/* * Copyright (c) 2006 Ondrej Palkovsky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup libc * @{ */ /** @file */ /** * Asynchronous library * * The aim of this library is to provide a facility for writing programs which * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of * programming. * * You should be able to write very simple multithreaded programs. The async * framework will automatically take care of most of the synchronization * problems. * * Example of use (pseudo C): * * 1) Multithreaded client application * * fibril_create(fibril1, ...); * fibril_create(fibril2, ...); * ... * * int fibril1(void *arg) * { * conn = async_connect_me_to(...); * * exch = async_exchange_begin(conn); * c1 = async_send(exch); * async_exchange_end(exch); * * exch = async_exchange_begin(conn); * c2 = async_send(exch); * async_exchange_end(exch); * * async_wait_for(c1); * async_wait_for(c2); * ... * } * * * 2) Multithreaded server application * * main() * { * async_manager(); * } * * my_client_connection(icallid, *icall) * { * if (want_refuse) { * async_answer_0(icallid, ELIMIT); * return; * } * async_answer_0(icallid, EOK); * * callid = async_get_call(&call); * somehow_handle_the_call(callid, call); * async_answer_2(callid, 1, 2, 3); * * callid = async_get_call(&call); * ... * } * */ #define LIBC_ASYNC_C_ #include #include #include "private/async.h" #undef LIBC_ASYNC_C_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "private/libc.h" /** Session data */ struct async_sess { /** List of inactive exchanges */ list_t exch_list; /** Exchange management style */ exch_mgmt_t mgmt; /** Session identification */ int phone; /** First clone connection argument */ sysarg_t arg1; /** Second clone connection argument */ sysarg_t arg2; /** Third clone connection argument */ sysarg_t arg3; /** Exchange mutex */ fibril_mutex_t mutex; /** Number of opened exchanges */ atomic_t refcnt; /** Mutex for stateful connections */ fibril_mutex_t remote_state_mtx; /** Data for stateful connections */ void *remote_state_data; }; /** Exchange data */ struct async_exch { /** Link into list of inactive exchanges */ link_t sess_link; /** Link into global list of inactive exchanges */ link_t global_link; /** Session pointer */ async_sess_t *sess; /** Exchange identification */ int phone; }; /** Async framework global futex */ atomic_t async_futex = FUTEX_INITIALIZER; /** Number of threads waiting for IPC in the kernel. */ atomic_t threads_in_ipc_wait = { 0 }; /** Naming service session */ async_sess_t *session_ns; /** Call data */ typedef struct { link_t link; ipc_callid_t callid; ipc_call_t call; } msg_t; /** Message data */ typedef struct { awaiter_t wdata; /** If reply was received. */ bool done; /** If the message / reply should be discarded on arrival. */ bool forget; /** If already destroyed. */ bool destroyed; /** Pointer to where the answer data is stored. */ ipc_call_t *dataptr; sysarg_t retval; } amsg_t; /* Client connection data */ typedef struct { ht_link_t link; task_id_t in_task_id; atomic_t refcnt; void *data; } client_t; /* Server connection data */ typedef struct { awaiter_t wdata; /** Hash table link. */ ht_link_t link; /** Incoming client task ID. */ task_id_t in_task_id; /** Incoming phone hash. */ sysarg_t in_phone_hash; /** Link to the client tracking structure. */ client_t *client; /** Messages that should be delivered to this fibril. */ list_t msg_queue; /** Identification of the opening call. */ ipc_callid_t callid; /** Call data of the opening call. */ ipc_call_t call; /** Local argument or NULL if none. */ void *carg; /** Identification of the closing call. */ ipc_callid_t close_callid; /** Fibril function that will be used to handle the connection. */ async_client_conn_t cfibril; } connection_t; /** Identifier of the incoming connection handled by the current fibril. */ static fibril_local connection_t *fibril_connection; static void to_event_initialize(to_event_t *to) { struct timeval tv = { 0, 0 }; to->inlist = false; to->occurred = false; link_initialize(&to->link); to->expires = tv; } static void wu_event_initialize(wu_event_t *wu) { wu->inlist = false; link_initialize(&wu->link); } void awaiter_initialize(awaiter_t *aw) { aw->fid = 0; aw->active = false; to_event_initialize(&aw->to_event); wu_event_initialize(&aw->wu_event); } static amsg_t *amsg_create(void) { amsg_t *msg; msg = malloc(sizeof(amsg_t)); if (msg) { msg->done = false; msg->forget = false; msg->destroyed = false; msg->dataptr = NULL; msg->retval = (sysarg_t) EINVAL; awaiter_initialize(&msg->wdata); } return msg; } static void amsg_destroy(amsg_t *msg) { assert(!msg->destroyed); msg->destroyed = true; free(msg); } static void *default_client_data_constructor(void) { return NULL; } static void default_client_data_destructor(void *data) { } static async_client_data_ctor_t async_client_data_create = default_client_data_constructor; static async_client_data_dtor_t async_client_data_destroy = default_client_data_destructor; void async_set_client_data_constructor(async_client_data_ctor_t ctor) { assert(async_client_data_create == default_client_data_constructor); async_client_data_create = ctor; } void async_set_client_data_destructor(async_client_data_dtor_t dtor) { assert(async_client_data_destroy == default_client_data_destructor); async_client_data_destroy = dtor; } /** Default fibril function that gets called to handle new connection. * * This function is defined as a weak symbol - to be redefined in user code. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * @param arg Local argument * */ static void default_client_connection(ipc_callid_t callid, ipc_call_t *call, void *arg) { ipc_answer_0(callid, ENOENT); } /** Default fibril function that gets called to handle interrupt notifications. * * This function is defined as a weak symbol - to be redefined in user code. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * @param arg Local argument. * */ static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call) { } static async_client_conn_t client_connection = default_client_connection; static async_interrupt_handler_t interrupt_received = default_interrupt_received; static size_t interrupt_handler_stksz = FIBRIL_DFLT_STK_SIZE; /** Setter for client_connection function pointer. * * @param conn Function that will implement a new connection fibril. * */ void async_set_client_connection(async_client_conn_t conn) { assert(client_connection == default_client_connection); client_connection = conn; } /** Setter for interrupt_received function pointer. * * @param intr Function that will implement a new interrupt * notification fibril. */ void async_set_interrupt_received(async_interrupt_handler_t intr) { interrupt_received = intr; } /** Set the stack size for the interrupt handler notification fibrils. * * @param size Stack size in bytes. */ void async_set_interrupt_handler_stack_size(size_t size) { interrupt_handler_stksz = size; } /** Mutex protecting inactive_exch_list and avail_phone_cv. * */ static FIBRIL_MUTEX_INITIALIZE(async_sess_mutex); /** List of all currently inactive exchanges. * */ static LIST_INITIALIZE(inactive_exch_list); /** Condition variable to wait for a phone to become available. * */ static FIBRIL_CONDVAR_INITIALIZE(avail_phone_cv); static hash_table_t client_hash_table; static hash_table_t conn_hash_table; static LIST_INITIALIZE(timeout_list); static size_t client_key_hash(void *k) { task_id_t key = *(task_id_t*)k; return key; } static size_t client_hash(const ht_link_t *item) { client_t *client = hash_table_get_inst(item, client_t, link); return client_key_hash(&client->in_task_id); } static bool client_key_equal(void *k, const ht_link_t *item) { task_id_t key = *(task_id_t*)k; client_t *client = hash_table_get_inst(item, client_t, link); return key == client->in_task_id; } /** Operations for the client hash table. */ static hash_table_ops_t client_hash_table_ops = { .hash = client_hash, .key_hash = client_key_hash, .key_equal = client_key_equal, .equal = NULL, .remove_callback = NULL }; /** Compute hash into the connection hash table based on the source phone hash. * * @param key Pointer to source phone hash. * * @return Index into the connection hash table. * */ static size_t conn_key_hash(void *key) { sysarg_t in_phone_hash = *(sysarg_t*)key; return in_phone_hash ; } static size_t conn_hash(const ht_link_t *item) { connection_t *conn = hash_table_get_inst(item, connection_t, link); return conn_key_hash(&conn->in_phone_hash); } static bool conn_key_equal(void *key, const ht_link_t *item) { sysarg_t in_phone_hash = *(sysarg_t*)key; connection_t *conn = hash_table_get_inst(item, connection_t, link); return (in_phone_hash == conn->in_phone_hash); } /** Operations for the connection hash table. */ static hash_table_ops_t conn_hash_table_ops = { .hash = conn_hash, .key_hash = conn_key_hash, .key_equal = conn_key_equal, .equal = NULL, .remove_callback = NULL }; /** Sort in current fibril's timeout request. * * @param wd Wait data of the current fibril. * */ void async_insert_timeout(awaiter_t *wd) { assert(wd); wd->to_event.occurred = false; wd->to_event.inlist = true; link_t *tmp = timeout_list.head.next; while (tmp != &timeout_list.head) { awaiter_t *cur = list_get_instance(tmp, awaiter_t, to_event.link); if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires)) break; tmp = tmp->next; } list_insert_before(&wd->to_event.link, tmp); } /** Try to route a call to an appropriate connection fibril. * * If the proper connection fibril is found, a message with the call is added to * its message queue. If the fibril was not active, it is activated and all * timeouts are unregistered. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * * @return False if the call doesn't match any connection. * @return True if the call was passed to the respective connection fibril. * */ static bool route_call(ipc_callid_t callid, ipc_call_t *call) { assert(call); futex_down(&async_futex); ht_link_t *hlp = hash_table_find(&conn_hash_table, &call->in_phone_hash); if (!hlp) { futex_up(&async_futex); return false; } connection_t *conn = hash_table_get_inst(hlp, connection_t, link); msg_t *msg = malloc(sizeof(*msg)); if (!msg) { futex_up(&async_futex); return false; } msg->callid = callid; msg->call = *call; list_append(&msg->link, &conn->msg_queue); if (IPC_GET_IMETHOD(*call) == IPC_M_PHONE_HUNGUP) conn->close_callid = callid; /* If the connection fibril is waiting for an event, activate it */ if (!conn->wdata.active) { /* If in timeout list, remove it */ if (conn->wdata.to_event.inlist) { conn->wdata.to_event.inlist = false; list_remove(&conn->wdata.to_event.link); } conn->wdata.active = true; fibril_add_ready(conn->wdata.fid); } futex_up(&async_futex); return true; } /** Notification fibril. * * When a notification arrives, a fibril with this implementing function is * created. It calls interrupt_received() and does the final cleanup. * * @param arg Message structure pointer. * * @return Always zero. * */ static int notification_fibril(void *arg) { assert(arg); msg_t *msg = (msg_t *) arg; interrupt_received(msg->callid, &msg->call); free(msg); return 0; } /** Process interrupt notification. * * A new fibril is created which would process the notification. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * * @return False if an error occured. * True if the call was passed to the notification fibril. * */ static bool process_notification(ipc_callid_t callid, ipc_call_t *call) { assert(call); futex_down(&async_futex); msg_t *msg = malloc(sizeof(*msg)); if (!msg) { futex_up(&async_futex); return false; } msg->callid = callid; msg->call = *call; fid_t fid = fibril_create_generic(notification_fibril, msg, interrupt_handler_stksz); if (fid == 0) { free(msg); futex_up(&async_futex); return false; } fibril_add_ready(fid); futex_up(&async_futex); return true; } /** Return new incoming message for the current (fibril-local) connection. * * @param call Storage where the incoming call data will be stored. * @param usecs Timeout in microseconds. Zero denotes no timeout. * * @return If no timeout was specified, then a hash of the * incoming call is returned. If a timeout is specified, * then a hash of the incoming call is returned unless * the timeout expires prior to receiving a message. In * that case zero is returned. * */ ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs) { assert(call); assert(fibril_connection); /* Why doing this? * GCC 4.1.0 coughs on fibril_connection-> dereference. * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot. * I would never expect to find so many errors in * a compiler. */ connection_t *conn = fibril_connection; futex_down(&async_futex); if (usecs) { getuptime(&conn->wdata.to_event.expires); tv_add(&conn->wdata.to_event.expires, usecs); } else conn->wdata.to_event.inlist = false; /* If nothing in queue, wait until something arrives */ while (list_empty(&conn->msg_queue)) { if (conn->close_callid) { /* * Handle the case when the connection was already * closed by the client but the server did not notice * the first IPC_M_PHONE_HUNGUP call and continues to * call async_get_call_timeout(). Repeat * IPC_M_PHONE_HUNGUP until the caller notices. */ memset(call, 0, sizeof(ipc_call_t)); IPC_SET_IMETHOD(*call, IPC_M_PHONE_HUNGUP); futex_up(&async_futex); return conn->close_callid; } if (usecs) async_insert_timeout(&conn->wdata); conn->wdata.active = false; /* * Note: the current fibril will be rescheduled either due to a * timeout or due to an arriving message destined to it. In the * former case, handle_expired_timeouts() and, in the latter * case, route_call() will perform the wakeup. */ fibril_switch(FIBRIL_TO_MANAGER); /* * Futex is up after getting back from async_manager. * Get it again. */ futex_down(&async_futex); if ((usecs) && (conn->wdata.to_event.occurred) && (list_empty(&conn->msg_queue))) { /* If we timed out -> exit */ futex_up(&async_futex); return 0; } } msg_t *msg = list_get_instance(list_first(&conn->msg_queue), msg_t, link); list_remove(&msg->link); ipc_callid_t callid = msg->callid; *call = msg->call; free(msg); futex_up(&async_futex); return callid; } static client_t *async_client_get(task_id_t client_id, bool create) { client_t *client = NULL; futex_down(&async_futex); ht_link_t *lnk = hash_table_find(&client_hash_table, &client_id); if (lnk) { client = hash_table_get_inst(lnk, client_t, link); atomic_inc(&client->refcnt); } else if (create) { client = malloc(sizeof(client_t)); if (client) { client->in_task_id = client_id; client->data = async_client_data_create(); atomic_set(&client->refcnt, 1); hash_table_insert(&client_hash_table, &client->link); } } futex_up(&async_futex); return client; } static void async_client_put(client_t *client) { bool destroy; futex_down(&async_futex); if (atomic_predec(&client->refcnt) == 