source: mainline/uspace/lib/c/generic/async.c@ 101516d

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 101516d was 101516d, checked in by Jakub Jermar <jakub@…>, 9 years ago

Add async framework wrapper around as_area_create()

This is necessary because only the async framework can see the underlying
phone in struct async_sess.

  • Property mode set to 100644
File size: 81.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(icallid, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(icallid, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(icallid, EOK);
86 *
87 * callid = async_get_call(&call);
88 * somehow_handle_the_call(callid, call);
89 * async_answer_2(callid, 1, 2, 3);
90 *
91 * callid = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/list.h>
109#include <assert.h>
110#include <errno.h>
111#include <sys/time.h>
112#include <libarch/barrier.h>
113#include <stdbool.h>
114#include <malloc.h>
115#include <mem.h>
116#include <stdlib.h>
117#include <macros.h>
118#include <as.h>
119#include "private/libc.h"
120
121/** Session data */
122struct async_sess {
123 /** List of inactive exchanges */
124 list_t exch_list;
125
126 /** Session interface */
127 iface_t iface;
128
129 /** Exchange management style */
130 exch_mgmt_t mgmt;
131
132 /** Session identification */
133 int phone;
134
135 /** First clone connection argument */
136 sysarg_t arg1;
137
138 /** Second clone connection argument */
139 sysarg_t arg2;
140
141 /** Third clone connection argument */
142 sysarg_t arg3;
143
144 /** Exchange mutex */
145 fibril_mutex_t mutex;
146
147 /** Number of opened exchanges */
148 atomic_t refcnt;
149
150 /** Mutex for stateful connections */
151 fibril_mutex_t remote_state_mtx;
152
153 /** Data for stateful connections */
154 void *remote_state_data;
155};
156
157/** Exchange data */
158struct async_exch {
159 /** Link into list of inactive exchanges */
160 link_t sess_link;
161
162 /** Link into global list of inactive exchanges */
163 link_t global_link;
164
165 /** Session pointer */
166 async_sess_t *sess;
167
168 /** Exchange identification */
169 int phone;
170};
171
172/** Async framework global futex */
173futex_t async_futex = FUTEX_INITIALIZER;
174
175/** Number of threads waiting for IPC in the kernel. */
176atomic_t threads_in_ipc_wait = { 0 };
177
178/** Naming service session */
179async_sess_t *session_ns;
180
181/** Call data */
182typedef struct {
183 link_t link;
184
185 ipc_callid_t callid;
186 ipc_call_t call;
187} msg_t;
188
189/** Message data */
190typedef struct {
191 awaiter_t wdata;
192
193 /** If reply was received. */
194 bool done;
195
196 /** If the message / reply should be discarded on arrival. */
197 bool forget;
198
199 /** If already destroyed. */
200 bool destroyed;
201
202 /** Pointer to where the answer data is stored. */
203 ipc_call_t *dataptr;
204
205 sysarg_t retval;
206} amsg_t;
207
208/* Client connection data */
209typedef struct {
210 ht_link_t link;
211
212 task_id_t in_task_id;
213 atomic_t refcnt;
214 void *data;
215} client_t;
216
217/* Server connection data */
218typedef struct {
219 awaiter_t wdata;
220
221 /** Hash table link. */
222 ht_link_t link;
223
224 /** Incoming client task ID. */
225 task_id_t in_task_id;
226
227 /** Incoming phone hash. */
228 sysarg_t in_phone_hash;
229
230 /** Link to the client tracking structure. */
231 client_t *client;
232
233 /** Messages that should be delivered to this fibril. */
234 list_t msg_queue;
235
236 /** Identification of the opening call. */
237 ipc_callid_t callid;
238
239 /** Call data of the opening call. */
240 ipc_call_t call;
241
242 /** Identification of the closing call. */
243 ipc_callid_t close_callid;
244
245 /** Fibril function that will be used to handle the connection. */
246 async_port_handler_t handler;
247
248 /** Client data */
249 void *data;
250} connection_t;
251
252/** Interface data */
253typedef struct {
254 ht_link_t link;
255
256 /** Interface ID */
257 iface_t iface;
258
259 /** Futex protecting the hash table */
260 futex_t futex;
261
262 /** Interface ports */
263 hash_table_t port_hash_table;
264
265 /** Next available port ID */
266 port_id_t port_id_avail;
267} interface_t;
268
269/* Port data */
270typedef struct {
271 ht_link_t link;
272
273 /** Port ID */
274 port_id_t id;
275
276 /** Port connection handler */
277 async_port_handler_t handler;
278
279 /** Client data */
280 void *data;
281} port_t;
282
283/* Notification data */
284typedef struct {
285 ht_link_t link;
286
287 /** Notification method */
288 sysarg_t imethod;
289
290 /** Notification handler */
291 async_notification_handler_t handler;
292
293 /** Notification data */
294 void *data;
295} notification_t;
296
297/** Identifier of the incoming connection handled by the current fibril. */
298static fibril_local connection_t *fibril_connection;
299
300static void to_event_initialize(to_event_t *to)
301{
302 struct timeval tv = { 0, 0 };
303
304 to->inlist = false;
305 to->occurred = false;
306 link_initialize(&to->link);
307 to->expires = tv;
308}
309
310static void wu_event_initialize(wu_event_t *wu)
311{
312 wu->inlist = false;
313 link_initialize(&wu->link);
314}
315
316void awaiter_initialize(awaiter_t *aw)
317{
318 aw->fid = 0;
319 aw->active = false;
320 to_event_initialize(&aw->to_event);
321 wu_event_initialize(&aw->wu_event);
322}
323
324static amsg_t *amsg_create(void)
325{
326 amsg_t *msg = malloc(sizeof(amsg_t));
327 if (msg) {
328 msg->done = false;
329 msg->forget = false;
330 msg->destroyed = false;
331 msg->dataptr = NULL;
332 msg->retval = (sysarg_t) EINVAL;
333 awaiter_initialize(&msg->wdata);
334 }
335
336 return msg;
337}
338
339static void amsg_destroy(amsg_t *msg)
340{
341 assert(!msg->destroyed);
342 msg->destroyed = true;
343 free(msg);
344}
345
346static void *default_client_data_constructor(void)
347{
348 return NULL;
349}
350
351static void default_client_data_destructor(void *data)
352{
353}
354
355static async_client_data_ctor_t async_client_data_create =
356 default_client_data_constructor;
357static async_client_data_dtor_t async_client_data_destroy =
358 default_client_data_destructor;
359
360void async_set_client_data_constructor(async_client_data_ctor_t ctor)
361{
362 assert(async_client_data_create == default_client_data_constructor);
363 async_client_data_create = ctor;
364}
365
366void async_set_client_data_destructor(async_client_data_dtor_t dtor)
367{
368 assert(async_client_data_destroy == default_client_data_destructor);
369 async_client_data_destroy = dtor;
370}
371
372/** Default fallback fibril function.
373 *
374 * This fallback fibril function gets called on incomming
375 * connections that do not have a specific handler defined.
376 *
377 * @param callid Hash of the incoming call.
378 * @param call Data of the incoming call.
379 * @param arg Local argument
380 *
381 */
382static void default_fallback_port_handler(ipc_callid_t callid, ipc_call_t *call,
383 void *arg)
384{
385 ipc_answer_0(callid, ENOENT);
386}
387
388static async_port_handler_t fallback_port_handler =
389 default_fallback_port_handler;
390static void *fallback_port_data = NULL;
391
392static hash_table_t interface_hash_table;
393
394static size_t interface_key_hash(void *key)
395{
396 iface_t iface = *(iface_t *) key;
397 return iface;
398}
399
400static size_t interface_hash(const ht_link_t *item)
401{
402 interface_t *interface = hash_table_get_inst(item, interface_t, link);
403 return interface_key_hash(&interface->iface);
404}
405
406static bool interface_key_equal(void *key, const ht_link_t *item)
407{
408 iface_t iface = *(iface_t *) key;
409 interface_t *interface = hash_table_get_inst(item, interface_t, link);
410 return iface == interface->iface;
411}
412
413/** Operations for the port hash table. */
414static hash_table_ops_t interface_hash_table_ops = {
415 .hash = interface_hash,
416 .key_hash = interface_key_hash,
417 .key_equal = interface_key_equal,
418 .equal = NULL,
419 .remove_callback = NULL
420};
421
422static size_t port_key_hash(void *key)
423{
424 port_id_t port_id = *(port_id_t *) key;
425 return port_id;
426}
427
428static size_t port_hash(const ht_link_t *item)
429{
430 port_t *port = hash_table_get_inst(item, port_t, link);
431 return port_key_hash(&port->id);
432}
433
434static bool port_key_equal(void *key, const ht_link_t *item)
435{
436 port_id_t port_id = *(port_id_t *) key;
437 port_t *port = hash_table_get_inst(item, port_t, link);
438 return port_id == port->id;
439}
440
441/** Operations for the port hash table. */
442static hash_table_ops_t port_hash_table_ops = {
443 .hash = port_hash,
444 .key_hash = port_key_hash,
445 .key_equal = port_key_equal,
446 .equal = NULL,
447 .remove_callback = NULL
448};
449
450static interface_t *async_new_interface(iface_t iface)
451{
452 interface_t *interface =
453 (interface_t *) malloc(sizeof(interface_t));
454 if (!interface)
455 return NULL;
456
457 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
458 &port_hash_table_ops);
459 if (!ret) {
460 free(interface);
461 return NULL;
462 }
463
464 interface->iface = iface;
465 futex_initialize(&interface->futex, 1);
466 interface->port_id_avail = 0;
467
468 hash_table_insert(&interface_hash_table, &interface->link);
469
470 return interface;
471}
472
473static port_t *async_new_port(interface_t *interface,
474 async_port_handler_t handler, void *data)
475{
476 port_t *port = (port_t *) malloc(sizeof(port_t));
477 if (!port)
478 return NULL;
479
480 futex_down(&interface->futex);
481
482 port_id_t id = interface->port_id_avail;
483 interface->port_id_avail++;
484
485 port->id = id;
486 port->handler = handler;
487 port->data = data;
488
489 hash_table_insert(&interface->port_hash_table, &port->link);
490
491 futex_up(&interface->futex);
492
493 return port;
494}
495
496/** Mutex protecting inactive_exch_list and avail_phone_cv.
497 *
498 */
499static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
500
501/** List of all currently inactive exchanges.
502 *
503 */
504static LIST_INITIALIZE(inactive_exch_list);
505
506/** Condition variable to wait for a phone to become available.
