source: mainline/uspace/lib/c/generic/async.c@ 071a1ddb

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 071a1ddb was 071a1ddb, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 8 years ago

Return IRQ handles via a separate out parameter in all uspace code.

  • Property mode set to 100644
File size: 79.9 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup libc
30 * @{
31 */
32/** @file
33 */
34
35/**
36 * Asynchronous library
37 *
38 * The aim of this library is to provide a facility for writing programs which
39 * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of
40 * programming.
41 *
42 * You should be able to write very simple multithreaded programs. The async
43 * framework will automatically take care of most of the synchronization
44 * problems.
45 *
46 * Example of use (pseudo C):
47 *
48 * 1) Multithreaded client application
49 *
50 * fibril_create(fibril1, ...);
51 * fibril_create(fibril2, ...);
52 * ...
53 *
54 * int fibril1(void *arg)
55 * {
56 * conn = async_connect_me_to(...);
57 *
58 * exch = async_exchange_begin(conn);
59 * c1 = async_send(exch);
60 * async_exchange_end(exch);
61 *
62 * exch = async_exchange_begin(conn);
63 * c2 = async_send(exch);
64 * async_exchange_end(exch);
65 *
66 * async_wait_for(c1);
67 * async_wait_for(c2);
68 * ...
69 * }
70 *
71 *
72 * 2) Multithreaded server application
73 *
74 * main()
75 * {
76 * async_manager();
77 * }
78 *
79 * port_handler(ichandle, *icall)
80 * {
81 * if (want_refuse) {
82 * async_answer_0(ichandle, ELIMIT);
83 * return;
84 * }
85 * async_answer_0(ichandle, EOK);
86 *
87 * chandle = async_get_call(&call);
88 * somehow_handle_the_call(chandle, call);
89 * async_answer_2(chandle, 1, 2, 3);
90 *
91 * chandle = async_get_call(&call);
92 * ...
93 * }
94 *
95 */
96
97#define LIBC_ASYNC_C_
98#include <ipc/ipc.h>
99#include <async.h>
100#include "private/async.h"
101#undef LIBC_ASYNC_C_
102
103#include <ipc/irq.h>
104#include <ipc/event.h>
105#include <futex.h>
106#include <fibril.h>
107#include <adt/hash_table.h>
108#include <adt/hash.h>
109#include <adt/list.h>
110#include <assert.h>
111#include <errno.h>
112#include <sys/time.h>
113#include <libarch/barrier.h>
114#include <stdbool.h>
115#include <stdlib.h>
116#include <mem.h>
117#include <stdlib.h>
118#include <macros.h>
119#include <as.h>
120#include <abi/mm/as.h>
121#include "private/libc.h"
122
123/** Session data */
124struct async_sess {
125 /** List of inactive exchanges */
126 list_t exch_list;
127
128 /** Session interface */
129 iface_t iface;
130
131 /** Exchange management style */
132 exch_mgmt_t mgmt;
133
134 /** Session identification */
135 int phone;
136
137 /** First clone connection argument */
138 sysarg_t arg1;
139
140 /** Second clone connection argument */
141 sysarg_t arg2;
142
143 /** Third clone connection argument */
144 sysarg_t arg3;
145
146 /** Exchange mutex */
147 fibril_mutex_t mutex;
148
149 /** Number of opened exchanges */
150 atomic_t refcnt;
151
152 /** Mutex for stateful connections */
153 fibril_mutex_t remote_state_mtx;
154
155 /** Data for stateful connections */
156 void *remote_state_data;
157};
158
159/** Exchange data */
160struct async_exch {
161 /** Link into list of inactive exchanges */
162 link_t sess_link;
163
164 /** Link into global list of inactive exchanges */
165 link_t global_link;
166
167 /** Session pointer */
168 async_sess_t *sess;
169
170 /** Exchange identification */
171 int phone;
172};
173
174/** Async framework global futex */
175futex_t async_futex = FUTEX_INITIALIZER;
176
177/** Number of threads waiting for IPC in the kernel. */
178atomic_t threads_in_ipc_wait = { 0 };
179
180/** Naming service session */
181async_sess_t *session_ns;
182
183/** Call data */
184typedef struct {
185 link_t link;
186
187 cap_handle_t chandle;
188 ipc_call_t call;
189} msg_t;
190
191/** Message data */
192typedef struct {
193 awaiter_t wdata;
194
195 /** If reply was received. */
196 bool done;
197
198 /** If the message / reply should be discarded on arrival. */
199 bool forget;
200
201 /** If already destroyed. */
202 bool destroyed;
203
204 /** Pointer to where the answer data is stored. */
205 ipc_call_t *dataptr;
206
207 sysarg_t retval;
208} amsg_t;
209
210/* Client connection data */
211typedef struct {
212 ht_link_t link;
213
214 task_id_t in_task_id;
215 atomic_t refcnt;
216 void *data;
217} client_t;
218
219/* Server connection data */
220typedef struct {
221 awaiter_t wdata;
222
223 /** Hash table link. */
224 ht_link_t link;
225
226 /** Incoming client task ID. */
227 task_id_t in_task_id;
228
229 /** Incoming phone hash. */
230 sysarg_t in_phone_hash;
231
232 /** Link to the client tracking structure. */
233 client_t *client;
234
235 /** Messages that should be delivered to this fibril. */
236 list_t msg_queue;
237
238 /** Identification of the opening call. */
239 cap_handle_t chandle;
240
241 /** Call data of the opening call. */
242 ipc_call_t call;
243
244 /** Identification of the closing call. */
245 cap_handle_t close_chandle;
246
247 /** Fibril function that will be used to handle the connection. */
248 async_port_handler_t handler;
249
250 /** Client data */
251 void *data;
252} connection_t;
253
254/** Interface data */
255typedef struct {
256 ht_link_t link;
257
258 /** Interface ID */
259 iface_t iface;
260
261 /** Futex protecting the hash table */
262 futex_t futex;
263
264 /** Interface ports */
265 hash_table_t port_hash_table;
266
267 /** Next available port ID */
268 port_id_t port_id_avail;
269} interface_t;
270
271/* Port data */
272typedef struct {
273 ht_link_t link;
274
275 /** Port ID */
276 port_id_t id;
277
278 /** Port connection handler */
279 async_port_handler_t handler;
280
281 /** Client data */
282 void *data;
283} port_t;
284
285/* Notification data */
286typedef struct {
287 ht_link_t link;
288
289 /** Notification method */
290 sysarg_t imethod;
291
292 /** Notification handler */
293 async_notification_handler_t handler;
294
295 /** Notification data */
296 void *data;
297} notification_t;
298
299/** Identifier of the incoming connection handled by the current fibril. */
300static fibril_local connection_t *fibril_connection;
301
302static void to_event_initialize(to_event_t *to)
303{
304 struct timeval tv = { 0, 0 };
305
306 to->inlist = false;
307 to->occurred = false;
308 link_initialize(&to->link);
309 to->expires = tv;
310}
311
312static void wu_event_initialize(wu_event_t *wu)
313{
314 wu->inlist = false;
315 link_initialize(&wu->link);
316}
317
318void awaiter_initialize(awaiter_t *aw)
319{
320 aw->fid = 0;
321 aw->active = false;
322 to_event_initialize(&aw->to_event);
323 wu_event_initialize(&aw->wu_event);
324}
325
326static amsg_t *amsg_create(void)
327{
328 amsg_t *msg = malloc(sizeof(amsg_t));
329 if (msg) {
330 msg->done = false;
331 msg->forget = false;
332 msg->destroyed = false;
333 msg->dataptr = NULL;
334 msg->retval = (sysarg_t) EINVAL;
335 awaiter_initialize(&msg->wdata);
336 }
337
338 return msg;
339}
340
341static void amsg_destroy(amsg_t *msg)
342{
343 assert(!msg->destroyed);
344 msg->destroyed = true;
345 free(msg);
346}
347
348static void *default_client_data_constructor(void)
349{
350 return NULL;
351}
352
353static void default_client_data_destructor(void *data)
354{
355}
356
357static async_client_data_ctor_t async_client_data_create =
358 default_client_data_constructor;
359static async_client_data_dtor_t async_client_data_destroy =
360 default_client_data_destructor;
361
362void async_set_client_data_constructor(async_client_data_ctor_t ctor)
363{
364 assert(async_client_data_create == default_client_data_constructor);
365 async_client_data_create = ctor;
366}
367
368void async_set_client_data_destructor(async_client_data_dtor_t dtor)
369{
370 assert(async_client_data_destroy == default_client_data_destructor);
371 async_client_data_destroy = dtor;
372}
373
374/** Default fallback fibril function.
375 *
376 * This fallback fibril function gets called on incomming connections that do
377 * not have a specific handler defined.
378 *
379 * @param chandle Handle of the incoming call.
380 * @param call Data of the incoming call.
381 * @param arg Local argument
382 *
383 */
384static void default_fallback_port_handler(cap_handle_t chandle,
385 ipc_call_t *call, void *arg)
386{
387 ipc_answer_0(chandle, ENOENT);
388}
389
390static async_port_handler_t fallback_port_handler =
391 default_fallback_port_handler;
392static void *fallback_port_data = NULL;
393
394static hash_table_t interface_hash_table;
395
396static size_t interface_key_hash(void *key)
397{
398 iface_t iface = *(iface_t *) key;
399 return iface;
400}
401
402static size_t interface_hash(const ht_link_t *item)
403{
404 interface_t *interface = hash_table_get_inst(item, interface_t, link);
405 return interface_key_hash(&interface->iface);
406}
407
408static bool interface_key_equal(void *key, const ht_link_t *item)
409{
410 iface_t iface = *(iface_t *) key;
411 interface_t *interface = hash_table_get_inst(item, interface_t, link);
412 return iface == interface->iface;
413}
414
415/** Operations for the port hash table. */
416static hash_table_ops_t interface_hash_table_ops = {
417 .hash = interface_hash,
418 .key_hash = interface_key_hash,
419 .key_equal = interface_key_equal,
420 .equal = NULL,
421 .remove_callback = NULL
422};
423
424static size_t port_key_hash(void *key)
425{
426 port_id_t port_id = *(port_id_t *) key;
427 return port_id;
428}
429
430static size_t port_hash(const ht_link_t *item)
431{
432 port_t *port = hash_table_get_inst(item, port_t, link);
433 return port_key_hash(&port->id);
434}
435
436static bool port_key_equal(void *key, const ht_link_t *item)
437{
438 port_id_t port_id = *(port_id_t *) key;
439 port_t *port = hash_table_get_inst(item, port_t, link);
440 return port_id == port->id;
441}
442
443/** Operations for the port hash table. */
444static hash_table_ops_t port_hash_table_ops = {
445 .hash = port_hash,
446 .key_hash = port_key_hash,
447 .key_equal = port_key_equal,
448 .equal = NULL,
449 .remove_callback = NULL
450};
451
452static interface_t *async_new_interface(iface_t iface)
453{
454 interface_t *interface =
455 (interface_t *) malloc(sizeof(interface_t));
456 if (!interface)
457 return NULL;
458
459 bool ret = hash_table_create(&interface->port_hash_table, 0, 0,
460 &port_hash_table_ops);
461 if (!ret) {
462 free(interface);
463 return NULL;
464 }
465
466 interface->iface = iface;
467 futex_initialize(&interface->futex, 1);
468 interface->port_id_avail = 0;
469
470 hash_table_insert(&interface_hash_table, &interface->link);
471
472 return interface;
473}
474
475static port_t *async_new_port(interface_t *interface,
476 async_port_handler_t handler, void *data)
477{
478 port_t *port = (port_t *) malloc(sizeof(port_t));
479 if (!port)
480 return NULL;
481
482 futex_down(&interface->futex);
483
484 port_id_t id = interface->port_id_avail;
485 interface->port_id_avail++;
486
487 port->id = id;
488 port->handler = handler;
489 port->data = data;
490
491 hash_table_insert(&interface->port_hash_table, &port->link);
492
493 futex_up(&interface->futex);
494
495 return port;
496}
497
498/** Mutex protecting inactive_exch_list and avail_phone_cv.
