/* * Copyright (c) 2025 Jiri Svoboda * Copyright (c) 2011 Zdenek Bouska * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file e1k.c * * Driver for Intel Pro/1000 8254x Family of Gigabit Ethernet Controllers * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e1k.h" #define NAME "e1k" #define E1000_DEFAULT_INTERRUPT_INTERVAL_USEC 250 /* Must be power of 8 */ #define E1000_RX_FRAME_COUNT 128 #define E1000_TX_FRAME_COUNT 128 #define E1000_RECEIVE_ADDRESS 16 /** Maximum sending frame size */ #define E1000_MAX_SEND_FRAME_SIZE 2048 /** Maximum receiving frame size */ #define E1000_MAX_RECEIVE_FRAME_SIZE 2048 /** nic_driver_data_t* -> e1000_t* cast */ #define DRIVER_DATA_NIC(nic) \ ((e1000_t *) nic_get_specific(nic)) /** ddf_fun_t * -> nic_driver_data_t* cast */ #define NIC_DATA_FUN(fun) \ ((nic_t *) ddf_dev_data_get(ddf_fun_get_dev(fun))) /** ddf_dev_t * -> nic_driver_data_t* cast */ #define NIC_DATA_DEV(dev) \ ((nic_t *) ddf_dev_data_get(dev)) /** ddf_dev_t * -> e1000_t* cast */ #define DRIVER_DATA_DEV(dev) \ (DRIVER_DATA_NIC(NIC_DATA_DEV(dev))) /** ddf_fun_t * -> e1000_t* cast */ #define DRIVER_DATA_FUN(fun) \ (DRIVER_DATA_NIC(NIC_DATA_FUN(fun))) /** Cast pointer to uint64_t * * @param ptr Pointer to cast * * @return The uint64_t pointer representation. * */ #define PTR_TO_U64(ptr) ((uint64_t) ((uintptr_t) (ptr))) /** Cast the memaddr part to the void* * * @param memaddr The memaddr value * */ #define MEMADDR_TO_PTR(memaddr) ((void *) ((size_t) (memaddr))) #define E1000_REG_BASE(e1000) \ ((e1000)->reg_base_virt) #define E1000_REG_ADDR(e1000, reg) \ ((uint32_t *) (E1000_REG_BASE(e1000) + reg)) #define E1000_REG_READ(e1000, reg) \ (pio_read_32(E1000_REG_ADDR(e1000, reg))) #define E1000_REG_WRITE(e1000, reg, value) \ (pio_write_32(E1000_REG_ADDR(e1000, reg), value)) /** E1000 device data */ typedef struct { /** DDF device */ ddf_dev_t *dev; /** Parent session */ async_sess_t *parent_sess; /** Device configuration */ e1000_info_t info; /** Physical registers base address */ void *reg_base_phys; /** Virtual registers base address */ void *reg_base_virt; /** Physical tx ring address */ uintptr_t tx_ring_phys; /** Virtual tx ring address */ void *tx_ring_virt; /** Ring of TX frames, physical address */ uintptr_t *tx_frame_phys; /** Ring of TX frames, virtual address */ void **tx_frame_virt; /** Physical rx ring address */ uintptr_t rx_ring_phys; /** Virtual rx ring address */ void *rx_ring_virt; /** Ring of RX frames, physical address */ uintptr_t *rx_frame_phys; /** Ring of RX frames, virtual address */ void **rx_frame_virt; /** VLAN tag */ uint16_t vlan_tag; /** Add VLAN tag to frame */ bool vlan_tag_add; /** Used unicast Receive Address count */ unsigned int unicast_ra_count; /** Used milticast Receive addrress count */ unsigned int multicast_ra_count; /** The irq assigned */ int irq; /** Lock for CTRL register */ fibril_mutex_t ctrl_lock; /** Lock for receiver */ fibril_mutex_t rx_lock; /** Lock for transmitter */ fibril_mutex_t tx_lock; /** Lock for EEPROM access */ fibril_mutex_t eeprom_lock; } e1000_t; /** Global mutex for work with shared irq structure */ FIBRIL_MUTEX_INITIALIZE(irq_reg_mutex); static errno_t e1000_get_address(e1000_t *, nic_address_t *); static void e1000_eeprom_get_address(e1000_t *, nic_address_t *); static errno_t e1000_set_addr(ddf_fun_t *, const nic_address_t *); static errno_t e1000_defective_get_mode(ddf_fun_t *, uint32_t *); static errno_t e1000_defective_set_mode(ddf_fun_t *, uint32_t); static errno_t e1000_get_cable_state(ddf_fun_t *, nic_cable_state_t *); static errno_t e1000_get_device_info(ddf_fun_t *, nic_device_info_t *); static errno_t e1000_get_operation_mode(ddf_fun_t *, int *, nic_channel_mode_t *, nic_role_t *); static errno_t e1000_set_operation_mode(ddf_fun_t *, int, nic_channel_mode_t, nic_role_t); static errno_t e1000_autoneg_enable(ddf_fun_t *, uint32_t); static errno_t e1000_autoneg_disable(ddf_fun_t *); static errno_t e1000_autoneg_restart(ddf_fun_t *); static errno_t e1000_vlan_set_tag(ddf_fun_t *, uint16_t, bool, bool); /** Network interface options for E1000 card driver */ static nic_iface_t e1000_nic_iface; /** Network interface options for E1000 card driver */ static nic_iface_t e1000_nic_iface = { .set_address = &e1000_set_addr, .get_device_info = &e1000_get_device_info, .get_cable_state = &e1000_get_cable_state, .get_operation_mode = &e1000_get_operation_mode, .set_operation_mode = &e1000_set_operation_mode, .autoneg_enable = &e1000_autoneg_enable, .autoneg_disable = &e1000_autoneg_disable, .autoneg_restart = &e1000_autoneg_restart, .vlan_set_tag = &e1000_vlan_set_tag, .defective_get_mode = &e1000_defective_get_mode, .defective_set_mode = &e1000_defective_set_mode, }; /** Basic device operations for E1000 driver */ static ddf_dev_ops_t e1000_dev_ops; static errno_t e1000_dev_add(ddf_dev_t *); static errno_t e1000_dev_quiesce(ddf_dev_t *); /** Basic driver operations for E1000 driver */ static driver_ops_t e1000_driver_ops = { .dev_add = e1000_dev_add, .dev_quiesce = e1000_dev_quiesce }; /** Driver structure for E1000 driver */ static driver_t e1000_driver = { .name = NAME, .driver_ops = &e1000_driver_ops }; /* The default implementation callbacks */ static errno_t e1000_on_activating(nic_t *); static errno_t e1000_on_stopping(nic_t *); static void e1000_send_frame(nic_t *, void *, size_t); /** PIO ranges used in the IRQ code. */ irq_pio_range_t e1000_irq_pio_ranges[] = { { .base = 0, .size = PAGE_SIZE, /* XXX */ } }; /** Commands to deal with interrupt * */ irq_cmd_t e1000_irq_commands[] = { { /* Get the interrupt status */ .cmd = CMD_PIO_READ_32, .addr = NULL, .dstarg = 2 }, { .cmd = CMD_AND, .value = ICR_RXT0, .srcarg = 2, .dstarg = 1 }, { .cmd = CMD_PREDICATE, .value = 2, .srcarg = 1 }, { /* Disable interrupts until interrupt routine is finished */ .cmd = CMD_PIO_WRITE_32, .addr = NULL, .value = 0xffffffff }, { .cmd = CMD_ACCEPT } }; /** Interrupt code definition */ irq_code_t e1000_irq_code = { .rangecount = sizeof(e1000_irq_pio_ranges) / sizeof(irq_pio_range_t), .ranges = e1000_irq_pio_ranges, .cmdcount = sizeof(e1000_irq_commands) / sizeof(irq_cmd_t), .cmds = e1000_irq_commands }; /** Get the device information * * @param dev NIC device * @param info Information to fill * * @return EOK * */ static errno_t e1000_get_device_info(ddf_fun_t *dev, nic_device_info_t *info) { assert(dev); assert(info); memset(info, 0, sizeof(nic_device_info_t)); info->vendor_id = 0x8086; str_cpy(info->vendor_name, NIC_VENDOR_MAX_LENGTH, "Intel Corporation"); str_cpy(info->model_name, NIC_MODEL_MAX_LENGTH, "Intel Pro"); info->ethernet_support[ETH_10M] = ETH_10BASE_T; info->ethernet_support[ETH_100M] = ETH_100BASE_TX; info->ethernet_support[ETH_1000M] = ETH_1000BASE_T; return