/* * Copyright (c) 2017 Ondrej Hlavaty * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup drvusbxhci * @{ */ /** @file * @brief The host controller data bookkeeping. */ #include #include #include #include #include "debug.h" #include "hc.h" #include "rh.h" #include "hw_struct/trb.h" #include "hw_struct/context.h" #include "endpoint.h" #include "transfers.h" #include "trb_ring.h" /** * Default USB Speed ID mapping: Table 157 */ #define PSI_TO_BPS(psie, psim) (((uint64_t) psim) << (10 * psie)) #define PORT_SPEED(usb, mjr, psie, psim) { \ .name = "USB ", \ .major = mjr, \ .minor = 0, \ .usb_speed = USB_SPEED_##usb, \ .rx_bps = PSI_TO_BPS(psie, psim), \ .tx_bps = PSI_TO_BPS(psie, psim) \ } static const xhci_port_speed_t ps_default_full = PORT_SPEED(FULL, 2, 2, 12); static const xhci_port_speed_t ps_default_low = PORT_SPEED(LOW, 2, 1, 1500); static const xhci_port_speed_t ps_default_high = PORT_SPEED(HIGH, 2, 2, 480); static const xhci_port_speed_t ps_default_super = PORT_SPEED(SUPER, 3, 3, 5); /** * Walk the list of extended capabilities. */ static int hc_parse_ec(xhci_hc_t *hc) { unsigned psic, major, minor; xhci_sp_name_t name; xhci_port_speed_t *speeds = hc->speeds; for (xhci_extcap_t *ec = hc->xecp; ec; ec = xhci_extcap_next(ec)) { xhci_dump_extcap(ec); switch (XHCI_REG_RD(ec, XHCI_EC_CAP_ID)) { case XHCI_EC_USB_LEGACY: assert(hc->legsup == NULL); hc->legsup = (xhci_legsup_t *) ec; break; case XHCI_EC_SUPPORTED_PROTOCOL: psic = XHCI_REG_RD(ec, XHCI_EC_SP_PSIC); major = XHCI_REG_RD(ec, XHCI_EC_SP_MAJOR); minor = XHCI_REG_RD(ec, XHCI_EC_SP_MINOR); name.packed = host2uint32_t_le(XHCI_REG_RD(ec, XHCI_EC_SP_NAME)); if (name.packed != xhci_name_usb.packed) { /** * The detection of such protocol would work, * but the rest of the implementation is made * for the USB protocol only. */ usb_log_error("Unknown protocol %.4s.", name.str); return ENOTSUP; } // "Implied" speed if (psic == 0) { assert(minor == 0); if (major == 2) { speeds[1] = ps_default_full; speeds[2] = ps_default_low; speeds[3] = ps_default_high; hc->speed_to_psiv[USB_SPEED_FULL] = 1; hc->speed_to_psiv[USB_SPEED_LOW] = 2; hc->speed_to_psiv[USB_SPEED_HIGH] = 3; } else if (major == 3) { speeds[4] = ps_default_super; hc->speed_to_psiv[USB_SPEED_SUPER] = 4; } else { return EINVAL; } usb_log_debug2("Implied speed of USB %u.0 set up.", major); } else { for (unsigned i = 0; i < psic; i++) { xhci_psi_t *psi = xhci_extcap_psi(ec, i); unsigned sim = XHCI_REG_RD(psi, XHCI_PSI_PSIM); unsigned psiv = XHCI_REG_RD(psi, XHCI_PSI_PSIV); unsigned psie = XHCI_REG_RD(psi, XHCI_PSI_PSIE); unsigned psim = XHCI_REG_RD(psi, XHCI_PSI_PSIM); speeds[psiv].major = major; speeds[psiv].minor = minor; str_ncpy(speeds[psiv].name, 4, name.str, 4); speeds[psiv].usb_speed = USB_SPEED_MAX; uint64_t bps = PSI_TO_BPS(psie, psim); if (sim == XHCI_PSI_PLT_SYMM || sim == XHCI_PSI_PLT_RX) speeds[psiv].rx_bps = bps; if (sim == XHCI_PSI_PLT_SYMM || sim == XHCI_PSI_PLT_TX) { speeds[psiv].tx_bps = bps; usb_log_debug2("Speed %u set up for bps %" PRIu64 " / %" PRIu64 ".", psiv, speeds[psiv].rx_bps, speeds[psiv].tx_bps); } } } } } return EOK; } int hc_init_mmio(xhci_hc_t *hc, const hw_res_list_parsed_t *hw_res) { int err; if (hw_res->mem_ranges.count != 1) { usb_log_error("Unexpected MMIO area, bailing out."); return EINVAL; } hc->mmio_range = hw_res->mem_ranges.ranges[0]; usb_log_debug("MMIO area at %p (size %zu), IRQ %d.\n", RNGABSPTR(hc->mmio_range), RNGSZ(hc->mmio_range), hw_res->irqs.irqs[0]); if (RNGSZ(hc->mmio_range) < sizeof(xhci_cap_regs_t)) return EOVERFLOW; void *base; if ((err = pio_enable_range(&hc->mmio_range, &base))) return err; hc->reg_base = base; hc->cap_regs = (xhci_cap_regs_t *) base; hc->op_regs = (xhci_op_regs_t *) (base + XHCI_REG_RD(hc->cap_regs, XHCI_CAP_LENGTH)); hc->rt_regs = (xhci_rt_regs_t *) (base + XHCI_REG_RD(hc->cap_regs, XHCI_CAP_RTSOFF)); hc->db_arry = (xhci_doorbell_t *) (base + XHCI_REG_RD(hc->cap_regs, XHCI_CAP_DBOFF)); uintptr_t xec_offset = XHCI_REG_RD(hc->cap_regs, XHCI_CAP_XECP) * sizeof(xhci_dword_t); if (xec_offset > 0) hc->xecp = (xhci_extcap_t *) (base + xec_offset); usb_log_debug2("Initialized MMIO reg areas:"); usb_log_debug2("\tCapability regs: %p", hc->cap_regs); usb_log_debug2("\tOperational regs: %p", hc->op_regs); usb_log_debug2("\tRuntime regs: %p", hc->rt_regs); usb_log_debug2("\tDoorbell array base: %p", hc->db_arry); xhci_dump_cap_regs(hc->cap_regs); hc->ac64 = XHCI_REG_RD(hc->cap_regs, XHCI_CAP_AC64); hc->max_slots = XHCI_REG_RD(hc->cap_regs, XHCI_CAP_MAX_SLOTS); if ((err = hc_parse_ec(hc))) { pio_disable(hc->reg_base, RNGSZ(hc->mmio_range)); return err; } return EOK; } int hc_init_memory(xhci_hc_t *hc, ddf_dev_t *device) { int err; if (dma_buffer_alloc(&hc->dcbaa_dma, (1 + hc->max_slots) * sizeof(uint64_t))) return ENOMEM; hc->dcbaa = hc->dcbaa_dma.virt; if ((err = xhci_event_ring_init(&hc->event_ring))) goto err_dcbaa; if ((err = xhci_scratchpad_alloc(hc))) goto err_event_ring; if ((err = xhci_init_commands(hc))) goto err_scratch; if ((err = xhci_bus_init(&hc->bus, hc))) goto err_cmd; if ((err = xhci_rh_init(&hc->rh, hc, device))) goto err_bus; return EOK; err_bus: xhci_bus_fini(&hc->bus); err_cmd: xhci_fini_commands(hc); err_scratch: xhci_scratchpad_free(hc); err_event_ring: xhci_event_ring_fini(&hc->event_ring); err_dcbaa: hc->dcbaa = NULL; dma_buffer_free(&hc->dcbaa_dma); return err; } /* * Pseudocode: * ip = read(intr[0].iman) * if (ip) { * status = read(usbsts) * assert status * assert ip * accept (passing status) * } * decline */ static const irq_cmd_t irq_commands[] = { { .cmd = CMD_PIO_READ_32, .dstarg = 3, .addr = NULL /* intr[0].iman */ }, { .cmd = CMD_AND, .srcarg = 3, .dstarg = 4, .value = 0 /* host2xhci(32, 1) */ }, { .cmd = CMD_PREDICATE, .srcarg = 4, .value = 5 }, { .cmd = CMD_PIO_READ_32, .dstarg = 1, .addr = NULL /* usbsts */ }, { .cmd = CMD_AND, .srcarg = 1, .dstarg = 2, .value = 0 /* host2xhci(32, XHCI_STATUS_ACK_MASK) */ }, { .cmd = CMD_PIO_WRITE_A_32, .srcarg = 2, .addr = NULL /* usbsts */ }, { .cmd = CMD_PIO_WRITE_A_32, .srcarg = 3, .addr = NULL /* intr[0].iman */ }, { .cmd = CMD_ACCEPT }, { .cmd = CMD_DECLINE } }; /** * Generates code to accept interrupts. The xHCI is designed primarily for * MSI/MSI-X, but we use PCI Interrupt Pin. In this mode, all the Interrupters * (except 0) are disabled. */ int hc_irq_code_gen(irq_code_t *code, xhci_hc_t *hc, const hw_res_list_parsed_t *hw_res) { assert(code); assert(hw_res); if (hw_res->irqs.count != 1) { usb_log_info("Unexpected HW resources to enable interrupts."); return EINVAL; } code->ranges = malloc(sizeof(irq_pio_range_t)); if (code->ranges == NULL) return ENOMEM; code->cmds = malloc(sizeof(irq_commands)); if (code->cmds == NULL) { free(code->ranges); return ENOMEM; } code->rangecount = 1; code->ranges[0] = (irq_pio_range_t) { .base = RNGABS(hc->mmio_range), .size = RNGSZ(hc->mmio_range), }; code->cmdcount = ARRAY_SIZE(irq_commands); memcpy(code->cmds, irq_commands, sizeof(irq_commands)); void *intr0_iman = RNGABSPTR(hc->mmio_range) + XHCI_REG_RD(hc->cap_regs, XHCI_CAP_RTSOFF) + offsetof(xhci_rt_regs_t, ir[0]); void *usbsts = RNGABSPTR(hc->mmio_range) + XHCI_REG_RD(hc->cap_regs, XHCI_CAP_LENGTH) + offsetof(xhci_op_regs_t, usbsts); code->cmds[0].addr = intr0_iman; code->cmds[1].value = host2xhci(32, 1); code->cmds[3].addr = usbsts; code->cmds[4].value = host2xhci(32, XHCI_STATUS_ACK_MASK); code->cmds[5].addr = usbsts; code->cmds[6].addr = intr0_iman; return hw_res->irqs.irqs[0]; } int hc_claim(xhci_hc_t *hc, ddf_dev_t *dev) { /* No legacy support capability, the controller is solely for us */ if (!hc->legsup) return EOK; /* Section 4.22.1 */ /* TODO: Test this with USB3-aware BIOS */ usb_log_debug2("LEGSUP: bios: %x, os: %x", hc->legsup->sem_bios, hc->legsup->sem_os); XHCI_REG_WR(hc->legsup, XHCI_LEGSUP_SEM_OS, 1); for (int i = 0; i <= (XHCI_LEGSUP_BIOS_TIMEOUT_US / XHCI_LEGSUP_POLLING_DELAY_1MS); i++) { usb_log_debug2("LEGSUP: elapsed: %i ms, bios: %x, os: %x", i, XHCI_REG_RD(hc->legsup, XHCI_LEGSUP_SEM_BIOS), XHCI_REG_RD(hc->legsup, XHCI_LEGSUP_SEM_OS)); if (XHCI_REG_RD(hc->legsup, XHCI_LEGSUP_SEM_BIOS) == 0) { assert(XHCI_REG_RD(hc->legsup, XHCI_LEGSUP_SEM_OS) == 1); return EOK; } async_usleep(XHCI_LEGSUP_POLLING_DELAY_1MS); } usb_log_error("BIOS did not release XHCI legacy hold!