499 *
500 */
501static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex);
502
503/** List of all currently inactive exchanges.
504 *
505 */
506static LIST_INITIALIZE(inactive_exch_list);
507
508/** Condition variable to wait for a phone to become available.
509 *
510 */
511static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv);
512
513int async_create_port(iface_t iface, async_port_handler_t handler,
514 void *data, port_id_t *port_id)
515{
516 if ((iface & IFACE_MOD_MASK) == IFACE_MOD_CALLBACK)
517 return EINVAL;
518
519 interface_t *interface;
520
521 futex_down(&async_futex);
522
523 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
524 if (link)
525 interface = hash_table_get_inst(link, interface_t, link);
526 else
527 interface = async_new_interface(iface);
528
529 if (!interface) {
530 futex_up(&async_futex);
531 return ENOMEM;
532 }
533
534 port_t *port = async_new_port(interface, handler, data);
535 if (!port) {
536 futex_up(&async_futex);
537 return ENOMEM;
538 }
539
540 *port_id = port->id;
541
542 futex_up(&async_futex);
543
544 return EOK;
545}
546
547void async_set_fallback_port_handler(async_port_handler_t handler, void *data)
548{
549 assert(handler != NULL);
550
551 fallback_port_handler = handler;
552 fallback_port_data = data;
553}
554
555static hash_table_t client_hash_table;
556static hash_table_t conn_hash_table;
557static hash_table_t notification_hash_table;
558static LIST_INITIALIZE(timeout_list);
559
560static sysarg_t notification_avail = 0;
561
562static size_t client_key_hash(void *key)
563{
564 task_id_t in_task_id = *(task_id_t *) key;
565 return in_task_id;
566}
567
568static size_t client_hash(const ht_link_t *item)
569{
570 client_t *client = hash_table_get_inst(item, client_t, link);
571 return client_key_hash(&client->in_task_id);
572}
573
574static bool client_key_equal(void *key, const ht_link_t *item)
575{
576 task_id_t in_task_id = *(task_id_t *) key;
577 client_t *client = hash_table_get_inst(item, client_t, link);
578 return in_task_id == client->in_task_id;
579}
580
581/** Operations for the client hash table. */
582static hash_table_ops_t client_hash_table_ops = {
583 .hash = client_hash,
584 .key_hash = client_key_hash,
585 .key_equal = client_key_equal,
586 .equal = NULL,
587 .remove_callback = NULL
588};
589
590typedef struct {
591 task_id_t task_id;
592 sysarg_t phone_hash;
593} conn_key_t;
594
595/** Compute hash into the connection hash table
596 *
597 * The hash is based on the source task ID and the source phone hash. The task
598 * ID is included in the hash because a phone hash alone might not be unique
599 * while we still track connections for killed tasks due to kernel's recycling
600 * of phone structures.
601 *
602 * @param key Pointer to the connection key structure.
603 *
604 * @return Index into the connection hash table.
605 *
606 */
607static size_t conn_key_hash(void *key)
608{
609 conn_key_t *ck = (conn_key_t *) key;
610
611 size_t hash = 0;
612 hash = hash_combine(hash, LOWER32(ck->task_id));
613 hash = hash_combine(hash, UPPER32(ck->task_id));
614 hash = hash_combine(hash, ck->phone_hash);
615 return hash;
616}
617
618static size_t conn_hash(const ht_link_t *item)
619{
620 connection_t *conn = hash_table_get_inst(item, connection_t, link);
621 return conn_key_hash(&(conn_key_t){
622 .task_id = conn->in_task_id,
623 .phone_hash = conn->in_phone_hash
624 });
625}
626
627static bool conn_key_equal(void *key, const ht_link_t *item)
628{
629 conn_key_t *ck = (conn_key_t *) key;
630 connection_t *conn = hash_table_get_inst(item, connection_t, link);
631 return ((ck->task_id == conn->in_task_id) &&
632 (ck->phone_hash == conn->in_phone_hash));
633}
634
635/** Operations for the connection hash table. */
636static hash_table_ops_t conn_hash_table_ops = {
637 .hash = conn_hash,
638 .key_hash = conn_key_hash,
639 .key_equal = conn_key_equal,
640 .equal = NULL,
641 .remove_callback = NULL
642};
643
644static client_t *async_client_get(task_id_t client_id, bool create)
645{
646 client_t *client = NULL;
647
648 futex_down(&async_futex);
649 ht_link_t *link = hash_table_find(&client_hash_table, &client_id);
650 if (link) {
651 client = hash_table_get_inst(link, client_t, link);
652 atomic_inc(&client->refcnt);
653 } else if (create) {
654 client = malloc(sizeof(client_t));
655 if (client) {
656 client->in_task_id = client_id;
657 client->data = async_client_data_create();
658
659 atomic_set(&client->refcnt, 1);
660 hash_table_insert(&client_hash_table, &client->link);
661 }
662 }
663
664 futex_up(&async_futex);
665 return client;
666}
667
668static void async_client_put(client_t *client)
669{
670 bool destroy;
671
672 futex_down(&async_futex);
673
674 if (atomic_predec(&client->refcnt) == 0) {
675 hash_table_remove(&client_hash_table, &client->in_task_id);
676 destroy = true;
677 } else
678 destroy = false;
679
680 futex_up(&async_futex);
681
682 if (destroy) {
683 if (client->data)
684 async_client_data_destroy(client->data);
685
686 free(client);
687 }
688}
689
690/** Wrapper for client connection fibril.
691 *
692 * When a new connection arrives, a fibril with this implementing
693 * function is created.
694 *
695 * @param arg Connection structure pointer.
696 *
697 * @return Always zero.
698 *
699 */
700static int connection_fibril(void *arg)
701{
702 assert(arg);
703
704 /*
705 * Setup fibril-local connection pointer.
706 */
707 fibril_connection = (connection_t *) arg;
708
709 /*
710 * Add our reference for the current connection in the client task
711 * tracking structure. If this is the first reference, create and
712 * hash in a new tracking structure.
713 */
714
715 client_t *client = async_client_get(fibril_connection->in_task_id, true);
716 if (!client) {
717 ipc_answer_0(fibril_connection->chandle, ENOMEM);
718 return 0;
719 }
720
721 fibril_connection->client = client;
722
723 /*
724 * Call the connection handler function.
725 */
726 fibril_connection->handler(fibril_connection->chandle,
727 &fibril_connection->call, fibril_connection->data);
728
729 /*
730 * Remove the reference for this client task connection.
731 */
732 async_client_put(client);
733
734 /*
735 * Remove myself from the connection hash table.
736 */
737 futex_down(&async_futex);
738 hash_table_remove(&conn_hash_table, &(conn_key_t){
739 .task_id = fibril_connection->in_task_id,
740 .phone_hash = fibril_connection->in_phone_hash
741 });
742 futex_up(&async_futex);
743
744 /*
745 * Answer all remaining messages with EHANGUP.
746 */
747 while (!list_empty(&fibril_connection->msg_queue)) {
748 msg_t *msg =
749 list_get_instance(list_first(&fibril_connection->msg_queue),
750 msg_t, link);
751
752 list_remove(&msg->link);
753 ipc_answer_0(msg->chandle, EHANGUP);
754 free(msg);
755 }
756
757 /*
758 * If the connection was hung-up, answer the last call,
759 * i.e. IPC_M_PHONE_HUNGUP.
760 */
761 if (fibril_connection->close_chandle)
762 ipc_answer_0(fibril_connection->close_chandle, EOK);
763
764 free(fibril_connection);
765 return 0;
766}
767
768/** Create a new fibril for a new connection.
769 *
770 * Create new fibril for connection, fill in connection structures and insert it
771 * into the hash table, so that later we can easily do routing of messages to
772 * particular fibrils.
773 *
774 * @param in_task_id Identification of the incoming connection.
775 * @param in_phone_hash Identification of the incoming connection.
776 * @param chandle Handle of the opening IPC_M_CONNECT_ME_TO call.
777 * If chandle is CAP_NIL, the connection was opened by
778 * accepting the IPC_M_CONNECT_TO_ME call and this
779 * function is called directly by the server.
780 * @param call Call data of the opening call.
781 * @param handler Connection handler.
782 * @param data Client argument to pass to the connection handler.
783 *
784 * @return New fibril id or NULL on failure.
785 *
786 */
787static fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash,
788 cap_handle_t chandle, ipc_call_t *call, async_port_handler_t handler,
789 void *data)
790{
791 connection_t *conn = malloc(sizeof(*conn));
792 if (!conn) {
793 if (chandle != CAP_NIL)
794 ipc_answer_0(chandle, ENOMEM);
795
796 return (uintptr_t) NULL;
797 }
798
799 conn->in_task_id = in_task_id;
800 conn->in_phone_hash = in_phone_hash;
801 list_initialize(&conn->msg_queue);
802 conn->chandle = chandle;
803 conn->close_chandle = CAP_NIL;
804 conn->handler = handler;
805 conn->data = data;
806
807 if (call)
808 conn->call = *call;
809
810 /* We will activate the fibril ASAP */
811 conn->wdata.active = true;
812 conn->wdata.fid = fibril_create(connection_fibril, conn);
813
814 if (conn->wdata.fid == 0) {
815 free(conn);
816
817 if (chandle != CAP_NIL)
818 ipc_answer_0(chandle, ENOMEM);
819
820 return (uintptr_t) NULL;
821 }
822
823 /* Add connection to the connection hash table */
824
825 futex_down(&async_futex);
826 hash_table_insert(&conn_hash_table, &conn->link);
827 futex_up(&async_futex);
828
829 fibril_add_ready(conn->wdata.fid);
830
831 return conn->wdata.fid;
832}
833
834/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
835 *
836 * Ask through phone for a new connection to some service.
837 *
838 * @param exch Exchange for sending the message.
839 * @param iface Callback interface.
840 * @param arg1 User defined argument.
841 * @param arg2 User defined argument.
842 * @param handler Callback handler.
843 * @param data Handler data.
844 * @param port_id ID of the newly created port.
845 *
846 * @return Zero on success or a negative error code.
847 *
848 */
849int async_create_callback_port(async_exch_t *exch, iface_t iface, sysarg_t arg1,
850 sysarg_t arg2, async_port_handler_t handler, void *data, port_id_t *port_id)
851{
852 if ((iface & IFACE_MOD_CALLBACK) != IFACE_MOD_CALLBACK)
853 return EINVAL;
854
855 if (exch == NULL)
856 return ENOENT;
857
858 ipc_call_t answer;
859 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, iface, arg1, arg2,
860 &answer);
861
862 sysarg_t ret;
863 async_wait_for(req, &ret);
864 if (ret != EOK)
865 return (int) ret;
866
867 sysarg_t phone_hash = IPC_GET_ARG5(answer);
868 interface_t *interface;
869
870 futex_down(&async_futex);
871
872 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
873 if (link)
874 interface = hash_table_get_inst(link, interface_t, link);
875 else
876 interface = async_new_interface(iface);
877
878 if (!interface) {
879 futex_up(&async_futex);
880 return ENOMEM;
881 }
882
883 port_t *port = async_new_port(interface, handler, data);
884 if (!port) {
885 futex_up(&async_futex);
886 return ENOMEM;
887 }
888
889 *port_id = port->id;
890
891 futex_up(&async_futex);
892
893 fid_t fid = async_new_connection(answer.in_task_id, phone_hash,
894 CAP_NIL, NULL, handler, data);
895 if (fid == (uintptr_t) NULL)
896 return ENOMEM;
897
898 return EOK;
899}
900
901static size_t notification_key_hash(void *key)
902{
903 sysarg_t id = *(sysarg_t *) key;
904 return id;
905}
906
907static size_t notification_hash(const ht_link_t *item)
908{
909 notification_t *notification =
910 hash_table_get_inst(item, notification_t, link);
911 return notification_key_hash(&notification->imethod);
912}
913
914static bool notification_key_equal(void *key, const ht_link_t *item)
915{
916 sysarg_t id = *(sysarg_t *) key;
917 notification_t *notification =
918 hash_table_get_inst(item, notification_t, link);
919 return id == notification->imethod;
920}
921
922/** Operations for the notification hash table. */
923static hash_table_ops_t notification_hash_table_ops = {
924 .hash = notification_hash,
925 .key_hash = notification_key_hash,
926 .key_equal = notification_key_equal,
927 .equal = NULL,
928 .remove_callback = NULL
929};
930
931/** Sort in current fibril's timeout request.
