| 1 | /*
|
|---|
| 2 | * Copyright (c) 2018 Jiri Svoboda
|
|---|
| 3 | * Copyright (c) 2018 Vojtech Horky
|
|---|
| 4 | * All rights reserved.
|
|---|
| 5 | *
|
|---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
|---|
| 7 | * modification, are permitted provided that the following conditions
|
|---|
| 8 | * are met:
|
|---|
| 9 | *
|
|---|
| 10 | * - Redistributions of source code must retain the above copyright
|
|---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
|---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
|---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
|---|
| 14 | * documentation and/or other materials provided with the distribution.
|
|---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
|---|
| 16 | * derived from this software without specific prior written permission.
|
|---|
| 17 | *
|
|---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 28 | */
|
|---|
| 29 |
|
|---|
| 30 | /** @addtogroup perf
|
|---|
| 31 | * @{
|
|---|
| 32 | */
|
|---|
| 33 | /**
|
|---|
| 34 | * @file
|
|---|
| 35 | */
|
|---|
| 36 |
|
|---|
| 37 | #include <assert.h>
|
|---|
| 38 | #include <math.h>
|
|---|
| 39 | #include <stdio.h>
|
|---|
| 40 | #include <stddef.h>
|
|---|
| 41 | #include <stdlib.h>
|
|---|
| 42 | #include <str.h>
|
|---|
| 43 | #include <time.h>
|
|---|
| 44 | #include <errno.h>
|
|---|
| 45 | #include <perf.h>
|
|---|
| 46 | #include <types/casting.h>
|
|---|
| 47 | #include "perf.h"
|
|---|
| 48 | #include "benchlist.h"
|
|---|
| 49 |
|
|---|
| 50 | #define MIN_DURATION_SECS 10
|
|---|
| 51 | #define NUM_SAMPLES 10
|
|---|
| 52 | #define MAX_ERROR_STR_LENGTH 1024
|
|---|
| 53 |
|
|---|
| 54 | static void short_report(stopwatch_t *stopwatch, int run_index,
|
|---|
| 55 | benchmark_t *bench, uint64_t workload_size)
|
|---|
| 56 | {
|
|---|
| 57 | usec_t duration_usec = NSEC2USEC(stopwatch_get_nanos(stopwatch));
|
|---|
| 58 |
|
|---|
| 59 | printf("Completed %" PRIu64 " operations in %llu us",
|
|---|
| 60 | workload_size, duration_usec);
|
|---|
| 61 | if (duration_usec > 0) {
|
|---|
| 62 | double nanos = stopwatch_get_nanos(stopwatch);
|
|---|
| 63 | double thruput = (double) workload_size / (nanos / 1000000000.0l);
|
|---|
| 64 | printf(", %.0f ops/s.\n", thruput);
|
|---|
| 65 | } else {
|
|---|
| 66 | printf(".\n");
|
|---|
| 67 | }
|
|---|
| 68 | }
|
|---|
| 69 |
|
|---|
| 70 | /*
|
|---|
| 71 | * This is a temporary solution until we have proper sqrt() implementation
|
|---|
| 72 | * in libmath.
|
|---|
| 73 | *
|
|---|
| 74 | * The algorithm uses Babylonian method [1].
|
|---|
| 75 | *
|
|---|
| 76 | * [1] https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
|
|---|
| 77 | */
|
|---|
| 78 | static double estimate_square_root(double value, double precision)
|
|---|
| 79 | {
|
|---|
| 80 | double estimate = 1.;
|
|---|
| 81 | double prev_estimate = estimate + 10 * precision;
|
|---|
| 82 |
|
|---|
| 83 | while (fabs(estimate - prev_estimate) > precision) {
|
|---|
| 84 | prev_estimate = estimate;
|
|---|
| 85 | estimate = (prev_estimate + value / prev_estimate) / 2.;
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | return estimate;
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | /*
|
|---|
| 92 | * Compute available statistics from given stopwatches.