507 *
508 */
509static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
510
511int async_create_port(iface_t iface, async_port_handler_t handler,
512 void *data, port_id_t *port_id)
513{
514 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
515 return EINVAL;
516
517 interface_t *interface;
518
519 futex_down(&async_futex);
520
521 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
522 if (link)
523 interface = hash_table_get_inst(link, interface_t, link);
524 else
525 interface = async_new_interface(iface);
526
527 if (!interface) {
528 futex_up(&async_futex);
529 return ENOMEM;
530 }
531
532 port_t *port = async_new_port(interface, handler, data);
533 if (!port) {
534 futex_up(&async_futex);
535 return ENOMEM;
536 }
537
538 *port_id = port->id;
539
540 futex_up(&async_futex);
541
542 return EOK;
543}
544
545void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
546{
547 assert(handler != NULL);
548
549 fallback_port_handler = handler;
550 fallback_port_data = data;
551}
552
553static hash_table_t client_hash_table;
554static hash_table_t conn_hash_table;
555static hash_table_t notification_hash_table;
556static LIST_INITIALIZE(timeout_list);
557
558static sysarg_t notification_avail = 0;
559
560static size_t client_key_hash(void *key)
561{
562 task_id_t in_task_id = *(task_id_t *) key;
563 return in_task_id;
564}
565
566static size_t client_hash(const ht_link_t *item)
567{
568 client_t *client = hash_table_get_inst(item, client_t, link);
569 return client_key_hash(&client->in_task_id);
570}
571
572static bool client_key_equal(void *key, const ht_link_t *item)
573{
574 task_id_t in_task_id = *(task_id_t *) key;
575 client_t *client = hash_table_get_inst(item, client_t, link);
576 return in_task_id == client->in_task_id;
577}
578
579/** Operations for the client hash table. */
580static hash_table_ops_t client_hash_table_ops = {
581 .hash = client_hash,
582 .key_hash = client_key_hash,
583 .key_equal = client_key_equal,
584 .equal = NULL,
585 .remove_callback = NULL
586};
587
588/** Compute hash into the connection hash table based on the source phone hash.
589 *
590 * @param key Pointer to source phone hash.
591 *
592 * @return Index into the connection hash table.
593 *
594 */
595static size_t conn_key_hash(void *key)
596{
597 sysarg_t in_phone_hash = *(sysarg_t *) key;
598 return in_phone_hash;
599}
600
601static size_t conn_hash(const ht_link_t *item)
602{
603 connection_t *conn = hash_table_get_inst(item, connection_t, link);
604 return conn_key_hash(&conn->in_phone_hash);
605}
606
607static bool conn_key_equal(void *key, const ht_link_t *item)
608{
609 sysarg_t in_phone_hash = *(sysarg_t *) key;
610 connection_t *conn = hash_table_get_inst(item, connection_t, link);
611 return (in_phone_hash == conn->in_phone_hash);
612}
613
614/** Operations for the connection hash table. */
615static hash_table_ops_t conn_hash_table_ops = {
616 .hash = conn_hash,
617 .key_hash = conn_key_hash,
618 .key_equal = conn_key_equal,
619 .equal = NULL,
620 .remove_callback = NULL
621};
622
623static client_t *async_client_get(task_id_t client_id, bool create)
624{
625 client_t *client = NULL;
626
627 futex_down(&async_futex);
628 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
629 if (link) {
630 client = hash_table_get_inst(link, client_t, link);
631 atomic_inc(&client->refcnt);
632 } else if (create) {
633 client = malloc(sizeof(client_t));
634 if (client) {
635 client->in_task_id = client_id;
636 client->data = async_client_data_create();
637
638 atomic_set(&client->refcnt, 1);
639 hash_table_insert(&client_hash_table, &client->link);
640 }
641 }
642
643 futex_up(&async_futex);
644 return client;
645}
646
647static void async_client_put(client_t *client)
648{
649 bool destroy;
650
651 futex_down(&async_futex);
652
653 if (atomic_predec(&client->refcnt) == 0) {
654 hash_table_remove(&client_hash_table, &client->in_task_id);
655 destroy = true;
656 } else
657 destroy = false;
658
659 futex_up(&async_futex);
660
661 if (destroy) {
662 if (client->data)
663 async_client_data_destroy(client->data);
664
665 free(client);
666 }
667}
668
669/** Wrapper for client connection fibril.
670 *
671 * When a new connection arrives, a fibril with this implementing
672 * function is created.
673 *
674 * @param arg Connection structure pointer.
675 *
676 * @return Always zero.
677 *
678 */
679static int connection_fibril(void *arg)
680{
681 assert(arg);
682
683 /*
684 * Setup fibril-local connection pointer.
685 */
686 fibril_connection = (connection_t *) arg;
687
688 /*
689 * Add our reference for the current connection in the client task
690 * tracking structure. If this is the first reference, create and
691 * hash in a new tracking structure.
692 */
693
694 client_t *client = async_client_get(fibril_connection->in_task_id, true);
695 if (!client) {
696 ipc_answer_0(fibril_connection->callid, ENOMEM);
697 return 0;
698 }
699
700 fibril_connection->client = client;
701
702 /*
703 * Call the connection handler function.
704 */
705 fibril_connection->handler(fibril_connection->callid,
706 &fibril_connection->call, fibril_connection->data);
707
708 /*
709 * Remove the reference for this client task connection.
710 */
711 async_client_put(client);
712
713 /*
714 * Remove myself from the connection hash table.
715 */
716 futex_down(&async_futex);
717 hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash);
718 futex_up(&async_futex);
719
720 /*
721 * Answer all remaining messages with EHANGUP.
722 */
723 while (!list_empty(&fibril_connection->msg_queue)) {
724 msg_t *msg =
725 list_get_instance(list_first(&fibril_connection->msg_queue),
726 msg_t, link);
727
728 list_remove(&msg->link);
729 ipc_answer_0(msg->callid, EHANGUP);
730 free(msg);
731 }
732
733 /*
734 * If the connection was hung-up, answer the last call,
735 * i.e. IPC_M_PHONE_HUNGUP.
736 */
737 if (fibril_connection->close_callid)
738 ipc_answer_0(fibril_connection->close_callid, EOK);
739
740 free(fibril_connection);
741 return 0;
742}
743
744/** Create a new fibril for a new connection.
745 *
746 * Create new fibril for connection, fill in connection structures
747 * and insert it into the hash table, so that later we can easily
748 * do routing of messages to particular fibrils.
749 *
750 * @param in_task_id Identification of the incoming connection.
751 * @param in_phone_hash Identification of the incoming connection.
752 * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call.
753 * If callid is zero, the connection was opened by
754 * accepting the IPC_M_CONNECT_TO_ME call and this
755 * function is called directly by the server.
756 * @param call Call data of the opening call.
757 * @param handler Connection handler.
758 * @param data Client argument to pass to the connection handler.
759 *
760 * @return New fibril id or NULL on failure.
761 *
762 */
763static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
764 ipc_callid_t callid, ipc_call_t *call, async_port_handler_t handler,
765 void *data)
766{
767 connection_t *conn = malloc(sizeof(*conn));
768 if (!conn) {
769 if (callid)
770 ipc_answer_0(callid, ENOMEM);
771
772 return (uintptr_t) NULL;
773 }
774
775 conn->in_task_id = in_task_id;
776 conn->in_phone_hash = in_phone_hash;
777 list_initialize(&conn->msg_queue);
778 conn->callid = callid;
779 conn->close_callid = 0;
780 conn->handler = handler;
781 conn->data = data;
782
783 if (call)
784 conn->call = *call;
785
786 /* We will activate the fibril ASAP */
787 conn->wdata.active = true;
788 conn->wdata.fid = fibril_create(connection_fibril, conn);
789
790 if (conn->wdata.fid == 0) {
791 free(conn);
792
793 if (callid)
794 ipc_answer_0(callid, ENOMEM);
795
796 return (uintptr_t) NULL;
797 }
798
799 /* Add connection to the connection hash table */
800
801 futex_down(&async_futex);
802 hash_table_insert(&conn_hash_table, &conn->link);
803 futex_up(&async_futex);
804
805 fibril_add_ready(conn->wdata.fid);
806
807 return conn->wdata.fid;
808}
809
810/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
811 *
812 * Ask through phone for a new connection to some service.
813 *
814 * @param exch Exchange for sending the message.
815 * @param iface Callback interface.
816 * @param arg1 User defined argument.
817 * @param arg2 User defined argument.
818 * @param handler Callback handler.
819 * @param data Handler data.
820 * @param port_id ID of the newly created port.
821 *
822 * @return Zero on success or a negative error code.
823 *
824 */
825int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
826 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
827{
828 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
829 return EINVAL;
830
831 if (exch == NULL)
832 return ENOENT;
833
834 ipc_call_t answer;
835 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
836 &answer);
837
838 sysarg_t ret;
839 async_wait_for(req, &ret);
840 if (ret != EOK)
841 return (int) ret;
842
843 sysarg_t phone_hash = IPC_GET_ARG5(answer);
844 interface_t *interface;
845
846 futex_down(&async_futex);
847
848 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
849 if (link)
850 interface = hash_table_get_inst(link, interface_t, link);
851 else
852 interface = async_new_interface(iface);
853
854 if (!interface) {
855 futex_up(&async_futex);
856 return ENOMEM;
857 }
858
859 port_t *port = async_new_port(interface, handler, data);
860 if (!port) {
861 futex_up(&async_futex);
862 return ENOMEM;
863 }
864
865 *port_id = port->id;
866
867 futex_up(&async_futex);
868
869 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
870 0, NULL, handler, data);
871 if (fid == (uintptr_t) NULL)
872 return ENOMEM;
873
874 return EOK;
875}
876
877static size_t notification_key_hash(void *key)
878{
879 sysarg_t id = *(sysarg_t *) key;
880 return id;
881}
882
883static size_t notification_hash(const ht_link_t *item)
884{
885 notification_t *notification =
886 hash_table_get_inst(item, notification_t, link);
887 return notification_key_hash(&notification->imethod);
888}
889
890static bool notification_key_equal(void *key, const ht_link_t *item)
891{
892 sysarg_t id = *(sysarg_t *) key;
893 notification_t *notification =
894 hash_table_get_inst(item, notification_t, link);
895 return id == notification->imethod;
896}
897
898/** Operations for the notification hash table. */
899static hash_table_ops_t notification_hash_table_ops = {
900 .hash = notification_hash,
901 .key_hash = notification_key_hash,
902 .key_equal = notification_key_equal,
903 .equal = NULL,
904 .remove_callback = NULL
905};
906
907/** Sort in current fibril's timeout request.
908 *
909 * @param wd Wait data of the current fibril.
910 *
911 */
912void async_insert_timeout(awaiter_t *wd)
913{
914 assert(wd);
915
916 wd->to_event.occurred = false;
917 wd->to_event.inlist = true;
918
919 link_t *tmp = timeout_list.head.next;
920 while (tmp != &timeout_list.head) {
921 awaiter_t *cur
922 = list_get_instance(tmp, awaiter_t, to_event.link);
923
924 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
925 break;
926
927 tmp = tmp->next;
928 }
929
930 list_insert_before(&wd->to_event.link, tmp);
931}
932
933/** Try to route a call to an appropriate connection fibril.
934 *
935 * If the proper connection fibril is found, a message with the call is added to
936 * its message queue. If the fibril was not active, it is activated and all
937 * timeouts are unregistered.
938 *
939 * @param callid Hash of the incoming call.
940 * @param call Data of the incoming call.
941 *
942 * @return False if the call doesn't match any connection.
943 * @return True if the call was passed to the respective connection fibril.
