/* * Copyright (c) 2010 Jiri Svoboda * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup fs * @{ */ /** * @file mkfat.c * @brief Tool for creating new FAT file systems. * * Currently we can create 12/16/32-bit FAT. */ #include #include #include #include #include #include #include #include #include #include #include "fat.h" #define NAME "mkfat" /** Divide and round up. */ #define div_round_up(a, b) (((a) + (b) - 1) / (b)) /** Default file-system parameters */ enum { default_sector_size = 512, default_sectors_per_cluster = 4, default_fat_count = 2, default_reserved_clusters = 2, default_media_descriptor = 0xF8 /**< fixed disk */ }; /** Configurable file-system parameters */ typedef struct fat_cfg { int fat_type; /* FAT12 = 12, FAT16 = 16, FAT32 = 32 */ size_t sector_size; uint32_t total_sectors; uint16_t root_ent_max; uint32_t addt_res_sectors; uint8_t sectors_per_cluster; uint16_t reserved_sectors; uint32_t rootdir_sectors; uint32_t fat_sectors; uint32_t total_clusters; uint8_t fat_count; } fat_cfg_t; static void syntax_print(void); static int fat_params_compute(struct fat_cfg *cfg); static int fat_blocks_write(struct fat_cfg const *cfg, service_id_t service_id); static void fat_bootsec_create(struct fat_cfg const *cfg, struct fat_bs *bs); int main(int argc, char **argv) { struct fat_cfg cfg; int rc; char *dev_path; service_id_t service_id; char *endptr; aoff64_t dev_nblocks; cfg.sector_size = default_sector_size; cfg.sectors_per_cluster = default_sectors_per_cluster; cfg.fat_count = default_fat_count; cfg.total_sectors = 0; cfg.addt_res_sectors = 0; cfg.root_ent_max = 128; cfg.fat_type = FAT16; if (argc < 2) { printf(NAME ": Error, argument missing.\n"); syntax_print(); return 1; } --argc; ++argv; if (str_cmp(*argv, "--size") == 0) { --argc; ++argv; if (*argv == NULL) { printf(NAME ": Error, argument missing.\n"); syntax_print(); return 1; } cfg.total_sectors = strtol(*argv, &endptr, 10); if (*endptr != '\0') { printf(NAME ": Error, invalid argument.\n"); syntax_print(); return 1; } --argc; ++argv; } if (str_cmp(*argv, "--type") == 0) { --argc; ++argv; if (*argv == NULL) { printf(NAME ": Error, argument missing.\n"); syntax_print(); return 1; } cfg.fat_type = strtol(*argv, &endptr, 10); if (*endptr != '\0') { printf(NAME ": Error, invalid argument.\n"); syntax_print(); return 1; } --argc; ++argv; } if (argc != 1) { printf(NAME ": Error, unexpected argument.\n"); syntax_print(); return 1; } dev_path = *argv; printf("Device: %s\n", dev_path); rc = loc_service_get_id(dev_path, &service_id, 0); if (rc != EOK) { printf(NAME ": Error resolving device `%s'.\n", dev_path); return 2; } rc = block_init(EXCHANGE_SERIALIZE, service_id, 2048); if (rc != EOK) { printf(NAME ": Error initializing libblock.\n"); return 2; } rc = block_get_bsize(service_id, &cfg.sector_size); if (rc != EOK) { printf(NAME ": Error determining device block size.\n"); return 2; } rc = block_get_nblocks(service_id, &dev_nblocks); if (rc != EOK) { printf(NAME ": Warning, failed to obtain block device size.\n"); } else { printf(NAME ": Block device has %" PRIuOFF64 " blocks.\n", dev_nblocks); if (dev_nblocks < cfg.total_sectors) cfg.total_sectors = dev_nblocks; } if (cfg.total_sectors == 0) { printf(NAME ": Error. You must specify filesystem size.\n"); return 1; } printf(NAME ": Creating FAT%d filesystem on device %s.\n", cfg.fat_type, dev_path); rc = fat_params_compute(&cfg); if (rc != EOK) { printf(NAME ": Invalid file-system parameters.\n"); return 2; } rc = fat_blocks_write(&cfg, service_id); if (rc != EOK) { printf(NAME ": Error writing device.\n"); return 2; } block_fini(service_id); printf("Success.