|
|---|
| 93 | *
|
|---|
| 94 | * We compute normal mean for average duration of the workload and geometric
|
|---|
| 95 | * mean for average thruput. Note that geometric mean is necessary to compute
|
|---|
| 96 | * average throughput correctly - consider the following example:
|
|---|
| 97 | * - we run always 60 operations,
|
|---|
| 98 | * - first run executes in 30 s (i.e. 2 ops/s)
|
|---|
| 99 | * - and second one in 10 s (6 ops/s).
|
|---|
| 100 | * Then, naively, average throughput would be (2+6)/2 = 4 [ops/s]. However, we
|
|---|
| 101 | * actually executed 60 + 60 ops in 30 + 10 seconds. So the actual average
|
|---|
| 102 | * throughput is 3 ops/s (which is exactly what geometric mean means).
|
|---|
| 103 | *
|
|---|
| 104 | */
|
|---|
| 105 | static void compute_stats(stopwatch_t *stopwatch, size_t stopwatch_count,
|
|---|
| 106 | uint64_t workload_size, double precision, double *out_duration_avg,
|
|---|
| 107 | double *out_duration_sigma, double *out_thruput_avg)
|
|---|
| 108 | {
|
|---|
| 109 | double inv_thruput_sum = 0.0;
|
|---|
| 110 | double nanos_sum = 0.0;
|
|---|
| 111 | double nanos_sum2 = 0.0;
|
|---|
| 112 |
|
|---|
| 113 | for (size_t i = 0; i < stopwatch_count; i++) {
|
|---|
| 114 | double nanos = stopwatch_get_nanos(&stopwatch[i]);
|
|---|
| 115 | double thruput = (double) workload_size / nanos;
|
|---|
| 116 |
|
|---|
| 117 | inv_thruput_sum += 1.0 / thruput;
|
|---|
| 118 | nanos_sum += nanos;
|
|---|
| 119 | nanos_sum2 += nanos * nanos;
|
|---|
| 120 | }
|
|---|
| 121 | *out_duration_avg = nanos_sum / stopwatch_count;
|
|---|
| 122 | double sigma2 = (nanos_sum2 - nanos_sum * (*out_duration_avg)) /
|
|---|
| 123 | ((double) stopwatch_count - 1);
|
|---|
| 124 | // FIXME: implement sqrt properly
|
|---|
| 125 | *out_duration_sigma = estimate_square_root(sigma2, precision);
|
|---|
| 126 | *out_thruput_avg = 1.0 / (inv_thruput_sum / stopwatch_count);
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | static void summary_stats(stopwatch_t *stopwatch, size_t stopwatch_count,
|
|---|
| 130 | benchmark_t *bench, uint64_t workload_size)
|
|---|
| 131 | {
|
|---|
| 132 | double duration_avg, duration_sigma, thruput_avg;
|
|---|
| 133 | compute_stats(stopwatch, stopwatch_count, workload_size, 0.001,
|
|---|
| 134 | &duration_avg, &duration_sigma, &thruput_avg);
|
|---|
| 135 |
|
|---|
| 136 | printf("Average: %" PRIu64 " ops in %.0f us (sd %.0f us); "
|
|---|
| 137 | "%.0f ops/s; Samples: %zu\n",
|
|---|
| 138 | workload_size, duration_avg / 1000.0, duration_sigma / 1000.0,
|
|---|
| 139 | thruput_avg * 1000000000.0, stopwatch_count);
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | static bool run_benchmark(benchmark_t *bench)
|
|---|
| 143 | {
|
|---|
| 144 | printf("Warm up and determine workload size...\n");
|
|---|
| 145 |
|
|---|
| 146 | char *error_msg = malloc(MAX_ERROR_STR_LENGTH + 1);
|
|---|
| 147 | if (error_msg == NULL) {
|
|---|
| 148 | printf("Out of memory!\n");
|
|---|
| 149 | return false;
|
|---|
| 150 | }
|
|---|
| 151 | str_cpy(error_msg, MAX_ERROR_STR_LENGTH, "");
|
|---|
| 152 |
|
|---|
| 153 | bool ret = true;
|
|---|
| 154 |
|
|---|
| 155 | if (bench->setup != NULL) {
|
|---|
| 156 | ret = bench->setup(error_msg, MAX_ERROR_STR_LENGTH);
|
|---|
| 157 | if (!ret) {
|
|---|
| 158 | goto leave_error;
|
|---|
| 159 | }
|
|---|
| 160 | }
|
|---|
| 161 |
|
|---|
| 162 | /*
|
|---|
| 163 | * Find workload size that is big enough to last few seconds.
