if (retval != EOK) {
2901 async_forget(msg);
2902 ipc_answer_0(callid, retval);
2903 return retval;
2904 }
2905
2906 sysarg_t rc;
2907 async_wait_for(msg, &rc);
2908
2909 return (int) rc;
2910}
2911
2912/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2913 *
2914 * @param exch Exchange for sending the message.
2915 * @param src Address of the beginning of the source buffer.
2916 * @param size Size of the source buffer.
2917 *
2918 * @return Zero on success or a negative error code from errno.h.
2919 *
2920 */
2921int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2922{
2923 if (exch == NULL)
2924 return ENOENT;
2925
2926 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2927 (sysarg_t) size);
2928}
2929
2930/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2931 *
2932 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2933 * calls so that the user doesn't have to remember the meaning of each IPC
2934 * argument.
2935 *
2936 * So far, this wrapper is to be used from within a connection fibril.
2937 *
2938 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2939 * @param size Storage for the suggested size. May be NULL.
2940 *
2941 * @return True on success, false on failure.
2942 *
2943 */
2944bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2945{
2946 ipc_call_t data;
2947 return async_data_write_receive_call(callid, &data, size);
2948}
2949
2950/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2951 *
2952 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2953 * calls so that the user doesn't have to remember the meaning of each IPC
2954 * argument.
2955 *
2956 * So far, this wrapper is to be used from within a connection fibril.
2957 *
2958 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2959 * @param data Storage for the ipc call data.
2960 * @param size Storage for the suggested size. May be NULL.
2961 *
2962 * @return True on success, false on failure.
2963 *
2964 */
2965bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2966 size_t *size)
2967{
2968 assert(callid);
2969 assert(data);
2970
2971 *callid = async_get_call(data);
2972
2973 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2974 return false;
2975
2976 if (size)
2977 *size = (size_t) IPC_GET_ARG2(*data);
2978
2979 return true;
2980}
2981
2982/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2983 *
2984 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2985 * calls so that the user doesn't have to remember the meaning of each IPC
2986 * argument.
2987 *
2988 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2989 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2990 * @param size Final size for the IPC_M_DATA_WRITE call.
2991 *
2992 * @return Zero on success or a value from @ref errno.h on failure.
2993 *
2994 */
2995int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2996{
2997 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2998}
2999
3000/** Wrapper for receiving binary data or strings
3001 *
3002 * This wrapper only makes it more comfortable to use async_data_write_*
3003 * functions to receive binary data or strings.
3004 *
3005 * @param data Pointer to data pointer (which should be later disposed
3006 * by free()). If the operation fails, the pointer is not
3007 * touched.
3008 * @param nullterm If true then the received data is always zero terminated.
3009 * This also causes to allocate one extra byte beyond the
3010 * raw transmitted data.
3011 * @param min_size Minimum size (in bytes) of the data to receive.
3012 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
3013 * no limit.
3014 * @param granulariy If non-zero then the size of the received data has to
3015 * be divisible by this value.
3016 * @param received If not NULL, the size of the received data is stored here.
3017 *
3018 * @return Zero on success or a value from @ref errno.h on failure.
3019 *
3020 */
3021int async_data_write_accept(void **data, const bool nullterm,
3022 const size_t min_size, const size_t max_size, const size_t granularity,
3023 size_t *received)
3024{
3025 assert(data);
3026
3027 ipc_callid_t callid;
3028 size_t size;
3029 if (!async_data_write_receive(&callid, &size)) {
3030 ipc_answer_0(callid, EINVAL);
3031 return EINVAL;
3032 }
3033
3034 if (size < min_size) {
3035 ipc_answer_0(callid, EINVAL);
3036 return EINVAL;
3037 }
3038
3039 if ((max_size > 0) && (size > max_size)) {
3040 ipc_answer_0(callid, EINVAL);
3041 return EINVAL;
3042 }
3043
3044 if ((granularity > 0) && ((size % granularity) != 0)) {
3045 ipc_answer_0(callid, EINVAL);
3046 return EINVAL;
3047 }
3048
3049 void *arg_data;
3050
3051 if (nullterm)
3052 arg_data = malloc(size + 1);
3053 else
3054 arg_data = malloc(size);
3055
3056 if (arg_data == NULL) {
3057 ipc_answer_0(callid, ENOMEM);
3058 return ENOMEM;
3059 }
3060
3061 int rc = async_data_write_finalize(callid, arg_data, size);
3062 if (rc != EOK) {
3063 free(arg_data);
3064 return rc;
3065 }
3066
3067 if (nullterm)
3068 ((char *) arg_data)[size] = 0;
3069
3070 *data = arg_data;
3071 if (received != NULL)
3072 *received = size;
3073
3074 return EOK;
3075}
3076
3077/** Wrapper for voiding any data that is about to be received
3078 *
3079 * This wrapper can be used to void any pending data
3080 *
3081 * @param retval Error value from @ref errno.h to be returned to the caller.
