1 | /*
|
---|
2 | * Copyright (c) 2018 Jiri Svoboda
|
---|
3 | * Copyright (c) 2018 Vojtech Horky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup hbench
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | */
|
---|
36 |
|
---|
37 | #include <assert.h>
|
---|
38 | #include <getopt.h>
|
---|
39 | #include <math.h>
|
---|
40 | #include <stdio.h>
|
---|
41 | #include <stddef.h>
|
---|
42 | #include <stdlib.h>
|
---|
43 | #include <str.h>
|
---|
44 | #include <time.h>
|
---|
45 | #include <errno.h>
|
---|
46 | #include <str_error.h>
|
---|
47 | #include <perf.h>
|
---|
48 | #include <types/casting.h>
|
---|
49 | #include "hbench.h"
|
---|
50 |
|
---|
51 | #define MIN_DURATION_SECS 10
|
---|
52 | #define NUM_SAMPLES 10
|
---|
53 | #define MAX_ERROR_STR_LENGTH 1024
|
---|
54 |
|
---|
55 | static void short_report(bench_run_t *info, int run_index,
|
---|
56 | benchmark_t *bench, uint64_t workload_size)
|
---|
57 | {
|
---|
58 | csv_report_add_entry(info, run_index, bench, workload_size);
|
---|
59 |
|
---|
60 | usec_t duration_usec = NSEC2USEC(stopwatch_get_nanos(&info->stopwatch));
|
---|
61 |
|
---|
62 | printf("Completed %" PRIu64 " operations in %llu us",
|
---|
63 | workload_size, duration_usec);
|
---|
64 | if (duration_usec > 0) {
|
---|
65 | double nanos = stopwatch_get_nanos(&info->stopwatch);
|
---|
66 | double thruput = (double) workload_size / (nanos / 1000000000.0l);
|
---|
67 | printf(", %.0f ops/s.\n", thruput);
|
---|
68 | } else {
|
---|
69 | printf(".\n");
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | /** Estimate square root value.
|
---|
74 | *
|
---|
75 | * @param value The value to compute square root of.
|
---|
76 | * @param precision Required precision (e.g. 0.00001).
|
---|
77 | *
|
---|
78 | * @details
|
---|
79 | *
|
---|
80 | * This is a temporary solution until we have proper sqrt() implementation
|
---|
81 | * in libmath.
|
---|
82 | *
|
---|
83 | * The algorithm uses Babylonian method [1].
|
---|
84 | *
|
---|
85 | * [1] https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
|
---|
86 | */
|
---|
87 | static double estimate_square_root(double value, double precision)
|
---|
88 | {
|
---|
89 | double estimate = 1.;
|
---|
90 | double prev_estimate = estimate + 10 * precision;
|
---|
91 |
|
---|
92 | while (fabs(estimate - prev_estimate) > precision) {
|
---|
93 | prev_estimate = estimate;
|
---|
94 | estimate = (prev_estimate + value / prev_estimate) / 2.;
|
---|
95 | }
|
---|
96 |
|
---|
97 | return estimate;
|
---|
98 | }
|
---|
99 |
|
---|
100 | /** Compute available statistics from given stopwatches.
|
---|
101 | *
|
---|
102 | * We compute normal mean for average duration of the workload and geometric
|
---|
103 | * mean for average thruput. Note that geometric mean is necessary to compute
|
---|
104 | * average throughput correctly - consider the following example:
|
---|
105 | * - we run always 60 operations,
|
---|
106 | * - first run executes in 30 s (i.e. 2 ops/s)
|
---|
107 | * - and second one in 10 s (6 ops/s).
|
---|
108 | * Then, naively, average throughput would be (2+6)/2 = 4 [ops/s]. However, we
|
---|
109 | * actually executed 60 + 60 ops in 30 + 10 seconds. So the actual average
|
---|
110 | * throughput is 3 ops/s (which is exactly what geometric mean means).