932 *
933 * @param wd Wait data of the current fibril.
934 *
935 */
936void async_insert_timeout(awaiter_t *wd)
937{
938 assert(wd);
939
940 wd->to_event.occurred = false;
941 wd->to_event.inlist = true;
942
943 link_t *tmp = timeout_list.head.next;
944 while (tmp != &timeout_list.head) {
945 awaiter_t *cur
946 = list_get_instance(tmp, awaiter_t, to_event.link);
947
948 if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires))
949 break;
950
951 tmp = tmp->next;
952 }
953
954 list_insert_before(&wd->to_event.link, tmp);
955}
956
957/** Try to route a call to an appropriate connection fibril.
958 *
959 * If the proper connection fibril is found, a message with the call is added to
960 * its message queue. If the fibril was not active, it is activated and all
961 * timeouts are unregistered.
962 *
963 * @param chandle Handle of the incoming call.
964 * @param call Data of the incoming call.
965 *
966 * @return False if the call doesn't match any connection.
967 * @return True if the call was passed to the respective connection fibril.
968 *
969 */
970static bool route_call(cap_handle_t chandle, ipc_call_t *call)
971{
972 assert(call);
973
974 futex_down(&async_futex);
975
976 ht_link_t *link = hash_table_find(&conn_hash_table, &(conn_key_t){
977 .task_id = call->in_task_id,
978 .phone_hash = call->in_phone_hash
979 });
980 if (!link) {
981 futex_up(&async_futex);
982 return false;
983 }
984
985 connection_t *conn = hash_table_get_inst(link, connection_t, link);
986
987 msg_t *msg = malloc(sizeof(*msg));
988 if (!msg) {
989 futex_up(&async_futex);
990 return false;
991 }
992
993 msg->chandle = chandle;
994 msg->call = *call;
995 list_append(&msg->link, &conn->msg_queue);
996
997 if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP)
998 conn->close_chandle = chandle;
999
1000 /* If the connection fibril is waiting for an event, activate it */
1001 if (!conn->wdata.active) {
1002
1003 /* If in timeout list, remove it */
1004 if (conn->wdata.to_event.inlist) {
1005 conn->wdata.to_event.inlist = false;
1006 list_remove(&conn->wdata.to_event.link);
1007 }
1008
1009 conn->wdata.active = true;
1010 fibril_add_ready(conn->wdata.fid);
1011 }
1012
1013 futex_up(&async_futex);
1014 return true;
1015}
1016
1017/** Process notification.
1018 *
1019 * @param call Data of the incoming call.
1020 *
1021 */
1022static void process_notification(ipc_call_t *call)
1023{
1024 async_notification_handler_t handler = NULL;
1025 void *data = NULL;
1026
1027 assert(call);
1028
1029 futex_down(&async_futex);
1030
1031 ht_link_t *link = hash_table_find(&notification_hash_table,
1032 &IPC_GET_IMETHOD(*call));
1033 if (link) {
1034 notification_t *notification =
1035 hash_table_get_inst(link, notification_t, link);
1036 handler = notification->handler;
1037 data = notification->data;
1038 }
1039
1040 futex_up(&async_futex);
1041
1042 if (handler)
1043 handler(call, data);
1044}
1045
1046/** Subscribe to IRQ notification.
1047 *
1048 * @param inr IRQ number.
1049 * @param handler Notification handler.
1050 * @param data Notification handler client data.
1051 * @param ucode Top-half pseudocode handler.
1052 *
1053 * @param[out] handle IRQ capability handle on success.
1054 *
1055 * @return Negative error code.
1056 *
1057 */
1058int async_irq_subscribe(int inr, async_notification_handler_t handler,
1059 void *data, const irq_code_t *ucode, cap_handle_t *handle)
1060{
1061 notification_t *notification =
1062 (notification_t *) malloc(sizeof(notification_t));
1063 if (!notification)
1064 return ENOMEM;
1065
1066 futex_down(&async_futex);
1067
1068 sysarg_t imethod = notification_avail;
1069 notification_avail++;
1070
1071 notification->imethod = imethod;
1072 notification->handler = handler;
1073 notification->data = data;
1074
1075 hash_table_insert(&notification_hash_table, &notification->link);
1076
1077 futex_up(&async_futex);
1078
1079 cap_handle_t cap;
1080 int rc = ipc_irq_subscribe(inr, imethod, ucode, &cap);
1081 if (rc == EOK && handle != NULL) {
1082 *handle = cap;
1083 }
1084 return rc;
1085}
1086
1087/** Unsubscribe from IRQ notification.
1088 *
1089 * @param cap IRQ capability handle.
1090 *
1091 * @return Zero on success or a negative error code.
1092 *
1093 */
1094int async_irq_unsubscribe(int cap)
1095{
1096 // TODO: Remove entry from hash table
1097 // to avoid memory leak
1098
1099 return ipc_irq_unsubscribe(cap);
1100}
1101
1102/** Subscribe to event notifications.
1103 *
1104 * @param evno Event type to subscribe.
1105 * @param handler Notification handler.
1106 * @param data Notification handler client data.
1107 *
1108 * @return Zero on success or a negative error code.
1109 *
1110 */
1111int async_event_subscribe(event_type_t evno,
1112 async_notification_handler_t handler, void *data)
1113{
1114 notification_t *notification =
1115 (notification_t *) malloc(sizeof(notification_t));
1116 if (!notification)
1117 return ENOMEM;
1118
1119 futex_down(&async_futex);
1120
1121 sysarg_t imethod = notification_avail;
1122 notification_avail++;
1123
1124 notification->imethod = imethod;
1125 notification->handler = handler;
1126 notification->data = data;
1127
1128 hash_table_insert(&notification_hash_table, &notification->link);
1129
1130 futex_up(&async_futex);
1131
1132 return ipc_event_subscribe(evno, imethod);
1133}
1134
1135/** Subscribe to task event notifications.
1136 *
1137 * @param evno Event type to subscribe.
1138 * @param handler Notification handler.
1139 * @param data Notification handler client data.
1140 *
1141 * @return Zero on success or a negative error code.
1142 *
1143 */
1144int async_event_task_subscribe(event_task_type_t evno,
1145 async_notification_handler_t handler, void *data)
1146{
1147 notification_t *notification =
1148 (notification_t *) malloc(sizeof(notification_t));
1149 if (!notification)
1150 return ENOMEM;
1151
1152 futex_down(&async_futex);
1153
1154 sysarg_t imethod = notification_avail;
1155 notification_avail++;
1156
1157 notification->imethod = imethod;
1158 notification->handler = handler;
1159 notification->data = data;
1160
1161 hash_table_insert(&notification_hash_table, &notification->link);
1162
1163 futex_up(&async_futex);
1164
1165 return ipc_event_task_subscribe(evno, imethod);
1166}
1167
1168/** Unmask event notifications.
1169 *
1170 * @param evno Event type to unmask.
1171 *
1172 * @return Value returned by the kernel.
1173 *
1174 */
1175int async_event_unmask(event_type_t evno)
1176{
1177 return ipc_event_unmask(evno);
1178}
1179
1180/** Unmask task event notifications.
1181 *
1182 * @param evno Event type to unmask.
1183 *
1184 * @return Value returned by the kernel.
1185 *
1186 */
1187int async_event_task_unmask(event_task_type_t evno)
1188{
1189 return ipc_event_task_unmask(evno);
1190}
1191
1192/** Return new incoming message for the current (fibril-local) connection.
1193 *
1194 * @param call Storage where the incoming call data will be stored.
1195 * @param usecs Timeout in microseconds. Zero denotes no timeout.
1196 *
1197 * @return If no timeout was specified, then a handle of the incoming call is
1198 * returned. If a timeout is specified, then a handle of the incoming
1199 * call is returned unless the timeout expires prior to receiving a
1200 * message. In that case zero CAP_NIL is returned.
1201 */
1202cap_handle_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs)
1203{
1204 assert(call);
1205 assert(fibril_connection);
1206
1207 /* Why doing this?
1208 * GCC 4.1.0 coughs on fibril_connection-> dereference.
1209 * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot.
1210 * I would never expect to find so many errors in
1211 * a compiler.
1212 */
1213 connection_t *conn = fibril_connection;
1214
1215 futex_down(&async_futex);
1216
1217 if (usecs) {
1218 getuptime(&conn->wdata.to_event.expires);
1219 tv_add_diff(&conn->wdata.to_event.expires, usecs);
1220 } else
1221 conn->wdata.to_event.inlist = false;
1222
1223 /* If nothing in queue, wait until something arrives */
1224 while (list_empty(&conn->msg_queue)) {
1225 if (conn->close_chandle) {
1226 /*
1227 * Handle the case when the connection was already
1228 * closed by the client but the server did not notice
1229 * the first IPC_M_PHONE_HUNGUP call and continues to
1230 * call async_get_call_timeout(). Repeat
1231 * IPC_M_PHONE_HUNGUP until the caller notices.
1232 */
1233 memset(call, 0, sizeof(ipc_call_t));
1234 IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP);
1235 futex_up(&async_futex);
1236 return conn->close_chandle;
1237 }
1238
1239 if (usecs)
1240 async_insert_timeout(&conn->wdata);
1241
1242 conn->wdata.active = false;
1243
1244 /*
1245 * Note: the current fibril will be rescheduled either due to a
1246 * timeout or due to an arriving message destined to it. In the
1247 * former case, handle_expired_timeouts() and, in the latter
1248 * case, route_call() will perform the wakeup.
1249 */
1250 fibril_switch(FIBRIL_TO_MANAGER);
1251
1252 /*
1253 * Futex is up after getting back from async_manager.
1254 * Get it again.
1255 */
1256 futex_down(&async_futex);
1257 if ((usecs) && (conn->wdata.to_event.occurred)
1258 && (list_empty(&conn->msg_queue))) {
1259 /* If we timed out -> exit */
1260 futex_up(&async_futex);
1261 return CAP_NIL;
1262 }
1263 }
1264
1265 msg_t *msg = list_get_instance(list_first(&conn->msg_queue),
1266 msg_t, link);
1267 list_remove(&msg->link);
1268
1269 cap_handle_t chandle = msg->chandle;
1270 *call = msg->call;
1271 free(msg);
1272
1273 futex_up(&async_futex);
1274 return chandle;
1275}
1276
1277void *async_get_client_data(void)
1278{
1279 assert(fibril_connection);
1280 return fibril_connection->client->data;
1281}
1282
1283void *async_get_client_data_by_id(task_id_t client_id)
1284{
1285 client_t *client = async_client_get(client_id, false);
1286 if (!client)
1287 return NULL;
1288
1289 if (!client->data) {
1290 async_client_put(client);
1291 return NULL;
1292 }
1293
1294 return client->data;
1295}
1296
1297void async_put_client_data_by_id(task_id_t client_id)
1298{
1299 client_t *client = async_client_get(client_id, false);
1300
1301 assert(client);
1302 assert(client->data);
1303
1304 /* Drop the reference we got in async_get_client_data_by_hash(). */
1305 async_client_put(client);
1306
1307 /* Drop our own reference we got at the beginning of this function. */
1308 async_client_put(client);
1309}
1310
1311static port_t *async_find_port(iface_t iface, port_id_t port_id)
1312{
1313 port_t *port = NULL;
1314
1315 futex_down(&async_futex);
1316
1317 ht_link_t *link = hash_table_find(&interface_hash_table, &iface);
1318 if (link) {
1319 interface_t *interface =
1320 hash_table_get_inst(link, interface_t, link);
1321
1322 link = hash_table_find(&interface->port_hash_table, &port_id);
1323 if (link)
1324 port = hash_table_get_inst(link, port_t, link);
1325 }
1326
1327 futex_up(&async_futex);
1328
1329 return port;
1330}
1331
1332/** Handle a call that was received.