0) { hash_table_remove(&client_hash_table, &client->in_task_id); destroy = true; } else destroy = false; futex_up(&async_futex); if (destroy) { if (client->data) async_client_data_destroy(client->data); free(client); } } void *async_get_client_data(void) { assert(fibril_connection); return fibril_connection->client->data; } void *async_get_client_data_by_id(task_id_t client_id) { client_t *client = async_client_get(client_id, false); if (!client) return NULL; if (!client->data) { async_client_put(client); return NULL; } return client->data; } void async_put_client_data_by_id(task_id_t client_id) { client_t *client = async_client_get(client_id, false); assert(client); assert(client->data); /* Drop the reference we got in async_get_client_data_by_hash(). */ async_client_put(client); /* Drop our own reference we got at the beginning of this function. */ async_client_put(client); } /** Wrapper for client connection fibril. * * When a new connection arrives, a fibril with this implementing function is * created. It calls client_connection() and does the final cleanup. * * @param arg Connection structure pointer. * * @return Always zero. * */ static int connection_fibril(void *arg) { assert(arg); /* * Setup fibril-local connection pointer. */ fibril_connection = (connection_t *) arg; /* * Add our reference for the current connection in the client task * tracking structure. If this is the first reference, create and * hash in a new tracking structure. */ client_t *client = async_client_get(fibril_connection->in_task_id, true); if (!client) { ipc_answer_0(fibril_connection->callid, ENOMEM); return 0; } fibril_connection->client = client; /* * Call the connection handler function. */ fibril_connection->cfibril(fibril_connection->callid, &fibril_connection->call, fibril_connection->carg); /* * Remove the reference for this client task connection. */ async_client_put(client); /* * Remove myself from the connection hash table. */ futex_down(&async_futex); hash_table_remove(&conn_hash_table, &fibril_connection->in_phone_hash); futex_up(&async_futex); /* * Answer all remaining messages with EHANGUP. */ while (!list_empty(&fibril_connection->msg_queue)) { msg_t *msg = list_get_instance(list_first(&fibril_connection->msg_queue), msg_t, link); list_remove(&msg->link); ipc_answer_0(msg->callid, EHANGUP); free(msg); } /* * If the connection was hung-up, answer the last call, * i.e. IPC_M_PHONE_HUNGUP. */ if (fibril_connection->close_callid) ipc_answer_0(fibril_connection->close_callid, EOK); free(fibril_connection); return 0; } /** Create a new fibril for a new connection. * * Create new fibril for connection, fill in connection structures and insert * it into the hash table, so that later we can easily do routing of messages to * particular fibrils. * * @param in_task_id Identification of the incoming connection. * @param in_phone_hash Identification of the incoming connection. * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call. * If callid is zero, the connection was opened by * accepting the IPC_M_CONNECT_TO_ME call and this function * is called directly by the server. * @param call Call data of the opening call. * @param cfibril Fibril function that should be called upon opening the * connection. * @param carg Extra argument to pass to the connection fibril * * @return New fibril id or NULL on failure. * */ fid_t async_new_connection(task_id_t in_task_id, sysarg_t in_phone_hash, ipc_callid_t callid, ipc_call_t *call, async_client_conn_t cfibril, void *carg) { connection_t *conn = malloc(sizeof(*conn)); if (!conn) { if (callid) ipc_answer_0(callid, ENOMEM); return (uintptr_t) NULL; } conn->in_task_id = in_task_id; conn->in_phone_hash = in_phone_hash; list_initialize(&conn->msg_queue); conn->callid = callid; conn->close_callid = 0; conn->carg = carg; if (call) conn->call = *call; /* We will activate the fibril ASAP */ conn->wdata.active = true; conn->cfibril = cfibril; conn->wdata.fid = fibril_create(connection_fibril, conn); if (conn->wdata.fid == 0) { free(conn); if (callid) ipc_answer_0(callid, ENOMEM); return (uintptr_t) NULL; } /* Add connection to the connection hash table */ futex_down(&async_futex); hash_table_insert(&conn_hash_table, &conn->link); futex_up(&async_futex); fibril_add_ready(conn->wdata.fid); return conn->wdata.fid; } /** Handle a call that was received. * * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created. * Otherwise the call is routed to its connection fibril. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * */ static void handle_call(ipc_callid_t callid, ipc_call_t *call) { assert(call); /* Unrouted call - take some default action */ if ((callid & IPC_CALLID_NOTIFICATION)) { process_notification(callid, call); return; } switch (IPC_GET_IMETHOD(*call)) { case IPC_M_CLONE_ESTABLISH: case IPC_M_CONNECT_ME_TO: /* Open new connection with fibril, etc. */ async_new_connection(call->in_task_id, IPC_GET_ARG5(*call), callid, call, client_connection, NULL); return; } /* Try to route the call through the connection hash table */ if (route_call(callid, call)) return; /* Unknown call from unknown phone - hang it up */ ipc_answer_0(callid, EHANGUP); } /** Fire all timeouts that expired. */ static void handle_expired_timeouts(void) { struct timeval tv; getuptime(&tv); futex_down(&async_futex); link_t *cur = list_first(&timeout_list); while (cur != NULL) { awaiter_t *waiter = list_get_instance(cur, awaiter_t, to_event.link); if (tv_gt(&waiter->to_event.expires, &tv)) break; list_remove(&waiter->to_event.link); waiter->to_event.inlist = false; waiter->to_event.occurred = true; /* * Redundant condition? * The fibril should not be active when it gets here. */ if (!waiter->active) { waiter->active = true; fibril_add_ready(waiter->fid); } cur = list_first(&timeout_list); } futex_up(&async_futex); } /** Endless loop dispatching incoming calls and answers. * * @return Never returns. * */ static int async_manager_worker(void) { while (true) { if (fibril_switch(FIBRIL_FROM_MANAGER)) { futex_up(&async_futex); /* * async_futex is always held when entering a manager * fibril. */ continue; } futex_down(&async_futex); suseconds_t timeout; unsigned int flags = SYNCH_FLAGS_NONE; if (!list_empty(&timeout_list)) { awaiter_t *waiter = list_get_instance( list_first(&timeout_list), awaiter_t, to_event.link); struct timeval tv; getuptime(&tv); if (tv_gteq(&tv, &waiter->to_event.expires)) { futex_up(&async_futex); handle_expired_timeouts(); /* * Notice that even if the event(s) already * expired (and thus the other fibril was * supposed to be running already), * we check for incoming IPC. * * Otherwise, a fibril that continuously * creates (almost) expired events could * prevent IPC retrieval from the kernel. */ timeout = 0; flags = SYNCH_FLAGS_NON_BLOCKING; } else { timeout = tv_sub(&waiter->to_event.expires, &tv); futex_up(&async_futex); } } else { futex_up(&async_futex); timeout = SYNCH_NO_TIMEOUT; } atomic_inc(&threads_in_ipc_wait); ipc_call_t call; ipc_callid_t callid = ipc_wait_cycle(&call, timeout, flags); atomic_dec(&threads_in_ipc_wait); if (!callid) { handle_expired_timeouts(); continue; } if (callid & IPC_CALLID_ANSWERED) continue; handle_call(callid, &call); } return 0; } /** Function to start async_manager as a standalone fibril. * * When more kernel threads are used, one async manager should exist per thread. * * @param arg Unused. * @return Never returns. * */ static