3082 *
3083 */
3084void async_data_write_void(sysarg_t retval)
3085{
3086 ipc_callid_t callid;
3087 async_data_write_receive(&callid, NULL);
3088 ipc_answer_0(callid, retval);
3089}
3090
3091/** Wrapper for forwarding any data that is about to be received
3092 *
3093 */
3094int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3095 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3096 ipc_call_t *dataptr)
3097{
3098 if (exch == NULL)
3099 return ENOENT;
3100
3101 ipc_callid_t callid;
3102 if (!async_data_write_receive(&callid, NULL)) {
3103 ipc_answer_0(callid, EINVAL);
3104 return EINVAL;
3105 }
3106
3107 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3108 dataptr);
3109 if (msg == 0) {
3110 ipc_answer_0(callid, EINVAL);
3111 return EINVAL;
3112 }
3113
3114 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
3115 IPC_FF_ROUTE_FROM_ME);
3116 if (retval != EOK) {
3117 async_forget(msg);
3118 ipc_answer_0(callid, retval);
3119 return retval;
3120 }
3121
3122 sysarg_t rc;
3123 async_wait_for(msg, &rc);
3124
3125 return (int) rc;
3126}
3127
3128/** Wrapper for sending an exchange over different exchange for cloning
3129 *
3130 * @param exch Exchange to be used for sending.
3131 * @param clone_exch Exchange to be cloned.
3132 *
3133 */
3134int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch)
3135{
3136 return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone);
3137}
3138
3139/** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls.
3140 *
3141 * If the current call is IPC_M_CONNECTION_CLONE then a new
3142 * async session is created for the accepted phone.
3143 *
3144 * @param mgmt Exchange management style.
3145 *
3146 * @return New async session or NULL on failure.
3147 *
3148 */
3149async_sess_t *async_clone_receive(exch_mgmt_t mgmt)
3150{
3151 /* Accept the phone */
3152 ipc_call_t call;
3153 ipc_callid_t callid = async_get_call(&call);
3154 int phone = (int) IPC_GET_ARG1(call);
3155
3156 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) ||
3157 (phone < 0)) {
3158 async_answer_0(callid, EINVAL);
3159 return NULL;
3160 }
3161
3162 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3163 if (sess == NULL) {
3164 async_answer_0(callid, ENOMEM);
3165 return NULL;
3166 }
3167
3168 sess->iface = 0;
3169 sess->mgmt = mgmt;
3170 sess->phone = phone;
3171 sess->arg1 = 0;
3172 sess->arg2 = 0;
3173 sess->arg3 = 0;
3174
3175 fibril_mutex_initialize(&sess->remote_state_mtx);
3176 sess->remote_state_data = NULL;
3177
3178 list_initialize(&sess->exch_list);
3179 fibril_mutex_initialize(&sess->mutex);
3180 atomic_set(&sess->refcnt, 0);
3181
3182 /* Acknowledge the cloned phone */
3183 async_answer_0(callid, EOK);
3184
3185 return sess;
3186}
3187
3188/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3189 *
3190 * If the current call is IPC_M_CONNECT_TO_ME then a new
3191 * async session is created for the accepted phone.
3192 *
3193 * @param mgmt Exchange management style.
3194 *
3195 * @return New async session.
3196 * @return NULL on failure.
3197 *
3198 */
3199async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3200{
3201 /* Accept the phone */
3202 ipc_call_t call;
3203 ipc_callid_t callid = async_get_call(&call);
3204 int phone = (int) IPC_GET_ARG5(call);
3205
3206 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
3207 (phone < 0)) {
3208 async_answer_0(callid, EINVAL);
3209 return NULL;
3210 }
3211
3212 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3213 if (sess == NULL) {
3214 async_answer_0(callid, ENOMEM);
3215 return NULL;
3216 }
3217
3218 sess->iface = 0;
3219 sess->mgmt = mgmt;
3220 sess->phone = phone;
3221 sess->arg1 = 0;
3222 sess->arg2 = 0;
3223 sess->arg3 = 0;
3224
3225 fibril_mutex_initialize(&sess->remote_state_mtx);
3226 sess->remote_state_data = NULL;
3227
3228 list_initialize(&sess->exch_list);
3229 fibril_mutex_initialize(&sess->mutex);
3230 atomic_set(&sess->refcnt, 0);
3231
3232 /* Acknowledge the connected phone */
3233 async_answer_0(callid, EOK);
3234
3235 return sess;
3236}
3237
3238/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3239 *
3240 * If the call is IPC_M_CONNECT_TO_ME then a new
3241 * async session is created. However, the phone is
3242 * not accepted automatically.