944 *
945 */
946static bool route_call(ipc_callid_t callid, ipc_call_t *call)
947{
948 assert(call);
949
950 futex_down(&async_futex);
951
952 ht_link_t *link = hash_table_find(&conn_hash_table, &call->in_phone_hash);
953 if (!link) {
954 futex_up(&async_futex);
955 return false;
956 }
957
958 connection_t *conn = hash_table_get_inst(link, connection_t, link);
959
960 msg_t *msg = malloc(sizeof(*msg));
961 if (!msg) {
962 futex_up(&async_futex);
963 return false;
964 }
965
966 msg->callid = callid;
967 msg->call = *call;
968 list_append(&msg->link, &conn->msg_queue);
969
970 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
971 conn->close_callid = callid;
972
973 /* If the connection fibril is waiting for an event, activate it */
974 if (!conn->wdata.active) {
975
976 /* If in timeout list, remove it */
977 if (conn->wdata.to_event.inlist) {
978 conn->wdata.to_event.inlist = false;
979 list_remove(&conn->wdata.to_event.link);
980 }
981
982 conn->wdata.active = true;
983 fibril_add_ready(conn->wdata.fid);
984 }
985
986 futex_up(&async_futex);
987 return true;
988}
989
990/** Process notification.
991 *
992 * @param callid Hash of the incoming call.
993 * @param call Data of the incoming call.
994 */
995static void process_notification(ipc_callid_t callid, ipc_call_t *call)
996{
997 async_notification_handler_t handler = NULL;
998 void *data = NULL;
999
1000 assert(call);
1001
1002 futex_down(&async_futex);
1003
1004 ht_link_t *link = hash_table_find(&notification_hash_table,
1005 &IPC_GET_IMETHOD(*call));
1006 if (link) {
1007 notification_t *notification =
1008 hash_table_get_inst(link, notification_t, link);
1009 handler = notification->handler;
1010 data = notification->data;
1011 }
1012
1013 futex_up(&async_futex);
1014
1015 if (handler)
1016 handler(callid, call, data);
1017}
1018
1019/** Subscribe to IRQ notification.
1020 *
1021 * @param inr IRQ number.
1022 * @param devno Device number of the device generating inr.
1023 * @param handler Notification handler.
1024 * @param data Notification handler client data.
1025 * @param ucode Top-half pseudocode handler.
1026 *
1027 * @return Zero on success or a negative error code.
1028 *
1029 */
1030int async_irq_subscribe(int inr, int devno,
1031 async_notification_handler_t handler, void *data, const irq_code_t *ucode)
1032{
1033 notification_t *notification =
1034 (notification_t *) malloc(sizeof(notification_t));
1035 if (!notification)
1036 return ENOMEM;
1037
1038 futex_down(&async_futex);
1039
1040 sysarg_t imethod = notification_avail;
1041 notification_avail++;
1042
1043 notification->imethod = imethod;
1044 notification->handler = handler;
1045 notification->data = data;
1046
1047 hash_table_insert(&notification_hash_table, &notification->link);
1048
1049 futex_up(&async_futex);
1050
1051 return ipc_irq_subscribe(inr, devno, imethod, ucode);
1052}
1053
1054/** Unsubscribe from IRQ notification.
1055 *
1056 * @param inr IRQ number.
1057 * @param devno Device number of the device generating inr.
1058 *
1059 * @return Zero on success or a negative error code.
1060 *
1061 */
1062int async_irq_unsubscribe(int inr, int devno)
1063{
1064 // TODO: Remove entry from hash table
1065 // to avoid memory leak
1066
1067 return ipc_irq_unsubscribe(inr, devno);
1068}
1069
1070/** Subscribe to event notifications.
1071 *
1072 * @param evno Event type to subscribe.
1073 * @param handler Notification handler.
1074 * @param data Notification handler client data.
1075 *
1076 * @return Zero on success or a negative error code.
1077 *
1078 */
1079int async_event_subscribe(event_type_t evno,
1080 async_notification_handler_t handler, void *data)
1081{
1082 notification_t *notification =
1083 (notification_t *) malloc(sizeof(notification_t));
1084 if (!notification)
1085 return ENOMEM;
1086
1087 futex_down(&async_futex);
1088
1089 sysarg_t imethod = notification_avail;
1090 notification_avail++;
1091
1092 notification->imethod = imethod;
1093 notification->handler = handler;
1094 notification->data = data;
1095
1096 hash_table_insert(&notification_hash_table, &notification->link);
1097
1098 futex_up(&async_futex);
1099
1100 return ipc_event_subscribe(evno, imethod);
1101}
1102
1103/** Subscribe to task event notifications.
1104 *
1105 * @param evno Event type to subscribe.
1106 * @param handler Notification handler.
1107 * @param data Notification handler client data.
1108 *
1109 * @return Zero on success or a negative error code.
1110 *
1111 */
1112int async_event_task_subscribe(event_task_type_t evno,
1113 async_notification_handler_t handler, void *data)
1114{
1115 notification_t *notification =
1116 (notification_t *) malloc(sizeof(notification_t));
1117 if (!notification)
1118 return ENOMEM;
1119
1120 futex_down(&async_futex);
1121
1122 sysarg_t imethod = notification_avail;
1123 notification_avail++;
1124
1125 notification->imethod = imethod;
1126 notification->handler = handler;
1127 notification->data = data;
1128
1129 hash_table_insert(&notification_hash_table, &notification->link);
1130
1131 futex_up(&async_futex);
1132
1133 return ipc_event_task_subscribe(evno, imethod);
1134}
1135
1136/** Unmask event notifications.
1137 *
1138 * @param evno Event type to unmask.
1139 *
1140 * @return Value returned by the kernel.
1141 *
1142 */
1143int async_event_unmask(event_type_t evno)
1144{
1145 return ipc_event_unmask(evno);
1146}
1147
1148/** Unmask task event notifications.
1149 *
1150 * @param evno Event type to unmask.
1151 *
1152 * @return Value returned by the kernel.
1153 *
1154 */
1155int async_event_task_unmask(event_task_type_t evno)
1156{
1157 return ipc_event_task_unmask(evno);
1158}
1159
1160/** Return new incoming message for the current (fibril-local) connection.
1161 *
1162 * @param call Storage where the incoming call data will be stored.
1163 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1164 *
1165 * @return If no timeout was specified, then a hash of the
1166 * incoming call is returned. If a timeout is specified,
1167 * then a hash of the incoming call is returned unless
1168 * the timeout expires prior to receiving a message. In
1169 * that case zero is returned.
1170 *
1171 */
1172ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1173{
1174 assert(call);
1175 assert(fibril_connection);
1176
1177 /* Why doing this?
1178 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1179 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1180 * I would never expect to find so many errors in
1181 * a compiler.
1182 */
1183 connection_t *conn = fibril_connection;
1184
1185 futex_down(&async_futex);
1186
1187 if (usecs) {
1188 getuptime(&conn->wdata.to_event.expires);
1189 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1190 } else
1191 conn->wdata.to_event.inlist = false;
1192
1193 /* If nothing in queue, wait until something arrives */
1194 while (list_empty(&conn->msg_queue)) {
1195 if (conn->close_callid) {
1196 /*
1197 * Handle the case when the connection was already
1198 * closed by the client but the server did not notice
1199 * the first IPC_M_PHONE_HUNGUP call and continues to
1200 * call async_get_call_timeout(). Repeat
1201 * IPC_M_PHONE_HUNGUP until the caller notices.
1202 */
1203 memset(call, 0, sizeof(ipc_call_t));
1204 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1205 futex_up(&async_futex);
1206 return conn->close_callid;
1207 }
1208
1209 if (usecs)
1210 async_insert_timeout(&conn->wdata);
1211
1212 conn->wdata.active = false;
1213
1214 /*
1215 * Note: the current fibril will be rescheduled either due to a
1216 * timeout or due to an arriving message destined to it. In the
1217 * former case, handle_expired_timeouts() and, in the latter
1218 * case, route_call() will perform the wakeup.
1219 */
1220 fibril_switch(FIBRIL_TO_MANAGER);
1221
1222 /*
1223 * Futex is up after getting back from async_manager.
1224 * Get it again.
1225 */
1226 futex_down(&async_futex);
1227 if ((usecs) && (conn->wdata.to_event.occurred)
1228 && (list_empty(&conn->msg_queue))) {
1229 /* If we timed out -> exit */
1230 futex_up(&async_futex);
1231 return 0;
1232 }
1233 }
1234
1235 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1236 msg_t, link);
1237 list_remove(&msg->link);
1238
1239 ipc_callid_t callid = msg->callid;
1240 *call = msg->call;
1241 free(msg);
1242
1243 futex_up(&async_futex);
1244 return callid;
1245}
1246
1247void *async_get_client_data(void)
1248{
1249 assert(fibril_connection);
1250 return fibril_connection->client->data;
1251}
1252
1253void *async_get_client_data_by_id(task_id_t client_id)
1254{
1255 client_t *client = async_client_get(client_id, false);
1256 if (!client)
1257 return NULL;
1258
1259 if (!client->data) {
1260 async_client_put(client);
1261 return NULL;
1262 }
1263
1264 return client->data;
1265}
1266
1267void async_put_client_data_by_id(task_id_t client_id)
1268{
1269 client_t *client = async_client_get(client_id, false);
1270
1271 assert(client);
1272 assert(client->data);
1273
1274 /* Drop the reference we got in async_get_client_data_by_hash(). */
1275 async_client_put(client);
1276
1277 /* Drop our own reference we got at the beginning of this function. */
1278 async_client_put(client);
1279}
1280
1281static port_t *async_find_port(iface_t iface, port_id_t port_id)
1282{
1283 port_t *port = NULL;
1284
1285 futex_down(&async_futex);
1286
1287 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1288 if (link) {
1289 interface_t *interface =
1290 hash_table_get_inst(link, interface_t, link);
1291
1292 link = hash_table_find(&interface->port_hash_table, &port_id);
1293 if (link)
1294 port = hash_table_get_inst(link, port_t, link);
1295 }
1296
1297 futex_up(&async_futex);
1298
1299 return port;
1300}
1301
1302/** Handle a call that was received.
1303 *
1304 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1305 * Otherwise the call is routed to its connection fibril.
1306 *
1307 * @param callid Hash of the incoming call.
1308 * @param call Data of the incoming call.
1309 *
1310 */
1311static void handle_call(ipc_callid_t callid, ipc_call_t *call)
1312{
1313 assert(call);
1314
1315 /* Kernel notification */
1316 if ((callid & IPC_CALLID_NOTIFICATION)) {
1317 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1318 unsigned oldsw = fibril->switches;
1319
1320 process_notification(callid, call);
1321
1322 if (oldsw != fibril->switches) {
1323 /*
1324 * The notification handler did not execute atomically
1325 * and so the current manager fibril assumed the role of
1326 * a notification fibril. While waiting for its
1327 * resources, it switched to another manager fibril that
1328 * had already existed or it created a new one. We
1329 * therefore know there is at least yet another
1330 * manager fibril that can take over. We now kill the
1331 * current 'notification' fibril to prevent fibril
1332 * population explosion.