1333 *
1334 * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created.
1335 * Otherwise the call is routed to its connection fibril.
1336 *
1337 * @param chandle Handle of the incoming call.
1338 * @param call Data of the incoming call.
1339 *
1340 */
1341static void handle_call(cap_handle_t chandle, ipc_call_t *call)
1342{
1343 assert(call);
1344
1345 /* Kernel notification */
1346 if ((chandle == CAP_NIL) && (call->flags & IPC_CALL_NOTIF)) {
1347 fibril_t *fibril = (fibril_t *) __tcb_get()->fibril_data;
1348 unsigned oldsw = fibril->switches;
1349
1350 process_notification(call);
1351
1352 if (oldsw != fibril->switches) {
1353 /*
1354 * The notification handler did not execute atomically
1355 * and so the current manager fibril assumed the role of
1356 * a notification fibril. While waiting for its
1357 * resources, it switched to another manager fibril that
1358 * had already existed or it created a new one. We
1359 * therefore know there is at least yet another
1360 * manager fibril that can take over. We now kill the
1361 * current 'notification' fibril to prevent fibril
1362 * population explosion.
1363 */
1364 futex_down(&async_futex);
1365 fibril_switch(FIBRIL_FROM_DEAD);
1366 }
1367
1368 return;
1369 }
1370
1371 /* New connection */
1372 if (IPC_GET_IMETHOD(*call) == IPC_M_CONNECT_ME_TO) {
1373 iface_t iface = (iface_t) IPC_GET_ARG1(*call);
1374 sysarg_t in_phone_hash = IPC_GET_ARG5(*call);
1375
1376 async_port_handler_t handler = fallback_port_handler;
1377 void *data = fallback_port_data;
1378
1379 // TODO: Currently ignores all ports but the first one
1380 port_t *port = async_find_port(iface, 0);
1381 if (port) {
1382 handler = port->handler;
1383 data = port->data;
1384 }
1385
1386 async_new_connection(call->in_task_id, in_phone_hash, chandle,
1387 call, handler, data);
1388 return;
1389 }
1390
1391 /* Try to route the call through the connection hash table */
1392 if (route_call(chandle, call))
1393 return;
1394
1395 /* Unknown call from unknown phone - hang it up */
1396 ipc_answer_0(chandle, EHANGUP);
1397}
1398
1399/** Fire all timeouts that expired. */
1400static void handle_expired_timeouts(void)
1401{
1402 struct timeval tv;
1403 getuptime(&tv);
1404
1405 futex_down(&async_futex);
1406
1407 link_t *cur = list_first(&timeout_list);
1408 while (cur != NULL) {
1409 awaiter_t *waiter =
1410 list_get_instance(cur, awaiter_t, to_event.link);
1411
1412 if (tv_gt(&waiter->to_event.expires, &tv))
1413 break;
1414
1415 list_remove(&waiter->to_event.link);
1416 waiter->to_event.inlist = false;
1417 waiter->to_event.occurred = true;
1418
1419 /*
1420 * Redundant condition?
1421 * The fibril should not be active when it gets here.
1422 */
1423 if (!waiter->active) {
1424 waiter->active = true;
1425 fibril_add_ready(waiter->fid);
1426 }
1427
1428 cur = list_first(&timeout_list);
1429 }
1430
1431 futex_up(&async_futex);
1432}
1433
1434/** Endless loop dispatching incoming calls and answers.
1435 *
1436 * @return Never returns.
1437 *
1438 */
1439static int async_manager_worker(void)
1440{
1441 while (true) {
1442 if (fibril_switch(FIBRIL_FROM_MANAGER)) {
1443 futex_up(&async_futex);
1444 /*
1445 * async_futex is always held when entering a manager
1446 * fibril.
1447 */
1448 continue;
1449 }
1450
1451 futex_down(&async_futex);
1452
1453 suseconds_t timeout;
1454 unsigned int flags = SYNCH_FLAGS_NONE;
1455 if (!list_empty(&timeout_list)) {
1456 awaiter_t *waiter = list_get_instance(
1457 list_first(&timeout_list), awaiter_t, to_event.link);
1458
1459 struct timeval tv;
1460 getuptime(&tv);
1461
1462 if (tv_gteq(&tv, &waiter->to_event.expires)) {
1463 futex_up(&async_futex);
1464 handle_expired_timeouts();
1465 /*
1466 * Notice that even if the event(s) already
1467 * expired (and thus the other fibril was
1468 * supposed to be running already),
1469 * we check for incoming IPC.
1470 *
1471 * Otherwise, a fibril that continuously
1472 * creates (almost) expired events could
1473 * prevent IPC retrieval from the kernel.
1474 */
1475 timeout = 0;
1476 flags = SYNCH_FLAGS_NON_BLOCKING;
1477
1478 } else {
1479 timeout = tv_sub_diff(&waiter->to_event.expires,
1480 &tv);
1481 futex_up(&async_futex);
1482 }
1483 } else {
1484 futex_up(&async_futex);
1485 timeout = SYNCH_NO_TIMEOUT;
1486 }
1487
1488 atomic_inc(&threads_in_ipc_wait);
1489
1490 ipc_call_t call;
1491 int rc = ipc_wait_cycle(&call, timeout, flags);
1492
1493 atomic_dec(&threads_in_ipc_wait);
1494
1495 assert(rc == EOK);
1496
1497 if (call.cap_handle == CAP_NIL) {
1498 if (call.flags == 0) {
1499 /* This neither a notification nor an answer. */
1500 handle_expired_timeouts();
1501 continue;
1502 }
1503 }
1504
1505 if (call.flags & IPC_CALL_ANSWERED)
1506 continue;
1507
1508 handle_call(call.cap_handle, &call);
1509 }
1510
1511 return 0;
1512}
1513
1514/** Function to start async_manager as a standalone fibril.
1515 *
1516 * When more kernel threads are used, one async manager should exist per thread.
1517 *
1518 * @param arg Unused.
1519 * @return Never returns.
1520 *
1521 */
1522static int async_manager_fibril(void *arg)
1523{
1524 futex_up(&async_futex);
1525
1526 /*
1527 * async_futex is always locked when entering manager
1528 */
1529 async_manager_worker();
1530
1531 return 0;
1532}
1533
1534/** Add one manager to manager list. */
1535void async_create_manager(void)
1536{
1537 fid_t fid = fibril_create_generic(async_manager_fibril, NULL, PAGE_SIZE);
1538 if (fid != 0)
1539 fibril_add_manager(fid);
1540}
1541
1542/** Remove one manager from manager list */
1543void async_destroy_manager(void)
1544{
1545 fibril_remove_manager();
1546}
1547
1548/** Initialize the async framework.
1549 *
1550 */
1551void __async_init(void)
1552{
1553 if (!hash_table_create(&interface_hash_table, 0, 0,
1554 &interface_hash_table_ops))
1555 abort();
1556
1557 if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops))
1558 abort();
1559
1560 if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops))
1561 abort();
1562
1563 if (!hash_table_create(&notification_hash_table, 0, 0,
1564 &notification_hash_table_ops))
1565 abort();
1566
1567 session_ns = (async_sess_t *) malloc(sizeof(async_sess_t));
1568 if (session_ns == NULL)
1569 abort();
1570
1571 session_ns->iface = 0;
1572 session_ns->mgmt = EXCHANGE_ATOMIC;
1573 session_ns->phone = PHONE_NS;
1574 session_ns->arg1 = 0;
1575 session_ns->arg2 = 0;
1576 session_ns->arg3 = 0;
1577
1578 fibril_mutex_initialize(&session_ns->remote_state_mtx);
1579 session_ns->remote_state_data = NULL;
1580
1581 list_initialize(&session_ns->exch_list);
1582 fibril_mutex_initialize(&session_ns->mutex);
1583 atomic_set(&session_ns->refcnt, 0);
1584}
1585
1586/** Reply received callback.
1587 *
1588 * This function is called whenever a reply for an asynchronous message sent out
1589 * by the asynchronous framework is received.
1590 *
1591 * Notify the fibril which is waiting for this message that it has arrived.
1592 *
1593 * @param arg Pointer to the asynchronous message record.
1594 * @param retval Value returned in the answer.
1595 * @param data Call data of the answer.
1596 *
1597 */
1598void reply_received(void *arg, int retval, ipc_call_t *data)
1599{
1600 assert(arg);
1601
1602 futex_down(&async_futex);
1603
1604 amsg_t *msg = (amsg_t *) arg;
1605 msg->retval = retval;
1606
1607 /* Copy data after futex_down, just in case the call was detached */
1608 if ((msg->dataptr) && (data))
1609 *msg->dataptr = *data;
1610
1611 write_barrier();
1612
1613 /* Remove message from timeout list */
1614 if (msg->wdata.to_event.inlist)
1615 list_remove(&msg->wdata.to_event.link);
1616
1617 msg->done = true;
1618
1619 if (msg->forget) {
1620 assert(msg->wdata.active);
1621 amsg_destroy(msg);
1622 } else if (!msg->wdata.active) {
1623 msg->wdata.active = true;
1624 fibril_add_ready(msg->wdata.fid);
1625 }
1626
1627 futex_up(&async_futex);
1628}
1629
1630/** Send message and return id of the sent message.
1631 *
1632 * The return value can be used as input for async_wait() to wait for
1633 * completion.
1634 *
1635 * @param exch Exchange for sending the message.
1636 * @param imethod Service-defined interface and method.
1637 * @param arg1 Service-defined payload argument.
1638 * @param arg2 Service-defined payload argument.
1639 * @param arg3 Service-defined payload argument.
1640 * @param arg4 Service-defined payload argument.
1641 * @param dataptr If non-NULL, storage where the reply data will be stored.
1642 *
1643 * @return Hash of the sent message or 0 on error.
1644 *
1645 */
1646aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1647 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr)
1648{
1649 if (exch == NULL)
1650 return 0;
1651
1652 amsg_t *msg = amsg_create();
1653 if (msg == NULL)
1654 return 0;
1655
1656 msg->dataptr = dataptr;
1657 msg->wdata.active = true;
1658
1659 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg,
1660 reply_received);
1661
1662 return (aid_t) msg;
1663}
1664
1665/** Send message and return id of the sent message
1666 *
1667 * The return value can be used as input for async_wait() to wait for
1668 * completion.
1669 *
1670 * @param exch Exchange for sending the message.
1671 * @param imethod Service-defined interface and method.
1672 * @param arg1 Service-defined payload argument.
1673 * @param arg2 Service-defined payload argument.
1674 * @param arg3 Service-defined payload argument.
1675 * @param arg4 Service-defined payload argument.
1676 * @param arg5 Service-defined payload argument.
1677 * @param dataptr If non-NULL, storage where the reply data will be
1678 * stored.
1679 *
1680 * @return Hash of the sent message or 0 on error.
1681 *
1682 */
1683aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1684 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5,
1685 ipc_call_t *dataptr)
1686{
1687 if (exch == NULL)
1688 return 0;
1689
1690 amsg_t *msg = amsg_create();
1691 if (msg == NULL)
1692 return 0;
1693
1694 msg->dataptr = dataptr;
1695 msg->wdata.active = true;
1696
1697 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5,
1698 msg, reply_received);
1699
1700 return (aid_t) msg;
1701}
1702
1703/** Wait for a message sent by the async framework.
1704 *
1705 * @param amsgid Hash of the message to wait for.
1706 * @param retval Pointer to storage where the retval of the answer will
1707 * be stored.