\n"); return ENOTSUP; } static int hc_reset(xhci_hc_t *hc) { /* Stop the HC: set R/S to 0 */ XHCI_REG_CLR(hc->op_regs, XHCI_OP_RS, 1); /* Wait 16 ms until the HC is halted */ async_usleep(16000); assert(XHCI_REG_RD(hc->op_regs, XHCI_OP_HCH)); /* Reset */ XHCI_REG_SET(hc->op_regs, XHCI_OP_HCRST, 1); /* Wait until the reset is complete */ while (XHCI_REG_RD(hc->op_regs, XHCI_OP_HCRST)) async_usleep(1000); return EOK; } /** * Initialize the HC: section 4.2 */ int hc_start(xhci_hc_t *hc, bool irq) { int err; if ((err = hc_reset(hc))) return err; // FIXME: Waiting forever. while (XHCI_REG_RD(hc->op_regs, XHCI_OP_CNR)) async_usleep(1000); uint64_t dcbaaptr = hc->dcbaa_dma.phys; XHCI_REG_WR(hc->op_regs, XHCI_OP_DCBAAP_LO, LOWER32(dcbaaptr)); XHCI_REG_WR(hc->op_regs, XHCI_OP_DCBAAP_HI, UPPER32(dcbaaptr)); XHCI_REG_WR(hc->op_regs, XHCI_OP_MAX_SLOTS_EN, hc->max_slots); uint64_t crcr = xhci_trb_ring_get_dequeue_ptr(&hc->cr.trb_ring); if (hc->cr.trb_ring.pcs) crcr |= XHCI_REG_MASK(XHCI_OP_RCS); XHCI_REG_WR(hc->op_regs, XHCI_OP_CRCR_LO, LOWER32(crcr)); XHCI_REG_WR(hc->op_regs, XHCI_OP_CRCR_HI, UPPER32(crcr)); xhci_interrupter_regs_t *intr0 = &hc->rt_regs->ir[0]; XHCI_REG_WR(intr0, XHCI_INTR_ERSTSZ, hc->event_ring.segment_count); uint64_t erdp = hc->event_ring.dequeue_ptr; XHCI_REG_WR(intr0, XHCI_INTR_ERDP_LO, LOWER32(erdp)); XHCI_REG_WR(intr0, XHCI_INTR_ERDP_HI, UPPER32(erdp)); uint64_t erstptr = hc->event_ring.erst.phys; XHCI_REG_WR(intr0, XHCI_INTR_ERSTBA_LO, LOWER32(erstptr)); XHCI_REG_WR(intr0, XHCI_INTR_ERSTBA_HI, UPPER32(erstptr)); if (irq) { XHCI_REG_SET(intr0, XHCI_INTR_IE, 1); XHCI_REG_SET(hc->op_regs, XHCI_OP_INTE, 1); } XHCI_REG_SET(hc->op_regs, XHCI_OP_RS, 1); /* The reset changed status of all ports, and SW originated reason does * not cause an interrupt. */ xhci_rh_handle_port_change(&hc->rh); return EOK; } /** * Used only when polling. Shall supplement the irq_commands. */ int hc_status(bus_t *bus, uint32_t *status) { xhci_hc_t *hc = bus_to_hc(bus); int ip = XHCI_REG_RD(hc->rt_regs->ir, XHCI_INTR_IP); if (ip) { *status = XHCI_REG_RD(hc->op_regs, XHCI_OP_STATUS); XHCI_REG_WR(hc->op_regs, XHCI_OP_STATUS, *status & XHCI_STATUS_ACK_MASK); XHCI_REG_WR(hc->rt_regs->ir, XHCI_INTR_IP, 1); /* interrupt handler expects status from irq_commands, which is * in xhci order. */ *status = host2xhci(32, *status); } usb_log_debug2("HC(%p): Polled status: %x", hc, *status); return EOK; } int hc_schedule(usb_transfer_batch_t *batch) { assert(batch); xhci_hc_t *hc = bus_to_hc(endpoint_get_bus(batch->ep)); if (!batch->target.address) { usb_log_error("Attempted to schedule transfer to address 0."); return EINVAL; } return xhci_transfer_schedule(hc, batch); } typedef int (*event_handler) (xhci_hc_t *, xhci_trb_t *trb); static event_handler event_handlers [] = { [XHCI_TRB_TYPE_COMMAND_COMPLETION_EVENT] = &xhci_handle_command_completion, [XHCI_TRB_TYPE_PORT_STATUS_CHANGE_EVENT] = &xhci_rh_handle_port_status_change_event, [XHCI_TRB_TYPE_TRANSFER_EVENT] = &xhci_handle_transfer_event, }; static int hc_handle_event(xhci_hc_t *hc, xhci_trb_t *trb, xhci_interrupter_regs_t *intr) { unsigned type = TRB_TYPE(*trb); if (type >= ARRAY_SIZE(event_handlers) || !event_handlers[type]) return ENOTSUP; return event_handlers[type](hc, trb); } static void hc_run_event_ring(xhci_hc_t *hc, xhci_event_ring_t *event_ring, xhci_interrupter_regs_t *intr) { int err; ssize_t size = 16; xhci_trb_t *queue = malloc(sizeof(xhci_trb_t) * size); if (!queue) { usb_log_error("Not enough memory to run the event ring."); return; } xhci_trb_t *head = queue; while ((err = xhci_event_ring_dequeue(event_ring, head)) != ENOENT) { if (err != EOK) { usb_log_warning("Error while accessing event ring: %s", str_error(err)); break; } usb_log_debug2("Dequeued trb from event ring: %s", xhci_trb_str_type(TRB_TYPE(*head))); head++; /* Expand the array if needed. */ if (head - queue >= size) { size *= 2; xhci_trb_t *new_queue = realloc(queue, size); if (new_queue == NULL) break; /* Will process only those TRBs we have memory for. */ head = new_queue + (head - queue); } } /* Update the ERDP to make room in the ring. */ usb_log_debug2("Copying from ring finished, updating ERDP."); uint64_t erdp = hc->event_ring.dequeue_ptr; XHCI_REG_WR(intr, XHCI_INTR_ERDP_LO, LOWER32(erdp)); XHCI_REG_WR(intr, XHCI_INTR_ERDP_HI, UPPER32(erdp)); XHCI_REG_SET(intr, XHCI_INTR_ERDP_EHB, 1); /* Handle all of the collected events if possible. */ if (head == queue) usb_log_warning("No events to be handled!"); for (xhci_trb_t *tail = queue; tail != head; tail++) { if ((err = hc_handle_event(hc, tail, intr)) != EOK) { usb_log_error("Failed to handle event: %s", str_error(err)); } } free(queue); usb_log_debug2("Event ring run finished."); } void hc_interrupt(bus_t *bus, uint32_t status) { xhci_hc_t *hc = bus_to_hc(bus); status = xhci2host(32, status); if (status & XHCI_REG_MASK(XHCI_OP_PCD)) { usb_log_debug2("Root hub interrupt."); xhci_rh_handle_port_change(&hc->rh); status &= ~XHCI_REG_MASK(XHCI_OP_PCD); } if (status & XHCI_REG_MASK(XHCI_OP_HSE)) { usb_log_error("Host controller error occured. Bad things gonna happen..."); status &= ~XHCI_REG_MASK(XHCI_OP_HSE); } if (status & XHCI_REG_MASK(XHCI_OP_EINT)) { usb_log_debug2("Event interrupt, running the event ring."); hc_run_event_ring(hc, &hc->event_ring, &hc->rt_regs->ir[0]); status &= ~XHCI_REG_MASK(XHCI_OP_EINT); } if (status & XHCI_REG_MASK(XHCI_OP_SRE)) { usb_log_error("Save/Restore error occured. WTF, S/R mechanism not implemented!"); status &= ~XHCI_REG_MASK(XHCI_OP_SRE); } if (status) { usb_log_error("Non-zero status after interrupt handling (%08x) - missing something?", status); } } static void hc_dcbaa_fini(xhci_hc_t *hc) { xhci_scratchpad_free(hc); dma_buffer_free(&hc->dcbaa_dma); } void hc_fini(xhci_hc_t *hc) { xhci_bus_fini(&hc->bus); xhci_event_ring_fini(&hc->event_ring); hc_dcbaa_fini(hc); xhci_fini_commands(hc); xhci_rh_fini(&hc->rh); pio_disable(hc->reg_base, RNGSZ(hc->mmio_range)); usb_log_info("HC(%p): Finalized.", hc); } int