/* * Copyright (c) 2006 Ondrej Palkovsky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup libc * @{ */ /** @file */ /** * Asynchronous library * * The aim of this library is to provide a facility for writing programs which * utilize the asynchronous nature of HelenOS IPC, yet using a normal way of * programming. * * You should be able to write very simple multithreaded programs, the async * framework will automatically take care of most synchronization problems. * * Default semantics: * - async_send_*(): Send asynchronously. If the kernel refuses to send * more messages, [ try to get responses from kernel, if * nothing found, might try synchronous ] * * Example of use (pseudo C): * * 1) Multithreaded client application * * fibril_create(fibril1, ...); * fibril_create(fibril2, ...); * ... * * int fibril1(void *arg) * { * conn = ipc_connect_me_to(); * c1 = async_send(conn); * c2 = async_send(conn); * async_wait_for(c1); * async_wait_for(c2); * ... * } * * * 2) Multithreaded server application * * main() * { * async_manager(); * } * * my_client_connection(icallid, *icall) * { * if (want_refuse) { * ipc_answer_0(icallid, ELIMIT); * return; * } * ipc_answer_0(icallid, EOK); * * callid = async_get_call(&call); * somehow_handle_the_call(callid, call); * ipc_answer_2(callid, 1, 2, 3); * * callid = async_get_call(&call); * ... * } * */ #include #include #include #include #include #include #include #include #include #include #include #include #include atomic_t async_futex = FUTEX_INITIALIZER; /** Number of threads waiting for IPC in the kernel. */ atomic_t threads_in_ipc_wait = { 0 }; typedef struct { awaiter_t wdata; /** If reply was received. */ bool done; /** Pointer to where the answer data is stored. */ ipc_call_t *dataptr; ipcarg_t retval; } amsg_t; /** * Structures of this type are used to group information about a call and a * message queue link. */ typedef struct { link_t link; ipc_callid_t callid; ipc_call_t call; } msg_t; typedef struct { awaiter_t wdata; /** Hash table link. */ link_t link; /** Incoming phone hash. */ ipcarg_t in_phone_hash; /** Messages that should be delivered to this fibril. */ link_t msg_queue; /** Identification of the opening call. */ ipc_callid_t callid; /** Call data of the opening call. */ ipc_call_t call; /** Identification of the closing call. */ ipc_callid_t close_callid; /** Fibril function that will be used to handle the connection. */ void (*cfibril)(ipc_callid_t, ipc_call_t *); } connection_t; /** Identifier of the incoming connection handled by the current fibril. */ fibril_local connection_t *FIBRIL_connection; static void default_client_connection(ipc_callid_t callid, ipc_call_t *call); static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call); /** * Pointer to a fibril function that will be used to handle connections. */ static async_client_conn_t client_connection = default_client_connection; /** * Pointer to a fibril function that will be used to handle interrupt * notifications. */ static async_client_conn_t interrupt_received = default_interrupt_received; static hash_table_t conn_hash_table; static LIST_INITIALIZE(timeout_list); #define CONN_HASH_TABLE_CHAINS 32 /** Compute hash into the connection hash table based on the source phone hash. * * @param key Pointer to source phone hash. * * @return Index into the connection hash table. * */ static hash_index_t conn_hash(unsigned long *key) { assert(key); return (((*key) >> 4) % CONN_HASH_TABLE_CHAINS); } /** Compare hash table item with a key. * * @param key Array containing the source phone hash as the only item. * @param keys Expected 1 but ignored. * @param item Connection hash table item. * * @return True on match, false otherwise. * */ static int conn_compare(unsigned long key[], hash_count_t keys, link_t *item) { connection_t *hs = hash_table_get_instance(item, connection_t, link); return (key[0] == hs->in_phone_hash); } /** Connection hash table removal callback function. * * This function is called whenever a connection is removed from the connection * hash table. * * @param item Connection hash table item being removed. * */ static void conn_remove(link_t *item) { free(hash_table_get_instance(item, connection_t, link)); } /** Operations for the connection hash table. */ static hash_table_operations_t conn_hash_table_ops = { .hash = conn_hash, .compare = conn_compare, .remove_callback = conn_remove }; /** Sort in current fibril's timeout request. * * @param wd Wait data of the current fibril. * */ void async_insert_timeout(awaiter_t *wd) { wd->to_event.occurred = false; wd->to_event.inlist = true; link_t *tmp = timeout_list.next; while (tmp != &timeout_list) { awaiter_t *cur; cur = list_get_instance(tmp, awaiter_t, to_event.link); if (tv_gteq(&cur->to_event.expires, &wd->to_event.expires)) break; tmp = tmp->next; } list_append(&wd->to_event.link, tmp); } /** Try to route a call to an appropriate connection fibril. * * If the proper connection fibril is found, a message with the call is added to * its message queue. If the fibril was not active, it is activated and all * timeouts are unregistered. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * * @return False if the call doesn't match any connection. * True if the call was passed to the respective connection fibril. * */ static bool route_call(ipc_callid_t callid, ipc_call_t *call) { futex_down(&async_futex); unsigned long key = call->in_phone_hash; link_t *hlp = hash_table_find(&conn_hash_table, &key); if (!hlp) { futex_up(&async_futex); return false; } connection_t *conn = hash_table_get_instance(hlp, connection_t, link); msg_t *msg = malloc(sizeof(*msg)); if (!msg) { futex_up(&async_futex); return false; } msg->callid = callid; msg->call = *call; list_append(&msg->link, &conn->msg_queue); if (IPC_GET_METHOD(*call) == IPC_M_PHONE_HUNGUP) conn->close_callid = callid; /* If the connection fibril is waiting for an event, activate it */ if (!conn->wdata.active) { /* If in timeout list, remove it */ if (conn->wdata.to_event.inlist) { conn->wdata.to_event.inlist = false; list_remove(&conn->wdata.to_event.link); } conn->wdata.active = true; fibril_add_ready(conn->wdata.fid); } futex_up(&async_futex); return true; } /** Notification fibril. * * When a notification arrives, a fibril with this implementing function is * created. It calls interrupt_received() and does the final cleanup. * * @param arg Message structure pointer. * * @return Always zero. * */ static int notification_fibril(void *arg) { msg_t *msg = (msg_t *) arg; interrupt_received(msg->callid, &msg->call); free(msg); return 0; } /** Process interrupt notification. * * A new fibril is created which would process the notification. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * * @return False if an error occured. * True if the call was passed to the notification fibril. * */ static bool process_notification(ipc_callid_t callid, ipc_call_t *call) { futex_down(&async_futex); msg_t *msg = malloc(sizeof(*msg)); if (!msg) { futex_up(&async_futex); return false; } msg->callid = callid; msg->call = *call; fid_t fid = fibril_create(notification_fibril, msg); fibril_add_ready(fid); futex_up(&async_futex); return true; } /** Return new incoming message for the current (fibril-local) connection. * * @param call Storage where the incoming call data will be stored. * @param usecs Timeout in microseconds. Zero denotes no timeout. * * @return If no timeout was specified, then a hash of the * incoming call is returned. If a timeout is specified, * then a hash of the incoming call is returned unless * the timeout expires prior to receiving a message. In * that case zero is returned. * */ ipc_callid_t async_get_call_timeout(ipc_call_t *call, suseconds_t usecs) { assert(FIBRIL_connection); /* Why doing this? * GCC 4.1.0 coughs on FIBRIL_connection-> dereference. * GCC 4.1.1 happilly puts the rdhwr instruction in delay slot. * I would never expect to find so many errors in * a compiler. */ connection_t *conn = FIBRIL_connection; futex_down(&async_futex); if (usecs) { gettimeofday(&conn->wdata.to_event.expires, NULL); tv_add(&conn->wdata.to_event.expires, usecs); } else conn->wdata.to_event.inlist = false; /* If nothing in queue, wait until something arrives */ while (list_empty(&conn->msg_queue)) { if (conn->close_callid) { /* * Handle the case when the connection was already * closed by the client but the server did not notice * the first IPC_M_PHONE_HUNGUP call and continues to * call async_get_call_timeout(). Repeat * IPC_M_PHONE_HUNGUP until the caller notices. */ memset(call, 0, sizeof(ipc_call_t)); IPC_SET_METHOD(*call, IPC_M_PHONE_HUNGUP); futex_up(&async_futex); return conn->close_callid; } if (usecs) async_insert_timeout(&conn->wdata); conn->wdata.active = false; /* * Note: the current fibril will be rescheduled either due to a * timeout or due to an arriving message destined to it. In the * former case, handle_expired_timeouts() and, in the latter * case, route_call() will perform the wakeup. */ fibril_switch(FIBRIL_TO_MANAGER); /* * Futex is up after getting back from async_manager. * Get it again. */ futex_down(&async_futex); if ((usecs) && (conn->wdata.to_event.occurred) && (list_empty(&conn->msg_queue))) { /* If we timed out -> exit */ futex_up(&async_futex); return 0; } } msg_t *msg = list_get_instance(conn->msg_queue.next, msg_t, link); list_remove(&msg->link); ipc_callid_t callid = msg->callid; *call = msg->call; free(msg); futex_up(&async_futex); return callid; } /** Default fibril function that gets called to handle new connection. * * This function is defined as a weak symbol - to be redefined in user code. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * */ static void default_client_connection(ipc_callid_t callid, ipc_call_t *call) { ipc_answer_0(callid, ENOENT); } /** Default fibril function that gets called to handle interrupt notifications. * * This function is defined as a weak symbol - to be redefined in user code. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * */ static void default_interrupt_received(ipc_callid_t callid, ipc_call_t *call) { } /** Wrapper for client connection fibril. * * When a new connection arrives, a fibril with this implementing function is * created. It calls client_connection() and does the final cleanup. * * @param arg Connection structure pointer. * * @return Always zero. * */ static int connection_fibril(void *arg) { /* * Setup fibril-local connection pointer and call client_connection(). * */ FIBRIL_connection = (connection_t *) arg; FIBRIL_connection->cfibril(FIBRIL_connection->callid, &FIBRIL_connection->call); /* Remove myself from the connection hash table */ futex_down(&async_futex); unsigned long key = FIBRIL_connection->in_phone_hash; hash_table_remove(&conn_hash_table, &key, 1); futex_up(&async_futex); /* Answer all remaining messages with EHANGUP */ while (!list_empty(&FIBRIL_connection->msg_queue)) { msg_t *msg; msg = list_get_instance(FIBRIL_connection->msg_queue.next, msg_t, link); list_remove(&msg->link); ipc_answer_0(msg->callid, EHANGUP); free(msg); } if (FIBRIL_connection->close_callid) ipc_answer_0(FIBRIL_connection->close_callid, EOK); return 0; } /** Create a new fibril for a new connection. * * Create new fibril for connection, fill in connection structures and inserts * it into the hash table, so that later we can easily do routing of messages to * particular fibrils. * * @param in_phone_hash Identification of the incoming connection. * @param callid Hash of the opening IPC_M_CONNECT_ME_TO call. * If callid is zero, the connection was opened by * accepting the IPC_M_CONNECT_TO_ME call and this function * is called directly by the server. * @param call Call data of the opening call. * @param cfibril Fibril function that should be called upon opening the * connection. * * @return New fibril id or NULL on failure. * */ fid_t async_new_connection(ipcarg_t in_phone_hash, ipc_callid_t callid, ipc_call_t *call, void (*cfibril)(ipc_callid_t, ipc_call_t *)) { connection_t *conn = malloc(sizeof(*conn)); if (!conn) { if (callid) ipc_answer_0(callid, ENOMEM); return NULL; } conn->in_phone_hash = in_phone_hash; list_initialize(&conn->msg_queue); conn->callid = callid; conn->close_callid = 0; if (call) conn->call = *call; /* We will activate the fibril ASAP */ conn->wdata.active = true; conn->cfibril = cfibril; conn->wdata.fid = fibril_create(connection_fibril, conn); if (!conn->wdata.fid) { free(conn); if (callid) ipc_answer_0(callid, ENOMEM); return NULL; } /* Add connection to the connection hash table */ unsigned long key = conn->in_phone_hash; futex_down(&async_futex); hash_table_insert(&conn_hash_table, &key, &conn->link); futex_up(&async_futex); fibril_add_ready(conn->wdata.fid); return conn->wdata.fid; } /** Handle a call that was received. * * If the call has the IPC_M_CONNECT_ME_TO method, a new connection is created. * Otherwise the call is routed to its connection fibril. * * @param callid Hash of the incoming call. * @param call Data of the incoming call. * */ static void handle_call(ipc_callid_t callid, ipc_call_t *call) { /* Unrouted call - do some default behaviour */ if ((callid & IPC_CALLID_NOTIFICATION)) { process_notification(callid, call); goto out; } switch (IPC_GET_METHOD(*call)) { case IPC_M_CONNECT_ME: case IPC_M_CONNECT_ME_TO: /* Open new connection with fibril etc. */ async_new_connection(IPC_GET_ARG5(*call), callid, call, client_connection); goto out; } /* Try to route the call through the connection hash table */ if (route_call(callid, call)) goto out; /* Unknown call from unknown phone - hang it up */ ipc_answer_0(callid, EHANGUP); return; out: ; } /** Fire all timeouts that expired. */ static void handle_expired_timeouts(void) { struct timeval tv; gettimeofday(&tv, NULL); futex_down(&async_futex); link_t *cur = timeout_list.next; while (cur != &timeout_list) { awaiter_t *waiter; waiter = list_get_instance(cur, awaiter_t, to_event.link); if (tv_gt(&waiter->to_event.expires, &tv)) break; cur = cur->next; list_remove(&waiter->to_event.link); waiter->to_event.inlist = false; waiter->to_event.occurred = true; /* * Redundant condition? * The fibril should not be active when it gets here. */ if (!waiter->active) { waiter->active = true; fibril_add_ready(waiter->fid); } } futex_up(&async_futex); } /** Endless loop dispatching incoming calls and answers. * * @return Never returns. * */ static int async_manager_worker(void) { while (true) { if (fibril_switch(FIBRIL_FROM_MANAGER)) { futex_up(&async_futex); /* * async_futex is always held when entering a manager * fibril. */ continue; } futex_down(&async_futex); suseconds_t timeout; if (!list_empty(&timeout_list)) { awaiter_t *waiter = list_get_instance(timeout_list.next, awaiter_t, to_event.link); struct timeval tv; gettimeofday(&tv, NULL); if (tv_gteq(&tv, &waiter->to_event.expires)) { futex_up(&async_futex); handle_expired_timeouts(); continue; } else timeout = tv_sub(&waiter->to_event.expires, &tv); } else timeout = SYNCH_NO_TIMEOUT; futex_up(&async_futex); atomic_inc(&threads_in_ipc_wait); ipc_call_t call; ipc_callid_t callid = ipc_wait_cycle(&call, timeout, SYNCH_FLAGS_NONE); atomic_dec(&threads_in_ipc_wait); if (!callid) { handle_expired_timeouts(); continue; } if (callid & IPC_CALLID_ANSWERED) continue; handle_call(callid, &call); } return 0; } /** Function to start async_manager as a standalone fibril. * * When more kernel threads are used, one async manager should exist per thread. * * @param arg Unused. * @return Never returns. * */ static int async_manager_fibril(void *arg) { futex_up(&async_futex); /* * async_futex is always locked when entering manager */ async_manager_worker(); return 0; } /** Add one manager to manager list. */ void async_create_manager(void) { fid_t fid = fibril_create(async_manager_fibril, NULL); fibril_add_manager(fid); } /** Remove one manager from manager list */ void async_destroy_manager(void) { fibril_remove_manager(); } /** Initialize the async framework. * * @return Zero on success or an error code. */ int __async_init(void) { if (!hash_table_create(&conn_hash_table, CONN_HASH_TABLE_CHAINS, 1, &conn_hash_table_ops)) { printf("%s: cannot create hash table\n", "async"); return ENOMEM; } return 0; } /** Reply received callback. * * This function is called whenever a reply for an asynchronous message sent out * by the asynchronous framework is received. * * Notify the fibril which is waiting for this message that it has arrived. * * @param arg Pointer to the asynchronous message record. * @param retval Value returned in the answer. * @param data Call data of the answer. */ static void reply_received(void *arg, int retval, ipc_call_t *data) { futex_down(&async_futex); amsg_t *msg = (amsg_t *) arg; msg->retval = retval; /* Copy data after futex_down, just in case the call was detached */ if ((msg->dataptr) && (data)) *msg->dataptr = *data; write_barrier(); /* Remove message from timeout list */ if (msg->wdata.to_event.inlist) list_remove(&msg->wdata.to_event.link); msg->done = true; if (!msg->wdata.active) { msg->wdata.active = true; fibril_add_ready(msg->wdata.fid); } futex_up(&async_futex); } /** Send message and return id of the sent message. * * The return value can be used as input for async_wait() to wait for * completion. * * @param phoneid Handle of the phone that will be used for the send. * @param method Service-defined method. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param dataptr If non-NULL, storage where the reply data will be * stored. * * @return Hash of the sent message or 0 on error. * */ aid_t async_send_fast(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipc_call_t *dataptr) { amsg_t *msg = malloc(sizeof(*msg)); if (!msg) return 0; msg->done = false; msg->dataptr = dataptr; msg->wdata.to_event.inlist = false; /* We may sleep in the next method, but it will use its own mechanism */ msg->wdata.active = true; ipc_call_async_4(phoneid, method, arg1, arg2, arg3, arg4, msg, reply_received, true); return (aid_t) msg; } /** Send message and return id of the sent message * * The return value can be used as input for async_wait() to wait for * completion. * * @param phoneid Handle of the phone that will be used for the send. * @param method Service-defined method. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param arg5 Service-defined payload argument. * @param dataptr If non-NULL, storage where the reply data will be * stored. * * @return Hash of the sent message or 0 on error. * */ aid_t async_send_slow(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipcarg_t arg5, ipc_call_t *dataptr) { amsg_t *msg = malloc(sizeof(*msg)); if (!msg) return 0; msg->done = false; msg->dataptr = dataptr; msg->wdata.to_event.inlist = false; /* We may sleep in next method, but it will use its own mechanism */ msg->wdata.active = true; ipc_call_async_5(phoneid, method, arg1, arg2, arg3, arg4, arg5, msg, reply_received, true); return (aid_t) msg; } /** Wait for a message sent by the async framework. * * @param amsgid Hash of the message to wait for. * @param retval Pointer to storage where the retval of the answer will * be stored. * */ void async_wait_for(aid_t amsgid, ipcarg_t *retval) { amsg_t *msg = (amsg_t *) amsgid; futex_down(&async_futex); if (msg->done) { futex_up(&async_futex); goto done; } msg->wdata.fid = fibril_get_id(); msg->wdata.active = false; msg->wdata.to_event.inlist = false; /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch */ done: if (retval) *retval = msg->retval; free(msg); } /** Wait for a message sent by the async framework, timeout variant. * * @param amsgid Hash of the message to wait for. * @param retval Pointer to storage where the retval of the answer will * be stored. * @param timeout Timeout in microseconds. * * @return Zero on success, ETIMEOUT if the timeout has expired. * */ int async_wait_timeout(aid_t amsgid, ipcarg_t *retval, suseconds_t timeout) { amsg_t *msg = (amsg_t *) amsgid; /* TODO: Let it go through the event read at least once */ if (timeout < 0) return ETIMEOUT; futex_down(&async_futex); if (msg->done) { futex_up(&async_futex); goto done; } gettimeofday(&msg->wdata.to_event.expires, NULL); tv_add(&msg->wdata.to_event.expires, timeout); msg->wdata.fid = fibril_get_id(); msg->wdata.active = false; async_insert_timeout(&msg->wdata); /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch */ if (!msg->done) return ETIMEOUT; done: if (retval) *retval = msg->retval; free(msg); return 0; } /** Wait for specified time. * * The current fibril is suspended but the thread continues to execute. * * @param timeout Duration of the wait in microseconds. * */ void async_usleep(suseconds_t timeout) { amsg_t *msg = malloc(sizeof(*msg)); if (!msg) return; msg->wdata.fid = fibril_get_id(); msg->wdata.active = false; gettimeofday(&msg->wdata.to_event.expires, NULL); tv_add(&msg->wdata.to_event.expires, timeout); futex_down(&async_futex); async_insert_timeout(&msg->wdata); /* Leave the async_futex locked when entering this function */ fibril_switch(FIBRIL_TO_MANAGER); /* Futex is up automatically after fibril_switch() */ free(msg); } /** Setter for client_connection function pointer. * * @param conn Function that will implement a new connection fibril. * */ void async_set_client_connection(async_client_conn_t conn) { client_connection = conn; } /** Setter for interrupt_received function pointer. * * @param intr Function that will implement a new interrupt * notification fibril. */ void async_set_interrupt_received(async_client_conn_t intr) { interrupt_received = intr; } /** Pseudo-synchronous message sending - fast version. * * Send message asynchronously and return only after the reply arrives. * * This function can only transfer 4 register payload arguments. For * transferring more arguments, see the slower async_req_slow(). * * @param phoneid Hash of the phone through which to make the call. * @param method Method of the call. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param r1 If non-NULL, storage for the 1st reply argument. * @param r2 If non-NULL, storage for the 2nd reply argument. * @param r3 If non-NULL, storage for the 3rd reply argument. * @param r4 If non-NULL, storage for the 4th reply argument. * @param r5 If non-NULL, storage for the 5th reply argument. * * @return Return code of the reply or a negative error code. * */ ipcarg_t async_req_fast(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipcarg_t *r1, ipcarg_t *r2, ipcarg_t *r3, ipcarg_t *r4, ipcarg_t *r5) { ipc_call_t result; aid_t eid = async_send_4(phoneid, method, arg1, arg2, arg3, arg4, &result); ipcarg_t rc; async_wait_for(eid, &rc); if (r1) *r1 = IPC_GET_ARG1(result); if (r2) *r2 = IPC_GET_ARG2(result); if (r3) *r3 = IPC_GET_ARG3(result); if (r4) *r4 = IPC_GET_ARG4(result); if (r5) *r5 = IPC_GET_ARG5(result); return rc; } /** Pseudo-synchronous message sending - slow version. * * Send message asynchronously and return only after the reply arrives. * * @param phoneid Hash of the phone through which to make the call. * @param method Method of the call. * @param arg1 Service-defined payload argument. * @param arg2 Service-defined payload argument. * @param arg3 Service-defined payload argument. * @param arg4 Service-defined payload argument. * @param arg5 Service-defined payload argument. * @param r1 If non-NULL, storage for the 1st reply argument. * @param r2 If non-NULL, storage for the 2nd reply argument. * @param r3 If non-NULL, storage for the 3rd reply argument. * @param r4 If non-NULL, storage for the 4th reply argument. * @param r5 If non-NULL, storage for the 5th reply argument. * * @return Return code of the reply or a negative error code. * */ ipcarg_t async_req_slow(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipcarg_t arg5, ipcarg_t *r1, ipcarg_t *r2, ipcarg_t *r3, ipcarg_t *r4, ipcarg_t *r5) { ipc_call_t result; aid_t eid = async_send_5(phoneid, method, arg1, arg2, arg3, arg4, arg5, &result); ipcarg_t rc; async_wait_for(eid, &rc); if (r1) *r1 = IPC_GET_ARG1(result); if (r2) *r2 = IPC_GET_ARG2(result); if (r3) *r3 = IPC_GET_ARG3(result); if (r4) *r4 = IPC_GET_ARG4(result); if (r5) *r5 = IPC_GET_ARG5(result); return rc; } /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework. * * Ask through phone for a new connection to some service. * * @param phoneid Phone handle used for contacting the other side. * @param arg1 User defined argument. * @param arg2 User defined argument. * @param arg3 User defined argument. * * @return New phone handle on success or a negative error code. */ int async_connect_me_to(int phoneid, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3) { int rc; ipcarg_t newphid; rc = async_req_3_5(phoneid, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, NULL, NULL, NULL, NULL, &newphid); if (rc != EOK) return rc; return newphid; } /** Wrapper for making IPC_M_CONNECT_ME_TO calls using the async framework. * * Ask through phone for a new connection to some service and block until * success. * * @param phoneid Phone handle used for contacting the other side. * @param arg1 User defined argument. * @param arg2 User defined argument. * @param arg3 User defined argument. * * @return New phone handle on success or a negative error code. */ int async_connect_me_to_blocking(int phoneid, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3) { int rc; ipcarg_t newphid; rc = async_req_4_5(phoneid, IPC_M_CONNECT_ME_TO, arg1, arg2, arg3, IPC_FLAG_BLOCKING, NULL, NULL, NULL, NULL, &newphid); if (rc != EOK) return rc; return newphid; } /** Wrapper for making IPC_M_SHARE_IN calls using the async framework. * * @param phoneid Phone that will be used to contact the receiving side. * @param dst Destination address space area base. * @param size Size of the destination address space area. * @param arg User defined argument. * @param flags Storage where the received flags will be stored. Can be * NULL. * * @return Zero on success or a negative error code from errno.h. */ int async_share_in_start(int phoneid, void *dst, size_t size, ipcarg_t arg, int *flags) { int res; sysarg_t tmp_flags; res = async_req_3_2(phoneid, IPC_M_SHARE_IN, (ipcarg_t) dst, (ipcarg_t) size, arg, NULL, &tmp_flags); if (flags) *flags = tmp_flags; return res; } /** Wrapper for receiving the IPC_M_SHARE_IN calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_SHARE_IN calls * so that the user doesn't have to remember the meaning of each IPC argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage where the hash of the IPC_M_SHARE_IN call will * be stored. * @param size Destination address space area size. * * @return Non-zero on success, zero on failure. */ int async_share_in_receive(ipc_callid_t *callid, size_t *size) { ipc_call_t data; assert(callid); assert(size); *callid = async_get_call(&data); if (IPC_GET_METHOD(data) != IPC_M_SHARE_IN) return 0; *size = (size_t) IPC_GET_ARG2(data); return 1; } /** Wrapper for answering the IPC_M_SHARE_IN calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ calls * so that the user doesn't have to remember the meaning of each IPC argument. * * @param callid Hash of the IPC_M_DATA_READ call to answer. * @param src Source address space base. * @param flags Flags to be used for sharing. Bits can be only cleared. * * @return Zero on success