[b5440cf] | 1 | /*
|
---|
| 2 | * Copyright (C) 2005 Josef Cejka
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #include<sftypes.h>
|
---|
[12c6f2d] | 30 | #include<mul.h>
|
---|
[cf4a823] | 31 | #include<comparison.h>
|
---|
[e979fea] | 32 | #include<common.h>
|
---|
[b5440cf] | 33 |
|
---|
[3af72dc] | 34 | /** Multiply two 32 bit float numbers
|
---|
| 35 | *
|
---|
| 36 | */
|
---|
| 37 | float32 mulFloat32(float32 a, float32 b)
|
---|
| 38 | {
|
---|
| 39 | float32 result;
|
---|
[aa59fa0] | 40 | uint64_t frac1, frac2;
|
---|
| 41 | int32_t exp;
|
---|
[3af72dc] | 42 |
|
---|
| 43 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 44 |
|
---|
[bff16dd] | 45 | if (isFloat32NaN(a) || isFloat32NaN(b) ) {
|
---|
[3af72dc] | 46 | /* TODO: fix SigNaNs */
|
---|
| 47 | if (isFloat32SigNaN(a)) {
|
---|
[1266543] | 48 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 49 | result.parts.exp = a.parts.exp;
|
---|
| 50 | return result;
|
---|
| 51 | };
|
---|
| 52 | if (isFloat32SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 53 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 54 | result.parts.exp = b.parts.exp;
|
---|
| 55 | return result;
|
---|
| 56 | };
|
---|
| 57 | /* set NaN as result */
|
---|
[bff16dd] | 58 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 59 | return result;
|
---|
| 60 | };
|
---|
| 61 |
|
---|
| 62 | if (isFloat32Infinity(a)) {
|
---|
| 63 | if (isFloat32Zero(b)) {
|
---|
| 64 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 65 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 66 | return result;
|
---|
| 67 | }
|
---|
[1266543] | 68 | result.parts.fraction = a.parts.fraction;
|
---|
[3af72dc] | 69 | result.parts.exp = a.parts.exp;
|
---|
| 70 | return result;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | if (isFloat32Infinity(b)) {
|
---|
| 74 | if (isFloat32Zero(a)) {
|
---|
| 75 | /* FIXME: zero * infinity */
|
---|
[bff16dd] | 76 | result.binary = FLOAT32_NAN;
|
---|
[3af72dc] | 77 | return result;
|
---|
| 78 | }
|
---|
[1266543] | 79 | result.parts.fraction = b.parts.fraction;
|
---|
[3af72dc] | 80 | result.parts.exp = b.parts.exp;
|
---|
| 81 | return result;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | /* exp is signed so we can easy detect underflow */
|
---|
| 85 | exp = a.parts.exp + b.parts.exp;
|
---|
| 86 | exp -= FLOAT32_BIAS;
|
---|
| 87 |
|
---|
[bff16dd] | 88 | if (exp >= FLOAT32_MAX_EXPONENT) {
|
---|
[3af72dc] | 89 | /* FIXME: overflow */
|
---|
| 90 | /* set infinity as result */
|
---|
[bff16dd] | 91 | result.binary = FLOAT32_INF;
|
---|
| 92 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
[3af72dc] | 93 | return result;
|
---|
| 94 | };
|
---|
| 95 |
|
---|
| 96 | if (exp < 0) {
|
---|
| 97 | /* FIXME: underflow */
|
---|
| 98 | /* return signed zero */
|
---|
[1266543] | 99 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 100 | result.parts.exp = 0x0;
|
---|
| 101 | return result;
|
---|
| 102 | };
|
---|
| 103 |
|
---|
[1266543] | 104 | frac1 = a.parts.fraction;
|
---|
[bff16dd] | 105 | if (a.parts.exp > 0) {
|
---|
[1266543] | 106 | frac1 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 107 | } else {
|
---|
| 108 | ++exp;
|
---|
| 109 | };
|
---|
| 110 |
|
---|
[1266543] | 111 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 112 |
|
---|
| 113 | if (b.parts.exp > 0) {
|
---|
[1266543] | 114 | frac2 |= FLOAT32_HIDDEN_BIT_MASK;
|
---|
[3af72dc] | 115 | } else {
|
---|
| 116 | ++exp;
|
---|
| 117 | };
|
---|
| 118 |
|
---|
[1266543] | 119 | frac1 <<= 1; /* one bit space for rounding */
|
---|
[3af72dc] | 120 |
|
---|
[1266543] | 121 | frac1 = frac1 * frac2;
|
---|
[3af72dc] | 122 | /* round and return */
|
---|
| 123 |
|
---|
[1266543] | 124 | while ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= ( 1 << (FLOAT32_FRACTION_SIZE + 2)))) {
|
---|
| 125 | /* 23 bits of fraction + one more for hidden bit (all shifted 1 bit left)*/
|
---|
[3af72dc] | 126 | ++exp;
|
---|
[1266543] | 127 | frac1 >>= 1;
|
---|