1333 */
1334 futex_down(&async_futex);
1335 fibril_switch(FIBRIL_FROM_DEAD);
1336 }
1337 return;
1338 }
1339
1340 /* New connection */
1341 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1342 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1343 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1344
1345 async_notification_handler_t handler = fallback_port_handler;
1346 void *data = fallback_port_data;
1347
1348 // TODO: Currently ignores all ports but the first one
1349 port_t *port = async_find_port(iface, 0);
1350 if (port) {
1351 handler = port->handler;
1352 data = port->data;
1353 }
1354
1355 async_new_connection(call->in_task_id, in_phone_hash, callid,
1356 call, handler, data);
1357 return;
1358 }
1359
1360 /* Cloned connection */
1361 if (IPC_GET_IMETHOD(*call) == IPC_M_CLONE_ESTABLISH) {
1362 // TODO: Currently ignores ports altogether
1363
1364 /* Open new connection with fibril, etc. */
1365 async_new_connection(call->in_task_id, IPC_GET_ARG5(*call),
1366 callid, call, fallback_port_handler, fallback_port_data);
1367 return;
1368 }
1369
1370 /* Try to route the call through the connection hash table */
1371 if (route_call(callid, call))
1372 return;
1373
1374 /* Unknown call from unknown phone - hang it up */
1375 ipc_answer_0(callid, EHANGUP);
1376}
1377
1378/** Fire all timeouts that expired. */
1379static void handle_expired_timeouts(void)
1380{
1381 struct timeval tv;
1382 getuptime(&tv);
1383
1384 futex_down(&async_futex);
1385
1386 link_t *cur = list_first(&timeout_list);
1387 while (cur != NULL) {
1388 awaiter_t *waiter =
1389 list_get_instance(cur, awaiter_t, to_event.link);
1390
1391 if (tv_gt(&waiter->to_event.expires, &tv))
1392 break;
1393
1394 list_remove(&waiter->to_event.link);
1395 waiter->to_event.inlist = false;
1396 waiter->to_event.occurred = true;
1397
1398 /*
1399 * Redundant condition?
1400 * The fibril should not be active when it gets here.
1401 */
1402 if (!waiter->active) {
1403 waiter->active = true;
1404 fibril_add_ready(waiter->fid);
1405 }
1406
1407 cur = list_first(&timeout_list);
1408 }
1409
1410 futex_up(&async_futex);
1411}
1412
1413/** Endless loop dispatching incoming calls and answers.
1414 *
1415 * @return Never returns.
1416 *
1417 */
1418static int async_manager_worker(void)
1419{
1420 while (true) {
1421 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1422 futex_up(&async_futex);
1423 /*
1424 * async_futex is always held when entering a manager
1425 * fibril.
1426 */
1427 continue;
1428 }
1429
1430 futex_down(&async_futex);
1431
1432 suseconds_t timeout;
1433 unsigned int flags = SYNCH_FLAGS_NONE;
1434 if (!list_empty(&timeout_list)) {
1435 awaiter_t *waiter = list_get_instance(
1436 list_first(&timeout_list), awaiter_t, to_event.link);
1437
1438 struct timeval tv;
1439 getuptime(&tv);
1440
1441 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1442 futex_up(&async_futex);
1443 handle_expired_timeouts();
1444 /*
1445 * Notice that even if the event(s) already
1446 * expired (and thus the other fibril was
1447 * supposed to be running already),
1448 * we check for incoming IPC.
1449 *
1450 * Otherwise, a fibril that continuously
1451 * creates (almost) expired events could
1452 * prevent IPC retrieval from the kernel.
1453 */
1454 timeout = 0;
1455 flags = SYNCH_FLAGS_NON_BLOCKING;
1456
1457 } else {
1458 timeout = tv_sub_diff(&waiter->to_event.expires,
1459 &tv);
1460 futex_up(&async_futex);
1461 }
1462 } else {
1463 futex_up(&async_futex);
1464 timeout = SYNCH_NO_TIMEOUT;
1465 }
1466
1467 atomic_inc(&threads_in_ipc_wait);
1468
1469 ipc_call_t call;
1470 ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags);
1471
1472 atomic_dec(&threads_in_ipc_wait);
1473
1474 if (!callid) {
1475 handle_expired_timeouts();
1476 continue;
1477 }
1478
1479 if (callid & IPC_CALLID_ANSWERED)
1480 continue;
1481
1482 handle_call(callid, &call);
1483 }
1484
1485 return 0;
1486}
1487
1488/** Function to start async_manager as a standalone fibril.
1489 *
1490 * When more kernel threads are used, one async manager should exist per thread.
1491 *
1492 * @param arg Unused.
1493 * @return Never returns.
1494 *
1495 */
1496static int async_manager_fibril(void *arg)
1497{
1498 futex_up(&async_futex);
1499
1500 /*
1501 * async_futex is always locked when entering manager
1502 */
1503 async_manager_worker();
1504
1505 return 0;
1506}
1507
1508/** Add one manager to manager list. */
1509void async_create_manager(void)
1510{
1511 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1512 if (fid != 0)
1513 fibril_add_manager(fid);
1514}
1515
1516/** Remove one manager from manager list */
1517void async_destroy_manager(void)
1518{
1519 fibril_remove_manager();
1520}
1521
1522/** Initialize the async framework.
1523 *
1524 */
1525void __async_init(void)
1526{
1527 if (!hash_table_create(&interface_hash_table, 0, 0,
1528 &interface_hash_table_ops))
1529 abort();
1530
1531 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1532 abort();
1533
1534 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1535 abort();
1536
1537 if (!hash_table_create(&notification_hash_table, 0, 0,
1538 &notification_hash_table_ops))
1539 abort();
1540
1541 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1542 if (session_ns == NULL)
1543 abort();
1544
1545 session_ns->iface = 0;
1546 session_ns->mgmt = EXCHANGE_ATOMIC;
1547 session_ns->phone = PHONE_NS;
1548 session_ns->arg1 = 0;
1549 session_ns->arg2 = 0;
1550 session_ns->arg3 = 0;
1551
1552 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1553 session_ns->remote_state_data = NULL;
1554
1555 list_initialize(&session_ns->exch_list);
1556 fibril_mutex_initialize(&session_ns->mutex);
1557 atomic_set(&session_ns->refcnt, 0);
1558}
1559
1560/** Reply received callback.
1561 *
1562 * This function is called whenever a reply for an asynchronous message sent out
1563 * by the asynchronous framework is received.
1564 *
1565 * Notify the fibril which is waiting for this message that it has arrived.
1566 *
1567 * @param arg Pointer to the asynchronous message record.
1568 * @param retval Value returned in the answer.
1569 * @param data Call data of the answer.
1570 *
1571 */
1572void reply_received(void *arg, int retval, ipc_call_t *data)
1573{
1574 assert(arg);
1575
1576 futex_down(&async_futex);
1577
1578 amsg_t *msg = (amsg_t *) arg;
1579 msg->retval = retval;
1580
1581 /* Copy data after futex_down, just in case the call was detached */
1582 if ((msg->dataptr) && (data))
1583 *msg->dataptr = *data;
1584
1585 write_barrier();
1586
1587 /* Remove message from timeout list */
1588 if (msg->wdata.to_event.inlist)
1589 list_remove(&msg->wdata.to_event.link);
1590
1591 msg->done = true;
1592
1593 if (msg->forget) {
1594 assert(msg->wdata.active);
1595 amsg_destroy(msg);
1596 } else if (!msg->wdata.active) {
1597 msg->wdata.active = true;
1598 fibril_add_ready(msg->wdata.fid);
1599 }
1600
1601 futex_up(&async_futex);
1602}
1603
1604/** Send message and return id of the sent message.
1605 *
1606 * The return value can be used as input for async_wait() to wait for
1607 * completion.
1608 *
1609 * @param exch Exchange for sending the message.
1610 * @param imethod Service-defined interface and method.
1611 * @param arg1 Service-defined payload argument.
1612 * @param arg2 Service-defined payload argument.
1613 * @param arg3 Service-defined payload argument.
1614 * @param arg4 Service-defined payload argument.
1615 * @param dataptr If non-NULL, storage where the reply data will be
1616 * stored.
1617 *
1618 * @return Hash of the sent message or 0 on error.
1619 *
1620 */
1621aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1622 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1623{
1624 if (exch == NULL)
1625 return 0;
1626
1627 amsg_t *msg = amsg_create();
1628 if (msg == NULL)
1629 return 0;
1630
1631 msg->dataptr = dataptr;
1632 msg->wdata.active = true;
1633
1634 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1635 reply_received);
1636
1637 return (aid_t) msg;
1638}
1639
1640/** Send message and return id of the sent message
1641 *
1642 * The return value can be used as input for async_wait() to wait for
1643 * completion.
1644 *
1645 * @param exch Exchange for sending the message.
1646 * @param imethod Service-defined interface and method.
1647 * @param arg1 Service-defined payload argument.
1648 * @param arg2 Service-defined payload argument.
1649 * @param arg3 Service-defined payload argument.
1650 * @param arg4 Service-defined payload argument.
1651 * @param arg5 Service-defined payload argument.
1652 * @param dataptr If non-NULL, storage where the reply data will be
1653 * stored.
1654 *
1655 * @return Hash of the sent message or 0 on error.
1656 *
1657 */
1658aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1659 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1660 ipc_call_t *dataptr)
1661{
1662 if (exch == NULL)
1663 return 0;
1664
1665 amsg_t *msg = amsg_create();
1666 if (msg == NULL)
1667 return 0;
1668
1669 msg->dataptr = dataptr;
1670 msg->wdata.active = true;
1671
1672 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1673 msg, reply_received);
1674
1675 return (aid_t) msg;
1676}
1677
1678/** Wait for a message sent by the async framework.
1679 *
1680 * @param amsgid Hash of the message to wait for.
1681 * @param retval Pointer to storage where the retval of the answer will
1682 * be stored.
1683 *
1684 */
1685void async_wait_for(aid_t amsgid, sysarg_t *retval)
1686{
1687 assert(amsgid);
1688
1689 amsg_t *msg = (amsg_t *) amsgid;
1690
1691 futex_down(&async_futex);
1692
1693 assert(!msg->forget);
1694 assert(!msg->destroyed);
1695
1696 if (msg->done) {
1697 futex_up(&async_futex);
1698 goto done;
1699 }
1700
1701 msg->wdata.fid = fibril_get_id();
1702 msg->wdata.active = false;
1703 msg->wdata.to_event.inlist = false;
1704
1705 /* Leave the async_futex locked when entering this function */
1706 fibril_switch(FIBRIL_TO_MANAGER);
1707
1708 /* Futex is up automatically after fibril_switch */
1709
1710done:
1711 if (retval)
1712 *retval = msg->retval;
1713
1714 amsg_destroy(msg);
1715}
1716
1717/** Wait for a message sent by the async framework, timeout variant.
1718 *
1719 * If the wait times out, the caller may choose to either wait again by calling
1720 * async_wait_for() or async_wait_timeout(), or forget the message via
1721 * async_forget().
1722 *
1723 * @param amsgid Hash of the message to wait for.
1724 * @param retval Pointer to storage where the retval of the answer will
1725 * be stored.
1726 * @param timeout Timeout in microseconds.
1727 *
1728 * @return Zero on success, ETIMEOUT if the timeout has expired.
1729 *
1730 */
1731int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1732{
1733 assert(amsgid);
1734
1735 amsg_t *msg = (amsg_t *) amsgid;
1736
1737 futex_down(&async_futex);
1738
1739 assert(!msg->forget);
1740 assert(!msg->destroyed);
1741
1742 if (msg->done) {
1743 futex_up(&async_futex);
1744 goto done;
1745 }
1746
1747 /*
1748 * Negative timeout is converted to zero timeout to avoid
1749 * using tv_add with negative augmenter.