1708 *
1709 */
1710void async_wait_for(aid_t amsgid, sysarg_t *retval)
1711{
1712 assert(amsgid);
1713
1714 amsg_t *msg = (amsg_t *) amsgid;
1715
1716 futex_down(&async_futex);
1717
1718 assert(!msg->forget);
1719 assert(!msg->destroyed);
1720
1721 if (msg->done) {
1722 futex_up(&async_futex);
1723 goto done;
1724 }
1725
1726 msg->wdata.fid = fibril_get_id();
1727 msg->wdata.active = false;
1728 msg->wdata.to_event.inlist = false;
1729
1730 /* Leave the async_futex locked when entering this function */
1731 fibril_switch(FIBRIL_TO_MANAGER);
1732
1733 /* Futex is up automatically after fibril_switch */
1734
1735done:
1736 if (retval)
1737 *retval = msg->retval;
1738
1739 amsg_destroy(msg);
1740}
1741
1742/** Wait for a message sent by the async framework, timeout variant.
1743 *
1744 * If the wait times out, the caller may choose to either wait again by calling
1745 * async_wait_for() or async_wait_timeout(), or forget the message via
1746 * async_forget().
1747 *
1748 * @param amsgid Hash of the message to wait for.
1749 * @param retval Pointer to storage where the retval of the answer will
1750 * be stored.
1751 * @param timeout Timeout in microseconds.
1752 *
1753 * @return Zero on success, ETIMEOUT if the timeout has expired.
1754 *
1755 */
1756int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout)
1757{
1758 assert(amsgid);
1759
1760 amsg_t *msg = (amsg_t *) amsgid;
1761
1762 futex_down(&async_futex);
1763
1764 assert(!msg->forget);
1765 assert(!msg->destroyed);
1766
1767 if (msg->done) {
1768 futex_up(&async_futex);
1769 goto done;
1770 }
1771
1772 /*
1773 * Negative timeout is converted to zero timeout to avoid
1774 * using tv_add with negative augmenter.
1775 */
1776 if (timeout < 0)
1777 timeout = 0;
1778
1779 getuptime(&msg->wdata.to_event.expires);
1780 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1781
1782 /*
1783 * Current fibril is inserted as waiting regardless of the
1784 * "size" of the timeout.
1785 *
1786 * Checking for msg->done and immediately bailing out when
1787 * timeout == 0 would mean that the manager fibril would never
1788 * run (consider single threaded program).
1789 * Thus the IPC answer would be never retrieved from the kernel.
1790 *
1791 * Notice that the actual delay would be very small because we
1792 * - switch to manager fibril
1793 * - the manager sees expired timeout
1794 * - and thus adds us back to ready queue
1795 * - manager switches back to some ready fibril
1796 * (prior it, it checks for incoming IPC).
1797 *
1798 */
1799 msg->wdata.fid = fibril_get_id();
1800 msg->wdata.active = false;
1801 async_insert_timeout(&msg->wdata);
1802
1803 /* Leave the async_futex locked when entering this function */
1804 fibril_switch(FIBRIL_TO_MANAGER);
1805
1806 /* Futex is up automatically after fibril_switch */
1807
1808 if (!msg->done)
1809 return ETIMEOUT;
1810
1811done:
1812 if (retval)
1813 *retval = msg->retval;
1814
1815 amsg_destroy(msg);
1816
1817 return 0;
1818}
1819
1820/** Discard the message / reply on arrival.
1821 *
1822 * The message will be marked to be discarded once the reply arrives in
1823 * reply_received(). It is not allowed to call async_wait_for() or
1824 * async_wait_timeout() on this message after a call to this function.
1825 *
1826 * @param amsgid Hash of the message to forget.
1827 */
1828void async_forget(aid_t amsgid)
1829{
1830 amsg_t *msg = (amsg_t *) amsgid;
1831
1832 assert(msg);
1833 assert(!msg->forget);
1834 assert(!msg->destroyed);
1835
1836 futex_down(&async_futex);
1837
1838 if (msg->done) {
1839 amsg_destroy(msg);
1840 } else {
1841 msg->dataptr = NULL;
1842 msg->forget = true;
1843 }
1844
1845 futex_up(&async_futex);
1846}
1847
1848/** Wait for specified time.
1849 *
1850 * The current fibril is suspended but the thread continues to execute.
1851 *
1852 * @param timeout Duration of the wait in microseconds.
1853 *
1854 */
1855void async_usleep(suseconds_t timeout)
1856{
1857 amsg_t *msg = amsg_create();
1858 if (!msg)
1859 return;
1860
1861 msg->wdata.fid = fibril_get_id();
1862
1863 getuptime(&msg->wdata.to_event.expires);
1864 tv_add_diff(&msg->wdata.to_event.expires, timeout);
1865
1866 futex_down(&async_futex);
1867
1868 async_insert_timeout(&msg->wdata);
1869
1870 /* Leave the async_futex locked when entering this function */
1871 fibril_switch(FIBRIL_TO_MANAGER);
1872
1873 /* Futex is up automatically after fibril_switch() */
1874
1875 amsg_destroy(msg);
1876}
1877
1878/** Delay execution for the specified number of seconds
1879 *
1880 * @param sec Number of seconds to sleep
1881 */
1882void async_sleep(unsigned int sec)
1883{
1884 /*
1885 * Sleep in 1000 second steps to support
1886 * full argument range
1887 */
1888
1889 while (sec > 0) {
1890 unsigned int period = (sec > 1000) ? 1000 : sec;
1891
1892 async_usleep(period * 1000000);
1893 sec -= period;
1894 }
1895}
1896
1897/** Pseudo-synchronous message sending - fast version.
1898 *
1899 * Send message asynchronously and return only after the reply arrives.
1900 *
1901 * This function can only transfer 4 register payload arguments. For
1902 * transferring more arguments, see the slower async_req_slow().
1903 *
1904 * @param exch Exchange for sending the message.
1905 * @param imethod Interface and method of the call.
1906 * @param arg1 Service-defined payload argument.
1907 * @param arg2 Service-defined payload argument.
1908 * @param arg3 Service-defined payload argument.
1909 * @param arg4 Service-defined payload argument.
1910 * @param r1 If non-NULL, storage for the 1st reply argument.
1911 * @param r2 If non-NULL, storage for the 2nd reply argument.
1912 * @param r3 If non-NULL, storage for the 3rd reply argument.
1913 * @param r4 If non-NULL, storage for the 4th reply argument.
1914 * @param r5 If non-NULL, storage for the 5th reply argument.
1915 *
1916 * @return Return code of the reply or a negative error code.
1917 *
1918 */
1919sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1920 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2,
1921 sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1922{
1923 if (exch == NULL)
1924 return ENOENT;
1925
1926 ipc_call_t result;
1927 aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4,
1928 &result);
1929
1930 sysarg_t rc;
1931 async_wait_for(aid, &rc);
1932
1933 if (r1)
1934 *r1 = IPC_GET_ARG1(result);
1935
1936 if (r2)
1937 *r2 = IPC_GET_ARG2(result);
1938
1939 if (r3)
1940 *r3 = IPC_GET_ARG3(result);
1941
1942 if (r4)
1943 *r4 = IPC_GET_ARG4(result);
1944
1945 if (r5)
1946 *r5 = IPC_GET_ARG5(result);
1947
1948 return rc;
1949}
1950
1951/** Pseudo-synchronous message sending - slow version.
1952 *
1953 * Send message asynchronously and return only after the reply arrives.
1954 *
1955 * @param exch Exchange for sending the message.
1956 * @param imethod Interface and method of the call.
1957 * @param arg1 Service-defined payload argument.
1958 * @param arg2 Service-defined payload argument.
1959 * @param arg3 Service-defined payload argument.
1960 * @param arg4 Service-defined payload argument.
1961 * @param arg5 Service-defined payload argument.
1962 * @param r1 If non-NULL, storage for the 1st reply argument.
1963 * @param r2 If non-NULL, storage for the 2nd reply argument.
1964 * @param r3 If non-NULL, storage for the 3rd reply argument.
1965 * @param r4 If non-NULL, storage for the 4th reply argument.
1966 * @param r5 If non-NULL, storage for the 5th reply argument.
1967 *
1968 * @return Return code of the reply or a negative error code.
1969 *
1970 */
1971sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
1972 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1,
1973 sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5)
1974{
1975 if (exch == NULL)
1976 return ENOENT;
1977
1978 ipc_call_t result;
1979 aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5,
1980 &result);
1981
1982 sysarg_t rc;
1983 async_wait_for(aid, &rc);
1984
1985 if (r1)
1986 *r1 = IPC_GET_ARG1(result);
1987
1988 if (r2)
1989 *r2 = IPC_GET_ARG2(result);
1990
1991 if (r3)
1992 *r3 = IPC_GET_ARG3(result);
1993
1994 if (r4)
1995 *r4 = IPC_GET_ARG4(result);
1996
1997 if (r5)
1998 *r5 = IPC_GET_ARG5(result);
1999
2000 return rc;
2001}
2002
2003void async_msg_0(async_exch_t *exch, sysarg_t imethod)
2004{
2005 if (exch != NULL)
2006 ipc_call_async_0(exch->phone, imethod, NULL, NULL);
2007}
2008
2009void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1)
2010{
2011 if (exch != NULL)
2012 ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL);
2013}
2014
2015void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2016 sysarg_t arg2)
2017{
2018 if (exch != NULL)
2019 ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL);
2020}
2021
2022void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2023 sysarg_t arg2, sysarg_t arg3)
2024{
2025 if (exch != NULL)
2026 ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL,
2027 NULL);
2028}
2029
2030void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2031 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2032{
2033 if (exch != NULL)
2034 ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4,
2035 NULL, NULL);
2036}
2037
2038void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1,
2039 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2040{
2041 if (exch != NULL)
2042 ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4,
2043 arg5, NULL, NULL);
2044}
2045
2046sysarg_t async_answer_0(cap_handle_t chandle, sysarg_t retval)
2047{
2048 return ipc_answer_0(chandle, retval);
2049}
2050
2051sysarg_t async_answer_1(cap_handle_t chandle, sysarg_t retval, sysarg_t arg1)
2052{
2053 return ipc_answer_1(chandle, retval, arg1);
2054}
2055
2056sysarg_t async_answer_2(cap_handle_t chandle, sysarg_t retval, sysarg_t arg1,
2057 sysarg_t arg2)
2058{
2059 return ipc_answer_2(chandle, retval, arg1, arg2);
2060}
2061
2062sysarg_t async_answer_3(cap_handle_t chandle, sysarg_t retval, sysarg_t arg1,
2063 sysarg_t arg2, sysarg_t arg3)
2064{
2065 return ipc_answer_3(chandle, retval, arg1, arg2, arg3);
2066}
2067
2068sysarg_t async_answer_4(cap_handle_t chandle, sysarg_t retval, sysarg_t arg1,
2069 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4)
2070{
2071 return ipc_answer_4(chandle, retval, arg1, arg2, arg3, arg4);
2072}
2073
2074sysarg_t async_answer_5(cap_handle_t chandle, sysarg_t retval, sysarg_t arg1,
2075 sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5)
2076{
2077 return ipc_answer_5(chandle, retval, arg1, arg2, arg3, arg4, arg5);
2078}
2079
2080int async_forward_fast(cap_handle_t chandle, async_exch_t *exch,
2081 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode)
2082{
2083 if (exch == NULL)
2084 return ENOENT;
2085
2086 return ipc_forward_fast(chandle, exch->phone, imethod, arg1, arg2, mode);
2087}
2088
2089int async_forward_slow(cap_handle_t chandle, async_exch_t *exch,
2090 sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3,
2091 sysarg_t arg4, sysarg_t arg5, unsigned int mode)
2092{
2093 if (exch == NULL)
2094 return ENOENT;
2095
2096 return ipc_forward_slow(chandle, exch->phone, imethod, arg1, arg2, arg3,
2097 arg4, arg5, mode);
2098}
2099
2100/** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework.
2101 *
2102 * Ask through phone for a new connection to some service.
2103 *
2104 * @param exch Exchange for sending the message.
2105 * @param arg1 User defined argument.
2106 * @param arg2 User defined argument.
2107 * @param arg3 User defined argument.
2108 *
2109 * @return Zero on success or a negative error code.