or a value from @ref errno.h on failure. */ int async_share_in_finalize(ipc_callid_t callid, void *src, int flags) { return ipc_share_in_finalize(callid, src, flags); } /** Wrapper for making IPC_M_SHARE_OUT calls using the async framework. * * @param phoneid Phone that will be used to contact the receiving side. * @param src Source address space area base address. * @param flags Flags to be used for sharing. Bits can be only cleared. * * @return Zero on success or a negative error code from errno.h. */ int async_share_out_start(int phoneid, void *src, int flags) { return async_req_3_0(phoneid, IPC_M_SHARE_OUT, (ipcarg_t) src, 0, (ipcarg_t) flags); } /** Wrapper for receiving the IPC_M_SHARE_OUT calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_SHARE_OUT calls * so that the user doesn't have to remember the meaning of each IPC argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage where the hash of the IPC_M_SHARE_OUT call will * be stored. * @param size Storage where the source address space area size will be * stored. * @param flags Storage where the sharing flags will be stored. * * @return Non-zero on success, zero on failure. */ int async_share_out_receive(ipc_callid_t *callid, size_t *size, int *flags) { ipc_call_t data; assert(callid); assert(size); assert(flags); *callid = async_get_call(&data); if (IPC_GET_METHOD(data) != IPC_M_SHARE_OUT) return 0; *size = (size_t) IPC_GET_ARG2(data); *flags = (int) IPC_GET_ARG3(data); return 1; } /** Wrapper for answering the IPC_M_SHARE_OUT calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_SHARE_OUT calls * so that the user doesn't have to remember the meaning of each IPC argument. * * @param callid Hash of the IPC_M_DATA_WRITE call to answer. * @param dst Destination address space area base address. * * @return Zero on success or a value from @ref errno.h on failure. */ int async_share_out_finalize(ipc_callid_t callid, void *dst) { return ipc_share_out_finalize(callid, dst); } /** Wrapper for making IPC_M_DATA_READ calls using the async framework. * * @param phoneid Phone that will be used to contact the receiving side. * @param dst Address of the beginning of the destination buffer. * @param size Size of the destination buffer. * * @return Zero on success or a negative error code from errno.h. */ int async_data_read_start(int phoneid, void *dst, size_t size) { return async_req_2_0(phoneid, IPC_M_DATA_READ, (ipcarg_t) dst, (ipcarg_t) size); } /** Wrapper for receiving the IPC_M_DATA_READ calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_READ calls * so that the user doesn't have to remember the meaning of each IPC argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage where the hash of the IPC_M_DATA_READ call will * be stored. * @param size Storage where the maximum size will be stored. Can be * NULL. * * @return Non-zero on success, zero on failure. */ int async_data_read_receive(ipc_callid_t *callid, size_t *size) { ipc_call_t data; assert(callid); *callid = async_get_call(&data); if (IPC_GET_METHOD(data) != IPC_M_DATA_READ) return 0; if (size) *size = (size_t) IPC_GET_ARG2(data); return 1; } /** Wrapper for answering the IPC_M_DATA_READ calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_DATA_READ calls * so that the user doesn't have to remember the meaning of each IPC argument. * * @param callid Hash of the IPC_M_DATA_READ call to answer. * @param src Source address for the IPC_M_DATA_READ call. * @param size Size for the IPC_M_DATA_READ call. Can be smaller than * the maximum size announced by the sender. * * @return Zero on success or a value from @ref errno.h on failure. */ int async_data_read_finalize(ipc_callid_t callid, const void *src, size_t size) { return ipc_data_read_finalize(callid, src, size); } /** Wrapper for forwarding any read request * * */ int async_data_read_forward_fast(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipc_call_t *dataptr) { ipc_callid_t callid; if (!async_data_read_receive(&callid, NULL)) { ipc_answer_0(callid, EINVAL); return EINVAL; } aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4, dataptr); if (msg == 0) { ipc_answer_0(callid, EINVAL); return EINVAL; } int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); if (retval != EOK) { async_wait_for(msg, NULL); ipc_answer_0(callid, retval); return retval; } ipcarg_t rc; async_wait_for(msg, &rc); return (int) rc; } /** Wrapper for making IPC_M_DATA_WRITE calls using the async framework. * * @param phoneid Phone that will be used to contact the receiving side. * @param