1750 */
1751 if (timeout < 0)
1752 timeout = 0;
1753
1754 getuptime(&msg->wdata.to_event.expires);
1755 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1756
1757 /*
1758 * Current fibril is inserted as waiting regardless of the
1759 * "size" of the timeout.
1760 *
1761 * Checking for msg->done and immediately bailing out when
1762 * timeout == 0 would mean that the manager fibril would never
1763 * run (consider single threaded program).
1764 * Thus the IPC answer would be never retrieved from the kernel.
1765 *
1766 * Notice that the actual delay would be very small because we
1767 * - switch to manager fibril
1768 * - the manager sees expired timeout
1769 * - and thus adds us back to ready queue
1770 * - manager switches back to some ready fibril
1771 * (prior it, it checks for incoming IPC).
1772 *
1773 */
1774 msg->wdata.fid = fibril_get_id();
1775 msg->wdata.active = false;
1776 async_insert_timeout(&msg->wdata);
1777
1778 /* Leave the async_futex locked when entering this function */
1779 fibril_switch(FIBRIL_TO_MANAGER);
1780
1781 /* Futex is up automatically after fibril_switch */
1782
1783 if (!msg->done)
1784 return ETIMEOUT;
1785
1786done:
1787 if (retval)
1788 *retval = msg->retval;
1789
1790 amsg_destroy(msg);
1791
1792 return 0;
1793}
1794
1795/** Discard the message / reply on arrival.
1796 *
1797 * The message will be marked to be discarded once the reply arrives in
1798 * reply_received(). It is not allowed to call async_wait_for() or
1799 * async_wait_timeout() on this message after a call to this function.
1800 *
1801 * @param amsgid Hash of the message to forget.
1802 */
1803void async_forget(aid_t amsgid)
1804{
1805 amsg_t *msg = (amsg_t *) amsgid;
1806
1807 assert(msg);
1808 assert(!msg->forget);
1809 assert(!msg->destroyed);
1810
1811 futex_down(&async_futex);
1812
1813 if (msg->done) {
1814 amsg_destroy(msg);
1815 } else {
1816 msg->dataptr = NULL;
1817 msg->forget = true;
1818 }
1819
1820 futex_up(&async_futex);
1821}
1822
1823/** Wait for specified time.
1824 *
1825 * The current fibril is suspended but the thread continues to execute.
1826 *
1827 * @param timeout Duration of the wait in microseconds.
1828 *
1829 */
1830void async_usleep(suseconds_t timeout)
1831{
1832 amsg_t *msg = amsg_create();
1833 if (!msg)
1834 return;
1835
1836 msg->wdata.fid = fibril_get_id();
1837
1838 getuptime(&msg->wdata.to_event.expires);
1839 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1840
1841 futex_down(&async_futex);
1842
1843 async_insert_timeout(&msg->wdata);
1844
1845 /* Leave the async_futex locked when entering this function */
1846 fibril_switch(FIBRIL_TO_MANAGER);
1847
1848 /* Futex is up automatically after fibril_switch() */
1849
1850 amsg_destroy(msg);
1851}
1852
1853/** Pseudo-synchronous message sending - fast version.
1854 *
1855 * Send message asynchronously and return only after the reply arrives.
1856 *
1857 * This function can only transfer 4 register payload arguments. For
1858 * transferring more arguments, see the slower async_req_slow().
1859 *
1860 * @param exch Exchange for sending the message.
1861 * @param imethod Interface and method of the call.
1862 * @param arg1 Service-defined payload argument.
1863 * @param arg2 Service-defined payload argument.
1864 * @param arg3 Service-defined payload argument.
1865 * @param arg4 Service-defined payload argument.
1866 * @param r1 If non-NULL, storage for the 1st reply argument.
1867 * @param r2 If non-NULL, storage for the 2nd reply argument.
1868 * @param r3 If non-NULL, storage for the 3rd reply argument.
1869 * @param r4 If non-NULL, storage for the 4th reply argument.
1870 * @param r5 If non-NULL, storage for the 5th reply argument.
1871 *
1872 * @return Return code of the reply or a negative error code.
1873 *
1874 */
1875sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1876 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1877 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1878{
1879 if (exch == NULL)
1880 return ENOENT;
1881
1882 ipc_call_t result;
1883 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1884 &result);
1885
1886 sysarg_t rc;
1887 async_wait_for(aid, &rc);
1888
1889 if (r1)
1890 *r1 = IPC_GET_ARG1(result);
1891
1892 if (r2)
1893 *r2 = IPC_GET_ARG2(result);
1894
1895 if (r3)
1896 *r3 = IPC_GET_ARG3(result);
1897
1898 if (r4)
1899 *r4 = IPC_GET_ARG4(result);
1900
1901 if (r5)
1902 *r5 = IPC_GET_ARG5(result);
1903
1904 return rc;
1905}
1906
1907/** Pseudo-synchronous message sending - slow version.
1908 *
1909 * Send message asynchronously and return only after the reply arrives.
1910 *
1911 * @param exch Exchange for sending the message.
1912 * @param imethod Interface and method of the call.
1913 * @param arg1 Service-defined payload argument.
1914 * @param arg2 Service-defined payload argument.
1915 * @param arg3 Service-defined payload argument.
1916 * @param arg4 Service-defined payload argument.
1917 * @param arg5 Service-defined payload argument.
1918 * @param r1 If non-NULL, storage for the 1st reply argument.
1919 * @param r2 If non-NULL, storage for the 2nd reply argument.
1920 * @param r3 If non-NULL, storage for the 3rd reply argument.
1921 * @param r4 If non-NULL, storage for the 4th reply argument.
1922 * @param r5 If non-NULL, storage for the 5th reply argument.
1923 *
1924 * @return Return code of the reply or a negative error code.
1925 *
1926 */
1927sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1928 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1929 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1930{
1931 if (exch == NULL)
1932 return ENOENT;
1933
1934 ipc_call_t result;
1935 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1936 &result);
1937
1938 sysarg_t rc;
1939 async_wait_for(aid, &rc);
1940
1941 if (r1)
1942 *r1 = IPC_GET_ARG1(result);
1943
1944 if (r2)
1945 *r2 = IPC_GET_ARG2(result);
1946
1947 if (r3)
1948 *r3 = IPC_GET_ARG3(result);
1949
1950 if (r4)
1951 *r4 = IPC_GET_ARG4(result);
1952
1953 if (r5)
1954 *r5 = IPC_GET_ARG5(result);
1955
1956 return rc;
1957}
1958
1959void async_msg_0(async_exch_t *exch, sysarg_t imethod)
1960{
1961 if (exch != NULL)
1962 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
1963}
1964
1965void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
1966{
1967 if (exch != NULL)
1968 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
1969}
1970
1971void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1972 sysarg_t arg2)
1973{
1974 if (exch != NULL)
1975 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
1976}
1977
1978void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1979 sysarg_t arg2, sysarg_t arg3)
1980{
1981 if (exch != NULL)
1982 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
1983 NULL);
1984}
1985
1986void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1987 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
1988{
1989 if (exch != NULL)
1990 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
1991 NULL, NULL);
1992}
1993
1994void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1995 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
1996{
1997 if (exch != NULL)
1998 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
1999 arg5, NULL, NULL);
2000}
2001
2002sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval)
2003{
2004 return ipc_answer_0(callid, retval);
2005}
2006
2007sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1)
2008{
2009 return ipc_answer_1(callid, retval, arg1);
2010}
2011
2012sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2013 sysarg_t arg2)
2014{
2015 return ipc_answer_2(callid, retval, arg1, arg2);
2016}
2017
2018sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2019 sysarg_t arg2, sysarg_t arg3)
2020{
2021 return ipc_answer_3(callid, retval, arg1, arg2, arg3);
2022}
2023
2024sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2025 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2026{
2027 return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4);
2028}
2029
2030sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1,
2031 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2032{
2033 return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5);
2034}
2035
2036int async_forward_fast(ipc_callid_t callid, async_exch_t *exch,
2037 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2038{
2039 if (exch == NULL)
2040 return ENOENT;
2041
2042 return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode);
2043}
2044
2045int async_forward_slow(ipc_callid_t callid, async_exch_t *exch,
2046 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2047 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2048{
2049 if (exch == NULL)
2050 return ENOENT;
2051
2052 return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3,
2053 arg4, arg5, mode);
2054}
2055
2056/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2057 *
2058 * Ask through phone for a new connection to some service.
2059 *
2060 * @param exch Exchange for sending the message.
2061 * @param arg1 User defined argument.
2062 * @param arg2 User defined argument.
2063 * @param arg3 User defined argument.
2064 *
2065 * @return Zero on success or a negative error code.
2066 *
2067 */
2068int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2069 sysarg_t arg3)
2070{
2071 if (exch == NULL)
2072 return ENOENT;
2073
2074 ipc_call_t answer;
2075 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2076 &answer);
2077
2078 sysarg_t rc;
2079 async_wait_for(req, &rc);
2080 if (rc != EOK)
2081 return (int) rc;
2082
2083 return EOK;
2084}
2085
2086/** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework.
2087 *
2088 * Ask for a cloned connection to some service.
2089 *
2090 * @param mgmt Exchange management style.
2091 * @param exch Exchange for sending the message.
2092 *
2093 * @return New session on success or NULL on error.
2094 *
2095 */
2096async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch)
2097{
2098 if (exch == NULL) {
2099 errno = ENOENT;
2100 return NULL;
2101 }
2102
2103 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2104 if (sess == NULL) {
2105 errno = ENOMEM;
2106 return NULL;
2107 }
2108
2109 ipc_call_t result;
2110
2111 amsg_t *msg = amsg_create();
2112 if (!msg) {
2113 free(sess);
2114 errno = ENOMEM;
2115 return NULL;
2116 }
2117
2118 msg->dataptr = &result;
2119 msg->wdata.active = true;
2120
2121 ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg,
2122 reply_received);
2123
2124 sysarg_t rc;
2125 async_wait_for((aid_t) msg, &rc);
2126
2127 if (rc != EOK) {
2128 errno = rc;
2129 free(sess);
2130 return NULL;
2131 }
2132
2133 int phone = (int) IPC_GET_ARG5(result);
2134
2135 if (phone < 0) {
2136 errno = phone;
2137 free(sess);
2138 return NULL;
2139 }
2140
2141 sess->iface = 0;
2142 sess->mgmt = mgmt;
2143 sess->phone = phone;
2144 sess->arg1 = 0;
2145 sess->arg2 = 0;
2146 sess->arg3 = 0;
2147
2148 fibril_mutex_initialize(&sess->remote_state_mtx);
2149 sess->remote_state_data = NULL;
2150
2151 list_initialize(&sess->exch_list);
2152 fibril_mutex_initialize(&sess->mutex);
2153 atomic_set(&sess->refcnt, 0);
2154
2155 return sess;
2156}
2157
2158static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2159 sysarg_t arg3, sysarg_t arg4)
2160{
2161 ipc_call_t result;
2162
2163 amsg_t *msg = amsg_create();
2164 if (!msg)
2165 return ENOENT;
2166
2167 msg->dataptr = &result;
2168 msg->wdata.active = true;
2169
2170 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2171 msg, reply_received);
2172
2173 sysarg_t rc;
2174 async_wait_for((aid_t) msg, &rc);
2175
2176 if (rc != EOK)
2177 return rc;
2178
2179 return (int) IPC_GET_ARG5(result);
2180}
2181
2182/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2183 *
2184 * Ask through for a new connection to some service.