2110 *
2111 */
2112int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
2113 sysarg_t arg3)
2114{
2115 if (exch == NULL)
2116 return ENOENT;
2117
2118 ipc_call_t answer;
2119 aid_t req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3,
2120 &answer);
2121
2122 sysarg_t rc;
2123 async_wait_for(req, &rc);
2124 if (rc != EOK)
2125 return (int) rc;
2126
2127 return EOK;
2128}
2129
2130static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2,
2131 sysarg_t arg3, sysarg_t arg4, int *out_phone)
2132{
2133 ipc_call_t result;
2134
2135 // XXX: Workaround for GCC's inability to infer association between
2136 // rc == EOK and *out_phone being assigned.
2137 *out_phone = -1;
2138
2139 amsg_t *msg = amsg_create();
2140 if (!msg)
2141 return ENOENT;
2142
2143 msg->dataptr = &result;
2144 msg->wdata.active = true;
2145
2146 ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4,
2147 msg, reply_received);
2148
2149 sysarg_t rc;
2150 async_wait_for((aid_t) msg, &rc);
2151
2152 if (rc != EOK)
2153 return rc;
2154
2155 *out_phone = (int) IPC_GET_ARG5(result);
2156 return EOK;
2157}
2158
2159/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2160 *
2161 * Ask through for a new connection to some service.
2162 *
2163 * @param mgmt Exchange management style.
2164 * @param exch Exchange for sending the message.
2165 * @param arg1 User defined argument.
2166 * @param arg2 User defined argument.
2167 * @param arg3 User defined argument.
2168 *
2169 * @return New session on success or NULL on error.
2170 *
2171 */
2172async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch,
2173 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2174{
2175 if (exch == NULL) {
2176 errno = ENOENT;
2177 return NULL;
2178 }
2179
2180 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2181 if (sess == NULL) {
2182 errno = ENOMEM;
2183 return NULL;
2184 }
2185
2186 int phone;
2187 int rc = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2188 0, &phone);
2189 if (rc != EOK) {
2190 errno = rc;
2191 free(sess);
2192 return NULL;
2193 }
2194
2195 sess->iface = 0;
2196 sess->mgmt = mgmt;
2197 sess->phone = phone;
2198 sess->arg1 = arg1;
2199 sess->arg2 = arg2;
2200 sess->arg3 = arg3;
2201
2202 fibril_mutex_initialize(&sess->remote_state_mtx);
2203 sess->remote_state_data = NULL;
2204
2205 list_initialize(&sess->exch_list);
2206 fibril_mutex_initialize(&sess->mutex);
2207 atomic_set(&sess->refcnt, 0);
2208
2209 return sess;
2210}
2211
2212/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2213 *
2214 * Ask through phone for a new connection to some service and block until
2215 * success.
2216 *
2217 * @param exch Exchange for sending the message.
2218 * @param iface Connection interface.
2219 * @param arg2 User defined argument.
2220 * @param arg3 User defined argument.
2221 *
2222 * @return New session on success or NULL on error.
2223 *
2224 */
2225async_sess_t *async_connect_me_to_iface(async_exch_t *exch, iface_t iface,
2226 sysarg_t arg2, sysarg_t arg3)
2227{
2228 if (exch == NULL) {
2229 errno = ENOENT;
2230 return NULL;
2231 }
2232
2233 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2234 if (sess == NULL) {
2235 errno = ENOMEM;
2236 return NULL;
2237 }
2238
2239 int phone;
2240 int rc = async_connect_me_to_internal(exch->phone, iface, arg2,
2241 arg3, 0, &phone);
2242 if (rc != EOK) {
2243 errno = rc;
2244 free(sess);
2245 return NULL;
2246 }
2247
2248 sess->iface = iface;
2249 sess->phone = phone;
2250 sess->arg1 = iface;
2251 sess->arg2 = arg2;
2252 sess->arg3 = arg3;
2253
2254 fibril_mutex_initialize(&sess->remote_state_mtx);
2255 sess->remote_state_data = NULL;
2256
2257 list_initialize(&sess->exch_list);
2258 fibril_mutex_initialize(&sess->mutex);
2259 atomic_set(&sess->refcnt, 0);
2260
2261 return sess;
2262}
2263
2264/** Set arguments for new connections.
2265 *
2266 * FIXME This is an ugly hack to work around the problem that parallel
2267 * exchanges are implemented using parallel connections. When we create
2268 * a callback session, the framework does not know arguments for the new
2269 * connections.
2270 *
2271 * The proper solution seems to be to implement parallel exchanges using
2272 * tagging.
2273 */
2274void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2,
2275 sysarg_t arg3)
2276{
2277 sess->arg1 = arg1;
2278 sess->arg2 = arg2;
2279 sess->arg3 = arg3;
2280}
2281
2282/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2283 *
2284 * Ask through phone for a new connection to some service and block until
2285 * success.
2286 *
2287 * @param mgmt Exchange management style.
2288 * @param exch Exchange for sending the message.
2289 * @param arg1 User defined argument.
2290 * @param arg2 User defined argument.
2291 * @param arg3 User defined argument.
2292 *
2293 * @return New session on success or NULL on error.
2294 *
2295 */
2296async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch,
2297 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3)
2298{
2299 if (exch == NULL) {
2300 errno = ENOENT;
2301 return NULL;
2302 }
2303
2304 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2305 if (sess == NULL) {
2306 errno = ENOMEM;
2307 return NULL;
2308 }
2309
2310 int phone;
2311 int rc = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3,
2312 IPC_FLAG_BLOCKING, &phone);
2313
2314 if (rc != EOK) {
2315 errno = rc;
2316 free(sess);
2317 return NULL;
2318 }
2319
2320 sess->iface = 0;
2321 sess->mgmt = mgmt;
2322 sess->phone = phone;
2323 sess->arg1 = arg1;
2324 sess->arg2 = arg2;
2325 sess->arg3 = arg3;
2326
2327 fibril_mutex_initialize(&sess->remote_state_mtx);
2328 sess->remote_state_data = NULL;
2329
2330 list_initialize(&sess->exch_list);
2331 fibril_mutex_initialize(&sess->mutex);
2332 atomic_set(&sess->refcnt, 0);
2333
2334 return sess;
2335}
2336
2337/** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework.
2338 *
2339 * Ask through phone for a new connection to some service and block until
2340 * success.
2341 *
2342 * @param exch Exchange for sending the message.
2343 * @param iface Connection interface.
2344 * @param arg2 User defined argument.
2345 * @param arg3 User defined argument.
2346 *
2347 * @return New session on success or NULL on error.
2348 *
2349 */
2350async_sess_t *async_connect_me_to_blocking_iface(async_exch_t *exch, iface_t iface,
2351 sysarg_t arg2, sysarg_t arg3)
2352{
2353 if (exch == NULL) {
2354 errno = ENOENT;
2355 return NULL;
2356 }
2357
2358 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2359 if (sess == NULL) {
2360 errno = ENOMEM;
2361 return NULL;
2362 }
2363
2364 int phone;
2365 int rc = async_connect_me_to_internal(exch->phone, iface, arg2,
2366 arg3, IPC_FLAG_BLOCKING, &phone);
2367 if (rc != EOK) {
2368 errno = rc;
2369 free(sess);
2370 return NULL;
2371 }
2372
2373 sess->iface = iface;
2374 sess->phone = phone;
2375 sess->arg1 = iface;
2376 sess->arg2 = arg2;
2377 sess->arg3 = arg3;
2378
2379 fibril_mutex_initialize(&sess->remote_state_mtx);
2380 sess->remote_state_data = NULL;
2381
2382 list_initialize(&sess->exch_list);
2383 fibril_mutex_initialize(&sess->mutex);
2384 atomic_set(&sess->refcnt, 0);
2385
2386 return sess;
2387}
2388
2389/** Connect to a task specified by id.
2390 *
2391 */
2392async_sess_t *async_connect_kbox(task_id_t id)
2393{
2394 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
2395 if (sess == NULL) {
2396 errno = ENOMEM;
2397 return NULL;
2398 }
2399
2400 int phone = ipc_connect_kbox(id);
2401 if (phone < 0) {
2402 errno = phone;
2403 free(sess);
2404 return NULL;
2405 }
2406
2407 sess->iface = 0;
2408 sess->mgmt = EXCHANGE_ATOMIC;
2409 sess->phone = phone;
2410 sess->arg1 = 0;
2411 sess->arg2 = 0;
2412 sess->arg3 = 0;
2413
2414 fibril_mutex_initialize(&sess->remote_state_mtx);
2415 sess->remote_state_data = NULL;
2416
2417 list_initialize(&sess->exch_list);
2418 fibril_mutex_initialize(&sess->mutex);
2419 atomic_set(&sess->refcnt, 0);
2420
2421 return sess;
2422}
2423
2424static int async_hangup_internal(int phone)
2425{
2426 return ipc_hangup(phone);
2427}
2428
2429/** Wrapper for ipc_hangup.
2430 *
2431 * @param sess Session to hung up.
2432 *
2433 * @return Zero on success or a negative error code.
2434 *
2435 */
2436int async_hangup(async_sess_t *sess)
2437{
2438 async_exch_t *exch;
2439
2440 assert(sess);
2441
2442 if (atomic_get(&sess->refcnt) > 0)
2443 return EBUSY;
2444
2445 fibril_mutex_lock(&async_sess_mutex);
2446
2447 int rc = async_hangup_internal(sess->phone);
2448
2449 while (!list_empty(&sess->exch_list)) {
2450 exch = (async_exch_t *)
2451 list_get_instance(list_first(&sess->exch_list),
2452 async_exch_t, sess_link);
2453
2454 list_remove(&exch->sess_link);
2455 list_remove(&exch->global_link);
2456 async_hangup_internal(exch->phone);
2457 free(exch);
2458 }
2459
2460 free(sess);
2461
2462 fibril_mutex_unlock(&async_sess_mutex);
2463
2464 return rc;
2465}
2466
2467/** Interrupt one thread of this task from waiting for IPC. */
2468void async_poke(void)
2469{
2470 ipc_poke();
2471}
2472
2473/** Start new exchange in a session.
2474 *
2475 * @param session Session.
2476 *
2477 * @return New exchange or NULL on error.
2478 *
2479 */
2480async_exch_t *async_exchange_begin(async_sess_t *sess)
2481{
2482 if (sess == NULL)
2483 return NULL;
2484
2485 exch_mgmt_t mgmt = sess->mgmt;
2486 if (sess->iface != 0)
2487 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2488
2489 async_exch_t *exch = NULL;
2490
2491 fibril_mutex_lock(&async_sess_mutex);
2492
2493 if (!list_empty(&sess->exch_list)) {
2494 /*
2495 * There are inactive exchanges in the session.
2496 */
2497 exch = (async_exch_t *)
2498 list_get_instance(list_first(&sess->exch_list),
2499 async_exch_t, sess_link);
2500
2501 list_remove(&exch->sess_link);
2502 list_remove(&exch->global_link);
2503 } else {
2504 /*
2505 * There are no available exchanges in the session.
2506 */
2507
2508 if ((mgmt == EXCHANGE_ATOMIC) ||
2509 (mgmt == EXCHANGE_SERIALIZE)) {
2510 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2511 if (exch != NULL) {
2512 link_initialize(&exch->sess_link);
2513 link_initialize(&exch->global_link);
2514 exch->sess = sess;
2515 exch->phone = sess->phone;
2516 }
2517 } else if (mgmt == EXCHANGE_PARALLEL) {
2518 int phone;
2519 int rc;
2520
2521 retry:
2522 /*
2523 * Make a one-time attempt to connect a new data phone.
2524 */
2525 rc = async_connect_me_to_internal(sess->phone, sess->arg1,
2526 sess->arg2, sess->arg3, 0, &phone);
2527 if (rc == EOK) {
2528 exch = (async_exch_t *) malloc(sizeof(async_exch_t));
2529 if (exch != NULL) {
2530 link_initialize(&exch->sess_link);
2531 link_initialize(&exch->global_link);
2532 exch->sess = sess;
2533 exch->phone = phone;
2534 } else
2535 async_hangup_internal(phone);
2536 } else if (!list_empty(&inactive_exch_list)) {
2537 /*
2538 * We did not manage to connect a new phone. But we
2539 * can try to close some of the currently inactive
2540 * connections in other sessions and try again.
