/* * Copyright (c) 2012 Maurizio Lombardi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @addtogroup cmos-rtc * @{ */ /** @file */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cmos-regs.h" #define NAME "cmos-rtc" #define REG_COUNT 2 #define REG_SEL_PORT(port) (port) #define REG_RW_PORT(port) ((port) + 1) typedef struct rtc { /** DDF device node */ ddf_dev_t *dev; /** DDF function node */ ddf_fun_t *fun; /** The fibril mutex for synchronizing the access to the device */ fibril_mutex_t mutex; /** The base I/O address of the device registers */ ioport8_t *io_addr; /** The I/O port used to access the CMOS registers */ ioport8_t *port; /** true if device is removed */ bool removed; /** number of connected clients */ int clients_connected; /** time at which the system booted */ struct timespec boot_time; } rtc_t; static rtc_t *dev_rtc(ddf_dev_t *dev); static rtc_t *fun_rtc(ddf_fun_t *fun); static errno_t rtc_battery_status_get(ddf_fun_t *fun, battery_status_t *status); static errno_t rtc_time_get(ddf_fun_t *fun, struct tm *t); static errno_t rtc_time_set(ddf_fun_t *fun, struct tm *t); static errno_t rtc_dev_add(ddf_dev_t *dev); static errno_t rtc_dev_initialize(rtc_t *rtc); static bool rtc_pio_enable(rtc_t *rtc); static void rtc_dev_cleanup(rtc_t *rtc); static errno_t rtc_open(ddf_fun_t *fun); static void rtc_close(ddf_fun_t *fun); static bool rtc_update_in_progress(rtc_t *rtc); static int rtc_register_read(rtc_t *rtc, int reg); static unsigned bcd2bin(unsigned bcd); static unsigned bin2bcd(unsigned binary); static errno_t rtc_dev_remove(ddf_dev_t *dev); static void rtc_register_write(rtc_t *rtc, int reg, int data); static bool is_battery_ok(rtc_t *rtc); static errno_t rtc_fun_online(ddf_fun_t *fun); static errno_t rtc_fun_offline(ddf_fun_t *fun); static ddf_dev_ops_t rtc_dev_ops; /** The RTC device driver's standard operations */ static driver_ops_t rtc_ops = { .dev_add = rtc_dev_add, .dev_remove = rtc_dev_remove, .fun_online = rtc_fun_online, .fun_offline = rtc_fun_offline, }; /** The RTC device driver structure */ static driver_t rtc_driver = { .name = NAME, .driver_ops = &rtc_ops, }; /** Clock interface */ static clock_dev_ops_t rtc_clock_dev_ops = { .time_get = rtc_time_get, .time_set = rtc_time_set, }; /** Battery powered device interface */ static battery_dev_ops_t rtc_battery_dev_ops = { .battery_status_get = rtc_battery_status_get, .battery_charge_level_get = NULL, }; /** Obtain soft state structure from device node */ static rtc_t * dev_rtc(ddf_dev_t *dev) { return ddf_dev_data_get(dev); } /** Obtain soft state structure from function node */ static rtc_t * fun_rtc(ddf_fun_t *fun) { return dev_rtc(ddf_fun_get_dev(fun)); } /** Initialize the RTC driver */ static void rtc_init(void) { ddf_log_init(NAME); rtc_dev_ops.open = rtc_open; rtc_dev_ops.close = rtc_close; rtc_dev_ops.interfaces[CLOCK_DEV_IFACE] = &rtc_clock_dev_ops; rtc_dev_ops.interfaces[BATTERY_DEV_IFACE] = &rtc_battery_dev_ops; rtc_dev_ops.default_handler = NULL; } /** Clean up the RTC soft state * * @param rtc The RTC device */ static void rtc_dev_cleanup(rtc_t *rtc) { } /** Enable