2185 *
2186 * @param mgmt Exchange management style.
2187 * @param exch Exchange for sending the message.
2188 * @param arg1 User defined argument.
2189 * @param arg2 User defined argument.
2190 * @param arg3 User defined argument.
2191 *
2192 * @return New session on success or NULL on error.
2193 *
2194 */
2195async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2196 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2197{
2198 if (exch == NULL) {
2199 errno = ENOENT;
2200 return NULL;
2201 }
2202
2203 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2204 if (sess == NULL) {
2205 errno = ENOMEM;
2206 return NULL;
2207 }
2208
2209 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2210 0);
2211 if (phone < 0) {
2212 errno = phone;
2213 free(sess);
2214 return NULL;
2215 }
2216
2217 sess->iface = 0;
2218 sess->mgmt = mgmt;
2219 sess->phone = phone;
2220 sess->arg1 = arg1;
2221 sess->arg2 = arg2;
2222 sess->arg3 = arg3;
2223
2224 fibril_mutex_initialize(&sess->remote_state_mtx);
2225 sess->remote_state_data = NULL;
2226
2227 list_initialize(&sess->exch_list);
2228 fibril_mutex_initialize(&sess->mutex);
2229 atomic_set(&sess->refcnt, 0);
2230
2231 return sess;
2232}
2233
2234/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2235 *
2236 * Ask through phone for a new connection to some service and block until
2237 * success.
2238 *
2239 * @param exch Exchange for sending the message.
2240 * @param iface Connection interface.
2241 * @param arg2 User defined argument.
2242 * @param arg3 User defined argument.
2243 *
2244 * @return New session on success or NULL on error.
2245 *
2246 */
2247async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2248 sysarg_t arg2, sysarg_t arg3)
2249{
2250 if (exch == NULL) {
2251 errno = ENOENT;
2252 return NULL;
2253 }
2254
2255 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2256 if (sess == NULL) {
2257 errno = ENOMEM;
2258 return NULL;
2259 }
2260
2261 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2262 arg3, 0);
2263 if (phone < 0) {
2264 errno = phone;
2265 free(sess);
2266 return NULL;
2267 }
2268
2269 sess->iface = iface;
2270 sess->phone = phone;
2271 sess->arg1 = iface;
2272 sess->arg2 = arg2;
2273 sess->arg3 = arg3;
2274
2275 fibril_mutex_initialize(&sess->remote_state_mtx);
2276 sess->remote_state_data = NULL;
2277
2278 list_initialize(&sess->exch_list);
2279 fibril_mutex_initialize(&sess->mutex);
2280 atomic_set(&sess->refcnt, 0);
2281
2282 return sess;
2283}
2284
2285/** Set arguments for new connections.
2286 *
2287 * FIXME This is an ugly hack to work around the problem that parallel
2288 * exchanges are implemented using parallel connections. When we create
2289 * a callback session, the framework does not know arguments for the new
2290 * connections.
2291 *
2292 * The proper solution seems to be to implement parallel exchanges using
2293 * tagging.
2294 */
2295void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2296 sysarg_t arg3)
2297{
2298 sess->arg1 = arg1;
2299 sess->arg2 = arg2;
2300 sess->arg3 = arg3;
2301}
2302
2303/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2304 *
2305 * Ask through phone for a new connection to some service and block until
2306 * success.
2307 *
2308 * @param mgmt Exchange management style.
2309 * @param exch Exchange for sending the message.
2310 * @param arg1 User defined argument.
2311 * @param arg2 User defined argument.
2312 * @param arg3 User defined argument.
2313 *
2314 * @return New session on success or NULL on error.
2315 *
2316 */
2317async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2318 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2319{
2320 if (exch == NULL) {
2321 errno = ENOENT;
2322 return NULL;
2323 }
2324
2325 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2326 if (sess == NULL) {
2327 errno = ENOMEM;
2328 return NULL;
2329 }
2330
2331 int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2332 IPC_FLAG_BLOCKING);
2333
2334 if (phone < 0) {
2335 errno = phone;
2336 free(sess);
2337 return NULL;
2338 }
2339
2340 sess->iface = 0;
2341 sess->mgmt = mgmt;
2342 sess->phone = phone;
2343 sess->arg1 = arg1;
2344 sess->arg2 = arg2;
2345 sess->arg3 = arg3;
2346
2347 fibril_mutex_initialize(&sess->remote_state_mtx);
2348 sess->remote_state_data = NULL;
2349
2350 list_initialize(&sess->exch_list);
2351 fibril_mutex_initialize(&sess->mutex);
2352 atomic_set(&sess->refcnt, 0);
2353
2354 return sess;
2355}
2356
2357/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2358 *
2359 * Ask through phone for a new connection to some service and block until
2360 * success.
2361 *
2362 * @param exch Exchange for sending the message.
2363 * @param iface Connection interface.
2364 * @param arg2 User defined argument.
2365 * @param arg3 User defined argument.
2366 *
2367 * @return New session on success or NULL on error.
2368 *
2369 */
2370async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2371 sysarg_t arg2, sysarg_t arg3)
2372{
2373 if (exch == NULL) {
2374 errno = ENOENT;
2375 return NULL;
2376 }
2377
2378 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2379 if (sess == NULL) {
2380 errno = ENOMEM;
2381 return NULL;
2382 }
2383
2384 int phone = async_connect_me_to_internal(exch->phone, iface, arg2,
2385 arg3, IPC_FLAG_BLOCKING);
2386 if (phone < 0) {
2387 errno = phone;
2388 free(sess);
2389 return NULL;
2390 }
2391
2392 sess->iface = iface;
2393 sess->phone = phone;
2394 sess->arg1 = iface;
2395 sess->arg2 = arg2;
2396 sess->arg3 = arg3;
2397
2398 fibril_mutex_initialize(&sess->remote_state_mtx);
2399 sess->remote_state_data = NULL;
2400
2401 list_initialize(&sess->exch_list);
2402 fibril_mutex_initialize(&sess->mutex);
2403 atomic_set(&sess->refcnt, 0);
2404
2405 return sess;
2406}
2407
2408/** Connect to a task specified by id.
2409 *
2410 */
2411async_sess_t *async_connect_kbox(task_id_t id)
2412{
2413 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2414 if (sess == NULL) {
2415 errno = ENOMEM;
2416 return NULL;
2417 }
2418
2419 int phone = ipc_connect_kbox(id);
2420 if (phone < 0) {
2421 errno = phone;
2422 free(sess);
2423 return NULL;
2424 }
2425
2426 sess->iface = 0;
2427 sess->mgmt = EXCHANGE_ATOMIC;
2428 sess->phone = phone;
2429 sess->arg1 = 0;
2430 sess->arg2 = 0;
2431 sess->arg3 = 0;
2432
2433 fibril_mutex_initialize(&sess->remote_state_mtx);
2434 sess->remote_state_data = NULL;
2435
2436 list_initialize(&sess->exch_list);
2437 fibril_mutex_initialize(&sess->mutex);
2438 atomic_set(&sess->refcnt, 0);
2439
2440 return sess;
2441}
2442
2443static int async_hangup_internal(int phone)
2444{
2445 return ipc_hangup(phone);
2446}
2447
2448/** Wrapper for ipc_hangup.
2449 *
2450 * @param sess Session to hung up.
2451 *
2452 * @return Zero on success or a negative error code.
2453 *
2454 */
2455int async_hangup(async_sess_t *sess)
2456{
2457 async_exch_t *exch;
2458
2459 assert(sess);
2460
2461 if (atomic_get(&sess->refcnt) > 0)
2462 return EBUSY;
2463
2464 fibril_mutex_lock(&async_sess_mutex);
2465
2466 int rc = async_hangup_internal(sess->phone);
2467
2468 while (!list_empty(&sess->exch_list)) {
2469 exch = (async_exch_t *)
2470 list_get_instance(list_first(&sess->exch_list),
2471 async_exch_t, sess_link);
2472
2473 list_remove(&exch->sess_link);
2474 list_remove(&exch->global_link);
2475 async_hangup_internal(exch->phone);
2476 free(exch);
2477 }
2478
2479 free(sess);
2480
2481 fibril_mutex_unlock(&async_sess_mutex);
2482
2483 return rc;
2484}
2485
2486/** Interrupt one thread of this task from waiting for IPC. */
2487void async_poke(void)
2488{
2489 ipc_poke();
2490}
2491
2492/** Start new exchange in a session.
2493 *
2494 * @param session Session.
2495 *
2496 * @return New exchange or NULL on error.
2497 *
2498 */
2499async_exch_t *async_exchange_begin(async_sess_t *sess)
2500{
2501 if (sess == NULL)
2502 return NULL;
2503
2504 exch_mgmt_t mgmt = sess->mgmt;
2505 if (sess->iface != 0)
2506 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2507
2508 async_exch_t *exch = NULL;
2509
2510 fibril_mutex_lock(&async_sess_mutex);
2511
2512 if (!list_empty(&sess->exch_list)) {
2513 /*
2514 * There are inactive exchanges in the session.
2515 */
2516 exch = (async_exch_t *)
2517 list_get_instance(list_first(&sess->exch_list),
2518 async_exch_t, sess_link);
2519
2520 list_remove(&exch->sess_link);
2521 list_remove(&exch->global_link);
2522 } else {
2523 /*
2524 * There are no available exchanges in the session.
2525 */
2526
2527 if ((mgmt == EXCHANGE_ATOMIC) ||
2528 (mgmt == EXCHANGE_SERIALIZE)) {
2529 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2530 if (exch != NULL) {
2531 link_initialize(&exch->sess_link);
2532 link_initialize(&exch->global_link);
2533 exch->sess = sess;
2534 exch->phone = sess->phone;
2535 }
2536 } else if (mgmt == EXCHANGE_PARALLEL) {
2537 int phone;
2538
2539 retry:
2540 /*
2541 * Make a one-time attempt to connect a new data phone.
2542 */
2543 phone = async_connect_me_to_internal(sess->phone, sess->arg1,
2544 sess->arg2, sess->arg3, 0);
2545 if (phone >= 0) {
2546 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2547 if (exch != NULL) {
2548 link_initialize(&exch->sess_link);
2549 link_initialize(&exch->global_link);
2550 exch->sess = sess;
2551 exch->phone = phone;
2552 } else
2553 async_hangup_internal(phone);
2554 } else if (!list_empty(&inactive_exch_list)) {
2555 /*
2556 * We did not manage to connect a new phone. But we
2557 * can try to close some of the currently inactive
2558 * connections in other sessions and try again.
2559 */
2560 exch = (async_exch_t *)
2561 list_get_instance(list_first(&inactive_exch_list),
2562 async_exch_t, global_link);
2563
2564 list_remove(&exch->sess_link);
2565 list_remove(&exch->global_link);
2566 async_hangup_internal(exch->phone);
2567 free(exch);
2568 goto retry;
2569 } else {
2570 /*
2571 * Wait for a phone to become available.