|
---|
111 | *
|
---|
112 | */
|
---|
113 | static void compute_stats(bench_run_t *runs, size_t run_count,
|
---|
114 | uint64_t workload_size, double precision, double *out_duration_avg,
|
---|
115 | double *out_duration_sigma, double *out_thruput_avg)
|
---|
116 | {
|
---|
117 | double inv_thruput_sum = 0.0;
|
---|
118 | double nanos_sum = 0.0;
|
---|
119 | double nanos_sum2 = 0.0;
|
---|
120 |
|
---|
121 | for (size_t i = 0; i < run_count; i++) {
|
---|
122 | double nanos = stopwatch_get_nanos(&runs[i].stopwatch);
|
---|
123 | double thruput = (double) workload_size / nanos;
|
---|
124 |
|
---|
125 | inv_thruput_sum += 1.0 / thruput;
|
---|
126 | nanos_sum += nanos;
|
---|
127 | nanos_sum2 += nanos * nanos;
|
---|
128 | }
|
---|
129 | *out_duration_avg = nanos_sum / run_count;
|
---|
130 | double sigma2 = (nanos_sum2 - nanos_sum * (*out_duration_avg)) /
|
---|
131 | ((double) run_count - 1);
|
---|
132 | // FIXME: implement sqrt properly
|
---|
133 | *out_duration_sigma = estimate_square_root(sigma2, precision);
|
---|
134 | *out_thruput_avg = 1.0 / (inv_thruput_sum / run_count);
|
---|
135 | }
|
---|
136 |
|
---|
137 | static void summary_stats(bench_run_t *runs, size_t run_count,
|
---|
138 | benchmark_t *bench, uint64_t workload_size)
|
---|
139 | {
|
---|
140 | double duration_avg, duration_sigma, thruput_avg;
|
---|
141 | compute_stats(runs, run_count, workload_size, 0.001,
|
---|
142 | &duration_avg, &duration_sigma, &thruput_avg);
|
---|
143 |
|
---|
144 | printf("Average: %" PRIu64 " ops in %.0f us (sd %.0f us); "
|
---|
145 | "%.0f ops/s; Samples: %zu\n",
|
---|
146 | workload_size, duration_avg / 1000.0, duration_sigma / 1000.0,
|
---|
147 | thruput_avg * 1000000000.0, run_count);
|
---|
148 | }
|
---|
149 |
|
---|
150 | static bool run_benchmark(bench_env_t *env, benchmark_t *bench)
|
---|
151 | {
|
---|
152 | printf("Warm up and determine workload size...\n");
|
---|
153 |
|
---|
154 | /*
|
---|
155 | * We share this buffer across all runs as we know that it is
|
---|
156 | * used only on failure (and we abort after first error).
|
---|
157 | */
|
---|
158 | char *error_msg = malloc(MAX_ERROR_STR_LENGTH + 1);
|
---|
159 | if (error_msg == NULL) {
|
---|
160 | printf("Out of memory!\n");
|
---|
161 | return false;
|
---|
162 | }
|
---|
163 | str_cpy(error_msg, MAX_ERROR_STR_LENGTH, "");
|
---|
164 |
|
---|
165 | bench_run_t helper_run;
|
---|
166 | bench_run_init(&helper_run, error_msg, MAX_ERROR_STR_LENGTH);
|
---|
167 |
|
---|
168 | bool ret = true;
|
---|
169 |
|
---|
170 | if (bench->setup != NULL) {
|
---|
171 | ret = bench->setup(env, &helper_run);
|
---|
172 | if (!ret) {
|
---|
173 | goto leave_error;
|
---|
174 | }
|
---|
175 | }
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Find workload size that is big enough to last few seconds.
|
---|
179 | * We also check that uint64_t is big enough.
|
---|
180 | */
|
---|
181 | uint64_t workload_size = 0;
|
---|
182 | for (size_t bits = 0; bits <= 64; bits++) {
|
---|
183 | if (bits == 64) {
|
---|
184 | str_cpy(error_msg, MAX_ERROR_STR_LENGTH, "Workload too small even for 1 << 63");
|
---|
185 | goto leave_error;
|
---|
186 | }
|
---|
187 | workload_size = ((uint64_t) 1) << bits;
|
---|
188 |
|
---|
189 | bench_run_t run;
|
---|
190 | bench_run_init(&run, error_msg, MAX_ERROR_STR_LENGTH);
|
---|
191 |
|
---|
192 | bool ok = bench->entry(env, &run, workload_size);
|
---|
193 | if (!ok) {
|
---|
194 | goto leave_error;
|
---|
195 | }
|
---|
196 | short_report(&run, -1, bench, workload_size);
|
---|
197 |
|
---|