EOK; } /** Check the cable state * * @param[in] dev device * @param[out] state state to fill * * @return EOK * */ static errno_t e1000_get_cable_state(ddf_fun_t *fun, nic_cable_state_t *state) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); if (E1000_REG_READ(e1000, E1000_STATUS) & (STATUS_LU)) *state = NIC_CS_PLUGGED; else *state = NIC_CS_UNPLUGGED; return EOK; } static uint16_t e1000_calculate_itr_interval_from_usecs(usec_t useconds) { return useconds * 4; } /** Get operation mode of the device * */ static errno_t e1000_get_operation_mode(ddf_fun_t *fun, int *speed, nic_channel_mode_t *duplex, nic_role_t *role) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); uint32_t status = E1000_REG_READ(e1000, E1000_STATUS); if (status & STATUS_FD) *duplex = NIC_CM_FULL_DUPLEX; else *duplex = NIC_CM_HALF_DUPLEX; uint32_t speed_bits = (status >> STATUS_SPEED_SHIFT) & STATUS_SPEED_ALL; if (speed_bits == STATUS_SPEED_10) *speed = 10; else if (speed_bits == STATUS_SPEED_100) *speed = 100; else if ((speed_bits == STATUS_SPEED_1000A) || (speed_bits == STATUS_SPEED_1000B)) *speed = 1000; *role = NIC_ROLE_UNKNOWN; return EOK; } static void e1000_link_restart(e1000_t *e1000) { fibril_mutex_lock(&e1000->ctrl_lock); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); if (ctrl & CTRL_SLU) { ctrl &= ~(CTRL_SLU); E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); fibril_usleep(10); fibril_mutex_lock(&e1000->ctrl_lock); ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl |= CTRL_SLU; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); } fibril_mutex_unlock(&e1000->ctrl_lock); } /** Set operation mode of the device * */ static errno_t e1000_set_operation_mode(ddf_fun_t *fun, int speed, nic_channel_mode_t duplex, nic_role_t role) { if ((speed != 10) && (speed != 100) && (speed != 1000)) return EINVAL; if ((duplex != NIC_CM_HALF_DUPLEX) && (duplex != NIC_CM_FULL_DUPLEX)) return EINVAL; e1000_t *e1000 = DRIVER_DATA_FUN(fun); fibril_mutex_lock(&e1000->ctrl_lock); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl |= CTRL_FRCSPD; ctrl |= CTRL_FRCDPLX; ctrl &= ~(CTRL_ASDE); if (duplex == NIC_CM_FULL_DUPLEX) ctrl |= CTRL_FD; else ctrl &= ~(CTRL_FD); ctrl &= ~(CTRL_SPEED_MASK); if (speed == 1000) ctrl |= CTRL_SPEED_1000 << CTRL_SPEED_SHIFT; else if (speed == 100) ctrl |= CTRL_SPEED_100 << CTRL_SPEED_SHIFT; else ctrl |= CTRL_SPEED_10 << CTRL_SPEED_SHIFT; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); e1000_link_restart(e1000); return EOK; } /** Enable auto-negotiation * * @param dev Device to update * @param advertisement Ignored on E1000 * * @return EOK if advertisement mode set successfully * */ static errno_t e1000_autoneg_enable(ddf_fun_t *fun, uint32_t advertisement) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); fibril_mutex_lock(&e1000->ctrl_lock); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl &= ~(CTRL_FRCSPD); ctrl &= ~(CTRL_FRCDPLX); ctrl |= CTRL_ASDE; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); e1000_link_restart(e1000); return EOK; } /** Disable auto-negotiation * * @param dev Device to update * * @return EOK * */ static errno_t e1000_autoneg_disable(ddf_fun_t *fun) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); fibril_mutex_lock(&e1000->ctrl_lock); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl |= CTRL_FRCSPD; ctrl |= CTRL_FRCDPLX; ctrl &= ~(CTRL_ASDE); E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); e1000_link_restart(e1000); return EOK; } /** Restart auto-negotiation * * @param dev Device to update * * @return EOK if advertisement mode set successfully * */ static errno_t e1000_autoneg_restart(ddf_fun_t *dev) { return e1000_autoneg_enable(dev, 0); } /** Get state of acceptance of weird frames * * @param device Device to check * @param[out] mode Current mode * */ static errno_t e1000_defective_get_mode(ddf_fun_t *fun, uint32_t *mode) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); *mode = 0; uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); if (rctl & RCTL_SBP) *mode = NIC_DEFECTIVE_BAD_CRC | NIC_DEFECTIVE_SHORT; return EOK; } /** Set acceptance of weird frames * * @param device Device to update * @param mode Mode to set * * @return ENOTSUP if the mode is not supported * @return EOK of mode was set * */ static errno_t e1000_defective_set_mode(ddf_fun_t *fun, uint32_t mode) { e1000_t *e1000 = DRIVER_DATA_FUN(fun); errno_t rc = EOK; fibril_mutex_lock(&e1000->rx_lock); uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); bool short_mode = (mode & NIC_DEFECTIVE_SHORT ? true : false); bool bad_mode = (mode & NIC_DEFECTIVE_BAD_CRC ? true : false); if (short_mode && bad_mode) rctl |= RCTL_SBP; else if ((!short_mode) && (!bad_mode)) rctl &= ~RCTL_SBP; else rc = ENOTSUP; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Write receive address to RA registr * * @param e1000 E1000 data structure * @param position RA register position * @param address Ethernet address * @param set_av_bit Set the Addtess Valid bit * */ static void e1000_write_receive_address(e1000_t *e1000, unsigned int position, const nic_address_t *address, bool set_av_bit) { uint8_t *mac0 = (uint8_t *) address->address; uint8_t *mac1 = (uint8_t *) address->address + 1; uint8_t *mac2 = (uint8_t *) address->address + 2; uint8_t *mac3 = (uint8_t *) address->address + 3; uint8_t *mac4 = (uint8_t *) address->address + 4; uint8_t *mac5 = (uint8_t *) address->address + 5; uint32_t rah; uint32_t ral; ral = ((*mac3) << 24) | ((*mac2) << 16) | ((*mac1) << 8) | (*mac0); rah = ((*mac5) << 8) | ((*mac4)); if (set_av_bit) rah |= RAH_AV; else rah |= E1000_REG_READ(e1000, E1000_RAH_ARRAY(position)) & RAH_AV; E1000_REG_WRITE(e1000, E1000_RAH_ARRAY(position), rah); E1000_REG_WRITE(e1000, E1000_RAL_ARRAY(position), ral); } /** Disable receive address in RA registr * * Clear Address Valid bit * * @param e1000 E1000 data structure * @param position RA register position * */ static void e1000_disable_receive_address(e1000_t *e1000, unsigned int position) { uint32_t rah = E1000_REG_READ(e1000, E1000_RAH_ARRAY(position)); rah = rah & ~RAH_AV; E1000_REG_WRITE(e1000, E1000_RAH_ARRAY(position), rah); } /** Clear all unicast addresses from RA registers * * @param e1000 E1000 data structure * */ static void e1000_clear_unicast_receive_addresses(e1000_t *e1000) { for (unsigned int ra_num = 1; ra_num <= e1000->unicast_ra_count; ra_num++) e1000_disable_receive_address(e1000, ra_num); e1000->unicast_ra_count = 0; } /** Clear all multicast addresses from RA registers * * @param e1000 E1000 data structure * */ static void e1000_clear_multicast_receive_addresses(e1000_t *e1000) { unsigned int first_multicast_ra_num = E1000_RECEIVE_ADDRESS - e1000->multicast_ra_count; for (unsigned int ra_num = E1000_RECEIVE_ADDRESS - 1; ra_num >= first_multicast_ra_num; ra_num--) e1000_disable_receive_address(e1000, ra_num); e1000->multicast_ra_count = 0; } /** Return receive address filter positions count usable for unicast * * @param e1000 E1000 data structure * * @return receive address filter positions count usable for unicast * */ static unsigned int get_free_unicast_address_count(e1000_t *e1000) { return E1000_RECEIVE_ADDRESS - 1 - e1000->multicast_ra_count; } /** Return receive address filter positions count usable for multicast * * @param e1000 E1000 data structure * * @return receive address filter positions count usable for multicast * */ static unsigned int get_free_multicast_address_count(e1000_t *e1000) { return E1000_RECEIVE_ADDRESS - 1 - e1000->unicast_ra_count; } /** Write unicast receive addresses to receive address filter registers * * @param e1000 E1000 data structure * @param addr Pointer to address array * @param addr_cnt Address array count * */ static void e1000_add_unicast_receive_addresses(e1000_t *e1000, const nic_address_t *addr, size_t addr_cnt) { assert(addr_cnt <= get_free_unicast_address_count(e1000)); nic_address_t *addr_iterator = (nic_address_t *) addr; /* ra_num = 0 is primary address */ for (unsigned int ra_num = 1; ra_num <= addr_cnt; ra_num++) { e1000_write_receive_address(e1000, ra_num, addr_iterator, true); addr_iterator++; } } /** Write multicast receive addresses to receive address filter registers * * @param e1000 E1000 data structure * @param addr Pointer to address array * @param addr_cnt Address array count * */ static void e1000_add_multicast_receive_addresses(e1000_t *e1000, const nic_address_t *addr, size_t addr_cnt) { assert(addr_cnt <= get_free_multicast_address_count(e1000)); nic_address_t *addr_iterator = (nic_address_t *) addr; unsigned int first_multicast_ra_num = E1000_RECEIVE_ADDRESS - addr_cnt; for (unsigned int ra_num = E1000_RECEIVE_ADDRESS - 1; ra_num >= first_multicast_ra_num; ra_num--) { e1000_write_receive_address(e1000, ra_num, addr_iterator, true); addr_iterator++; } } /** Disable receiving frames for default address * * @param e1000 E1000 data structure * */ static void disable_ra0_address_filter(e1000_t *e1000) { uint32_t rah0 = E1000_REG_READ(e1000, E1000_RAH_ARRAY(0)); rah0 = rah0 & ~RAH_AV; E1000_REG_WRITE(e1000, E1000_RAH_ARRAY(0), rah0); } /** Enable receiving frames for default address * * @param e1000 E1000 data structure * */ static void enable_ra0_address_filter(e1000_t *e1000) { uint32_t rah0 = E1000_REG_READ(e1000, E1000_RAH_ARRAY(0)); rah0 = rah0 | RAH_AV; E1000_REG_WRITE(e1000, E1000_RAH_ARRAY(0), rah0); } /** Disable unicast promiscuous mode * * @param e1000 E1000 data structure * */ static void e1000_disable_unicast_promisc(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl & ~RCTL_UPE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Enable unicast promiscuous mode * * @param e1000 E1000 data structure * */ static void e1000_enable_unicast_promisc(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl | RCTL_UPE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Disable multicast promiscuous mode * * @param e1000 E1000 data structure * */ static void e1000_disable_multicast_promisc(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl & ~RCTL_MPE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Enable multicast promiscuous mode * * @param e1000 E1000 data structure * */ static void e1000_enable_multicast_promisc(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl | RCTL_MPE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Enable accepting of broadcast frames * * @param e1000 E1000 data structure * */ static void e1000_enable_broadcast_accept(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl | RCTL_BAM; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Disable accepting of broadcast frames * * @param e1000 E1000 data structure * */ static void e1000_disable_broadcast_accept(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl & ~RCTL_BAM; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Enable VLAN filtering according to VFTA registers * * @param e1000 E1000 data structure * */ static void e1000_enable_vlan_filter(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl | RCTL_VFE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Disable VLAN filtering * * @param e1000 E1000 data structure * */ static void e1000_disable_vlan_filter(e1000_t *e1000) { uint32_t rctl = E1000_REG_READ(e1000, E1000_RCTL); rctl = rctl & ~RCTL_VFE; E1000_REG_WRITE(e1000, E1000_RCTL, rctl); } /** Set multicast frames acceptance mode * * @param nic NIC device to update * @param mode Mode to set * @param addr Address list (used in mode = NIC_MULTICAST_LIST) * @param addr_cnt Length of address list (used in mode = NIC_MULTICAST_LIST) * * @return EOK * */ static errno_t e1000_on_multicast_mode_change(nic_t *nic, nic_multicast_mode_t mode, const nic_address_t *addr, size_t addr_cnt) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); errno_t rc = EOK; fibril_mutex_lock(&e1000->rx_lock); switch (mode) { case NIC_MULTICAST_BLOCKED: e1000_clear_multicast_receive_addresses(e1000); e1000_disable_multicast_promisc(e1000); nic_report_hw_filtering(nic, -1, 1, -1); break; case NIC_MULTICAST_LIST: e1000_clear_multicast_receive_addresses(e1000); if (addr_cnt > get_free_multicast_address_count(e1000)) { /* * Future work: fill MTA table * Not strictly neccessary, it only saves some compares * in the NIC library. */ e1000_enable_multicast_promisc(e1000); nic_report_hw_filtering(nic, -1, 0, -1); } else { e1000_disable_multicast_promisc(e1000); e1000_add_multicast_receive_addresses(e1000, addr, addr_cnt); nic_report_hw_filtering(nic, -1, 1, -1); } break; case NIC_MULTICAST_PROMISC: e1000_enable_multicast_promisc(e1000); e1000_clear_multicast_receive_addresses(e1000); nic_report_hw_filtering(nic, -1, 1, -1); break; default: rc = ENOTSUP; break; } fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Set unicast frames acceptance mode * * @param nic NIC device to update * @param mode Mode to set * @param addr Address list (used in mode = NIC_MULTICAST_LIST) * @param addr_cnt Length of address list (used in mode = NIC_MULTICAST_LIST) * * @return EOK * */ static errno_t e1000_on_unicast_mode_change(nic_t *nic, nic_unicast_mode_t mode, const nic_address_t *addr, size_t addr_cnt) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); errno_t rc = EOK; fibril_mutex_lock(&e1000->rx_lock); switch (mode) { case NIC_UNICAST_BLOCKED: disable_ra0_address_filter(e1000); e1000_clear_unicast_receive_addresses(e1000); e1000_disable_unicast_promisc(e1000); nic_report_hw_filtering(nic, 1, -1, -1); break; case NIC_UNICAST_DEFAULT: enable_ra0_address_filter(e1000); e1000_clear_unicast_receive_addresses(e1000); e1000_disable_unicast_promisc(e1000); nic_report_hw_filtering(nic, 1, -1, -1); break; case NIC_UNICAST_LIST: enable_ra0_address_filter(e1000); e1000_clear_unicast_receive_addresses(e1000); if (addr_cnt > get_free_unicast_address_count(e1000)) { e1000_enable_unicast_promisc(e1000); nic_report_hw_filtering(nic, 0, -1, -1); } else { e1000_disable_unicast_promisc(e1000); e1000_add_unicast_receive_addresses(e1000, addr, addr_cnt); nic_report_hw_filtering(nic, 1, -1, -1); } break; case NIC_UNICAST_PROMISC: e1000_enable_unicast_promisc(e1000); enable_ra0_address_filter(e1000); e1000_clear_unicast_receive_addresses(e1000); nic_report_hw_filtering(nic, 1, -1, -1); break; default: rc = ENOTSUP; break; } fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Set broadcast frames acceptance mode * * @param nic NIC device to update * @param mode Mode to set * * @return EOK * */ static errno_t e1000_on_broadcast_mode_change(nic_t *nic, nic_broadcast_mode_t mode) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); errno_t rc = EOK; fibril_mutex_lock(&e1000->rx_lock); switch (mode) { case NIC_BROADCAST_BLOCKED: e1000_disable_broadcast_accept(e1000); break; case NIC_BROADCAST_ACCEPTED: e1000_enable_broadcast_accept(e1000); break; default: rc = ENOTSUP; break; } fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Check if receiving is enabled * * @param e1000 E1000 data structure * * @return true if receiving is enabled * */ static bool e1000_is_rx_enabled(e1000_t *e1000) { if (E1000_REG_READ(e1000, E1000_RCTL) & (RCTL_EN)) return true; return false; } /** Enable receiving * * @param e1000 E1000 data structure * */ static void e1000_enable_rx(e1000_t *e1000) { /* Set Receive Enable Bit */ E1000_REG_WRITE(e1000, E1000_RCTL, E1000_REG_READ(e1000, E1000_RCTL) | (RCTL_EN)); } /** Disable receiving * * @param e1000 E1000 data structure * */ static void e1000_disable_rx(e1000_t *e1000) { /* Clear Receive Enable Bit */ E1000_REG_WRITE(e1000, E1000_RCTL, E1000_REG_READ(e1000, E1000_RCTL) & ~(RCTL_EN)); } /** Set VLAN mask * * @param nic NIC device to update * @param vlan_mask VLAN mask * */ static void e1000_on_vlan_mask_change(nic_t *nic, const nic_vlan_mask_t *vlan_mask) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); if (vlan_mask) { /* * Disable receiving, so that frame matching * partially written VLAN is not received. */ bool rx_enabled = e1000_is_rx_enabled(e1000); if (rx_enabled) e1000_disable_rx(e1000); for (unsigned int i = 0; i < NIC_VLAN_BITMAP_SIZE; i += 4) { uint32_t bitmap_part = ((uint32_t) vlan_mask->bitmap[i]) | (((uint32_t) vlan_mask->bitmap[i + 1]) << 8) | (((uint32_t) vlan_mask->bitmap[i + 2]) << 16) | (((uint32_t) vlan_mask->bitmap[i + 3]) << 24); E1000_REG_WRITE(e1000, E1000_VFTA_ARRAY(i / 4), bitmap_part); } e1000_enable_vlan_filter(e1000); if (rx_enabled) e1000_enable_rx(e1000); } else e1000_disable_vlan_filter(e1000); fibril_mutex_unlock(&e1000->rx_lock); } /** Set VLAN mask * * @param device E1000 device * @param tag VLAN tag * * @return EOK * @return ENOTSUP * */ static errno_t e1000_vlan_set_tag(ddf_fun_t *fun, uint16_t tag, bool add, bool strip) { /* VLAN CFI bit cannot be set */ if (tag & VLANTAG_CFI) return ENOTSUP; /* * CTRL.VME is neccessary for both strip and add * but CTRL.VME means stripping tags on receive. */ if (!strip && add) return ENOTSUP; e1000_t *e1000 = DRIVER_DATA_FUN(fun); e1000->vlan_tag = tag; e1000->vlan_tag_add = add; fibril_mutex_lock(&e1000->ctrl_lock); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); if (strip) ctrl |= CTRL_VME; else ctrl &= ~CTRL_VME; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); return EOK; } /** Fill receive descriptor with new empty buffer * * Store frame in e1000->rx_frame_phys * * @param nic NIC data stricture * @param offset Receive descriptor offset * */ static void e1000_fill_new_rx_descriptor(nic_t *nic, size_t offset) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); e1000_rx_descriptor_t *rx_descriptor = (e1000_rx_descriptor_t *) (e1000->rx_ring_virt + offset * sizeof(e1000_rx_descriptor_t)); rx_descriptor->phys_addr = PTR_TO_U64(e1000->rx_frame_phys[offset]); rx_descriptor->length = 0; rx_descriptor->checksum = 0; rx_descriptor->status = 0; rx_descriptor->errors = 0; rx_descriptor->special = 0; } /** Clear receive descriptor * * @param e1000 E1000 data * @param offset Receive descriptor offset * */ static void e1000_clear_rx_descriptor(e1000_t *e1000, unsigned int offset) { e1000_rx_descriptor_t *rx_descriptor = (e1000_rx_descriptor_t *) (e1000->rx_ring_virt + offset * sizeof(e1000_rx_descriptor_t)); rx_descriptor->length = 0; rx_descriptor->checksum = 0; rx_descriptor->status = 0; rx_descriptor->errors = 0; rx_descriptor->special = 0; } /** Clear receive descriptor * * @param nic NIC data * @param offset Receive descriptor offset * */ static void e1000_clear_tx_descriptor(nic_t *nic, unsigned int offset) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); e1000_tx_descriptor_t *tx_descriptor = (e1000_tx_descriptor_t *) (e1000->tx_ring_virt + offset * sizeof(e1000_tx_descriptor_t)); tx_descriptor->phys_addr = 0; tx_descriptor->length = 0; tx_descriptor->checksum_offset = 0; tx_descriptor->command = 0; tx_descriptor->status = 0; tx_descriptor->checksum_start_field = 0; tx_descriptor->special = 0; } /** Increment tail pointer for receive or transmit ring * * @param tail Old Tail * @param descriptors_count Ring length * * @return New tail * */ static uint32_t e1000_inc_tail(uint32_t tail, uint32_t descriptors_count) { if (tail + 1 == descriptors_count) return 0; else return tail + 1; } /** Receive frames * * @param nic NIC data * */ static void e1000_receive_frames(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); uint32_t *tail_addr = E1000_REG_ADDR(e1000, E1000_RDT); uint32_t next_tail = e1000_inc_tail(*tail_addr, E1000_RX_FRAME_COUNT); e1000_rx_descriptor_t *rx_descriptor = (e1000_rx_descriptor_t *) (e1000->rx_ring_virt + next_tail * sizeof(e1000_rx_descriptor_t)); while (rx_descriptor->status & 0x01) { uint32_t frame_size = rx_descriptor->length - E1000_CRC_SIZE; nic_frame_t *frame = nic_alloc_frame(nic, frame_size); if (frame != NULL) { memcpy(frame->data, e1000->rx_frame_virt[next_tail], frame_size); nic_received_frame(nic, frame); } else { ddf_msg(LVL_ERROR, "Memory allocation failed. Frame dropped."); } e1000_fill_new_rx_descriptor(nic, next_tail); *tail_addr = e1000_inc_tail(*tail_addr, E1000_RX_FRAME_COUNT); next_tail = e1000_inc_tail(*tail_addr, E1000_RX_FRAME_COUNT); rx_descriptor = (e1000_rx_descriptor_t *) (e1000->rx_ring_virt + next_tail * sizeof(e1000_rx_descriptor_t)); } fibril_mutex_unlock(&e1000->rx_lock); } /** Enable E1000 interupts * * @param e1000 E1000 data structure * */ static void e1000_enable_interrupts(e1000_t *e1000) { E1000_REG_WRITE(e1000, E1000_IMS, ICR_RXT0); } /** Disable E1000 interupts * * @param e1000 E1000 data structure * */ static void e1000_disable_interrupts(e1000_t *e1000) { E1000_REG_WRITE(e1000, E1000_IMS, 0); } /** Interrupt handler implementation * * This function is called from e1000_interrupt_handler() * and e1000_poll() * * @param nic NIC data * @param icr ICR register value * */ static void e1000_interrupt_handler_impl(nic_t *nic, uint32_t icr) { if (icr & ICR_RXT0) e1000_receive_frames(nic); } /** Handle device interrupt * * @param icall IPC call structure * @param arg Argument (nic_t *) * */ static void e1000_interrupt_handler(ipc_call_t *icall, void *arg) { uint32_t icr = (uint32_t) ipc_get_arg2(icall); nic_t *nic = (nic_t *)arg; e1000_t *e1000 = DRIVER_DATA_NIC(nic); e1000_interrupt_handler_impl(nic, icr); e1000_enable_interrupts(e1000); } /** Register interrupt handler for the card in the system * * Note: The global irq_reg_mutex is locked because of work with global * structure. * * @param nic Driver data * * @param[out] handle IRQ capability handle if the handler was registered * * @return An error code otherwise * */ static errno_t e1000_register_int_handler(nic_t *nic, cap_irq_handle_t *handle) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); /* Lock the mutex in whole driver while working with global structure */ fibril_mutex_lock(&irq_reg_mutex); e1000_irq_code.ranges[0].base = (uintptr_t) e1000->reg_base_phys; e1000_irq_code.cmds[0].addr = e1000->reg_base_phys + E1000_ICR; e1000_irq_code.cmds[3].addr = e1000->reg_base_phys + E1000_IMC; errno_t rc = register_interrupt_handler(nic_get_ddf_dev(nic), e1000->irq, e1000_interrupt_handler, (void *)nic, &e1000_irq_code, handle); fibril_mutex_unlock(&irq_reg_mutex); return rc; } /** Force receiving all frames in the receive buffer * * @param nic NIC data * */ static void e1000_poll(nic_t *nic) { assert(nic); e1000_t *e1000 = nic_get_specific(nic); assert(e1000); uint32_t icr = E1000_REG_READ(e1000, E1000_ICR); e1000_interrupt_handler_impl(nic, icr); } /** Calculates ITR register interrupt from timespec structure * * @param period Period * */ static uint16_t e1000_calculate_itr_interval(const struct timespec *period) { // TODO: use also tv_sec return e1000_calculate_itr_interval_from_usecs(NSEC2USEC(period->tv_nsec)); } /** Set polling mode * * @param device Device to set * @param mode Mode to set * @param period Period for NIC_POLL_PERIODIC * * @return EOK if succeed * @return ENOTSUP if the mode is not supported * */ static errno_t e1000_poll_mode_change(nic_t *nic, nic_poll_mode_t mode, const struct timespec *period) { assert(nic); e1000_t *e1000 = nic_get_specific(nic); assert(e1000); switch (mode) { case NIC_POLL_IMMEDIATE: E1000_REG_WRITE(e1000, E1000_ITR, 0); e1000_enable_interrupts(e1000); break; case NIC_POLL_ON_DEMAND: e1000_disable_interrupts(e1000); break; case NIC_POLL_PERIODIC: assert(period); uint16_t itr_interval = e1000_calculate_itr_interval(period); E1000_REG_WRITE(e1000, E1000_ITR, (uint32_t) itr_interval); e1000_enable_interrupts(e1000); break; default: return ENOTSUP; } return EOK; } /** Initialize receive registers * * @param e1000 E1000 data structure * */ static void e1000_initialize_rx_registers(e1000_t *e1000) { E1000_REG_WRITE(e1000, E1000_RDLEN, E1000_RX_FRAME_COUNT * 16); E1000_REG_WRITE(e1000, E1000_RDH, 0); /* It is not posible to let HW use all descriptors */ E1000_REG_WRITE(e1000, E1000_RDT, E1000_RX_FRAME_COUNT - 1); /* Set Broadcast Enable Bit */ E1000_REG_WRITE(e1000, E1000_RCTL, RCTL_BAM); } /** Initialize receive structure * * @param nic NIC data * * @return EOK if succeed * @return An error code otherwise * */ static errno_t e1000_initialize_rx_structure(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); e1000->rx_ring_virt = AS_AREA_ANY; errno_t rc = dmamem_map_anonymous( E1000_RX_FRAME_COUNT * sizeof(e1000_rx_descriptor_t), DMAMEM_4GiB, AS_AREA_READ | AS_AREA_WRITE, 0, &e1000->rx_ring_phys, &e1000->rx_ring_virt); if (rc != EOK) return rc; E1000_REG_WRITE(e1000, E1000_RDBAH, (uint32_t) (PTR_TO_U64(e1000->rx_ring_phys) >> 32)); E1000_REG_WRITE(e1000, E1000_RDBAL, (uint32_t) PTR_TO_U64(e1000->rx_ring_phys)); e1000->rx_frame_phys = (uintptr_t *) calloc(E1000_RX_FRAME_COUNT, sizeof(uintptr_t)); e1000->rx_frame_virt = calloc(E1000_RX_FRAME_COUNT, sizeof(void *)); if ((e1000->rx_frame_phys == NULL) || (e1000->rx_frame_virt == NULL)) { rc = ENOMEM; goto error; } for (size_t i = 0; i < E1000_RX_FRAME_COUNT; i++) { uintptr_t frame_phys; void *frame_virt = AS_AREA_ANY; rc = dmamem_map_anonymous(E1000_MAX_SEND_FRAME_SIZE, DMAMEM_4GiB, AS_AREA_READ | AS_AREA_WRITE, 0, &frame_phys, &frame_virt); if (rc != EOK) goto error; e1000->rx_frame_phys[i] = frame_phys; e1000->rx_frame_virt[i] = frame_virt; } /* Write descriptor */ for (size_t i = 0; i < E1000_RX_FRAME_COUNT; i++) e1000_fill_new_rx_descriptor(nic, i); e1000_initialize_rx_registers(e1000); fibril_mutex_unlock(&e1000->rx_lock); return EOK; error: for (size_t i = 0; i < E1000_RX_FRAME_COUNT; i++) { if (e1000->rx_frame_virt[i] != NULL) { dmamem_unmap_anonymous(e1000->rx_frame_virt[i]); e1000->rx_frame_phys[i] = 0; e1000->rx_frame_virt[i] = NULL; } } if (e1000->rx_frame_phys != NULL) { free(e1000->rx_frame_phys); e1000->rx_frame_phys = NULL; } if (e1000->rx_frame_virt != NULL) { free(e1000->rx_frame_virt); e1000->rx_frame_virt = NULL; } return rc; } /** Uninitialize receive structure * * @param nic NIC data * */ static void e1000_uninitialize_rx_structure(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); /* Write descriptor */ for (unsigned int offset = 0; offset < E1000_RX_FRAME_COUNT; offset++) { dmamem_unmap_anonymous(e1000->rx_frame_virt[offset]); e1000->rx_frame_phys[offset] = 0; e1000->rx_frame_virt[offset] = NULL; } free(e1000->rx_frame_virt); e1000->rx_frame_phys = NULL; e1000->rx_frame_virt = NULL; dmamem_unmap_anonymous(e1000->rx_ring_virt); } /** Clear receive descriptor ring * * @param e1000 E1000 data * */ static void e1000_clear_rx_ring(e1000_t *e1000) { /* Write descriptor */ for (unsigned int offset = 0; offset < E1000_RX_FRAME_COUNT; offset++) e1000_clear_rx_descriptor(e1000, offset); } /** Initialize filters * * @param e1000 E1000 data * */ static void e1000_initialize_filters(e1000_t *e1000) { /* Initialize address filter */ e1000->unicast_ra_count = 0; e1000->multicast_ra_count = 0; e1000_clear_unicast_receive_addresses(e1000); } /** Initialize VLAN * * @param e1000 E1000 data * */ static void e1000_initialize_vlan(e1000_t *e1000) { e1000->vlan_tag_add = false; } /** Fill MAC address from EEPROM to RA[0] register * * @param e1000 E1000 data * */ static void e1000_fill_mac_from_eeprom(e1000_t *e1000) { /* MAC address from eeprom to RA[0] */ nic_address_t address; e1000_eeprom_get_address(e1000, &address); e1000_write_receive_address(e1000, 0, &address, true); } /** Initialize other registers * * @param dev E1000 data. * * @return EOK if succeed * @return An error code otherwise * */ static void e1000_initialize_registers(e1000_t *e1000) { E1000_REG_WRITE(e1000, E1000_ITR, e1000_calculate_itr_interval_from_usecs( E1000_DEFAULT_INTERRUPT_INTERVAL_USEC)); E1000_REG_WRITE(e1000, E1000_FCAH, 0); E1000_REG_WRITE(e1000, E1000_FCAL, 0); E1000_REG_WRITE(e1000, E1000_FCT, 0); E1000_REG_WRITE(e1000, E1000_FCTTV, 0); E1000_REG_WRITE(e1000, E1000_VET, VET_VALUE); E1000_REG_WRITE(e1000, E1000_CTRL, CTRL_ASDE); } /** Initialize transmit registers * * @param e1000 E1000 data. * */ static void e1000_initialize_tx_registers(e1000_t *e1000) { E1000_REG_WRITE(e1000, E1000_TDLEN, E1000_TX_FRAME_COUNT * 16); E1000_REG_WRITE(e1000, E1000_TDH, 0); E1000_REG_WRITE(e1000, E1000_TDT, 0); E1000_REG_WRITE(e1000, E1000_TIPG, 10 << TIPG_IPGT_SHIFT | 8 << TIPG_IPGR1_SHIFT | 6 << TIPG_IPGR2_SHIFT); E1000_REG_WRITE(e1000, E1000_TCTL, 0x0F << TCTL_CT_SHIFT /* Collision Threshold */ | 0x40 << TCTL_COLD_SHIFT /* Collision Distance */ | TCTL_PSP /* Pad Short Packets */); } /** Initialize transmit structure * * @param e1000 E1000 data. * */ static errno_t e1000_initialize_tx_structure(e1000_t *e1000) { size_t i; fibril_mutex_lock(&e1000->tx_lock); e1000->tx_ring_phys = 0; e1000->tx_ring_virt = AS_AREA_ANY; e1000->tx_frame_phys = NULL; e1000->tx_frame_virt = NULL; errno_t rc = dmamem_map_anonymous( E1000_TX_FRAME_COUNT * sizeof(e1000_tx_descriptor_t), DMAMEM_4GiB, AS_AREA_READ | AS_AREA_WRITE, 0, &e1000->tx_ring_phys, &e1000->tx_ring_virt); if (rc != EOK) goto error; memset(e1000->tx_ring_virt, 0, E1000_TX_FRAME_COUNT * sizeof(e1000_tx_descriptor_t)); e1000->tx_frame_phys = (uintptr_t *) calloc(E1000_TX_FRAME_COUNT, sizeof(uintptr_t)); e1000->tx_frame_virt = calloc(E1000_TX_FRAME_COUNT, sizeof(void *)); if ((e1000->tx_frame_phys == NULL) || (e1000->tx_frame_virt == NULL)) { rc = ENOMEM; goto error; } for (i = 0; i < E1000_TX_FRAME_COUNT; i++) { e1000->tx_frame_virt[i] = AS_AREA_ANY; rc = dmamem_map_anonymous(E1000_MAX_SEND_FRAME_SIZE, DMAMEM_4GiB, AS_AREA_READ | AS_AREA_WRITE, 0, &e1000->tx_frame_phys[i], &e1000->tx_frame_virt[i]); if (rc != EOK) goto error; } E1000_REG_WRITE(e1000, E1000_TDBAH, (uint32_t) (PTR_TO_U64(e1000->tx_ring_phys) >> 32)); E1000_REG_WRITE(e1000, E1000_TDBAL, (uint32_t) PTR_TO_U64(e1000->tx_ring_phys)); e1000_initialize_tx_registers(e1000); fibril_mutex_unlock(&e1000->tx_lock); return EOK; error: if (e1000->tx_ring_virt != NULL) { dmamem_unmap_anonymous(e1000->tx_ring_virt); e1000->tx_ring_virt = NULL; } if ((e1000->tx_frame_phys != NULL) && (e1000->tx_frame_virt != NULL)) { for (i = 0; i < E1000_TX_FRAME_COUNT; i++) { if (e1000->tx_frame_virt[i] != NULL) { dmamem_unmap_anonymous(e1000->tx_frame_virt[i]); e1000->tx_frame_phys[i] = 0; e1000->tx_frame_virt[i] = NULL; } } } if (e1000->tx_frame_phys != NULL) { free(e1000->tx_frame_phys); e1000->tx_frame_phys = NULL; } if (e1000->tx_frame_virt != NULL) { free(e1000->tx_frame_virt); e1000->tx_frame_virt = NULL; } return rc; } /** Uninitialize transmit structure * * @param nic NIC data * */ static void e1000_uninitialize_tx_structure(e1000_t *e1000) { size_t i; for (i = 0; i < E1000_TX_FRAME_COUNT; i++) { dmamem_unmap_anonymous(e1000->tx_frame_virt[i]); e1000->tx_frame_phys[i] = 0; e1000->tx_frame_virt[i] = NULL; } if (e1000->tx_frame_phys != NULL) { free(e1000->tx_frame_phys); e1000->tx_frame_phys = NULL; } if (e1000->tx_frame_virt != NULL) { free(e1000->tx_frame_virt); e1000->tx_frame_virt = NULL; } dmamem_unmap_anonymous(e1000->tx_ring_virt); } /** Clear transmit descriptor ring * * @param nic NIC data * */ static void e1000_clear_tx_ring(nic_t *nic) { /* Write descriptor */ for (unsigned int offset = 0; offset < E1000_TX_FRAME_COUNT; offset++) e1000_clear_tx_descriptor(nic, offset); } /** Enable transmit * * @param e1000 E1000 data * */ static void e1000_enable_tx(e1000_t *e1000) { /* Set Transmit Enable Bit */ E1000_REG_WRITE(e1000, E1000_TCTL, E1000_REG_READ(e1000, E1000_TCTL) | (TCTL_EN)); } /** Disable transmit * * @param e1000 E1000 data * */ static void e1000_disable_tx(e1000_t *e1000) { /* Clear Transmit Enable Bit */ E1000_REG_WRITE(e1000, E1000_TCTL, E1000_REG_READ(e1000, E1000_TCTL) & ~(TCTL_EN)); } /** Reset E1000 device * * @param e1000 The E1000 data * */ static errno_t e1000_reset(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); E1000_REG_WRITE(e1000, E1000_CTRL, CTRL_RST); /* Wait for the reset */ fibril_usleep(20); /* check if RST_BIT cleared */ if (E1000_REG_READ(e1000, E1000_CTRL) & (CTRL_RST)) return EINVAL; e1000_initialize_registers(e1000); e1000_initialize_rx_registers(e1000); e1000_initialize_tx_registers(e1000); e1000_fill_mac_from_eeprom(e1000); e1000_initialize_filters(e1000); e1000_initialize_vlan(e1000); return EOK; } /** Activate the device to receive and transmit frames * * @param nic NIC driver data * * @return EOK if activated successfully * @return Error code otherwise * */ static errno_t e1000_on_activating(nic_t *nic) { assert(nic); e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); fibril_mutex_lock(&e1000->tx_lock); fibril_mutex_lock(&e1000->ctrl_lock); e1000_enable_interrupts(e1000); errno_t rc = hw_res_enable_interrupt(e1000->parent_sess, e1000->irq); if (rc != EOK) { e1000_disable_interrupts(e1000); fibril_mutex_unlock(&e1000->ctrl_lock); fibril_mutex_unlock(&e1000->tx_lock); fibril_mutex_unlock(&e1000->rx_lock); return rc; } e1000_clear_rx_ring(e1000); e1000_enable_rx(e1000); e1000_clear_tx_ring(nic); e1000_enable_tx(e1000); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl |= CTRL_SLU; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); fibril_mutex_unlock(&e1000->ctrl_lock); fibril_mutex_unlock(&e1000->tx_lock); fibril_mutex_unlock(&e1000->rx_lock); return EOK; } /** Callback for NIC_STATE_DOWN change * * @param nic NIC driver data * * @return EOK if succeed * @return Error code otherwise * */ static errno_t e1000_on_down_unlocked(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); uint32_t ctrl = E1000_REG_READ(e1000, E1000_CTRL); ctrl &= ~CTRL_SLU; E1000_REG_WRITE(e1000, E1000_CTRL, ctrl); e1000_disable_tx(e1000); e1000_disable_rx(e1000); hw_res_disable_interrupt(e1000->parent_sess, e1000->irq); e1000_disable_interrupts(e1000); /* * Wait for the for the end of all data * transfers to descriptors. */ fibril_usleep(100); return EOK; } /** Callback for NIC_STATE_DOWN change * * @param nic NIC driver data * * @return EOK if succeed * @return Error code otherwise * */ static errno_t e1000_on_down(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); fibril_mutex_lock(&e1000->tx_lock); fibril_mutex_lock(&e1000->ctrl_lock); errno_t rc = e1000_on_down_unlocked(nic); fibril_mutex_unlock(&e1000->ctrl_lock); fibril_mutex_unlock(&e1000->tx_lock); fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Callback for NIC_STATE_STOPPED change * * @param nic NIC driver data * * @return EOK if succeed * @return Error code otherwise * */ static errno_t e1000_on_stopping(nic_t *nic) { e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); fibril_mutex_lock(&e1000->tx_lock); fibril_mutex_lock(&e1000->ctrl_lock); errno_t rc = e1000_on_down_unlocked(nic); if (rc == EOK) rc = e1000_reset(nic); fibril_mutex_unlock(&e1000->ctrl_lock); fibril_mutex_unlock(&e1000->tx_lock); fibril_mutex_unlock(&e1000->rx_lock); return rc; } /** Create driver data structure * * @return Intialized device data structure or NULL * */ static e1000_t *e1000_create_dev_data(ddf_dev_t *dev) { nic_t *nic = nic_create_and_bind(dev); if (!nic) return NULL; e1000_t *e1000 = malloc(sizeof(e1000_t)); if (!e1000) { nic_unbind_and_destroy(dev); return NULL; } memset(e1000, 0, sizeof(e1000_t)); e1000->dev = dev; nic_set_specific(nic, e1000); nic_set_send_frame_handler(nic, e1000_send_frame); nic_set_state_change_handlers(nic, e1000_on_activating, e1000_on_down, e1000_on_stopping); nic_set_filtering_change_handlers(nic, e1000_on_unicast_mode_change, e1000_on_multicast_mode_change, e1000_on_broadcast_mode_change, NULL, e1000_on_vlan_mask_change); nic_set_poll_handlers(nic, e1000_poll_mode_change, e1000_poll); fibril_mutex_initialize(&e1000->ctrl_lock); fibril_mutex_initialize(&e1000->rx_lock); fibril_mutex_initialize(&e1000->tx_lock); fibril_mutex_initialize(&e1000->eeprom_lock); return e1000; } /** Delete driver data structure * * @param data E1000 device data structure * */ static void e1000_delete_dev_data(ddf_dev_t *dev) { assert(dev); if (ddf_dev_data_get(dev) != NULL) nic_unbind_and_destroy(dev); } /** Clean up the E1000 device structure. * * @param dev Device structure. * */ static void e1000_dev_cleanup(ddf_dev_t *dev) { assert(dev); e1000_delete_dev_data(dev); } /** Fill the irq and io_addr part of device data structure * * The hw_resources must be obtained before calling this function * * @param dev Device structure * @param hw_resources Hardware resources obtained from the parent device * * @return EOK if succeed * @return An error code otherwise * */ static errno_t e1000_fill_resource_info(ddf_dev_t *dev, const hw_res_list_parsed_t *hw_resources) { e1000_t *e1000 = DRIVER_DATA_DEV(dev); if (hw_resources->irqs.count != 1) return EINVAL; e1000->irq = hw_resources->irqs.irqs[0]; e1000->reg_base_phys = MEMADDR_TO_PTR(RNGABS(hw_resources->mem_ranges.ranges[0])); return EOK; } /** Obtain information about hardware resources of the device * * The device must be connected to the parent * * @param dev Device structure * * @return EOK if succeed * @return An error code otherwise * */ static errno_t e1000_get_resource_info(ddf_dev_t *dev) { assert(dev != NULL); assert(NIC_DATA_DEV(dev) != NULL); hw_res_list_parsed_t hw_res_parsed; hw_res_list_parsed_init(&hw_res_parsed); /* Get hw resources form parent driver */ errno_t rc = nic_get_resources(NIC_DATA_DEV(dev), &hw_res_parsed); if (rc != EOK) return rc; /* Fill resources information to the device */ rc = e1000_fill_resource_info(dev, &hw_res_parsed); hw_res_list_parsed_clean(&hw_res_parsed); return rc; } /** Initialize the E1000 device structure * * @param dev Device information * * @return EOK if succeed * @return An error code otherwise * */ static errno_t e1000_device_initialize(ddf_dev_t *dev) { /* Allocate driver data for the device. */ e1000_t *e1000 = e1000_create_dev_data(dev); if (e1000 == NULL) { ddf_msg(LVL_ERROR, "Unable to allocate device softstate"); return ENOMEM; } e1000->parent_sess = ddf_dev_parent_sess_get(dev); if (e1000->parent_sess == NULL) { ddf_msg(LVL_ERROR, "Failed connecting parent device."); return EIO; } /* Obtain and fill hardware resources info */ errno_t rc = e1000_get_resource_info(dev); if (rc != EOK) { ddf_msg(LVL_ERROR, "Cannot obtain hardware resources"); e1000_dev_cleanup(dev); return rc; } uint16_t device_id; rc = pci_config_space_read_16(ddf_dev_parent_sess_get(dev), PCI_DEVICE_ID, &device_id); if (rc != EOK) { ddf_msg(LVL_ERROR, "Cannot access PCI configuration space"); e1000_dev_cleanup(dev); return rc; } e1000_board_t board; switch (device_id) { case 0x100e: case 0x1015: case 0x1016: case 0x1017: board = E1000_82540; break; case 0x1013: case 0x1018: case 0x1078: board = E1000_82541; break; case 0x1076: case 0x1077: case 0x107c: board = E1000_82541REV2; break; case 0x100f: case 0x1011: case 0x1026: case 0x1027: case 0x1028: board = E1000_82545; break; case 0x1010: case 0x1012: case 0x101d: case 0x1079: case 0x107a: case 0x107b: board = E1000_82546; break; case 0x1019: case 0x101a: board = E1000_82547; break; case 0x10b9: board = E1000_82572; break; case 0x1096: board = E1000_80003ES2; break; default: ddf_msg(LVL_ERROR, "Device not supported (%#" PRIx16 ")", device_id); e1000_dev_cleanup(dev); return ENOTSUP; } switch (board) { case E1000_82540: case E1000_82541: case E1000_82541REV2: case E1000_82545: case E1000_82546: e1000->info.eerd_start = 0x01; e1000->info.eerd_done = 0x10; e1000->info.eerd_address_offset = 8; e1000->info.eerd_data_offset = 16; break; case E1000_82547: case E1000_82572: case E1000_80003ES2: e1000->info.eerd_start = 0x01; e1000->info.eerd_done = 0x02; e1000->info.eerd_address_offset = 2; e1000->info.eerd_data_offset = 16; break; } return EOK; } /** Enable the I/O ports of the device. * * @param dev E1000 device. * * @return EOK if successed * @return An error code otherwise * */ static errno_t e1000_pio_enable(ddf_dev_t *dev) { e1000_t *e1000 = DRIVER_DATA_DEV(dev); errno_t rc = pio_enable(e1000->reg_base_phys, 8 * PAGE_SIZE, &e1000->reg_base_virt); if (rc != EOK) return EADDRNOTAVAIL; return EOK; } /** Probe and initialize the newly added device. * * @param dev E1000 device. * */ errno_t e1000_dev_add(ddf_dev_t *dev) { ddf_fun_t *fun; /* Initialize device structure for E1000 */ errno_t rc = e1000_device_initialize(dev); if (rc != EOK) return rc; /* Device initialization */ nic_t *nic = ddf_dev_data_get(dev); e1000_t *e1000 = DRIVER_DATA_NIC(nic); /* Map registers */ rc = e1000_pio_enable(dev); if (rc != EOK) goto err_destroy; e1000_initialize_registers(e1000); rc = e1000_initialize_tx_structure(e1000); if (rc != EOK) goto err_pio; fibril_mutex_lock(&e1000->rx_lock); e1000_fill_mac_from_eeprom(e1000); e1000_initialize_filters(e1000); fibril_mutex_unlock(&e1000->rx_lock); e1000_initialize_vlan(e1000); fun = ddf_fun_create(nic_get_ddf_dev(nic), fun_exposed, "port0"); if (fun == NULL) goto err_tx_structure; nic_set_ddf_fun(nic, fun); ddf_fun_set_ops(fun, &e1000_dev_ops); cap_irq_handle_t irq_handle; rc = e1000_register_int_handler(nic, &irq_handle); if (rc != EOK) { goto err_fun_create; } rc = e1000_initialize_rx_structure(nic); if (rc != EOK) goto err_irq; nic_address_t e1000_address; e1000_get_address(e1000, &e1000_address); rc = nic_report_address(nic, &e1000_address); if (rc != EOK) goto err_rx_structure; struct timespec period; period.tv_sec = 0; period.tv_nsec = USEC2NSEC(E1000_DEFAULT_INTERRUPT_INTERVAL_USEC); rc = nic_report_poll_mode(nic, NIC_POLL_PERIODIC, &period); if (rc != EOK) goto err_rx_structure; rc = ddf_fun_bind(fun); if (rc != EOK) goto err_fun_bind; rc = ddf_fun_add_to_category(fun, DEVICE_CATEGORY_NIC); if (rc != EOK) goto err_add_to_cat; return EOK; err_add_to_cat: ddf_fun_unbind(fun); err_fun_bind: err_rx_structure: e1000_uninitialize_rx_structure(nic); err_irq: unregister_interrupt_handler(dev, irq_handle); err_fun_create: ddf_fun_destroy(fun); nic_set_ddf_fun(nic, NULL); err_tx_structure: e1000_uninitialize_tx_structure(e1000); err_pio: // TODO: e1000_pio_disable(dev); err_destroy: e1000_dev_cleanup(dev); return rc; } /** Quiesce E1000 device. * * @param dev E1000 device. * */ errno_t e1000_dev_quiesce(ddf_dev_t *dev) { nic_t *nic = ddf_dev_data_get(dev); e1000_t *e1000 = DRIVER_DATA_NIC(nic); errno_t rc; ddf_msg(LVL_DEBUG, "e1000_dev_quiesce()"); e1000_disable_interrupts(e1000); rc = e1000_reset(nic); if (rc != EOK) ddf_msg(LVL_ERROR, "e1000_dev_quiesce failed"); return rc; } /** Read 16-bit value from EEPROM of E1000 adapter * * Read using the EERD register. * * @param device E1000 device * @param eeprom_address 8-bit EEPROM address * * @return 16-bit value from EEPROM * */ static uint16_t e1000_eeprom_read(e1000_t *e1000, uint8_t eeprom_address) { fibril_mutex_lock(&e1000->eeprom_lock); /* Write address and START bit to EERD register */ uint32_t write_data = e1000->info.eerd_start | (((uint32_t) eeprom_address) << e1000->info.eerd_address_offset); E1000_REG_WRITE(e1000, E1000_EERD, write_data); uint32_t eerd = E1000_REG_READ(e1000, E1000_EERD); while ((eerd & e1000->info.eerd_done) == 0) { fibril_usleep(1); eerd = E1000_REG_READ(e1000, E1000_EERD); } fibril_mutex_unlock(&e1000->eeprom_lock); return (uint16_t) (eerd >> e1000->info.eerd_data_offset); } /** Get MAC address of the E1000 adapter * * @param device E1000 device * @param address Place to store the address * @param max_len Maximal addresss length to store * * @return EOK if succeed * @return An error code otherwise * */ static errno_t e1000_get_address(e1000_t *e1000, nic_address_t *address) { fibril_mutex_lock(&e1000->rx_lock); uint8_t *mac0_dest = (uint8_t *) address->address; uint8_t *mac1_dest = (uint8_t *) address->address + 1; uint8_t *mac2_dest = (uint8_t *) address->address + 2; uint8_t *mac3_dest = (uint8_t *) address->address + 3; uint8_t *mac4_dest = (uint8_t *) address->address + 4; uint8_t *mac5_dest = (uint8_t *) address->address + 5; uint32_t rah = E1000_REG_READ(e1000, E1000_RAH_ARRAY(0)); uint32_t ral = E1000_REG_READ(e1000, E1000_RAL_ARRAY(0)); *mac0_dest = (uint8_t) ral; *mac1_dest = (uint8_t) (ral >> 8); *mac2_dest = (uint8_t) (ral >> 16); *mac3_dest = (uint8_t) (ral >> 24); *mac4_dest = (uint8_t) rah; *mac5_dest = (uint8_t) (rah >> 8); fibril_mutex_unlock(&e1000->rx_lock); return EOK; } /** Set card MAC address * * @param device E1000 device * @param address Address * * @return EOK if succeed * @return An error code otherwise */ static errno_t e1000_set_addr(ddf_fun_t *fun, const nic_address_t *addr) { nic_t *nic = NIC_DATA_FUN(fun); e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->rx_lock); fibril_mutex_lock(&e1000->tx_lock); errno_t rc = nic_report_address(nic, addr); if (rc == EOK) e1000_write_receive_address(e1000, 0, addr, false); fibril_mutex_unlock(&e1000->tx_lock); fibril_mutex_unlock(&e1000->rx_lock); return rc; } static void e1000_eeprom_get_address(e1000_t *e1000, nic_address_t *address) { uint16_t *mac0_dest = (uint16_t *) address->address; uint16_t *mac2_dest = (uint16_t *) (address->address + 2); uint16_t *mac4_dest = (uint16_t *) (address->address + 4); *mac0_dest = e1000_eeprom_read(e1000, 0); *mac2_dest = e1000_eeprom_read(e1000, 1); *mac4_dest = e1000_eeprom_read(e1000, 2); } /** Send frame * * @param nic NIC driver data structure * @param data Frame data * @param size Frame size in bytes * * @return EOK if succeed * @return Error code in the case of error * */ static void e1000_send_frame(nic_t *nic, void *data, size_t size) { assert(nic); e1000_t *e1000 = DRIVER_DATA_NIC(nic); fibril_mutex_lock(&e1000->tx_lock); uint32_t tdt = E1000_REG_READ(e1000, E1000_TDT); e1000_tx_descriptor_t *tx_descriptor_addr = (e1000_tx_descriptor_t *) (e1000->tx_ring_virt + tdt * sizeof(e1000_tx_descriptor_t)); bool descriptor_available = false; /* Descriptor never used */ if (tx_descriptor_addr->length == 0) descriptor_available = true; /* Descriptor done */ if (tx_descriptor_addr->status & TXDESCRIPTOR_STATUS_DD) descriptor_available = true; if (!descriptor_available) { /* Frame lost */ fibril_mutex_unlock(&e1000->tx_lock); return; } memcpy(e1000->tx_frame_virt[tdt], data, size); tx_descriptor_addr->phys_addr = PTR_TO_U64(e1000->tx_frame_phys[tdt]); tx_descriptor_addr->length = size; /* * Report status to STATUS.DD (descriptor done), * add ethernet CRC, end of packet. */ tx_descriptor_addr->command = TXDESCRIPTOR_COMMAND_RS | TXDESCRIPTOR_COMMAND_IFCS | TXDESCRIPTOR_COMMAND_EOP; tx_descriptor_addr->checksum_offset = 0; tx_descriptor_addr->status = 0; if (e1000->vlan_tag_add) { tx_descriptor_addr->special = e1000->vlan_tag; tx_descriptor_addr->command |= TXDESCRIPTOR_COMMAND_VLE; } else tx_descriptor_addr->special = 0; tx_descriptor_addr->checksum_start_field = 0; tdt++; if (tdt == E1000_TX_FRAME_COUNT) tdt = 0; E1000_REG_WRITE(e1000, E1000_TDT, tdt); fibril_mutex_unlock(&e1000->tx_lock); } int main(void) { printf("%s: HelenOS E1000 network adapter driver\n", NAME); if (nic_driver_init(NAME) != EOK) return 1; nic_driver_implement(&e1000_driver_ops, &e1000_dev_ops, &e1000_nic_iface); ddf_log_init(NAME); return ddf_driver_main(&e1000_driver); }