the I/O ports of the device * * @param rtc The real time clock device * * @return true in case of success, false otherwise */ static bool rtc_pio_enable(rtc_t *rtc) { if (pio_enable((void *) rtc->io_addr, REG_COUNT, (void **) &rtc->port)) { ddf_msg(LVL_ERROR, "Cannot map the port %lx" " for device %s", (long unsigned int)rtc->io_addr, ddf_dev_get_name(rtc->dev)); return false; } return true; } /** Initialize the RTC device * * @param rtc Pointer to the RTC device * * @return EOK on success or an error code */ static errno_t rtc_dev_initialize(rtc_t *rtc) { errno_t rc; size_t i; hw_resource_t *res; bool ioport = false; async_sess_t *parent_sess; ddf_msg(LVL_DEBUG, "rtc_dev_initialize %s", ddf_dev_get_name(rtc->dev)); rtc->boot_time.tv_sec = 0; rtc->boot_time.tv_nsec = 0; rtc->clients_connected = 0; hw_resource_list_t hw_resources; memset(&hw_resources, 0, sizeof(hw_resource_list_t)); /* Connect to the parent's driver */ parent_sess = ddf_dev_parent_sess_get(rtc->dev); if (parent_sess == NULL) { ddf_msg(LVL_ERROR, "Failed to connect to parent driver\ of device %s.", ddf_dev_get_name(rtc->dev)); rc = ENOENT; goto error; } /* Get the HW resources */ rc = hw_res_get_resource_list(parent_sess, &hw_resources); if (rc != EOK) { ddf_msg(LVL_ERROR, "Failed to get HW resources\ for device %s", ddf_dev_get_name(rtc->dev)); goto error; } for (i = 0; i < hw_resources.count; ++i) { res = &hw_resources.resources[i]; if (res->res.io_range.size < REG_COUNT) { ddf_msg(LVL_ERROR, "I/O range assigned to \ device %s is too small", ddf_dev_get_name(rtc->dev)); rc = ELIMIT; continue; } rtc->io_addr = (ioport8_t *) (long) res->res.io_range.address; ioport = true; ddf_msg(LVL_NOTE, "Device %s was assigned I/O address " "0x%lx", ddf_dev_get_name(rtc->dev), (unsigned long int) rtc->io_addr); rc = EOK; break; } if (rc != EOK) goto error; if (!ioport) { /* No I/O address assigned to this device */ ddf_msg(LVL_ERROR, "Missing HW resource for device %s", ddf_dev_get_name(rtc->dev)); rc = ENOENT; goto error; } hw_res_clean_resource_list(&hw_resources); return EOK; error: rtc_dev_cleanup(rtc); hw_res_clean_resource_list(&hw_resources); return rc; } /** Read a register from the CMOS memory * * @param rtc The rtc device * @param reg The index of the register to read * * @return The value of the register */ static int rtc_register_read(rtc_t *rtc, int reg) { pio_write_8(REG_SEL_PORT(rtc->port), reg); return pio_read_8(REG_RW_PORT(rtc->port)); } /** Write a register to the CMOS memory * * @param rtc The rtc device * @param reg The index of the register to write * @param data The data to write */ static void rtc_register_write(rtc_t *rtc, int reg, int data) { pio_write_8(REG_SEL_PORT(rtc->port), reg); pio_write_8(REG_RW_PORT(rtc->port), data); } /** Check if an update is in progress * * @param rtc The rtc device * * @return true if an update is in progress, false otherwise */ static bool rtc_update_in_progress(rtc_t *rtc) { return rtc_register_read(rtc, RTC_STATUS_A) & RTC_A_UPDATE; } /** Read the current time from the CMOS * * @param fun The RTC function * @param t Pointer to