\n"); return 0; } static void syntax_print(void) { printf("syntax: mkfat [--size ] [--type 12|16|32] \n"); } /** Derive sizes of different filesystem structures. * * This function concentrates all the different computations of FAT * file system params. */ static int fat_params_compute(struct fat_cfg *cfg) { uint32_t fat_bytes; uint32_t non_data_sectors_lb; /* * Make a conservative guess on the FAT size needed for the file * system. The optimum could be potentially smaller since we * do not subtract size of the FAT itself when computing the * size of the data region. */ cfg->reserved_sectors = 1 + cfg->addt_res_sectors; if (cfg->fat_type != FAT32) { cfg->rootdir_sectors = div_round_up(cfg->root_ent_max * DIRENT_SIZE, cfg->sector_size); } else cfg->rootdir_sectors = 0; non_data_sectors_lb = cfg->reserved_sectors + cfg->rootdir_sectors; cfg->total_clusters = div_round_up(cfg->total_sectors - non_data_sectors_lb, cfg->sectors_per_cluster); if ((cfg->fat_type == FAT12 && cfg->total_clusters > FAT12_CLST_MAX) || (cfg->fat_type == FAT16 && (cfg->total_clusters <= FAT12_CLST_MAX || cfg->total_clusters > FAT16_CLST_MAX)) || (cfg->fat_type == FAT32 && cfg->total_clusters <= FAT16_CLST_MAX)) return ENOSPC; fat_bytes = (cfg->total_clusters + 2) * FAT_SIZE(cfg->fat_type); cfg->fat_sectors = div_round_up(fat_bytes, cfg->sector_size); return EOK; } /** Create file system with the given parameters. */ static int fat_blocks_write(struct fat_cfg const *cfg, service_id_t service_id) { aoff64_t addr; uint8_t *buffer; int i; uint32_t j; int rc; struct fat_bs bs; fat_bootsec_create(cfg, &bs); rc = block_write_direct(service_id, BS_BLOCK, 1, &bs); if (rc != EOK) return EIO; addr = BS_BLOCK + 1; buffer = calloc(cfg->sector_size, 1); if (buffer == NULL) return ENOMEM; memset(buffer, 0, cfg->sector_size); /* Reserved sectors */ for (i = 0; i < cfg->reserved_sectors - 1; ++i) { rc = block_write_direct(service_id, addr, 1, buffer); if (rc != EOK) return EIO; ++addr; } /* File allocation tables */ for (i = 0; i < cfg->fat_count; ++i) { printf("Writing allocation table %d.\n", i + 1); for (j = 0; j < cfg->fat_sectors; ++j) { memset(buffer, 0, cfg->sector_size); if (j == 0) { buffer[0] = default_media_descriptor; buffer[1] = 0xFF; buffer[2] = 0xFF; if (cfg->fat_type == FAT16) { buffer[3] = 0xFF; } else if (cfg->fat_type == FAT32) { buffer[3] = 0x0F; buffer[4] = 0xFF; buffer[5] = 0xFF; buffer[6] = 0xFF; buffer[7] = 0x0F; buffer[8] = 0xF8; buffer[9] = 0xFF; buffer[10] = 0xFF; buffer[11] = 0x0F; } } rc = block_write_direct(service_id, addr, 1, buffer); if (rc != EOK) return EIO; ++addr; } } /* Root directory */ printf("Writing root directory.\n"); memset(buffer, 0, cfg->sector_size); if (cfg->fat_type != FAT32) { size_t idx; for (idx = 0; idx < cfg->rootdir_sectors; ++idx) { rc = block_write_direct(service_id, addr, 1, buffer); if (rc != EOK) return EIO; ++addr; } } else { for (i = 0; i < cfg->sectors_per_cluster; i++) { rc = block_write_direct(service_id, addr, 1, buffer); if (rc != EOK) return EIO; ++addr; } } free(buffer); return EOK; } /** Construct boot sector with the given parameters. */ static void fat_bootsec_create(struct fat_cfg const *cfg, struct fat_bs *bs) { memset(bs, 0, sizeof(*bs)); bs->ji[0] = 0xEB; bs->ji[1] = 0x3C; bs->ji[2] = 0x90; memcpy(bs->oem_name, "HELENOS ", 8); /* BIOS Parameter Block */ bs->bps = host2uint16_t_le(cfg->sector_size); bs->spc = cfg->sectors_per_cluster; bs->rscnt = host2uint16_t_le(cfg->reserved_sectors); bs->fatcnt = cfg->fat_count; bs->root_ent_max = host2uint16_t_le(cfg->root_ent_max); if (cfg->total_sectors < 0x10000) { bs->totsec16 = host2uint16_t_le(cfg->total_sectors); bs->totsec32 = 0; } else { bs->totsec16 = 0; bs->totsec32 = host2uint32_t_le(cfg->total_sectors); } bs->mdesc = default_media_descriptor; bs->sec_per_track = host2uint16_t_le(63); bs->signature = host2uint16_t_be(0x55AA); bs->headcnt = host2uint16_t_le(6); bs->hidden_sec = host2uint32_t_le(0); if (cfg->fat_type == FAT32) { bs->sec_per_fat = 0; bs->fat32.sectors_per_fat = host2uint32_t_le(cfg->fat_sectors); bs->fat32.pdn = 0x80; bs->fat32.ebs = 0x29; bs->fat32.id = host2uint32_t_be(0x12345678); bs->fat32.root_cluster = 2; memcpy(bs->fat32.label, "HELENOS_NEW", 11); memcpy(bs->fat32.type, "FAT32 ", 8); } else { bs->sec_per_fat = host2uint16_t_le(cfg->fat_sectors); bs->pdn = 0x80; bs->ebs = 0x29; bs->id = host2uint32_t_be(0x12345678); memcpy(bs->label, "HELENOS_NEW", 11); memcpy(bs->type, "FAT ", 8); } } /** * @} */