int async_manager_fibril(void *arg) { futex_up(&async_futex); /* * async_futex is always locked when entering manager */ async_manager_worker(); return 0; } /** Add one manager to manager list. */ void async_create_manager(void) { fid_t fid = fibril_create(async_manager_fibril, NULL); if (fid != 0) fibril_add_manager(fid); } /** Remove one manager from manager list */ void async_destroy_manager(void) { fibril_remove_manager(); } /** Initialize the async framework. * */ void __async_init(void) { if (!hash_table_create(&client_hash_table, 0, 0, &client_hash_table_ops)) abort(); if (!hash_table_create(&conn_hash_table, 0, 0, &conn_hash_table_ops)) abort(); session_ns = (async_sess_t *) malloc(sizeof(async_sess_t)); if (session_ns == NULL) abort(); session_ns->mgmt = EXCHANGE_ATOMIC; session_ns->phone = PHONE_NS; session_ns->arg1 = 0; session_ns->arg2 = 0; session_ns->arg3 = 0; fibril_mutex_initialize(&session_ns->remote_state_mtx); session_ns->remote_state_data = NULL; list_initialize(&session_ns->exch_list); fibril_mutex_initialize(&session_ns->mutex); atomic_set(&session_ns->refcnt, 0); } /** Reply received callback. * * This function is called whenever a reply for an asynchronous message sent out * by the asynchronous framework is received. * * Notify the fibril which is waiting for this message that it has arrived. * * @param arg Pointer to the asynchronous message record. * @param retval Value returned in the answer. * @param data Call data of the answer. * */ void reply_received(void *arg, int retval, ipc_call_t *data) { assert(arg); futex_down(&async_futex); amsg_t *msg = (amsg_t *) arg; msg->retval = retval; /* Copy data after futex_down, just in case the call was detached */ if ((msg->dataptr) && (data)) *msg->dataptr = *data; write_barrier(); /* Remove message from timeout list */ if (msg->wdata.to_event.inlist) list_remove(&msg->wdata.to_event.link); msg->done = true; if (msg->forget) { assert(msg->wdata.active); amsg_destroy(msg); } else if (!msg->wdata.active) { msg->wdata.active = true; fibril_add_ready(msg->wdata.fid); } futex_up(&async_futex); } /** Send message and return id of the sent message. * * The return value can be used as input for async_wait() to wait for * completion. * * @param exch Exchange for sending the message. * @param imethod Service-defined interface and method. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param dataptr If non-NULL, storage where the reply data will be * stored. * * @return Hash of the sent message or 0 on error. * */ aid_t async_send_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr) { if (exch == NULL) return 0; amsg_t *msg = amsg_create(); if (msg == NULL) return 0; msg->dataptr = dataptr; msg->wdata.active = true; ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, msg, reply_received, true); return (aid_t) msg; } /** Send message and return id of the sent message * * The return value can be used as input for async_wait() to wait for * completion. * * @param exch Exchange for sending the message. * @param imethod Service-defined interface and method. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param arg5 Service-defined payload argument. * @param dataptr If non-NULL, storage where the reply data will be * stored. * * @return Hash of the sent message or 0 on error. * */ aid_t async_send_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, ipc_call_t *dataptr) { if (exch == NULL) return 0; amsg_t *msg = amsg_create(); if (msg == NULL) return 0; msg->dataptr = dataptr; msg->wdata.active = true; ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5, msg, reply_received, true); return (aid_t) msg; } /** Wait for a message sent by the async framework. * * @param amsgid Hash of the message to wait for. * @param retval Pointer to storage where the retval of the answer will * be stored. * */ void async_wait_for(aid_t amsgid, sysarg_t *retval) { assert(amsgid); amsg_t *msg = (amsg_t *) amsgid; futex_down(&async_futex); assert(!msg->forget); assert(!msg->destroyed); if (msg->done) { futex_up(&async_futex); goto done; } msg->wdata.fid = fibril_get_id(); msg->wdata.active = false; msg->wdata.to_event.inlist = false; /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch */ done: if (retval) *retval = msg->retval; amsg_destroy(msg); } /** Wait for a message sent by the async framework, timeout variant. * * If the wait times out, the caller may choose to either wait again by calling * async_wait_for() or async_wait_timeout(), or forget the message via * async_forget(). * * @param amsgid Hash of the message to wait for. * @param retval Pointer to storage where the retval of the answer will * be stored. * @param timeout Timeout in microseconds. * * @return Zero on success, ETIMEOUT if the timeout has expired. * */ int async_wait_timeout(aid_t amsgid, sysarg_t *retval, suseconds_t timeout) { assert(amsgid); amsg_t *msg = (amsg_t *) amsgid; futex_down(&async_futex); assert(!msg->forget); assert(!msg->destroyed); if (msg->done) { futex_up(&async_futex); goto done; } /* * Negative timeout is converted to zero timeout to avoid * using tv_add with negative augmenter. */ if (timeout < 0) timeout = 0; getuptime(&msg->wdata.to_event.expires); tv_add(&msg->wdata.to_event.expires, timeout); /* * Current fibril is inserted as waiting regardless of the * "size" of the timeout. * * Checking for msg->done and immediately bailing out when * timeout == 0 would mean that the manager fibril would never * run (consider single threaded program). * Thus the IPC answer would be never retrieved from the kernel. * * Notice that the actual delay would be very small because we * - switch to manager fibril * - the manager sees expired timeout * - and thus adds us back to ready queue * - manager switches back to some ready fibril * (prior it, it checks for incoming IPC). * */ msg->wdata.fid = fibril_get_id(); msg->wdata.active = false; async_insert_timeout(&msg->wdata); /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch */ if (!msg->done) return ETIMEOUT; done: if (retval) *retval = msg->retval; amsg_destroy(msg); return 0; } /** Discard the message / reply on arrival. * * The message will be marked to be discarded once the reply arrives in * reply_received(). It is not allowed to call async_wait_for() or * async_wait_timeout() on this message after a call to this function. * * @param amsgid Hash of the message to forget. */ void async_forget(aid_t amsgid) { amsg_t *msg = (amsg_t *) amsgid; assert(msg); assert(!msg->forget); assert(!msg->destroyed); futex_down(&async_futex); if (msg->done) { amsg_destroy(msg); } else { msg->dataptr = NULL; msg->forget = true; } futex_up(&async_futex); } /** Wait for specified time. * * The current fibril is suspended but the thread continues to execute. * * @param timeout Duration of the wait in microseconds. * */ void async_usleep(suseconds_t timeout) { amsg_t *msg = amsg_create(); if (!msg) return; msg->wdata.fid = fibril_get_id(); getuptime(&msg->wdata.to_event.expires); tv_add(&msg->wdata.to_event.expires, timeout); futex_down(&async_futex); async_insert_timeout(&msg->wdata); /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch() */ amsg_destroy(msg); } /** Pseudo-synchronous message sending - fast version. * * Send message asynchronously and return only after the reply arrives. * * This function can only transfer 4 register payload arguments. For * transferring more arguments, see the slower async_req_slow(). * * @param exch Exchange for sending the message. * @param imethod Interface and method of the call. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param r1 If non-NULL, storage for the 1st reply argument. * @param r2 If non-NULL, storage for the 2nd reply argument. * @param r3 If non-NULL, storage for the 3rd reply argument. * @param r4 If non-NULL, storage for the 4th reply argument. * @param r5 If non-NULL, storage for the 5th reply argument. * * @return Return code of the reply or a negative error code. * */ sysarg_t async_req_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t *r1, sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5) { if (exch == NULL) return ENOENT; ipc_call_t result; aid_t aid = async_send_4(exch, imethod, arg1, arg2, arg3, arg4, &result); sysarg_t rc; async_wait_for(aid, &rc); if (r1) *r1 = IPC_GET_ARG1(result); if (r2) *r2 = IPC_GET_ARG2(result); if (r3) *r3 = IPC_GET_ARG3(result); if (r4) *r4 = IPC_GET_ARG4(result); if (r5) *r5 = IPC_GET_ARG5(result); return rc; } /** Pseudo-synchronous message sending - slow version. * * Send message asynchronously and return only after the reply arrives. * * @param exch Exchange for sending the message. * @param imethod Interface and method of the call. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param arg5 Service-defined payload argument. * @param r1 If non-NULL, storage for the 1st reply argument. * @param r2 If non-NULL, storage for the 2nd reply argument. * @param r3 If non-NULL, storage for the 3rd reply argument. * @param r4 If non-NULL, storage for the 4th reply argument. * @param r5 If non-NULL, storage for the 5th reply argument. * * @return Return code of the reply or a negative error code. * */ sysarg_t async_req_slow(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, sysarg_t *r1, sysarg_t *r2, sysarg_t *r3, sysarg_t *r4, sysarg_t *r5) { if (exch == NULL) return ENOENT; ipc_call_t result; aid_t aid = async_send_5(exch, imethod, arg1, arg2, arg3, arg4, arg5, &result); sysarg_t rc; async_wait_for(aid, &rc); if (r1) *r1 = IPC_GET_ARG1(result); if (r2) *r2 = IPC_GET_ARG2(result); if (r3) *r3 = IPC_GET_ARG3(result); if (r4) *r4 = IPC_GET_ARG4(result); if (r5) *r5 = IPC_GET_ARG5(result); return rc; } void async_msg_0(async_exch_t *exch, sysarg_t imethod) { if (exch != NULL) ipc_call_async_0(exch->phone, imethod, NULL, NULL, true); } void async_msg_1(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1) { if (exch != NULL) ipc_call_async_1(exch->phone, imethod, arg1, NULL, NULL, true); } void async_msg_2(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2) { if (exch != NULL) ipc_call_async_2(exch->phone, imethod, arg1, arg2, NULL, NULL, true); } void async_msg_3(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3) { if (exch != NULL) ipc_call_async_3(exch->phone, imethod, arg1, arg2, arg3, NULL, NULL, true); } void async_msg_4(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4) { if (exch != NULL) ipc_call_async_4(exch->phone, imethod, arg1, arg2, arg3, arg4, NULL, NULL, true); } void async_msg_5(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5) { if (exch != NULL) ipc_call_async_5(exch->phone, imethod, arg1, arg2, arg3, arg4, arg5, NULL, NULL, true); } sysarg_t async_answer_0(ipc_callid_t callid, sysarg_t retval) { return ipc_answer_0(callid, retval); } sysarg_t async_answer_1(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1) { return ipc_answer_1(callid, retval, arg1); } sysarg_t async_answer_2(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1, sysarg_t arg2) { return ipc_answer_2(callid, retval, arg1, arg2); } sysarg_t async_answer_3(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3) { return ipc_answer_3(callid, retval, arg1, arg2, arg3); } sysarg_t async_answer_4(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4) { return ipc_answer_4(callid, retval, arg1, arg2, arg3, arg4); } sysarg_t async_answer_5(ipc_callid_t callid, sysarg_t retval, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5) { return ipc_answer_5(callid, retval, arg1, arg2, arg3, arg4, arg5); } int async_forward_fast(ipc_callid_t callid, async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, unsigned int mode) { if (exch == NULL) return ENOENT; return ipc_forward_fast(callid, exch->phone, imethod, arg1, arg2, mode); } int async_forward_slow(ipc_callid_t callid, async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, sysarg_t arg5, unsigned int mode) { if (exch == NULL) return ENOENT; return ipc_forward_slow(callid, exch->phone, imethod, arg1, arg2, arg3, arg4, arg5, mode); } /** Wrapper for making IPC_M_CONNECT_TO_ME calls using the async framework. * * Ask through phone for a new connection to some service. * * @param exch Exchange for sending the message. * @param arg1 User defined argument. * @param arg2 User defined argument. * @param arg3 User defined argument. * @param client_receiver Connection handing routine. * * @return Zero on success or a negative error code. * */ int async_connect_to_me(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, async_client_conn_t client_receiver, void *carg) { if (exch == NULL) return ENOENT; sysarg_t phone_hash; sysarg_t rc; aid_t req; ipc_call_t answer; req = async_send_3(exch, IPC_M_CONNECT_TO_ME, arg1, arg2, arg3, &answer); async_wait_for(req, &rc); if (rc != EOK) return (int) rc; phone_hash = IPC_GET_ARG5(answer); if (client_receiver != NULL) async_new_connection(answer.in_task_id, phone_hash, 0, NULL, client_receiver, carg); return EOK; } /** Wrapper for making IPC_M_CLONE_ESTABLISH calls using the async framework. * * Ask for a cloned connection to some service. * * @param mgmt Exchange management style. * @param exch Exchange for sending the message. * * @return New session on success or NULL on error. * */ async_sess_t *async_clone_establish(exch_mgmt_t mgmt, async_exch_t *exch) { if (exch == NULL) { errno = ENOENT; return NULL; } async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { errno = ENOMEM; return NULL; } ipc_call_t result; amsg_t *msg = amsg_create(); if (!msg) { free(sess); errno = ENOMEM; return NULL; } msg->dataptr = &result; msg->wdata.active = true; ipc_call_async_0(exch->phone, IPC_M_CLONE_ESTABLISH, msg, reply_received, true); sysarg_t rc; async_wait_for((aid_t) msg, &rc); if (rc != EOK) { errno = rc; free(sess); return NULL; } int phone = (int) IPC_GET_ARG5(result); if (phone < 0) { errno = phone; free(sess); return NULL; } sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = 0; sess->arg2 = 0; sess->arg3 = 0; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); return sess; } static int async_connect_me_to_internal(int phone, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4) { ipc_call_t result; amsg_t *msg = amsg_create(); if (!msg) return ENOENT; msg->dataptr = &result; msg->wdata.active = true; ipc_call_async_4(phone, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, arg4, msg, reply_received, true); sysarg_t rc; async_wait_for((aid_t) msg, &rc); if (rc != EOK) return rc; return (int) IPC_GET_ARG5(result); } /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework. * * Ask through for a new connection to some service. * * @param mgmt Exchange management style. * @param exch Exchange for sending the message. * @param arg1 User defined argument. * @param arg2 User defined argument. * @param arg3 User defined argument. * * @return New