|
|---|
| 164 | * We also check that uint64_t is big enough.
|
|---|
| 165 | */
|
|---|
| 166 | uint64_t workload_size = 0;
|
|---|
| 167 | for (size_t bits = 0; bits <= 64; bits++) {
|
|---|
| 168 | if (bits == 64) {
|
|---|
| 169 | str_cpy(error_msg, MAX_ERROR_STR_LENGTH, "Workload too small even for 1 << 63");
|
|---|
| 170 | goto leave_error;
|
|---|
| 171 | }
|
|---|
| 172 | workload_size = ((uint64_t) 1) << bits;
|
|---|
| 173 |
|
|---|
| 174 | stopwatch_t stopwatch = STOPWATCH_INITIALIZE_STATIC;
|
|---|
| 175 |
|
|---|
| 176 | bool ok = bench->entry(&stopwatch, workload_size,
|
|---|
| 177 | error_msg, MAX_ERROR_STR_LENGTH);
|
|---|
| 178 | if (!ok) {
|
|---|
| 179 | goto leave_error;
|
|---|
| 180 | }
|
|---|
| 181 | short_report(&stopwatch, -1, bench, workload_size);
|
|---|
| 182 |
|
|---|
| 183 | nsec_t duration = stopwatch_get_nanos(&stopwatch);
|
|---|
| 184 | if (duration > SEC2NSEC(MIN_DURATION_SECS)) {
|
|---|
| 185 | break;
|
|---|
| 186 | }
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | printf("Workload size set to %" PRIu64 ", measuring %d samples.\n", workload_size, NUM_SAMPLES);
|
|---|
| 190 |
|
|---|
| 191 | stopwatch_t *stopwatch = calloc(NUM_SAMPLES, sizeof(stopwatch_t));
|
|---|
| 192 | if (stopwatch == NULL) {
|
|---|
| 193 | snprintf(error_msg, MAX_ERROR_STR_LENGTH, "failed allocating memory");
|
|---|
| 194 | goto leave_error;
|
|---|
| 195 | }
|
|---|
| 196 | for (int i = 0; i < NUM_SAMPLES; i++) {
|
|---|
| 197 | stopwatch_init(&stopwatch[i]);
|
|---|
| 198 |
|
|---|
| 199 | bool ok = bench->entry(&stopwatch[i], workload_size,
|
|---|
| 200 | error_msg, MAX_ERROR_STR_LENGTH);
|
|---|
| 201 | if (!ok) {
|
|---|
| 202 | free(stopwatch);
|
|---|
| 203 | goto leave_error;
|
|---|
| 204 | }
|
|---|
| 205 | short_report(&stopwatch[i], i, bench, workload_size);
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 | summary_stats(stopwatch, NUM_SAMPLES, bench, workload_size);
|
|---|
| 209 | printf("\nBenchmark completed\n");
|
|---|
| 210 |
|
|---|
| 211 | free(stopwatch);
|
|---|
| 212 |
|
|---|
| 213 | goto leave;
|
|---|
| 214 |
|
|---|
| 215 | leave_error:
|
|---|
| 216 | printf("Error: %s\n", error_msg);
|
|---|
| 217 | ret = false;
|
|---|
| 218 |
|
|---|
| 219 | leave:
|
|---|
| 220 | if (bench->teardown != NULL) {
|
|---|
| 221 | bool ok = bench->teardown(error_msg, MAX_ERROR_STR_LENGTH);
|
|---|
| 222 | if (!ok) {
|
|---|
| 223 | printf("Error: %s\n", error_msg);
|
|---|
| 224 | ret = false;
|
|---|
| 225 | }
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | free(error_msg);
|
|---|
| 229 |
|
|---|
| 230 | return ret;
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | static int run_benchmarks(void)
|
|---|
| 234 | {
|
|---|
| 235 | unsigned int count_ok = 0;
|
|---|
| 236 | unsigned int count_fail = 0;
|