the time variable * * @return EOK on success or an error code */ static errno_t rtc_time_get(ddf_fun_t *fun, struct tm *t) { bool bcd_mode; bool pm_mode = false; rtc_t *rtc = fun_rtc(fun); fibril_mutex_lock(&rtc->mutex); if (rtc->boot_time.tv_sec) { /* * There is no need to read the current time from the * device because it has already been cached. */ struct timespec curtime; getuptime(&curtime); ts_add(&curtime, &rtc->boot_time); fibril_mutex_unlock(&rtc->mutex); return time_ts2tm(&curtime, t); } /* Check if the RTC battery is OK */ if (!is_battery_ok(rtc)) { fibril_mutex_unlock(&rtc->mutex); return EIO; } /* Nanoseconds are below RTC's resolution, assume 0. */ t->tm_nsec = 0; /* now read the registers */ do { /* Suspend until the update process has finished */ while (rtc_update_in_progress(rtc)) ; t->tm_sec = rtc_register_read(rtc, RTC_SEC); t->tm_min = rtc_register_read(rtc, RTC_MIN); t->tm_hour = rtc_register_read(rtc, RTC_HOUR); t->tm_mday = rtc_register_read(rtc, RTC_DAY); t->tm_mon = rtc_register_read(rtc, RTC_MON); t->tm_year = rtc_register_read(rtc, RTC_YEAR); /* Now check if it is stable */ } while (t->tm_sec != rtc_register_read(rtc, RTC_SEC) || t->tm_min != rtc_register_read(rtc, RTC_MIN) || t->tm_mday != rtc_register_read(rtc, RTC_DAY) || t->tm_mon != rtc_register_read(rtc, RTC_MON) || t->tm_year != rtc_register_read(rtc, RTC_YEAR)); /* Check if the RTC is working in 12h mode */ bool _12h_mode = !(rtc_register_read(rtc, RTC_STATUS_B) & RTC_B_24H); if (_12h_mode) { /* The RTC is working in 12h mode, check if it is AM or PM */ if (t->tm_hour & 0x80) { /* PM flag is active, it must be cleared */ t->tm_hour &= ~0x80; pm_mode = true; } } /* Check if the RTC is working in BCD mode */ bcd_mode = !(rtc_register_read(rtc, RTC_STATUS_B) & RTC_B_BCD); if (bcd_mode) { t->tm_sec = bcd2bin(t->tm_sec); t->tm_min = bcd2bin(t->tm_min); t->tm_hour = bcd2bin(t->tm_hour); t->tm_mday = bcd2bin(t->tm_mday); t->tm_mon = bcd2bin(t->tm_mon); t->tm_year = bcd2bin(t->tm_year); } if (_12h_mode) { /* Convert to 24h mode */ if (pm_mode) { if (t->tm_hour < 12) t->tm_hour += 12; } else if (t->tm_hour == 12) t->tm_hour = 0; } /* Count the months starting from 0, not from 1 */ t->tm_mon--; if (t->tm_year < 100) { /* * tm_year is the number of years since 1900 but the * RTC epoch is 2000. */ t->tm_year += 100; } /* Try to normalize the content of the tm structure */ time_t r = mktime(t); errno_t result; if (r < 0) result = EINVAL; else { struct timespec uptime; getuptime(&uptime); rtc->boot_time.tv_sec = r; rtc->boot_time.tv_nsec = t->tm_nsec; /* normalized */ ts_sub(&rtc->boot_time, &uptime); result = EOK; } fibril_mutex_unlock(&rtc->mutex); return result; } /** Set the time in the RTC * * @param fun The RTC function * @param t The time value to set * * @return EOK or an error code */ static errno_t rtc_time_set(ddf_fun_t *fun, struct tm *t) { bool bcd_mode; time_t norm_time; struct timespec uptime; struct timespec ntv; int reg_b; int reg_a; int epoch; rtc_t *rtc = fun_rtc(fun); /* Try to normalize the content of the tm structure */ if ((norm_time = mktime(t)) < 0) return