3243 *
3244 * @param mgmt Exchange management style.
3245 * @param call Call data.
3246 *
3247 * @return New async session.
3248 * @return NULL on failure.
3249 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3250 *
3251 */
3252async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3253{
3254 int phone = (int) IPC_GET_ARG5(*call);
3255
3256 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
3257 (phone < 0))
3258 return NULL;
3259
3260 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3261 if (sess == NULL)
3262 return NULL;
3263
3264 sess->iface = 0;
3265 sess->mgmt = mgmt;
3266 sess->phone = phone;
3267 sess->arg1 = 0;
3268 sess->arg2 = 0;
3269 sess->arg3 = 0;
3270
3271 fibril_mutex_initialize(&sess->remote_state_mtx);
3272 sess->remote_state_data = NULL;
3273
3274 list_initialize(&sess->exch_list);
3275 fibril_mutex_initialize(&sess->mutex);
3276 atomic_set(&sess->refcnt, 0);
3277
3278 return sess;
3279}
3280
3281int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3282 sysarg_t arg3, async_exch_t *other_exch)
3283{
3284 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3285 arg1, arg2, arg3, 0, other_exch->phone);
3286}
3287
3288bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
3289 sysarg_t *arg2, sysarg_t *arg3)
3290{
3291 assert(callid);
3292
3293 ipc_call_t call;
3294 *callid = async_get_call(&call);
3295
3296 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3297 return false;
3298
3299 if (arg1)
3300 *arg1 = IPC_GET_ARG1(call);
3301 if (arg2)
3302 *arg2 = IPC_GET_ARG2(call);
3303 if (arg3)
3304 *arg3 = IPC_GET_ARG3(call);
3305
3306 return true;
3307}
3308
3309int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
3310{
3311 return ipc_answer_1(callid, EOK, other_exch->phone);
3312}
3313
3314/** Lock and get session remote state
3315 *
3316 * Lock and get the local replica of the remote state
3317 * in stateful sessions. The call should be paired
3318 * with async_remote_state_release*().
3319 *
3320 * @param[in] sess Stateful session.
3321 *
3322 * @return Local replica of the remote state.
3323 *
3324 */
3325void *async_remote_state_acquire(async_sess_t *sess)
3326{
3327 fibril_mutex_lock(&sess->remote_state_mtx);
3328 return sess->remote_state_data;
3329}
3330
3331/** Update the session remote state
3332 *
3333 * Update the local replica of the remote state
3334 * in stateful sessions. The remote state must
3335 * be already locked.
3336 *
3337 * @param[in] sess Stateful session.
3338 * @param[in] state New local replica of the remote state.
3339 *
3340 */
3341void async_remote_state_update(async_sess_t *sess, void *state)
3342{
3343 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3344 sess->remote_state_data = state;
3345}
3346
3347/** Release the session remote state
3348 *
3349 * Unlock the local replica of the remote state
3350 * in stateful sessions.
3351 *
3352 * @param[in] sess Stateful session.
3353 *
3354 */
3355void async_remote_state_release(async_sess_t *sess)
3356{
3357 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3358
3359 fibril_mutex_unlock(&sess->remote_state_mtx);
3360}
3361
3362/** Release the session remote state and end an exchange
3363 *
3364 * Unlock the local replica of the remote state
3365 * in stateful sessions. This is convenience function
3366 * which gets the session pointer from the exchange
3367 * and also ends the exchange.
3368 *
3369 * @param[in] exch Stateful session's exchange.
3370 *
3371 */
3372void async_remote_state_release_exchange(async_exch_t *exch)
3373{
3374 if (exch == NULL)
3375 return;
3376
3377 async_sess_t *sess = exch->sess;
3378 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3379
3380 async_exchange_end(exch);
3381 fibril_mutex_unlock(&sess->remote_state_mtx);
3382}
3383
3384void *async_as_area_create(void *base, size_t size, unsigned int flags,
3385 async_sess_t *pager, sysarg_t id1, sysarg_t id2, sysarg_t id3)
3386{
3387 as_area_pager_info_t pager_info = {
3388 .pager = pager->phone,
3389 .id1 = id1,
3390 .id2 = id2,
3391 .id3 = id3
3392 };
3393 return as_area_create(base, size, flags, &pager_info);
3394}
3395
3396/** @}
3397 */
Note: See TracBrowser for help on using the repository browser.