src Address of the beginning of the source buffer. * @param size Size of the source buffer. * * @return Zero on success or a negative error code from errno.h. * */ int async_data_write_start(int phoneid, const void *src, size_t size) { return async_req_2_0(phoneid, IPC_M_DATA_WRITE, (ipcarg_t) src, (ipcarg_t) size); } /** Wrapper for receiving the IPC_M_DATA_WRITE calls using the async framework. * * This wrapper only makes it more comfortable to receive IPC_M_DATA_WRITE calls * so that the user doesn't have to remember the meaning of each IPC argument. * * So far, this wrapper is to be used from within a connection fibril. * * @param callid Storage where the hash of the IPC_M_DATA_WRITE call will * be stored. * @param size Storage where the suggested size will be stored. May be * NULL * * @return Non-zero on success, zero on failure. * */ int async_data_write_receive(ipc_callid_t *callid, size_t *size) { ipc_call_t data; assert(callid); *callid = async_get_call(&data); if (IPC_GET_METHOD(data) != IPC_M_DATA_WRITE) return 0; if (size) *size = (size_t) IPC_GET_ARG2(data); return 1; } /** Wrapper for answering the IPC_M_DATA_WRITE calls using the async framework. * * This wrapper only makes it more comfortable to answer IPC_M_DATA_WRITE calls * so that the user doesn't have to remember the meaning of each IPC argument. * * @param callid Hash of the IPC_M_DATA_WRITE call to answer. * @param dst Final destination address for the IPC_M_DATA_WRITE call. * @param size Final size for the IPC_M_DATA_WRITE call. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_data_write_finalize(ipc_callid_t callid, void *dst, size_t size) { return ipc_data_write_finalize(callid, dst, size); } /** Wrapper for receiving binary data or strings * * This wrapper only makes it more comfortable to use async_data_write_* * functions to receive binary data or strings. * * @param data Pointer to data pointer (which should be later disposed * by free()). If the operation fails, the pointer is not * touched. * @param nullterm If true then the received data is always zero terminated. * This also causes to allocate one extra byte beyond the * raw transmitted data. * @param min_size Minimum size (in bytes) of the data to receive. * @param max_size Maximum size (in bytes) of the data to receive. 0 means * no limit. * @param granulariy If non-zero then the size of the received data has to * be divisible by this value. * @param received If not NULL, the size of the received data is stored here. * * @return Zero on success or a value from @ref errno.h on failure. * */ int async_data_write_accept(void **data, const bool nullterm, const size_t min_size, const size_t max_size, const size_t granularity, size_t *received) { ipc_callid_t callid; size_t size; if (!async_data_write_receive(&callid, &size)) { ipc_answer_0(callid, EINVAL); return EINVAL; } if (size < min_size) { ipc_answer_0(callid, EINVAL); return EINVAL; } if ((max_size > 0) && (size > max_size)) { ipc_answer_0(callid, EINVAL); return EINVAL; } if ((granularity > 0) && ((size % granularity) != 0)) { ipc_answer_0(callid, EINVAL); return EINVAL; } void *_data; if (nullterm) _data = malloc(size + 1); else _data = malloc(size); if (_data == NULL) { ipc_answer_0(callid, ENOMEM); return ENOMEM; } int rc = async_data_write_finalize(callid, _data, size); if (rc != EOK) { free(_data); return rc; } if (nullterm) ((char *) _data)[size] = 0; *data = _data; if (received != NULL) *received = size; return EOK; } /** Wrapper for voiding any data that is about to be received * * This wrapper can be used to void any pending data * * @param retval Error value from @ref errno.h to be returned to the caller. * */ void async_data_write_void(const int retval) { ipc_callid_t callid; async_data_write_receive(&callid, NULL); ipc_answer_0(callid, retval); } /** Wrapper for forwarding any data that is about to be received * * */ int async_data_write_forward_fast(int phoneid, ipcarg_t method, ipcarg_t arg1, ipcarg_t arg2, ipcarg_t arg3, ipcarg_t arg4, ipc_call_t *dataptr) { ipc_callid_t callid; if (!async_data_write_receive(&callid, NULL)) { ipc_answer_0(callid, EINVAL); return EINVAL; } aid_t msg = async_send_fast(phoneid, method, arg1, arg2, arg3, arg4, dataptr); if (msg == 0) { ipc_answer_0(callid, EINVAL); return EINVAL; } int retval = ipc_forward_fast(callid, phoneid, 0, 0, 0, IPC_FF_ROUTE_FROM_ME); if (retval != EOK) { async_wait_for(msg, NULL); ipc_answer_0(callid, retval); return retval; } ipcarg_t rc; async_wait_for(msg, &rc); return (int) rc; } /** @} */