hc_ring_doorbell(xhci_hc_t *hc, unsigned doorbell, unsigned target) { assert(hc); uint32_t v = host2xhci(32, target & BIT_RRANGE(uint32_t, 7)); pio_write_32(&hc->db_arry[doorbell], v); usb_log_debug2("Ringing doorbell %d (target: %d)", doorbell, target); return EOK; } int hc_enable_slot(xhci_hc_t *hc, uint32_t *slot_id) { assert(hc); int err; xhci_cmd_t cmd; xhci_cmd_init(&cmd, XHCI_CMD_ENABLE_SLOT); if ((err = xhci_cmd_sync(hc, &cmd))) { goto end; } if (slot_id) { *slot_id = cmd.slot_id; } end: xhci_cmd_fini(&cmd); return err; } int hc_disable_slot(xhci_hc_t *hc, xhci_device_t *dev) { int err; assert(hc); if ((err = xhci_cmd_sync_inline(hc, DISABLE_SLOT, .slot_id = dev->slot_id))) { return err; } /* Free the device context. */ hc->dcbaa[dev->slot_id] = 0; dma_buffer_free(&dev->dev_ctx); /* Mark the slot as invalid. */ dev->slot_id = 0; return EOK; } static int create_configure_ep_input_ctx(dma_buffer_t *dma_buf) { const int err = dma_buffer_alloc(dma_buf, sizeof(xhci_input_ctx_t)); if (err) return err; xhci_input_ctx_t *ictx = dma_buf->virt; memset(ictx, 0, sizeof(xhci_input_ctx_t)); // Quoting sec. 4.6.5 and 4.6.6: A1, D0, D1 are down (already zeroed), A0 is up. XHCI_INPUT_CTRL_CTX_ADD_SET(ictx->ctrl_ctx, 0); return EOK; } int hc_address_device(xhci_hc_t *hc, xhci_device_t *dev, xhci_endpoint_t *ep0) { int err = ENOMEM; /* Although we have the precise PSIV value on devices of tier 1, * we have to rely on reverse mapping on others. */ if (!hc->speed_to_psiv[dev->base.speed]) { usb_log_error("Device reported an USB speed that cannot be mapped to HC port speed."); return EINVAL; } /* Setup and register device context */ if (dma_buffer_alloc(&dev->dev_ctx, sizeof(xhci_device_ctx_t))) goto err; memset(dev->dev_ctx.virt, 0, sizeof(xhci_device_ctx_t)); hc->dcbaa[dev->slot_id] = host2xhci(64, dev->dev_ctx.phys); /* Issue configure endpoint command (sec 4.3.5). */ dma_buffer_t ictx_dma_buf; if ((err = create_configure_ep_input_ctx(&ictx_dma_buf))) { goto err_dev_ctx; } xhci_input_ctx_t *ictx = ictx_dma_buf.virt; /* Initialize slot_ctx according to section 4.3.3 point 3. */ XHCI_SLOT_ROOT_HUB_PORT_SET(ictx->slot_ctx, dev->rh_port); XHCI_SLOT_CTX_ENTRIES_SET(ictx->slot_ctx, 1); XHCI_SLOT_ROUTE_STRING_SET(ictx->slot_ctx, dev->route_str); XHCI_SLOT_SPEED_SET(ictx->slot_ctx, hc->speed_to_psiv[dev->base.speed]); /* In a very specific case, we have to set also these. But before that, * we need to refactor how TT is handled in libusbhost. */ XHCI_SLOT_TT_HUB_SLOT_ID_SET(ictx->slot_ctx, 0); XHCI_SLOT_TT_HUB_PORT_SET(ictx->slot_ctx, 0); XHCI_SLOT_MTT_SET(ictx->slot_ctx, 0); /* Copy endpoint 0 context and set A1 flag. */ XHCI_INPUT_CTRL_CTX_ADD_SET(ictx->ctrl_ctx, 1); xhci_setup_endpoint_context(ep0, &ictx->endpoint_ctx[0]); /* Issue Address Device command. */ if ((err = xhci_cmd_sync_inline(hc, ADDRESS_DEVICE, .slot_id = dev->slot_id, .input_ctx = ictx_dma_buf))) { goto err_dev_ctx; } xhci_device_ctx_t *dev_ctx = dev->dev_ctx.virt; dev->base.address = XHCI_SLOT_DEVICE_ADDRESS(dev_ctx->slot_ctx); usb_log_debug2("Obtained USB address: %d.