2572 */
2573 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2574 goto retry;
2575 }
2576 }
2577 }
2578
2579 fibril_mutex_unlock(&async_sess_mutex);
2580
2581 if (exch != NULL) {
2582 atomic_inc(&sess->refcnt);
2583
2584 if (mgmt == EXCHANGE_SERIALIZE)
2585 fibril_mutex_lock(&sess->mutex);
2586 }
2587
2588 return exch;
2589}
2590
2591/** Finish an exchange.
2592 *
2593 * @param exch Exchange to finish.
2594 *
2595 */
2596void async_exchange_end(async_exch_t *exch)
2597{
2598 if (exch == NULL)
2599 return;
2600
2601 async_sess_t *sess = exch->sess;
2602 assert(sess != NULL);
2603
2604 exch_mgmt_t mgmt = sess->mgmt;
2605 if (sess->iface != 0)
2606 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2607
2608 atomic_dec(&sess->refcnt);
2609
2610 if (mgmt == EXCHANGE_SERIALIZE)
2611 fibril_mutex_unlock(&sess->mutex);
2612
2613 fibril_mutex_lock(&async_sess_mutex);
2614
2615 list_append(&exch->sess_link, &sess->exch_list);
2616 list_append(&exch->global_link, &inactive_exch_list);
2617 fibril_condvar_signal(&avail_phone_cv);
2618
2619 fibril_mutex_unlock(&async_sess_mutex);
2620}
2621
2622/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2623 *
2624 * @param exch Exchange for sending the message.
2625 * @param size Size of the destination address space area.
2626 * @param arg User defined argument.
2627 * @param flags Storage for the received flags. Can be NULL.
2628 * @param dst Address of the storage for the destination address space area
2629 * base address. Cannot be NULL.
2630 *
2631 * @return Zero on success or a negative error code from errno.h.
2632 *
2633 */
2634int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2635 unsigned int *flags, void **dst)
2636{
2637 if (exch == NULL)
2638 return ENOENT;
2639
2640 sysarg_t _flags = 0;
2641 sysarg_t _dst = (sysarg_t) -1;
2642 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2643 arg, NULL, &_flags, NULL, &_dst);
2644
2645 if (flags)
2646 *flags = (unsigned int) _flags;
2647
2648 *dst = (void *) _dst;
2649 return res;
2650}
2651
2652/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2653 *
2654 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2655 * calls so that the user doesn't have to remember the meaning of each IPC
2656 * argument.
2657 *
2658 * So far, this wrapper is to be used from within a connection fibril.
2659 *
2660 * @param callid Storage for the hash of the IPC_M_SHARE_IN call.
2661 * @param size Destination address space area size.
2662 *
2663 * @return True on success, false on failure.
2664 *
2665 */
2666bool async_share_in_receive(ipc_callid_t *callid, size_t *size)
2667{
2668 assert(callid);
2669 assert(size);
2670
2671 ipc_call_t data;
2672 *callid = async_get_call(&data);
2673
2674 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2675 return false;
2676
2677 *size = (size_t) IPC_GET_ARG1(data);
2678 return true;
2679}
2680
2681/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2682 *
2683 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2684 * calls so that the user doesn't have to remember the meaning of each IPC
2685 * argument.
2686 *
2687 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2688 * @param src Source address space base.
2689 * @param flags Flags to be used for sharing. Bits can be only cleared.
2690 *
2691 * @return Zero on success or a value from @ref errno.h on failure.
2692 *
2693 */
2694int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags)
2695{
2696 return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags,
2697 (sysarg_t) __entry);
2698}
2699
2700/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2701 *
2702 * @param exch Exchange for sending the message.
2703 * @param src Source address space area base address.
2704 * @param flags Flags to be used for sharing. Bits can be only cleared.
2705 *
2706 * @return Zero on success or a negative error code from errno.h.
2707 *
2708 */
2709int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2710{
2711 if (exch == NULL)
2712 return ENOENT;
2713
2714 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2715 (sysarg_t) flags);
2716}
2717
2718/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2719 *
2720 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2721 * calls so that the user doesn't have to remember the meaning of each IPC
2722 * argument.
2723 *
2724 * So far, this wrapper is to be used from within a connection fibril.
2725 *
2726 * @param callid Storage for the hash of the IPC_M_SHARE_OUT call.
2727 * @param size Storage for the source address space area size.
2728 * @param flags Storage for the sharing flags.
2729 *
2730 * @return True on success, false on failure.
2731 *
2732 */
2733bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags)
2734{
2735 assert(callid);
2736 assert(size);
2737 assert(flags);
2738
2739 ipc_call_t data;
2740 *callid = async_get_call(&data);
2741
2742 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2743 return false;
2744
2745 *size = (size_t) IPC_GET_ARG2(data);
2746 *flags = (unsigned int) IPC_GET_ARG3(data);
2747 return true;
2748}
2749
2750/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2751 *
2752 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2753 * calls so that the user doesn't have to remember the meaning of each IPC
2754 * argument.
2755 *
2756 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2757 * @param dst Address of the storage for the destination address space area
2758 * base address.
2759 *
2760 * @return Zero on success or a value from @ref errno.h on failure.
2761 *
2762 */
2763int async_share_out_finalize(ipc_callid_t callid, void **dst)
2764{
2765 return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2766}
2767
2768/** Start IPC_M_DATA_READ using the async framework.
2769 *
2770 * @param exch Exchange for sending the message.
2771 * @param dst Address of the beginning of the destination buffer.
2772 * @param size Size of the destination buffer (in bytes).
2773 * @param dataptr Storage of call data (arg 2 holds actual data size).
2774 *
2775 * @return Hash of the sent message or 0 on error.
2776 *
2777 */
2778aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2779 ipc_call_t *dataptr)
2780{
2781 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2782 (sysarg_t) size, dataptr);
2783}
2784
2785/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2786 *
2787 * @param exch Exchange for sending the message.
2788 * @param dst Address of the beginning of the destination buffer.
2789 * @param size Size of the destination buffer.
2790 *
2791 * @return Zero on success or a negative error code from errno.h.
2792 *
2793 */
2794int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2795{
2796 if (exch == NULL)
2797 return ENOENT;
2798
2799 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2800 (sysarg_t) size);
2801}
2802
2803/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2804 *
2805 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2806 * calls so that the user doesn't have to remember the meaning of each IPC
2807 * argument.
2808 *
2809 * So far, this wrapper is to be used from within a connection fibril.
2810 *
2811 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2812 * @param size Storage for the maximum size. Can be NULL.
2813 *
2814 * @return True on success, false on failure.
2815 *
2816 */
2817bool async_data_read_receive(ipc_callid_t *callid, size_t *size)
2818{
2819 ipc_call_t data;
2820 return async_data_read_receive_call(callid, &data, size);
2821}
2822
2823/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2824 *
2825 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2826 * calls so that the user doesn't have to remember the meaning of each IPC
2827 * argument.
2828 *
2829 * So far, this wrapper is to be used from within a connection fibril.
2830 *
2831 * @param callid Storage for the hash of the IPC_M_DATA_READ.
2832 * @param size Storage for the maximum size. Can be NULL.
2833 *
2834 * @return True on success, false on failure.
2835 *
2836 */
2837bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2838 size_t *size)
2839{
2840 assert(callid);
2841 assert(data);
2842
2843 *callid = async_get_call(data);
2844
2845 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2846 return false;
2847
2848 if (size)
2849 *size = (size_t) IPC_GET_ARG2(*data);
2850
2851 return true;
2852}
2853
2854/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2855 *
2856 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2857 * calls so that the user doesn't have to remember the meaning of each IPC
2858 * argument.
2859 *
2860 * @param callid Hash of the IPC_M_DATA_READ call to answer.
2861 * @param src Source address for the IPC_M_DATA_READ call.
2862 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2863 * the maximum size announced by the sender.
2864 *
2865 * @return Zero on success or a value from @ref errno.h on failure.
2866 *
2867 */
2868int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size)
2869{
2870 return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size);
2871}
2872
2873/** Wrapper for forwarding any read request
2874 *
2875 */
2876int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2877 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2878 ipc_call_t *dataptr)
2879{
2880 if (exch == NULL)
2881 return ENOENT;
2882
2883 ipc_callid_t callid;
2884 if (!async_data_read_receive(&callid, NULL)) {
2885 ipc_answer_0(callid, EINVAL);
2886 return EINVAL;
2887 }
2888
2889 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2890 dataptr);
2891 if (msg == 0) {
2892 ipc_answer_0(callid, EINVAL);
2893 return EINVAL;
2894 }
2895
2896 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
2897 IPC_FF_ROUTE_FROM_ME);
2898 if (retval != EOK) {
2899 async_forget(msg);
2900 ipc_answer_0(callid, retval);
2901 return retval;
2902 }
2903
2904 sysarg_t rc;
2905 async_wait_for(msg, &rc);
2906
2907 return (int) rc;
2908}
2909
2910/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2911 *
2912 * @param exch Exchange for sending the message.
2913 * @param src Address of the beginning of the source buffer.
2914 * @param size Size of the source buffer.
2915 *
2916 * @return Zero on success or a negative error code from errno.h.
2917 *
2918 */
2919int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2920{
2921 if (exch == NULL)
2922 return ENOENT;
2923
2924 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2925 (sysarg_t) size);
2926}
2927
2928/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2929 *
2930 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2931 * calls so that the user doesn't have to remember the meaning of each IPC
2932 * argument.
2933 *
2934 * So far, this wrapper is to be used from within a connection fibril.
2935 *
2936 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2937 * @param size Storage for the suggested size. May be NULL.
2938 *
2939 * @return True on success, false on failure.
2940 *
2941 */
2942bool async_data_write_receive(ipc_callid_t *callid, size_t *size)
2943{
2944 ipc_call_t data;
2945 return async_data_write_receive_call(callid, &data, size);
2946}
2947
2948/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2949 *
2950 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2951 * calls so that the user doesn't have to remember the meaning of each IPC
2952 * argument.
2953 *
2954 * So far, this wrapper is to be used from within a connection fibril.
2955 *
2956 * @param callid Storage for the hash of the IPC_M_DATA_WRITE.
2957 * @param data Storage for the ipc call data.
2958 * @param size Storage for the suggested size. May be NULL.
2959 *
2960 * @return True on success, false on failure.
2961 *
2962 */
2963bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data,
2964 size_t *size)
2965{
2966 assert(callid);
2967 assert(data);
2968
2969 *callid = async_get_call(data);
2970
2971 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2972 return false;
2973
2974 if (size)
2975 *size = (size_t) IPC_GET_ARG2(*data);
2976
2977 return true;
2978}
2979
2980/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2981 *
2982 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2983 * calls so that the user doesn't have to remember the meaning of each IPC
2984 * argument.
2985 *
2986 * @param callid Hash of the IPC_M_DATA_WRITE call to answer.
2987 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2988 * @param size Final size for the IPC_M_DATA_WRITE call.
2989 *
2990 * @return Zero on success or a value from @ref errno.h on failure.