session on success or NULL on error. * */ async_sess_t *async_connect_me_to(exch_mgmt_t mgmt, async_exch_t *exch, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3) { if (exch == NULL) { errno = ENOENT; return NULL; } async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { errno = ENOMEM; return NULL; } int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3, 0); if (phone < 0) { errno = phone; free(sess); return NULL; } sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = arg1; sess->arg2 = arg2; sess->arg3 = arg3; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); return sess; } /** Set arguments for new connections. * * FIXME This is an ugly hack to work around the problem that parallel * exchanges are implemented using parallel connections. When we create * a callback session, the framework does not know arguments for the new * connections. * * The proper solution seems to be to implement parallel exchanges using * tagging. */ void async_sess_args_set(async_sess_t *sess, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3) { sess->arg1 = arg1; sess->arg2 = arg2; sess->arg3 = arg3; } /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework. * * Ask through phone for a new connection to some service and block until * success. * * @param mgmt Exchange management style. * @param exch Exchange for sending the message. * @param arg1 User defined argument. * @param arg2 User defined argument. * @param arg3 User defined argument. * * @return New session on success or NULL on error. * */ async_sess_t *async_connect_me_to_blocking(exch_mgmt_t mgmt, async_exch_t *exch, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3) { if (exch == NULL) { errno = ENOENT; return NULL; } async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { errno = ENOMEM; return NULL; } int phone = async_connect_me_to_internal(exch->phone, arg1, arg2, arg3, IPC_FLAG_BLOCKING); if (phone < 0) { errno = phone; free(sess); return NULL; } sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = arg1; sess->arg2 = arg2; sess->arg3 = arg3; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); return sess; } /** Connect to a task specified by id. * */ async_sess_t *async_connect_kbox(task_id_t id) { async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { errno = ENOMEM; return NULL; } int phone = ipc_connect_kbox(id); if (phone < 0) { errno = phone; free(sess); return NULL; } sess->mgmt = EXCHANGE_ATOMIC; sess->phone = phone; sess->arg1 = 0; sess->arg2 = 0; sess->arg3 = 0; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); return sess; } static int async_hangup_internal(int phone) { return ipc_hangup(phone); } /** Wrapper for ipc_hangup. * * @param sess Session to hung up. * * @return Zero on success or a negative error code. * */ int async_hangup(async_sess_t *sess) { async_exch_t *exch; assert(sess); if (atomic_get(&sess->refcnt) > 0) return EBUSY; fibril_mutex_lock(&async_sess_mutex); int rc = async_hangup_internal(sess->phone); while (!list_empty(&sess->exch_list)) { exch = (async_exch_t *) list_get_instance(list_first(&sess->exch_list), async_exch_t, sess_link); list_remove(&exch->sess_link); list_remove(&exch->global_link); async_hangup_internal(exch->phone); free(exch); } free(sess); fibril_mutex_unlock(&async_sess_mutex); return rc; } /** Interrupt one thread of this task from waiting for IPC. */ void async_poke(void) { ipc_poke(); } /** Start new exchange in a session. * * @param session Session. * * @return New exchange or NULL on error. * */ async_exch_t *async_exchange_begin(async_sess_t *sess) { if (sess == NULL) return NULL; async_exch_t *exch; fibril_mutex_lock(&async_sess_mutex); if (!list_empty(&sess->exch_list)) { /* * There are inactive exchanges in the session. */ exch = (async_exch_t *) list_get_instance(list_first(&sess->exch_list), async_exch_t, sess_link); list_remove(&exch->sess_link); list_remove(&exch->global_link); } else { /* * There are no available exchanges in the session. */ if ((sess->mgmt == EXCHANGE_ATOMIC) || (sess->mgmt == EXCHANGE_SERIALIZE)) { exch = (async_exch_t *) malloc(sizeof(async_exch_t)); if (exch != NULL) { link_initialize(&exch->sess_link); link_initialize(&exch->global_link); exch->sess = sess; exch->phone = sess->phone; } } else { /* EXCHANGE_PARALLEL */ /* * Make a one-time attempt to connect a new data phone. */ int phone; retry: phone = async_connect_me_to_internal(sess->phone, sess->arg1, sess->arg2, sess->arg3, 0); if (phone >= 0) { exch = (async_exch_t *) malloc(sizeof(async_exch_t)); if (exch != NULL) { link_initialize(&exch->sess_link); link_initialize(&exch->global_link); exch->sess = sess; exch->phone = phone; } else async_hangup_internal(phone); } else if (!list_empty(&inactive_exch_list)) { /* * We did not manage to connect a new phone. But we * can try to close some of the currently inactive * connections in other sessions and try again. */ exch = (async_exch_t *) list_get_instance(list_first(&inactive_exch_list), async_exch_t, global_link); list_remove(&exch->sess_link); list_remove(&exch->global_link); async_hangup_internal(exch->phone); free(exch); goto retry; } else { /* * Wait for a phone to become available. */ fibril_condvar_wait(&avail_phone_cv, &async_sess_mutex); goto retry; } } } fibril_mutex_unlock(&async_sess_mutex); if (exch != NULL) { atomic_inc(&sess->refcnt); if (sess->mgmt == EXCHANGE_SERIALIZE) fibril_mutex_lock(&sess->mutex); } return exch; } /** Finish an exchange. * * @param exch Exchange to finish. * */ void async_exchange_end(async_exch_t *exch) { if (exch == NULL) return; async_sess_t *sess = exch->sess; assert(sess != NULL); atomic_dec(&sess->refcnt); if (sess->mgmt == EXCHANGE_SERIALIZE) fibril_mutex_unlock(&sess->mutex); fibril_mutex_lock(&async_sess_mutex); list_append(&exch->sess_link, &sess->exch_list); list_append(&exch->global_link, &inactive_exch_list); fibril_condvar_signal(&avail_phone_cv); fibril_mutex_unlock(&async_sess_mutex); } /** Wrapper for IPC_M_SHARE_IN calls using the async framework. * * @param exch Exchange for sending the message. * @param size Size of the destination address space area. * @param arg User defined argument. * @param flags Storage for the received flags. Can be NULL. * @param dst Address of the storage for the destination address space area * base address. Cannot be NULL. * * @return Zero on success or a negative error code from errno.h. * */ int async_share_in_start(async_exch_t *exch, size_t size, sysarg_t arg, unsigned int *flags, void **dst) { if (exch == NULL) return ENOENT; sysarg_t _flags = 0; sysarg_t _dst = (sysarg_t) -1; int res = async_req_2_4(exch, IPC_M_SHARE_IN, (sysarg_t) size, arg, NULL, &_flags, NULL, &_dst); if (flags) *flags = (unsigned int) _flags; *dst = (void *) _dst; return res; } /** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_SHARE_IN call. * @param size Destination address space area size. * * @return True on success, false on failure. * */ bool async_share_in_receive(ipc_callid_t *callid, size_t *size) { assert(callid); assert(size); ipc_call_t data; *callid = async_get_call(&data); if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_IN) return false; *size = (size_t) IPC_GET_ARG1(data); return true; } /** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_SHARE_IN * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * @param callid Hash of the IPC_M_DATA_READ call to answer. * @param src Source address space base. * @param flags Flags to be used for sharing. Bits can be only cleared. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_share_in_finalize(ipc_callid_t callid, void *src, unsigned int flags) { return ipc_answer_3(callid, EOK, (sysarg_t) src, (sysarg_t) flags, (sysarg_t) __entry); } /** Wrapper for IPC_M_SHARE_OUT calls using the async framework. * * @param exch Exchange for sending the message. * @param src Source address space area base address. * @param flags Flags to be used for sharing. Bits can be only cleared. * * @return Zero on success or a negative error code from errno.h. * */ int async_share_out_start(async_exch_t *exch, void *src, unsigned int flags) { if (exch == NULL) return ENOENT; return async_req_3_0(exch, IPC_M_SHARE_OUT, (sysarg_t) src, 0, (sysarg_t) flags); } /** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_SHARE_OUT call. * @param size Storage for the source address space area size. * @param flags Storage for the sharing flags. * * @return True on success, false on failure. * */ bool async_share_out_receive(ipc_callid_t *callid, size_t *size, unsigned int *flags) { assert(callid); assert(size); assert(flags); ipc_call_t data; *callid = async_get_call(&data); if (IPC_GET_IMETHOD(data) != IPC_M_SHARE_OUT) return false; *size = (size_t) IPC_GET_ARG2(data); *flags = (unsigned int) IPC_GET_ARG3(data); return true; } /** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * @param callid Hash of the IPC_M_DATA_WRITE call to answer. * @param dst Address of the storage for the destination address space area * base address. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_share_out_finalize(ipc_callid_t callid, void **dst) { return ipc_answer_2(callid, EOK, (sysarg_t) __entry, (sysarg_t) dst); } /** Start IPC_M_DATA_READ using the async framework. * * @param exch Exchange for sending the message. * @param dst Address of the beginning of the destination buffer. * @param size Size of the destination buffer (in bytes). * @param dataptr Storage of call data (arg 2 holds actual data size). * * @return Hash of the sent message or 0 on error. * */ aid_t async_data_read(async_exch_t *exch, void *dst, size_t size, ipc_call_t *dataptr) { return async_send_2(exch, IPC_M_DATA_READ, (sysarg_t) dst, (sysarg_t) size, dataptr); } /** Wrapper for IPC_M_DATA_READ calls using the async framework. * * @param exch Exchange for sending the message. * @param dst Address of the beginning of the destination buffer. * @param size Size of the destination buffer. * * @return Zero on success or a negative error code from errno.h. * */ int async_data_read_start(async_exch_t *exch, void *dst, size_t size) { if (exch == NULL) return ENOENT; return async_req_2_0(exch, IPC_M_DATA_READ, (sysarg_t) dst, (sysarg_t) size); } /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_DATA_READ. * @param size Storage for the maximum size. Can be NULL. * * @return True on success, false on failure. * */ bool async_data_read_receive(ipc_callid_t *callid, size_t *size) { ipc_call_t data; return async_data_read_receive_call(callid, &data, size); } /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_DATA_READ. * @param size Storage for the maximum size. Can be NULL. * * @return True on success, false on failure. * */ bool async_data_read_receive_call(ipc_callid_t *callid, ipc_call_t *data, size_t *size) { assert(callid); assert(data); *callid = async_get_call(data); if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_READ) return false; if (size) *size = (size_t) IPC_GET_ARG2(*data); return true; } /** Wrapper for answering the IPC_M_DATA_READ calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * @param callid Hash of the IPC_M_DATA_READ call to answer. * @param src Source address for the IPC_M_DATA_READ call. * @param size Size for the IPC_M_DATA_READ call. Can be smaller than * the maximum size announced by the sender. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size) { return ipc_answer_2(callid, EOK, (sysarg_t) src, (sysarg_t) size); } /** Wrapper for forwarding any read request * */ int async_data_read_forward_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr) { if (exch == NULL) return ENOENT; ipc_callid_t callid; if (!async_data_read_receive(&callid, NULL)) { ipc_answer_0(callid, EINVAL); return EINVAL; } aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4, dataptr); if (msg == 0) { ipc_answer_0(callid, EINVAL); return EINVAL; } int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); if (retval != EOK) { async_forget(msg); ipc_answer_0(callid, retval); return retval; } sysarg_t rc; async_wait_for(msg, &rc); return (int) rc; } /** Wrapper for IPC_M_DATA_WRITE calls using the async framework. * * @param exch Exchange for sending the message. * @param src Address of the beginning of the source buffer. * @param size Size of the source buffer. * * @return Zero on success or a negative error code from errno.h. * */ int async_data_write_start(async_exch_t *exch, const void *src, size_t size) { if (exch == NULL) return ENOENT; return async_req_2_0(exch, IPC_M_DATA_WRITE, (sysarg_t) src, (sysarg_t) size); } /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_DATA_WRITE. * @param size Storage for the suggested size. May be NULL. * * @return True on success, false on failure. * */ bool async_data_write_receive(ipc_callid_t *callid, size_t *size) { ipc_call_t data; return async_data_write_receive_call(callid, &data, size); } /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage for the hash of the IPC_M_DATA_WRITE. * @param data Storage for the ipc call data. * @param size Storage for the suggested size. May be NULL. * * @return True on success, false on failure. * */ bool async_data_write_receive_call(ipc_callid_t *callid, ipc_call_t *data, size_t *size) { assert(callid); assert(data); *callid = async_get_call(data); if (IPC_GET_IMETHOD(*data) != IPC_M_DATA_WRITE) return false; if (size) *size = (size_t) IPC_GET_ARG2(*data); return true; } /** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE * calls so that the user doesn't have to remember the meaning of each IPC * argument. * * @param callid Hash of the IPC_M_DATA_WRITE call to answer. * @param dst Final destination address for the IPC_M_DATA_WRITE call. * @param size Final size for the IPC_M_DATA_WRITE call. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size) { return ipc_answer_2(callid, EOK, (sysarg_t) dst, (sysarg_t) size); } /** Wrapper for receiving binary data or strings * * This wrapper only makes it more comfortable to use async_data_write_* * functions to receive binary data or strings. * * @param data Pointer to data pointer (which should be later disposed * by free()). If the operation fails, the pointer is not * touched. * @param nullterm If true then the received data is always zero terminated. * This also causes to allocate one extra byte beyond the * raw transmitted data. * @param min_size Minimum size (in bytes) of the data to receive. * @param max_size Maximum size (in bytes) of the data to receive. 0 means * no limit. * @param granulariy If non-zero then the size of the received data has to * be divisible by this value. * @param received If not NULL, the size of the received data is stored here. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_data_write_accept(void **data, const bool nullterm, const size_t min_size, const size_t max_size, const size_t granularity, size_t *received) { assert(data); ipc_callid_t callid; size_t size; if (!async_data_write_receive(&callid, &size)) { ipc_answer_0(callid, EINVAL); return EINVAL; } if (size < min_size) { ipc_answer_0(callid, EINVAL); return EINVAL; } if ((max_size > 0) && (size > max_size)) { ipc_answer_0(callid, EINVAL); return EINVAL; } if ((granularity > 0) && ((size % granularity) != 0)) { ipc_answer_0(callid, EINVAL); return EINVAL; } void *_data; if (nullterm) _data = malloc(size + 1); else _data = malloc(size); if (_data == NULL) { ipc_answer_0(callid, ENOMEM); return ENOMEM; } int rc = async_data_write_finalize(callid, _data, size); if (rc != EOK) { free(_data); return rc; } if (nullterm) ((char *) _data)[size] = 0; *data = _data; if (received != NULL) *received = size; return EOK; } /** Wrapper for voiding any data that is about to be received * * This wrapper can be used to void any pending data * * @param retval Error value from @ref errno.h to be returned to the caller. * */ void async_data_write_void(sysarg_t retval) { ipc_callid_t callid; async_data_write_receive(&callid, NULL); ipc_answer_0(callid, retval); } /** Wrapper for forwarding any data that is about to be received * */ int async_data_write_forward_fast(async_exch_t *exch, sysarg_t imethod, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, sysarg_t arg4, ipc_call_t *dataptr) { if (exch == NULL) return ENOENT; ipc_callid_t callid; if (!async_data_write_receive(&callid, NULL)) { ipc_answer_0(callid, EINVAL); return EINVAL; } aid_t msg = async_send_fast(exch, imethod, arg1, arg2, arg3, arg4, dataptr); if (msg == 0) { ipc_answer_0(callid, EINVAL); return EINVAL; } int retval = ipc_forward_fast(callid, exch->phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); if (retval != EOK) { async_forget(msg); ipc_answer_0(callid, retval); return retval; } sysarg_t rc; async_wait_for(msg, &rc); return (int) rc; } /** Wrapper for sending an exchange over different exchange for cloning * * @param exch Exchange to be used for sending. * @param clone_exch Exchange to be cloned. * */ int async_exchange_clone(async_exch_t *exch, async_exch_t *clone_exch) { return async_req_1_0(exch, IPC_M_CONNECTION_CLONE, clone_exch->phone); } /** Wrapper for receiving the IPC_M_CONNECTION_CLONE calls. * * If the current call is IPC_M_CONNECTION_CLONE then a new * async session is created for the accepted phone. * * @param mgmt Exchange management style. * * @return New async session or NULL on failure. * */ async_sess_t *async_clone_receive(exch_mgmt_t mgmt) { /* Accept the phone */ ipc_call_t call; ipc_callid_t callid = async_get_call(&call); int phone = (int) IPC_GET_ARG1(call); if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECTION_CLONE) || (phone < 0)) { async_answer_0(callid, EINVAL); return NULL; } async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { async_answer_0(callid, ENOMEM); return NULL; } sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = 0; sess->arg2 = 0; sess->arg3 = 0; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); /* Acknowledge the cloned phone */ async_answer_0(callid, EOK); return sess; } /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls. * * If the current call is IPC_M_CONNECT_TO_ME then a new * async session is created for the accepted phone. * * @param mgmt Exchange management style. * * @return New async session. * @return NULL on failure. * */ async_sess_t *async_callback_receive(exch_mgmt_t mgmt) { /* Accept the phone */ ipc_call_t call; ipc_callid_t callid = async_get_call(&call); int phone = (int) IPC_GET_ARG5(call); if ((IPC_GET_IMETHOD(call) != IPC_M_CONNECT_TO_ME) || (phone < 0)) { async_answer_0(callid, EINVAL); return NULL; } async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) { async_answer_0(callid, ENOMEM); return NULL; } sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = 0; sess->arg2 = 0; sess->arg3 = 0; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); /* Acknowledge the connected phone */ async_answer_0(callid, EOK); return sess; } /** Wrapper for receiving the IPC_M_CONNECT_TO_ME calls. * * If the call is IPC_M_CONNECT_TO_ME then a new * async session is created. However, the phone is * not accepted automatically. * * @param mgmt Exchange management style. * @param call Call data. * * @return New async session. * @return NULL on failure. * @return NULL if the call is not IPC_M_CONNECT_TO_ME. * */ async_sess_t *async_callback_receive_start(exch_mgmt_t mgmt, ipc_call_t *call) { int phone = (int) IPC_GET_ARG5(*call); if ((IPC_GET_IMETHOD(*call) != IPC_M_CONNECT_TO_ME) || (phone < 0)) return NULL; async_sess_t *sess = (async_sess_t *) malloc(sizeof(async_sess_t)); if (sess == NULL) return NULL; sess->mgmt = mgmt; sess->phone = phone; sess->arg1 = 0; sess->arg2 = 0; sess->arg3 = 0; fibril_mutex_initialize(&sess->remote_state_mtx); sess->remote_state_data = NULL; list_initialize(&sess->exch_list); fibril_mutex_initialize(&sess->mutex); atomic_set(&sess->refcnt, 0); return sess; } int async_state_change_start(async_exch_t *exch, sysarg_t arg1, sysarg_t arg2, sysarg_t arg3, async_exch_t *other_exch) { return async_req_5_0(exch, IPC_M_STATE_CHANGE_AUTHORIZE, arg1, arg2, arg3, 0, other_exch->phone); } bool async_state_change_receive(ipc_callid_t *callid, sysarg_t *arg1, sysarg_t *arg2, sysarg_t *arg3) { assert(callid); ipc_call_t call; *callid = async_get_call(&call); if (IPC_GET_IMETHOD(call) != IPC_M_STATE_CHANGE_AUTHORIZE) return false; if (arg1) *arg1 = IPC_GET_ARG1(call); if (arg2) *arg2 = IPC_GET_ARG2(call); if (arg3) *arg3 = IPC_GET_ARG3(call); return true; } int async_state_change_finalize(ipc_callid_t callid, async_exch_t *other_exch) { return ipc_answer_1(callid, EOK, other_exch->phone); } /** Lock and get session remote state * * Lock and get the local replica of the remote state * in stateful sessions. The call should be paired * with async_remote_state_release*(). * * @param[in] sess Stateful session. * * @return Local replica of the remote state. * */ void *async_remote_state_acquire(async_sess_t *sess) { fibril_mutex_lock(&sess->remote_state_mtx); return sess->remote_state_data; } /** Update the session remote state * * Update the local replica of the remote state * in stateful sessions. The remote state must * be already locked. * * @param[in] sess Stateful session. * @param[in] state New local replica of the remote state. * */ void async_remote_state_update(async_sess_t *sess, void *state) { assert(fibril_mutex_is_locked(&sess->remote_state_mtx)); sess->remote_state_data = state; } /** Release the session remote state * * Unlock the local replica of the remote state * in stateful sessions. * * @param[in] sess Stateful session. * */ void async_remote_state_release(async_sess_t *sess) { assert(fibril_mutex_is_locked(&sess->remote_state_mtx)); fibril_mutex_unlock(&sess->remote_state_mtx); } /** Release the session remote state and end an exchange * * Unlock the local replica of the remote state * in stateful sessions. This is convenience function * which gets the session pointer from the exchange * and also ends the exchange. * * @param[in] exch Stateful session's exchange. * */ void async_remote_state_release_exchange(async_exch_t *exch) { if (exch == NULL) return; async_sess_t *sess = exch->sess; assert(fibril_mutex_is_locked(&sess->remote_state_mtx)); async_exchange_end(exch); fibril_mutex_unlock(&sess->remote_state_mtx); } /** @} */