2541 */
2542 exch = (async_exch_t *)
2543 list_get_instance(list_first(&inactive_exch_list),
2544 async_exch_t, global_link);
2545
2546 list_remove(&exch->sess_link);
2547 list_remove(&exch->global_link);
2548 async_hangup_internal(exch->phone);
2549 free(exch);
2550 goto retry;
2551 } else {
2552 /*
2553 * Wait for a phone to become available.
2554 */
2555 fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex);
2556 goto retry;
2557 }
2558 }
2559 }
2560
2561 fibril_mutex_unlock(&async_sess_mutex);
2562
2563 if (exch != NULL) {
2564 atomic_inc(&sess->refcnt);
2565
2566 if (mgmt == EXCHANGE_SERIALIZE)
2567 fibril_mutex_lock(&sess->mutex);
2568 }
2569
2570 return exch;
2571}
2572
2573/** Finish an exchange.
2574 *
2575 * @param exch Exchange to finish.
2576 *
2577 */
2578void async_exchange_end(async_exch_t *exch)
2579{
2580 if (exch == NULL)
2581 return;
2582
2583 async_sess_t *sess = exch->sess;
2584 assert(sess != NULL);
2585
2586 exch_mgmt_t mgmt = sess->mgmt;
2587 if (sess->iface != 0)
2588 mgmt = sess->iface & IFACE_EXCHANGE_MASK;
2589
2590 atomic_dec(&sess->refcnt);
2591
2592 if (mgmt == EXCHANGE_SERIALIZE)
2593 fibril_mutex_unlock(&sess->mutex);
2594
2595 fibril_mutex_lock(&async_sess_mutex);
2596
2597 list_append(&exch->sess_link, &sess->exch_list);
2598 list_append(&exch->global_link, &inactive_exch_list);
2599 fibril_condvar_signal(&avail_phone_cv);
2600
2601 fibril_mutex_unlock(&async_sess_mutex);
2602}
2603
2604/** Wrapper for IPC_M_SHARE_IN calls using the async framework.
2605 *
2606 * @param exch Exchange for sending the message.
2607 * @param size Size of the destination address space area.
2608 * @param arg User defined argument.
2609 * @param flags Storage for the received flags. Can be NULL.
2610 * @param dst Address of the storage for the destination address space area
2611 * base address. Cannot be NULL.
2612 *
2613 * @return Zero on success or a negative error code from errno.h.
2614 *
2615 */
2616int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg,
2617 unsigned int *flags, void **dst)
2618{
2619 if (exch == NULL)
2620 return ENOENT;
2621
2622 sysarg_t _flags = 0;
2623 sysarg_t _dst = (sysarg_t) -1;
2624 int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size,
2625 arg, NULL, &_flags, NULL, &_dst);
2626
2627 if (flags)
2628 *flags = (unsigned int) _flags;
2629
2630 *dst = (void *) _dst;
2631 return res;
2632}
2633
2634/** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework.
2635 *
2636 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN
2637 * calls so that the user doesn't have to remember the meaning of each IPC
2638 * argument.
2639 *
2640 * So far, this wrapper is to be used from within a connection fibril.
2641 *
2642 * @param chandle Storage for the handle of the IPC_M_SHARE_IN call.
2643 * @param size Destination address space area size.
2644 *
2645 * @return True on success, false on failure.
2646 *
2647 */
2648bool async_share_in_receive(cap_handle_t *chandle, size_t *size)
2649{
2650 assert(chandle);
2651 assert(size);
2652
2653 ipc_call_t data;
2654 *chandle = async_get_call(&data);
2655
2656 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN)
2657 return false;
2658
2659 *size = (size_t) IPC_GET_ARG1(data);
2660 return true;
2661}
2662
2663/** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework.
2664 *
2665 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN
2666 * calls so that the user doesn't have to remember the meaning of each IPC
2667 * argument.
2668 *
2669 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
2670 * @param src Source address space base.
2671 * @param flags Flags to be used for sharing. Bits can be only cleared.
2672 *
2673 * @return Zero on success or a value from @ref errno.h on failure.
2674 *
2675 */
2676int async_share_in_finalize(cap_handle_t chandle, void *src, unsigned int flags)
2677{
2678 return ipc_answer_3(chandle, EOK, (sysarg_t) src, (sysarg_t) flags,
2679 (sysarg_t) __entry);
2680}
2681
2682/** Wrapper for IPC_M_SHARE_OUT calls using the async framework.
2683 *
2684 * @param exch Exchange for sending the message.
2685 * @param src Source address space area base address.
2686 * @param flags Flags to be used for sharing. Bits can be only cleared.
2687 *
2688 * @return Zero on success or a negative error code from errno.h.
2689 *
2690 */
2691int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags)
2692{
2693 if (exch == NULL)
2694 return ENOENT;
2695
2696 return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0,
2697 (sysarg_t) flags);
2698}
2699
2700/** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework.
2701 *
2702 * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT
2703 * calls so that the user doesn't have to remember the meaning of each IPC
2704 * argument.
2705 *
2706 * So far, this wrapper is to be used from within a connection fibril.
2707 *
2708 * @param chandle Storage for the hash of the IPC_M_SHARE_OUT call.
2709 * @param size Storage for the source address space area size.
2710 * @param flags Storage for the sharing flags.
2711 *
2712 * @return True on success, false on failure.
2713 *
2714 */
2715bool async_share_out_receive(cap_handle_t *chandle, size_t *size,
2716 unsigned int *flags)
2717{
2718 assert(chandle);
2719 assert(size);
2720 assert(flags);
2721
2722 ipc_call_t data;
2723 *chandle = async_get_call(&data);
2724
2725 if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT)
2726 return false;
2727
2728 *size = (size_t) IPC_GET_ARG2(data);
2729 *flags = (unsigned int) IPC_GET_ARG3(data);
2730 return true;
2731}
2732
2733/** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework.
2734 *
2735 * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT
2736 * calls so that the user doesn't have to remember the meaning of each IPC
2737 * argument.
2738 *
2739 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
2740 * @param dst Address of the storage for the destination address space area
2741 * base address.
2742 *
2743 * @return Zero on success or a value from @ref errno.h on failure.
2744 *
2745 */
2746int async_share_out_finalize(cap_handle_t chandle, void **dst)
2747{
2748 return ipc_answer_2(chandle, EOK, (sysarg_t) __entry, (sysarg_t) dst);
2749}
2750
2751/** Start IPC_M_DATA_READ using the async framework.
2752 *
2753 * @param exch Exchange for sending the message.
2754 * @param dst Address of the beginning of the destination buffer.
2755 * @param size Size of the destination buffer (in bytes).
2756 * @param dataptr Storage of call data (arg 2 holds actual data size).
2757 *
2758 * @return Hash of the sent message or 0 on error.
2759 *
2760 */
2761aid_t async_data_read(async_exch_t *exch, void *dst, size_t size,
2762 ipc_call_t *dataptr)
2763{
2764 return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2765 (sysarg_t) size, dataptr);
2766}
2767
2768/** Wrapper for IPC_M_DATA_READ calls using the async framework.
2769 *
2770 * @param exch Exchange for sending the message.
2771 * @param dst Address of the beginning of the destination buffer.
2772 * @param size Size of the destination buffer.
2773 *
2774 * @return Zero on success or a negative error code from errno.h.
2775 *
2776 */
2777int async_data_read_start(async_exch_t *exch, void *dst, size_t size)
2778{
2779 if (exch == NULL)
2780 return ENOENT;
2781
2782 return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst,
2783 (sysarg_t) size);
2784}
2785
2786/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2787 *
2788 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2789 * calls so that the user doesn't have to remember the meaning of each IPC
2790 * argument.
2791 *
2792 * So far, this wrapper is to be used from within a connection fibril.
2793 *
2794 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
2795 * @param size Storage for the maximum size. Can be NULL.
2796 *
2797 * @return True on success, false on failure.
2798 *
2799 */
2800bool async_data_read_receive(cap_handle_t *chandle, size_t *size)
2801{
2802 ipc_call_t data;
2803 return async_data_read_receive_call(chandle, &data, size);
2804}
2805
2806/** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework.
2807 *
2808 * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ
2809 * calls so that the user doesn't have to remember the meaning of each IPC
2810 * argument.
2811 *
2812 * So far, this wrapper is to be used from within a connection fibril.
2813 *
2814 * @param chandle Storage for the handle of the IPC_M_DATA_READ.
2815 * @param size Storage for the maximum size. Can be NULL.
2816 *
2817 * @return True on success, false on failure.
2818 *
2819 */
2820bool async_data_read_receive_call(cap_handle_t *chandle, ipc_call_t *data,
2821 size_t *size)
2822{
2823 assert(chandle);
2824 assert(data);
2825
2826 *chandle = async_get_call(data);
2827
2828 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ)
2829 return false;
2830
2831 if (size)
2832 *size = (size_t) IPC_GET_ARG2(*data);
2833
2834 return true;
2835}
2836
2837/** Wrapper for answering the IPC_M_DATA_READ calls using the async framework.
2838 *
2839 * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ
2840 * calls so that the user doesn't have to remember the meaning of each IPC
2841 * argument.
2842 *
2843 * @param chandle Handle of the IPC_M_DATA_READ call to answer.
2844 * @param src Source address for the IPC_M_DATA_READ call.
2845 * @param size Size for the IPC_M_DATA_READ call. Can be smaller than
2846 * the maximum size announced by the sender.
2847 *
2848 * @return Zero on success or a value from @ref errno.h on failure.
2849 *
2850 */
2851int async_data_read_finalize(cap_handle_t chandle, const void *src, size_t size)
2852{
2853 return ipc_answer_2(chandle, EOK, (sysarg_t) src, (sysarg_t) size);
2854}
2855
2856/** Wrapper for forwarding any read request
2857 *
2858 */
2859int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod,
2860 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
2861 ipc_call_t *dataptr)
2862{
2863 if (exch == NULL)
2864 return ENOENT;
2865
2866 cap_handle_t chandle;
2867 if (!async_data_read_receive(&chandle, NULL)) {
2868 ipc_answer_0(chandle, EINVAL);
2869 return EINVAL;
2870 }
2871
2872 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
2873 dataptr);
2874 if (msg == 0) {
2875 ipc_answer_0(chandle, EINVAL);
2876 return EINVAL;
2877 }
2878
2879 int retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
2880 IPC_FF_ROUTE_FROM_ME);
2881 if (retval != EOK) {
2882 async_forget(msg);
2883 ipc_answer_0(chandle, retval);
2884 return retval;
2885 }
2886
2887 sysarg_t rc;
2888 async_wait_for(msg, &rc);
2889
2890 return (int) rc;
2891}
2892
2893/** Wrapper for IPC_M_DATA_WRITE calls using the async framework.
2894 *
2895 * @param exch Exchange for sending the message.
2896 * @param src Address of the beginning of the source buffer.
2897 * @param size Size of the source buffer.
2898 *
2899 * @return Zero on success or a negative error code from errno.h.
2900 *
2901 */
2902int async_data_write_start(async_exch_t *exch, const void *src, size_t size)
2903{
2904 if (exch == NULL)
2905 return ENOENT;
2906
2907 return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src,
2908 (sysarg_t) size);
2909}
2910
2911/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2912 *
2913 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2914 * calls so that the user doesn't have to remember the meaning of each IPC
2915 * argument.
2916 *
2917 * So far, this wrapper is to be used from within a connection fibril.
2918 *
2919 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
2920 * @param size Storage for the suggested size. May be NULL.
2921 *
2922 * @return True on success, false on failure.