198 | nsec_t duration = stopwatch_get_nanos(&run.stopwatch);
|
---|
199 | if (duration > SEC2NSEC(MIN_DURATION_SECS)) {
|
---|
200 | break;
|
---|
201 | }
|
---|
202 | }
|
---|
203 |
|
---|
204 | printf("Workload size set to %" PRIu64 ", measuring %d samples.\n", workload_size, NUM_SAMPLES);
|
---|
205 |
|
---|
206 | bench_run_t *runs = calloc(NUM_SAMPLES, sizeof(bench_run_t));
|
---|
207 | if (runs == NULL) {
|
---|
208 | snprintf(error_msg, MAX_ERROR_STR_LENGTH, "failed allocating memory");
|
---|
209 | goto leave_error;
|
---|
210 | }
|
---|
211 | for (int i = 0; i < NUM_SAMPLES; i++) {
|
---|
212 | bench_run_init(&runs[i], error_msg, MAX_ERROR_STR_LENGTH);
|
---|
213 |
|
---|
214 | bool ok = bench->entry(env, &runs[i], workload_size);
|
---|
215 | if (!ok) {
|
---|
216 | free(runs);
|
---|
217 | goto leave_error;
|
---|
218 | }
|
---|
219 | short_report(&runs[i], i, bench, workload_size);
|
---|
220 | }
|
---|
221 |
|
---|
222 | summary_stats(runs, NUM_SAMPLES, bench, workload_size);
|
---|
223 | printf("\nBenchmark completed\n");
|
---|
224 |
|
---|
225 | free(runs);
|
---|
226 |
|
---|
227 | goto leave;
|
---|
228 |
|
---|
229 | leave_error:
|
---|
230 | printf("Error: %s\n", error_msg);
|
---|
231 | ret = false;
|
---|
232 |
|
---|
233 | leave:
|
---|
234 | if (bench->teardown != NULL) {
|
---|
235 | bool ok = bench->teardown(env, &helper_run);
|
---|
236 | if (!ok) {
|
---|
237 | printf("Error: %s\n", error_msg);
|
---|
238 | ret = false;
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | free(error_msg);
|
---|
243 |
|
---|
244 | return ret;
|
---|
245 | }
|
---|
246 |
|
---|
247 | static int run_benchmarks(bench_env_t *env)
|
---|
248 | {
|
---|
249 | unsigned int count_ok = 0;
|
---|
250 | unsigned int count_fail = 0;
|
---|
251 |
|
---|
252 | char *failed_names = NULL;
|
---|
253 |
|
---|
254 | printf("\n*** Running all benchmarks ***\n\n");
|
---|
255 |
|
---|
256 | for (size_t it = 0; it < benchmark_count; it++) {
|
---|
257 | printf("%s (%s)\n", benchmarks[it]->name, benchmarks[it]->desc);
|
---|
258 | if (run_benchmark(env, benchmarks[it])) {
|
---|
259 | count_ok++;
|
---|
260 | continue;
|
---|
261 | }
|
---|
262 |
|
---|
263 | if (!failed_names) {
|
---|
264 | failed_names = str_dup(benchmarks[it]->name);
|
---|
265 | } else {
|
---|
266 | char *f = NULL;
|
---|
267 | asprintf(&f, "%s, %s", failed_names, benchmarks[it]->name);
|
---|
268 | if (!f) {
|
---|
269 | printf("Out of memory.\n");
|
---|
270 | abort();
|
---|
271 | }
|
---|
272 | free(failed_names);
|
---|
273 | failed_names = f;
|
---|
274 | }
|
---|
275 | count_fail++;
|
---|
276 | }
|
---|
277 |
|
---|
278 | printf("\nCompleted, %u benchmarks run, %u succeeded.\n",
|
---|
279 | count_ok + count_fail, count_ok);
|
---|
280 | if (failed_names)
|
---|
281 | printf("Failed benchmarks: %s\n", failed_names);
|
---|
282 |
|
---|
283 | return count_fail;
|
---|
284 | }
|
---|
285 |
|
---|
286 | static void list_benchmarks(void)
|
---|
287 | {
|
---|
288 | size_t len = 0;
|
---|
289 | for (size_t i = 0; i < benchmark_count; i++) {
|
---|
290 | size_t len_now = str_length(benchmarks[i]->name);
|
---|
291 | if (len_now > len)
|
---|
292 | len = len_now;
|
---|
293 | }
|
---|
294 |
|
---|
295 | assert(can_cast_size_t_to_int(len) && "benchmark name length overflow");
|
---|
296 |
|
---|
297 | for (size_t i = 0; i < benchmark_count; i++)
|
---|
298 | printf(" %-*s %s\n", (int) len, benchmarks[i]->name, benchmarks[i]->desc);
|
---|
299 |
|
---|
300 | printf(" %-*s Run all benchmarks\n", (int) len, "*");
|