\n", dev->base.address); /* From now on, the device is officially online, yay! */ fibril_mutex_lock(&dev->base.guard); dev->online = true; fibril_mutex_unlock(&dev->base.guard); return EOK; err_dev_ctx: hc->dcbaa[dev->slot_id] = 0; dma_buffer_free(&dev->dev_ctx); err: return err; } int hc_configure_device(xhci_hc_t *hc, uint32_t slot_id) { /* Issue configure endpoint command (sec 4.3.5). */ dma_buffer_t ictx_dma_buf; const int err = create_configure_ep_input_ctx(&ictx_dma_buf); if (err) return err; // TODO: Set slot context and other flags. (probably forgot a lot of 'em) return xhci_cmd_sync_inline(hc, CONFIGURE_ENDPOINT, .slot_id = slot_id, .input_ctx = ictx_dma_buf); } int hc_deconfigure_device(xhci_hc_t *hc, uint32_t slot_id) { /* Issue configure endpoint command (sec 4.3.5) with the DC flag. */ return xhci_cmd_sync_inline(hc, CONFIGURE_ENDPOINT, .slot_id = slot_id, .deconfigure = true); } int hc_add_endpoint(xhci_hc_t *hc, uint32_t slot_id, uint8_t ep_idx, xhci_ep_ctx_t *ep_ctx) { /* Issue configure endpoint command (sec 4.3.5). */ dma_buffer_t ictx_dma_buf; const int err = create_configure_ep_input_ctx(&ictx_dma_buf); if (err) return err; xhci_input_ctx_t *ictx = ictx_dma_buf.virt; XHCI_INPUT_CTRL_CTX_ADD_SET(ictx->ctrl_ctx, ep_idx + 1); /* Preceded by slot ctx */ memcpy(&ictx->endpoint_ctx[ep_idx], ep_ctx, sizeof(xhci_ep_ctx_t)); // TODO: Set slot context and other flags. (probably forgot a lot of 'em) return xhci_cmd_sync_inline(hc, CONFIGURE_ENDPOINT, .slot_id = slot_id, .input_ctx = ictx_dma_buf); } int hc_drop_endpoint(xhci_hc_t *hc, uint32_t slot_id, uint8_t ep_idx) { /* Issue configure endpoint command (sec 4.3.5). */ dma_buffer_t ictx_dma_buf; const int err = create_configure_ep_input_ctx(&ictx_dma_buf); if (err) return err; xhci_input_ctx_t *ictx = ictx_dma_buf.virt; XHCI_INPUT_CTRL_CTX_DROP_SET(ictx->ctrl_ctx, ep_idx + 1); /* Preceded by slot ctx */ // TODO: Set slot context and other flags. (probably forgot a lot of 'em) return xhci_cmd_sync_inline(hc, CONFIGURE_ENDPOINT, .slot_id = slot_id, .input_ctx = ictx_dma_buf); } int hc_update_endpoint(xhci_hc_t *hc, uint32_t slot_id, uint8_t ep_idx, xhci_ep_ctx_t *ep_ctx) { dma_buffer_t ictx_dma_buf; const int err = dma_buffer_alloc(&ictx_dma_buf, sizeof(xhci_input_ctx_t)); if (err) return err; xhci_input_ctx_t *ictx = ictx_dma_buf.virt; memset(ictx, 0, sizeof(xhci_input_ctx_t)); XHCI_INPUT_CTRL_CTX_ADD_SET(ictx->ctrl_ctx, ep_idx + 1); memcpy(&ictx->endpoint_ctx[ep_idx], ep_ctx, sizeof(xhci_ep_ctx_t)); return xhci_cmd_sync_inline(hc, EVALUATE_CONTEXT, .slot_id = slot_id, .input_ctx = ictx_dma_buf); } /** * @} */