2923 *
2924 */
2925bool async_data_write_receive(cap_handle_t *chandle, size_t *size)
2926{
2927 ipc_call_t data;
2928 return async_data_write_receive_call(chandle, &data, size);
2929}
2930
2931/** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework.
2932 *
2933 * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE
2934 * calls so that the user doesn't have to remember the meaning of each IPC
2935 * argument.
2936 *
2937 * So far, this wrapper is to be used from within a connection fibril.
2938 *
2939 * @param chandle Storage for the handle of the IPC_M_DATA_WRITE.
2940 * @param data Storage for the ipc call data.
2941 * @param size Storage for the suggested size. May be NULL.
2942 *
2943 * @return True on success, false on failure.
2944 *
2945 */
2946bool async_data_write_receive_call(cap_handle_t *chandle, ipc_call_t *data,
2947 size_t *size)
2948{
2949 assert(chandle);
2950 assert(data);
2951
2952 *chandle = async_get_call(data);
2953
2954 if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE)
2955 return false;
2956
2957 if (size)
2958 *size = (size_t) IPC_GET_ARG2(*data);
2959
2960 return true;
2961}
2962
2963/** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework.
2964 *
2965 * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE
2966 * calls so that the user doesn't have to remember the meaning of each IPC
2967 * argument.
2968 *
2969 * @param chandle Handle of the IPC_M_DATA_WRITE call to answer.
2970 * @param dst Final destination address for the IPC_M_DATA_WRITE call.
2971 * @param size Final size for the IPC_M_DATA_WRITE call.
2972 *
2973 * @return Zero on success or a value from @ref errno.h on failure.
2974 *
2975 */
2976int async_data_write_finalize(cap_handle_t chandle, void *dst, size_t size)
2977{
2978 return ipc_answer_2(chandle, EOK, (sysarg_t) dst, (sysarg_t) size);
2979}
2980
2981/** Wrapper for receiving binary data or strings
2982 *
2983 * This wrapper only makes it more comfortable to use async_data_write_*
2984 * functions to receive binary data or strings.
2985 *
2986 * @param data Pointer to data pointer (which should be later disposed
2987 * by free()). If the operation fails, the pointer is not
2988 * touched.
2989 * @param nullterm If true then the received data is always zero terminated.
2990 * This also causes to allocate one extra byte beyond the
2991 * raw transmitted data.
2992 * @param min_size Minimum size (in bytes) of the data to receive.
2993 * @param max_size Maximum size (in bytes) of the data to receive. 0 means
2994 * no limit.
2995 * @param granulariy If non-zero then the size of the received data has to
2996 * be divisible by this value.
2997 * @param received If not NULL, the size of the received data is stored here.
2998 *
2999 * @return Zero on success or a value from @ref errno.h on failure.
3000 *
3001 */
3002int async_data_write_accept(void **data, const bool nullterm,
3003 const size_t min_size, const size_t max_size, const size_t granularity,
3004 size_t *received)
3005{
3006 assert(data);
3007
3008 cap_handle_t chandle;
3009 size_t size;
3010 if (!async_data_write_receive(&chandle, &size)) {
3011 ipc_answer_0(chandle, EINVAL);
3012 return EINVAL;
3013 }
3014
3015 if (size < min_size) {
3016 ipc_answer_0(chandle, EINVAL);
3017 return EINVAL;
3018 }
3019
3020 if ((max_size > 0) && (size > max_size)) {
3021 ipc_answer_0(chandle, EINVAL);
3022 return EINVAL;
3023 }
3024
3025 if ((granularity > 0) && ((size % granularity) != 0)) {
3026 ipc_answer_0(chandle, EINVAL);
3027 return EINVAL;
3028 }
3029
3030 void *arg_data;
3031
3032 if (nullterm)
3033 arg_data = malloc(size + 1);
3034 else
3035 arg_data = malloc(size);
3036
3037 if (arg_data == NULL) {
3038 ipc_answer_0(chandle, ENOMEM);
3039 return ENOMEM;
3040 }
3041
3042 int rc = async_data_write_finalize(chandle, arg_data, size);
3043 if (rc != EOK) {
3044 free(arg_data);
3045 return rc;
3046 }
3047
3048 if (nullterm)
3049 ((char *) arg_data)[size] = 0;
3050
3051 *data = arg_data;
3052 if (received != NULL)
3053 *received = size;
3054
3055 return EOK;
3056}
3057
3058/** Wrapper for voiding any data that is about to be received
3059 *
3060 * This wrapper can be used to void any pending data
3061 *
3062 * @param retval Error value from @ref errno.h to be returned to the caller.
3063 *
3064 */
3065void async_data_write_void(sysarg_t retval)
3066{
3067 cap_handle_t chandle;
3068 async_data_write_receive(&chandle, NULL);
3069 ipc_answer_0(chandle, retval);
3070}
3071
3072/** Wrapper for forwarding any data that is about to be received
3073 *
3074 */
3075int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod,
3076 sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4,
3077 ipc_call_t *dataptr)
3078{
3079 if (exch == NULL)
3080 return ENOENT;
3081
3082 cap_handle_t chandle;
3083 if (!async_data_write_receive(&chandle, NULL)) {
3084 ipc_answer_0(chandle, EINVAL);
3085 return EINVAL;
3086 }
3087
3088 aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4,
3089 dataptr);
3090 if (msg == 0) {
3091 ipc_answer_0(chandle, EINVAL);
3092 return EINVAL;
3093 }
3094
3095 int retval = ipc_forward_fast(chandle, exch->phone, 0, 0, 0,
3096 IPC_FF_ROUTE_FROM_ME);
3097 if (retval != EOK) {
3098 async_forget(msg);
3099 ipc_answer_0(chandle, retval);
3100 return retval;
3101 }
3102
3103 sysarg_t rc;
3104 async_wait_for(msg, &rc);
3105
3106 return (int) rc;
3107}
3108
3109/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3110 *
3111 * If the current call is IPC_M_CONNECT_TO_ME then a new
3112 * async session is created for the accepted phone.
3113 *
3114 * @param mgmt Exchange management style.
3115 *
3116 * @return New async session.
3117 * @return NULL on failure.
3118 *
3119 */
3120async_sess_t *async_callback_receive(exch_mgmt_t mgmt)
3121{
3122 /* Accept the phone */
3123 ipc_call_t call;
3124 cap_handle_t chandle = async_get_call(&call);
3125 cap_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(call);
3126
3127 if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) || (phandle < 0)) {
3128 async_answer_0(chandle, EINVAL);
3129 return NULL;
3130 }
3131
3132 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3133 if (sess == NULL) {
3134 async_answer_0(chandle, ENOMEM);
3135 return NULL;
3136 }
3137
3138 sess->iface = 0;
3139 sess->mgmt = mgmt;
3140 sess->phone = phandle;
3141 sess->arg1 = 0;
3142 sess->arg2 = 0;
3143 sess->arg3 = 0;
3144
3145 fibril_mutex_initialize(&sess->remote_state_mtx);
3146 sess->remote_state_data = NULL;
3147
3148 list_initialize(&sess->exch_list);
3149 fibril_mutex_initialize(&sess->mutex);
3150 atomic_set(&sess->refcnt, 0);
3151
3152 /* Acknowledge the connected phone */
3153 async_answer_0(chandle, EOK);
3154
3155 return sess;
3156}
3157
3158/** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls.
3159 *
3160 * If the call is IPC_M_CONNECT_TO_ME then a new
3161 * async session is created. However, the phone is
3162 * not accepted automatically.
3163 *
3164 * @param mgmt Exchange management style.
3165 * @param call Call data.
3166 *
3167 * @return New async session.
3168 * @return NULL on failure.
3169 * @return NULL if the call is not IPC_M_CONNECT_TO_ME.
3170 *
3171 */
3172async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call)
3173{
3174 cap_handle_t phandle = (cap_handle_t) IPC_GET_ARG5(*call);
3175
3176 if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) || (phandle < 0))
3177 return NULL;
3178
3179 async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t));
3180 if (sess == NULL)
3181 return NULL;
3182
3183 sess->iface = 0;
3184 sess->mgmt = mgmt;
3185 sess->phone = phandle;
3186 sess->arg1 = 0;
3187 sess->arg2 = 0;
3188 sess->arg3 = 0;
3189
3190 fibril_mutex_initialize(&sess->remote_state_mtx);
3191 sess->remote_state_data = NULL;
3192
3193 list_initialize(&sess->exch_list);
3194 fibril_mutex_initialize(&sess->mutex);
3195 atomic_set(&sess->refcnt, 0);
3196
3197 return sess;
3198}
3199
3200int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2,
3201 sysarg_t arg3, async_exch_t *other_exch)
3202{
3203 return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE,
3204 arg1, arg2, arg3, 0, other_exch->phone);
3205}
3206
3207bool async_state_change_receive(cap_handle_t *chandle, sysarg_t *arg1,
3208 sysarg_t *arg2, sysarg_t *arg3)
3209{
3210 assert(chandle);
3211
3212 ipc_call_t call;
3213 *chandle = async_get_call(&call);
3214
3215 if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE)
3216 return false;
3217
3218 if (arg1)
3219 *arg1 = IPC_GET_ARG1(call);
3220 if (arg2)
3221 *arg2 = IPC_GET_ARG2(call);
3222 if (arg3)
3223 *arg3 = IPC_GET_ARG3(call);
3224
3225 return true;
3226}
3227
3228int async_state_change_finalize(cap_handle_t chandle, async_exch_t *other_exch)
3229{
3230 return ipc_answer_1(chandle, EOK, other_exch->phone);
3231}
3232
3233/** Lock and get session remote state
3234 *
3235 * Lock and get the local replica of the remote state
3236 * in stateful sessions. The call should be paired
3237 * with async_remote_state_release*().
3238 *
3239 * @param[in] sess Stateful session.
3240 *
3241 * @return Local replica of the remote state.
3242 *
3243 */
3244void *async_remote_state_acquire(async_sess_t *sess)
3245{
3246 fibril_mutex_lock(&sess->remote_state_mtx);
3247 return sess->remote_state_data;
3248}
3249
3250/** Update the session remote state
3251 *
3252 * Update the local replica of the remote state
3253 * in stateful sessions. The remote state must
3254 * be already locked.
3255 *
3256 * @param[in] sess Stateful session.
3257 * @param[in] state New local replica of the remote state.
3258 *
3259 */
3260void async_remote_state_update(async_sess_t *sess, void *state)
3261{
3262 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3263 sess->remote_state_data = state;
3264}
3265
3266/** Release the session remote state
3267 *
3268 * Unlock the local replica of the remote state
3269 * in stateful sessions.
3270 *
3271 * @param[in] sess Stateful session.
3272 *
3273 */
3274void async_remote_state_release(async_sess_t *sess)
3275{
3276 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3277
3278 fibril_mutex_unlock(&sess->remote_state_mtx);
3279}
3280
3281/** Release the session remote state and end an exchange
3282 *
3283 * Unlock the local replica of the remote state
3284 * in stateful sessions. This is convenience function
3285 * which gets the session pointer from the exchange
3286 * and also ends the exchange.
3287 *
3288 * @param[in] exch Stateful session's exchange.
3289 *
3290 */
3291void async_remote_state_release_exchange(async_exch_t *exch)
3292{
3293 if (exch == NULL)
3294 return;
3295
3296 async_sess_t *sess = exch->sess;
3297 assert(fibril_mutex_is_locked(&sess->remote_state_mtx));
3298
3299 async_exchange_end(exch);
3300 fibril_mutex_unlock(&sess->remote_state_mtx);
3301}
3302
3303void *async_as_area_create(void *base, size_t size, unsigned int flags,
3304 async_sess_t *pager, sysarg_t id1, sysarg_t id2, sysarg_t id3)
3305{
3306 as_area_pager_info_t pager_info = {
3307 .pager = pager->phone,
3308 .id1 = id1,
3309 .id2 = id2,
3310 .id3 = id3
3311 };
3312 return as_area_create(base, size, flags, &pager_info);
3313}
3314
3315/** @}
3316 */
Note: See TracBrowser for help on using the repository browser.