---|
301 | }
|
---|
302 |
|
---|
303 | static void print_usage(const char *progname)
|
---|
304 | {
|
---|
305 | printf("Usage: %s [options] <benchmark>\n", progname);
|
---|
306 | printf("-h, --help "
|
---|
307 | "Print this help and exit\n");
|
---|
308 | printf("-o, --output filename.csv "
|
---|
309 | "Store machine-readable data in filename.csv\n");
|
---|
310 | printf("-p, --param KEY=VALUE "
|
---|
311 | "Additional parameters for the benchmark\n");
|
---|
312 | printf("<benchmark> is one of the following:\n");
|
---|
313 | list_benchmarks();
|
---|
314 | }
|
---|
315 |
|
---|
316 | static void handle_param_arg(bench_env_t *env, char *arg)
|
---|
317 | {
|
---|
318 | char *value = NULL;
|
---|
319 | char *key = str_tok(arg, "=", &value);
|
---|
320 | bench_env_param_set(env, key, value);
|
---|
321 | }
|
---|
322 |
|
---|
323 | int main(int argc, char *argv[])
|
---|
324 | {
|
---|
325 | bench_env_t bench_env;
|
---|
326 | errno_t rc = bench_env_init(&bench_env);
|
---|
327 | if (rc != EOK) {
|
---|
328 | fprintf(stderr, "Failed to initialize internal params structure: %s\n",
|
---|
329 | str_error(rc));
|
---|
330 | return -5;
|
---|
331 | }
|
---|
332 |
|
---|
333 | const char *short_options = "ho:p:";
|
---|
334 | struct option long_options[] = {
|
---|
335 | { "help", optional_argument, NULL, 'h' },
|
---|
336 | { "param", required_argument, NULL, 'p' },
|
---|
337 | { "output", required_argument, NULL, 'o' },
|
---|
338 | { 0, 0, NULL, 0 }
|
---|
339 | };
|
---|
340 |
|
---|
341 | char *csv_output_filename = NULL;
|
---|
342 |
|
---|
343 | int opt = 0;
|
---|
344 | while ((opt = getopt_long(argc, argv, short_options, long_options, NULL)) > 0) {
|
---|
345 | switch (opt) {
|
---|
346 | case 'h':
|
---|
347 | print_usage(*argv);
|
---|
348 | return 0;
|
---|
349 | case 'o':
|
---|
350 | csv_output_filename = optarg;
|
---|
351 | break;
|
---|
352 | case 'p':
|
---|
353 | handle_param_arg(&bench_env, optarg);
|
---|
354 | break;
|
---|
355 | case -1:
|
---|
356 | default:
|
---|
357 | break;
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 | if (optind + 1 != argc) {
|
---|
362 | print_usage(*argv);
|
---|
363 | fprintf(stderr, "Error: specify one benchmark to run or * for all.\n");
|
---|
364 | return -3;
|
---|
365 | }
|
---|
366 |
|
---|
367 | const char *benchmark = argv[optind];
|
---|
368 |
|
---|
369 | if (csv_output_filename != NULL) {
|
---|
370 | errno_t rc = csv_report_open(csv_output_filename);
|
---|
371 | if (rc != EOK) {
|
---|
372 | fprintf(stderr, "Failed to open CSV report '%s': %s\n",
|
---|
373 | csv_output_filename, str_error(rc));
|
---|
374 | return -4;
|
---|
375 | }
|
---|
376 | }
|
---|
377 |
|
---|
378 | int exit_code = 0;
|
---|
379 |
|
---|
380 | if (str_cmp(benchmark, "*") == 0) {
|
---|
381 | exit_code = run_benchmarks(&bench_env);
|
---|
382 | } else {
|
---|
383 | bool benchmark_exists = false;
|
---|
384 | for (size_t i = 0; i < benchmark_count; i++) {
|
---|
385 | if (str_cmp(benchmark, benchmarks[i]->name) == 0) {
|
---|
386 | benchmark_exists = true;
|
---|
387 | exit_code = run_benchmark(&bench_env, benchmarks[i]) ? 0 : -1;
|
---|
388 | break;
|
---|
389 | }
|
---|
390 | }
|
---|
391 | if (!benchmark_exists) {
|
---|
392 | printf("Unknown benchmark \"%s\"\n", benchmark);
|
---|
393 | exit_code = -2;
|
---|
394 | }
|
---|
395 | }
|
---|
396 |
|
---|
397 | csv_report_close();
|
---|
398 | bench_env_cleanup(&bench_env);
|
---|
399 |
|
---|
400 | return exit_code;
|
---|
401 | }
|
---|
402 |
|
---|
403 | /** @}
|
---|
404 | */
|
---|