EINVAL; ntv.tv_sec = norm_time; ntv.tv_nsec = t->tm_nsec; getuptime(&uptime); if (ts_gteq(&uptime, &ntv)) { /* This is not acceptable */ return EINVAL; } fibril_mutex_lock(&rtc->mutex); if (!is_battery_ok(rtc)) { fibril_mutex_unlock(&rtc->mutex); return EIO; } /* boot_time must be recomputed */ rtc->boot_time.tv_sec = 0; rtc->boot_time.tv_nsec = 0; /* Detect the RTC epoch */ if (rtc_register_read(rtc, RTC_YEAR) < 100) epoch = 2000; else epoch = 1900; if (epoch == 2000 && t->tm_year < 100) { /* Can't set a year before the epoch */ fibril_mutex_unlock(&rtc->mutex); return EINVAL; } t->tm_mon++; /* counts from 1, not from 0 */ reg_b = rtc_register_read(rtc, RTC_STATUS_B); if (!(reg_b & RTC_B_24H)) { /* Force 24h mode of operation */ reg_b |= RTC_B_24H; rtc_register_write(rtc, RTC_STATUS_B, reg_b); } if (epoch == 2000) { /* * The RTC epoch is year 2000 but the tm_year * field counts years since 1900. */ t->tm_year -= 100; } /* Check if the rtc is working in bcd mode */ bcd_mode = !(reg_b & RTC_B_BCD); if (bcd_mode) { /* Convert the tm struct fields in BCD mode */ t->tm_sec = bin2bcd(t->tm_sec); t->tm_min = bin2bcd(t->tm_min); t->tm_hour = bin2bcd(t->tm_hour); t->tm_mday = bin2bcd(t->tm_mday); t->tm_mon = bin2bcd(t->tm_mon); t->tm_year = bin2bcd(t->tm_year); } /* Inhibit updates */ rtc_register_write(rtc, RTC_STATUS_B, reg_b | RTC_B_INH); /* Write current time to RTC */ rtc_register_write(rtc, RTC_SEC, t->tm_sec); rtc_register_write(rtc, RTC_MIN, t->tm_min); rtc_register_write(rtc, RTC_HOUR, t->tm_hour); rtc_register_write(rtc, RTC_DAY, t->tm_mday); rtc_register_write(rtc, RTC_MON, t->tm_mon); rtc_register_write(rtc, RTC_YEAR, t->tm_year); /* Stop the clock */ reg_a = rtc_register_read(rtc, RTC_STATUS_A); rtc_register_write(rtc, RTC_STATUS_A, RTC_A_CLK_STOP | reg_a); /* Enable updates */ rtc_register_write(rtc, RTC_STATUS_B, reg_b); rtc_register_write(rtc, RTC_STATUS_A, reg_a); fibril_mutex_unlock(&rtc->mutex); return EOK; } /** Get the status of the real time clock battery * * @param fun The RTC function * @param status The status of the battery * * @return EOK on success or an error code */ static errno_t rtc_battery_status_get(ddf_fun_t *fun, battery_status_t *status) { rtc_t *rtc = fun_rtc(fun); fibril_mutex_lock(&rtc->mutex); const bool batt_ok = is_battery_ok(rtc); fibril_mutex_unlock(&rtc->mutex); *status = batt_ok ? BATTERY_OK : BATTERY_LOW; return EOK; } /** Check if the battery is working properly or not. * The caller already holds the rtc->mutex lock. * * @param rtc The RTC instance. * * @return true if the battery is ok, false otherwise. */ static bool is_battery_ok(rtc_t *rtc) { return rtc_register_read(rtc, RTC_STATUS_D) & RTC_D_BATTERY_OK; } /** The dev_add callback of the rtc driver * * @param dev The RTC device * * @return EOK on success or an error code */ static errno_t rtc_dev_add(ddf_dev_t *dev) { rtc_t *rtc; ddf_fun_t *fun = NULL; errno_t rc; bool need_cleanup = false; bool bound = false; ddf_msg(LVL_DEBUG, "rtc_dev_add %s (handle = %d)", ddf_dev_get_name(dev), (int) ddf_dev_get_handle(dev)); rtc = ddf_dev_data_alloc(dev, sizeof(rtc_t)); if (!rtc) return ENOMEM; rtc->dev = dev; fibril_mutex_initialize(&rtc->mutex); rc = rtc_dev_initialize(rtc); if (rc != EOK) goto error; need_cleanup = true; if (!rtc_pio_enable(rtc)) { rc = EADDRNOTAVAIL; goto error; } fun = ddf_fun_create(dev, fun_exposed, "a"); if (!fun) { ddf_msg(LVL_ERROR, "Failed creating function"); rc = ENOENT; goto error; } ddf_fun_set_ops(fun, &rtc_dev_ops); rc = ddf_fun_bind(fun); if (rc != EOK) { ddf_msg(LVL_ERROR, "Failed binding function"); goto error; } bound = true; rtc->fun = fun; rc = ddf_fun_add_to_category(fun, "clock"); if (rc != EOK) { ddf_msg(LVL_ERROR, "Failed adding service to clock category."); goto error; } ddf_msg(LVL_NOTE, "Device %s successfully initialized", ddf_dev_get_name(dev)); return rc; error: if (bound) ddf_fun_unbind(fun); if (fun) ddf_fun_destroy(fun); if (need_cleanup) rtc_dev_cleanup(rtc); return rc; } /** The dev_remove callback for the rtc driver * * @param dev The RTC device * * @return EOK on success or an error code */ static errno_t rtc_dev_remove(ddf_dev_t *dev) { rtc_t *rtc = dev_rtc(dev); errno_t rc; fibril_mutex_lock(&rtc->mutex); if (rtc->clients_connected > 0) { fibril_mutex_unlock(&rtc->mutex); return EBUSY; } rtc->removed = true; fibril_mutex_unlock(&rtc->mutex); rc = rtc_fun_offline(rtc->fun); if (rc != EOK) { ddf_msg(LVL_ERROR, "Failed to offline function"); return rc; } rc = ddf_fun_unbind(rtc->fun); if (rc != EOK) { ddf_msg(LVL_ERROR, "Failed to unbind function"); return rc; } ddf_fun_destroy(rtc->fun); rtc_dev_cleanup(rtc); return rc; } /** Open the device * * @param fun The function node * * @return EOK on success or an error code */ static errno_t rtc_open(ddf_fun_t *fun) { errno_t rc; rtc_t *rtc = fun_rtc(fun); fibril_mutex_lock(&rtc->mutex); if (rtc->removed) rc = ENXIO; else { rc = EOK; rtc->clients_connected++; } fibril_mutex_unlock(&rtc->mutex); return rc; } /** Close the device * * @param fun The function node */ static void rtc_close(ddf_fun_t *fun) { rtc_t *rtc = fun_rtc(fun); fibril_mutex_lock(&rtc->mutex); rtc->clients_connected--; assert(rtc->clients_connected >= 0); fibril_mutex_unlock(&rtc->mutex); } /** Convert from BCD mode to binary mode * * @param bcd The number in BCD format to convert * * @return The converted value */ static unsigned bcd2bin(unsigned bcd) { return ((bcd & 0xF0) >> 1) + ((bcd & 0xF0) >> 3) + (bcd & 0xf); } /** Convert from binary mode to BCD mode * * @param bcd The number in binary mode to convert * * @return The converted value */ static unsigned bin2bcd(unsigned binary) { return ((binary / 10) << 4) + (binary % 10); } static errno_t rtc_fun_online(ddf_fun_t *fun) { errno_t rc; ddf_msg(LVL_DEBUG, "rtc_fun_online()"); rc = ddf_fun_online(fun); if (rc == EOK) { // XXX This should be probably handled by the framework rc = ddf_fun_add_to_category(fun, "clock"); } return rc; } static errno_t rtc_fun_offline(ddf_fun_t *fun) { ddf_msg(LVL_DEBUG, "rtc_fun_offline()"); return ddf_fun_offline(fun); } int main(int argc, char **argv) { printf(NAME ": HelenOS RTC driver\n"); rtc_init(); return ddf_driver_main(&rtc_driver); } /** * @} */