|---|
| 237 |
|
|---|
| 238 | char *failed_names = NULL;
|
|---|
| 239 |
|
|---|
| 240 | printf("\n*** Running all benchmarks ***\n\n");
|
|---|
| 241 |
|
|---|
| 242 | for (size_t it = 0; it < benchmark_count; it++) {
|
|---|
| 243 | printf("%s (%s)\n", benchmarks[it]->name, benchmarks[it]->desc);
|
|---|
| 244 | if (run_benchmark(benchmarks[it])) {
|
|---|
| 245 | count_ok++;
|
|---|
| 246 | continue;
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | if (!failed_names) {
|
|---|
| 250 | failed_names = str_dup(benchmarks[it]->name);
|
|---|
| 251 | } else {
|
|---|
| 252 | char *f = NULL;
|
|---|
| 253 | asprintf(&f, "%s, %s", failed_names, benchmarks[it]->name);
|
|---|
| 254 | if (!f) {
|
|---|
| 255 | printf("Out of memory.\n");
|
|---|
| 256 | abort();
|
|---|
| 257 | }
|
|---|
| 258 | free(failed_names);
|
|---|
| 259 | failed_names = f;
|
|---|
| 260 | }
|
|---|
| 261 | count_fail++;
|
|---|
| 262 | }
|
|---|
| 263 |
|
|---|
| 264 | printf("\nCompleted, %u benchmarks run, %u succeeded.\n",
|
|---|
| 265 | count_ok + count_fail, count_ok);
|
|---|
| 266 | if (failed_names)
|
|---|
| 267 | printf("Failed benchmarks: %s\n", failed_names);
|
|---|
| 268 |
|
|---|
| 269 | return count_fail;
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 | static void list_benchmarks(void)
|
|---|
| 273 | {
|
|---|
| 274 | size_t len = 0;
|
|---|
| 275 | for (size_t i = 0; i < benchmark_count; i++) {
|
|---|
| 276 | size_t len_now = str_length(benchmarks[i]->name);
|
|---|
| 277 | if (len_now > len)
|
|---|
| 278 | len = len_now;
|
|---|
| 279 | }
|
|---|
| 280 |
|
|---|
| 281 | assert(can_cast_size_t_to_int(len) && "benchmark name length overflow");
|
|---|
| 282 |
|
|---|
| 283 | for (size_t i = 0; i < benchmark_count; i++)
|
|---|
| 284 | printf("%-*s %s\n", (int) len, benchmarks[i]->name, benchmarks[i]->desc);
|
|---|
| 285 |
|
|---|
| 286 | printf("%-*s Run all benchmarks\n", (int) len, "*");
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | int main(int argc, char *argv[])
|
|---|
| 290 | {
|
|---|
| 291 | if (argc < 2) {
|
|---|
| 292 | printf("Usage:\n\n");
|
|---|
| 293 | printf("%s <benchmark>\n\n", argv[0]);
|
|---|
| 294 | list_benchmarks();
|
|---|
| 295 | return 0;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | if (str_cmp(argv[1], "*") == 0) {
|
|---|
| 299 | return run_benchmarks();
|
|---|
| 300 | }
|
|---|
| 301 |
|
|---|
| 302 | for (size_t i = 0; i < benchmark_count; i++) {
|
|---|
| 303 | if (str_cmp(argv[1], benchmarks[i]->name) == 0) {
|
|---|
| 304 | return (run_benchmark(benchmarks[i]) ? 0 : -1);
|
|---|
| 305 | }
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | printf("Unknown benchmark \"%s\"\n", argv[1]);
|
|---|
| 309 | return -2;
|
|---|
| 310 | }
|
|---|
| 311 |
|
|---|
| 312 | /** @}
|
|---|
| 313 | */
|
|---|