2991 *
2992 */
2993int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size)
2994{
2995 return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size);
2996}
2997
2998/** Wrapper for receiving binary data or strings
2999 *
3000 * This wrapper only makes it more comfortable to use async_data_write_*
3001 * functions to receive binary data or strings.
3002 *
3003 * @param data Pointer to data pointer (which should be later disposed
3004 * by free()). If the operation fails, the pointer is not
3005 * touched.
3006 * @param nullterm If true then the received data is always zero terminated.
3007 * This also causes to allocate one extra byte beyond the
3008 * raw transmitted data.
3009 * @param min_size Minimum size (in bytes) of the data to receive.
3010 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
3011 * no limit.
3012 * @param granulariy If non-zero then the size of the received data has to
3013 * be divisible by this value.
3014 * @param received If not NULL, the size of the received data is stored here.
3015 *
3016 * @return Zero on success or a value from @ref errno.h on failure.
3017 *
3018 */
3019int async_data_write_accept(void **data, const bool nullterm,
3020 const size_t min_size, const size_t max_size, const size_t granularity,
3021 size_t *received)
3022{
3023 assert(data);
3024
3025 ipc_callid_t callid;
3026 size_t size;
3027 if (!async_data_write_receive(&callid, &size)) {
3028 ipc_answer_0(callid, EINVAL);
3029 return EINVAL;
3030 }
3031
3032 if (size < min_size) {
3033 ipc_answer_0(callid, EINVAL);
3034 return EINVAL;
3035 }
3036
3037 if ((max_size > 0) && (size > max_size)) {
3038 ipc_answer_0(callid, EINVAL);
3039 return EINVAL;
3040 }
3041
3042 if ((granularity > 0) && ((size % granularity) != 0)) {
3043 ipc_answer_0(callid, EINVAL);
3044 return EINVAL;
3045 }
3046
3047 void *arg_data;
3048
3049 if (nullterm)
3050 arg_data = malloc(size + 1);
3051 else
3052 arg_data = malloc(size);
3053
3054 if (arg_data == NULL) {
3055 ipc_answer_0(callid, ENOMEM);
3056 return ENOMEM;
3057 }
3058
3059 int rc = async_data_write_finalize(callid, arg_data, size);
3060 if (rc != EOK) {
3061 free(arg_data);
3062 return rc;
3063 }
3064
3065 if (nullterm)
3066 ((char *) arg_data)[size] = 0;
3067
3068 *data = arg_data;
3069 if (received != NULL)
3070 *received = size;
3071
3072 return EOK;
3073}
3074
3075/** Wrapper for voiding any data that is about to be received
3076 *
3077 * This wrapper can be used to void any pending data
3078 *
3079 * @param retval Error value from @ref errno.h to be returned to the caller.
3080 *
3081 */
3082void async_data_write_void(sysarg_t retval)
3083{
3084 ipc_callid_t callid;
3085 async_data_write_receive(&callid, NULL);
3086 ipc_answer_0(callid, retval);
3087}
3088
3089/** Wrapper for forwarding any data that is about to be received
3090 *
3091 */
3092int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3093 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3094 ipc_call_t *dataptr)
3095{
3096 if (exch == NULL)
3097 return ENOENT;
3098
3099 ipc_callid_t callid;
3100 if (!async_data_write_receive(&callid, NULL)) {
3101 ipc_answer_0(callid, EINVAL);
3102 return EINVAL;
3103 }
3104
3105 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3106 dataptr);
3107 if (msg == 0) {
3108 ipc_answer_0(callid, EINVAL);
3109 return EINVAL;
3110 }
3111
3112 int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0,
3113 IPC_FF_ROUTE_FROM_ME);
3114 if (retval != EOK) {
3115 async_forget(msg);
3116 ipc_answer_0(callid, retval);
3117 return retval;
3118 }
3119
3120 sysarg_t rc;
3121 async_wait_for(msg, &rc);
3122
3123 return (int) rc;
3124}
3125
3126/** Wrapper for sending an exchange over different exchange for cloning
3127 *
3128 * @param exch Exchange to be used for sending.
3129 * @param clone_exch Exchange to be cloned.
3130 *
3131 */
3132int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch)
3133{
3134 return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone);
3135}
3136
3137/** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls.
3138 *
3139 * If the current call is IPC_M_CONNECTION_CLONE then a new
3140 * async session is created for the accepted phone.
3141 *
3142 * @param mgmt Exchange management style.
3143 *
3144 * @return New async session or NULL on failure.
3145 *
3146 */
3147async_sess_t *async_clone_receive(exch_mgmt_t mgmt)
3148{
3149 /* Accept the phone */
3150 ipc_call_t call;
3151 ipc_callid_t callid = async_get_call(&call);
3152 int phone = (int) IPC_GET_ARG1(call);
3153
3154 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) ||
3155 (phone < 0)) {
3156 async_answer_0(callid, EINVAL);
3157 return NULL;
3158 }
3159
3160 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3161 if (sess == NULL) {
3162 async_answer_0(callid, ENOMEM);
3163 return NULL;
3164 }
3165
3166 sess->iface = 0;
3167 sess->mgmt = mgmt;
3168 sess->phone = phone;
3169 sess->arg1 = 0;
3170 sess->arg2 = 0;
3171 sess->arg3 = 0;
3172
3173 fibril_mutex_initialize(&sess->remote_state_mtx);
3174 sess->remote_state_data = NULL;
3175
3176 list_initialize(&sess->exch_list);
3177 fibril_mutex_initialize(&sess->mutex);
3178 atomic_set(&sess->refcnt, 0);
3179
3180 /* Acknowledge the cloned phone */
3181 async_answer_0(callid, EOK);
3182
3183 return sess;
3184}
3185
3186/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3187 *
3188 * If the current call is IPC_M_CONNECT_TO_ME then a new
3189 * async session is created for the accepted phone.
3190 *
3191 * @param mgmt Exchange management style.
3192 *
3193 * @return New async session.
3194 * @return NULL on failure.
3195 *
3196 */
3197async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3198{
3199 /* Accept the phone */
3200 ipc_call_t call;
3201 ipc_callid_t callid = async_get_call(&call);
3202 int phone = (int) IPC_GET_ARG5(call);
3203
3204 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) ||
3205 (phone < 0)) {
3206 async_answer_0(callid, EINVAL);
3207 return NULL;
3208 }
3209
3210 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3211 if (sess == NULL) {
3212 async_answer_0(callid, ENOMEM);
3213 return NULL;
3214 }
3215
3216 sess->iface = 0;
3217 sess->mgmt = mgmt;
3218 sess->phone = phone;
3219 sess->arg1 = 0;
3220 sess->arg2 = 0;
3221 sess->arg3 = 0;
3222
3223 fibril_mutex_initialize(&sess->remote_state_mtx);
3224 sess->remote_state_data = NULL;
3225
3226 list_initialize(&sess->exch_list);
3227 fibril_mutex_initialize(&sess->mutex);
3228 atomic_set(&sess->refcnt, 0);
3229
3230 /* Acknowledge the connected phone */
3231 async_answer_0(callid, EOK);
3232
3233 return sess;
3234}
3235
3236/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3237 *
3238 * If the call is IPC_M_CONNECT_TO_ME then a new
3239 * async session is created. However, the phone is
3240 * not accepted automatically.
3241 *
3242 * @param mgmt Exchange management style.
3243 * @param call Call data.
3244 *
3245 * @return New async session.
3246 * @return NULL on failure.
3247 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3248 *
3249 */
3250async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3251{
3252 int phone = (int) IPC_GET_ARG5(*call);
3253
3254 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) ||
3255 (phone < 0))
3256 return NULL;
3257
3258 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3259 if (sess == NULL)
3260 return NULL;
3261
3262 sess->iface = 0;
3263 sess->mgmt = mgmt;
3264 sess->phone = phone;
3265 sess->arg1 = 0;
3266 sess->arg2 = 0;
3267 sess->arg3 = 0;
3268
3269 fibril_mutex_initialize(&sess->remote_state_mtx);
3270 sess->remote_state_data = NULL;
3271
3272 list_initialize(&sess->exch_list);
3273 fibril_mutex_initialize(&sess->mutex);
3274 atomic_set(&sess->refcnt, 0);
3275
3276 return sess;
3277}
3278
3279int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3280 sysarg_t arg3, async_exch_t *other_exch)
3281{
3282 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3283 arg1, arg2, arg3, 0, other_exch->phone);
3284}
3285
3286bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1,
3287 sysarg_t *arg2, sysarg_t *arg3)
3288{
3289 assert(callid);
3290
3291 ipc_call_t call;
3292 *callid = async_get_call(&call);
3293
3294 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3295 return false;
3296
3297 if (arg1)
3298 *arg1 = IPC_GET_ARG1(call);
3299 if (arg2)
3300 *arg2 = IPC_GET_ARG2(call);
3301 if (arg3)
3302 *arg3 = IPC_GET_ARG3(call);
3303
3304 return true;
3305}
3306
3307int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch)
3308{
3309 return ipc_answer_1(callid, EOK, other_exch->phone);
3310}
3311
3312/** Lock and get session remote state
3313 *
3314 * Lock and get the local replica of the remote state
3315 * in stateful sessions. The call should be paired
3316 * with async_remote_state_release*().
3317 *
3318 * @param[in] sess Stateful session.
3319 *
3320 * @return Local replica of the remote state.
3321 *
3322 */
3323void *async_remote_state_acquire(async_sess_t *sess)
3324{
3325 fibril_mutex_lock(&sess->remote_state_mtx);
3326 return sess->remote_state_data;
3327}
3328
3329/** Update the session remote state
3330 *
3331 * Update the local replica of the remote state
3332 * in stateful sessions. The remote state must
3333 * be already locked.
3334 *
3335 * @param[in] sess Stateful session.
3336 * @param[in] state New local replica of the remote state.
3337 *
3338 */
3339void async_remote_state_update(async_sess_t *sess, void *state)
3340{
3341 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3342 sess->remote_state_data = state;
3343}
3344
3345/** Release the session remote state
3346 *
3347 * Unlock the local replica of the remote state
3348 * in stateful sessions.
3349 *
3350 * @param[in] sess Stateful session.
3351 *
3352 */
3353void async_remote_state_release(async_sess_t *sess)
3354{
3355 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3356
3357 fibril_mutex_unlock(&sess->remote_state_mtx);
3358}
3359
3360/** Release the session remote state and end an exchange
3361 *
3362 * Unlock the local replica of the remote state
3363 * in stateful sessions. This is convenience function
3364 * which gets the session pointer from the exchange
3365 * and also ends the exchange.
3366 *
3367 * @param[in] exch Stateful session's exchange.
3368 *
3369 */
3370void async_remote_state_release_exchange(async_exch_t *exch)
3371{
3372 if (exch == NULL)
3373 return;
3374
3375 async_sess_t *sess = exch->sess;
3376 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3377
3378 async_exchange_end(exch);
3379 fibril_mutex_unlock(&sess->remote_state_mtx);
3380}
3381
3382void *async_as_area_create(void *base, size_t size, unsigned int flags,
3383 async_sess_t *pager)
3384{
3385 return as_area_create(base, size, flags, pager->phone);
3386}
3387
3388/** @}
3389 */
Note: See TracBrowser for help on using the repository browser.