[3af72dc] | 128 | };
|
---|
| 129 |
|
---|
| 130 | /* rounding */
|
---|
[1266543] | 131 | /* ++frac1; FIXME: not works - without it is ok */
|
---|
| 132 | frac1 >>= 1; /* shift off rounding space */
|
---|
[3af72dc] | 133 |
|
---|
[1266543] | 134 | if ((exp < FLOAT32_MAX_EXPONENT) && (frac1 >= (1 << (FLOAT32_FRACTION_SIZE + 1)))) {
|
---|
[3af72dc] | 135 | ++exp;
|
---|
[1266543] | 136 | frac1 >>= 1;
|
---|
[3af72dc] | 137 | };
|
---|
| 138 |
|
---|
[bff16dd] | 139 | if (exp >= FLOAT32_MAX_EXPONENT ) {
|
---|
[3af72dc] | 140 | /* TODO: fix overflow */
|
---|
| 141 | /* return infinity*/
|
---|
[bff16dd] | 142 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
[1266543] | 143 | result.parts.fraction = 0x0;
|
---|
[3af72dc] | 144 | return result;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
[1266543] | 147 | exp -= FLOAT32_FRACTION_SIZE;
|
---|
[3af72dc] | 148 |
|
---|
[1266543] | 149 | if (exp <= FLOAT32_FRACTION_SIZE) {
|
---|
[3af72dc] | 150 | /* denormalized number */
|
---|
[1266543] | 151 | frac1 >>= 1; /* denormalize */
|
---|
| 152 | while ((frac1 > 0) && (exp < 0)) {
|
---|
| 153 | frac1 >>= 1;
|
---|
[3af72dc] | 154 | ++exp;
|
---|
| 155 | };
|
---|
[1266543] | 156 | if (frac1 == 0) {
|
---|
[3af72dc] | 157 | /* FIXME : underflow */
|
---|
| 158 | result.parts.exp = 0;
|
---|
[1266543] | 159 | result.parts.fraction = 0;
|
---|
[3af72dc] | 160 | return result;
|
---|
| 161 | };
|
---|
| 162 | };
|
---|
| 163 | result.parts.exp = exp;
|
---|
[1266543] | 164 | result.parts.fraction = frac1 & ( (1 << FLOAT32_FRACTION_SIZE) - 1);
|
---|
[bff16dd] | 165 |
|
---|
| 166 | return result;
|
---|
| 167 |
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | /** Multiply two 64 bit float numbers
|
---|
| 171 | *
|
---|
| 172 | */
|
---|
| 173 | float64 mulFloat64(float64 a, float64 b)
|
---|
| 174 | {
|
---|
| 175 | float64 result;
|
---|
[aa59fa0] | 176 | uint64_t frac1, frac2;
|
---|
| 177 | int32_t exp;
|
---|
[bff16dd] | 178 |
|
---|
| 179 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 180 |
|
---|
| 181 | if (isFloat64NaN(a) || isFloat64NaN(b) ) {
|
---|
| 182 | /* TODO: fix SigNaNs */
|
---|
| 183 | if (isFloat64SigNaN(a)) {
|
---|
[1266543] | 184 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 185 | result.parts.exp = a.parts.exp;
|
---|
| 186 | return result;
|
---|
| 187 | };
|
---|
| 188 | if (isFloat64SigNaN(b)) { /* TODO: fix SigNaN */
|
---|
[1266543] | 189 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 190 | result.parts.exp = b.parts.exp;
|
---|
| 191 | return result;
|
---|
| 192 | };
|
---|
| 193 | /* set NaN as result */
|
---|
| 194 | result.binary = FLOAT64_NAN;
|
---|
| 195 | return result;
|
---|
| 196 | };
|
---|
| 197 |
|
---|
| 198 | if (isFloat64Infinity(a)) {
|
---|
| 199 | if (isFloat64Zero(b)) {
|
---|
| 200 | /* FIXME: zero * infinity */
|
---|
| 201 | result.binary = FLOAT64_NAN;
|
---|
| 202 | return result;
|
---|
| 203 | }
|
---|
[1266543] | 204 | result.parts.fraction = a.parts.fraction;
|
---|
[bff16dd] | 205 | result.parts.exp = a.parts.exp;
|
---|
| 206 | return result;
|
---|
| 207 | }
|
---|
| 208 |
|
---|
| 209 | if (isFloat64Infinity(b)) {
|
---|
| 210 | if (isFloat64Zero(a)) {
|
---|
| 211 | /* FIXME: zero * infinity */
|
---|
| 212 | result.binary = FLOAT64_NAN;
|
---|
| 213 | return result;
|
---|
| 214 | }
|
---|
[1266543] | 215 | result.parts.fraction = b.parts.fraction;
|
---|
[bff16dd] | 216 | result.parts.exp = b.parts.exp;
|
---|
| 217 | return result;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | /* exp is signed so we can easy detect underflow */
|
---|
[e979fea] | 221 | exp = a.parts.exp + b.parts.exp - FLOAT64_BIAS;
|
---|
[bff16dd] | 222 |
|
---|
[1266543] | 223 | frac1 = a.parts.fraction;
|
---|
[e979fea] | 224 |
|
---|
[bff16dd] | 225 | if (a.parts.exp > 0) {
|
---|
[1266543] | 226 | frac1 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 227 | } else {
|
---|
| 228 | ++exp;
|
---|
| 229 | };
|
---|
| 230 |
|
---|
[1266543] | 231 | frac2 = b.parts.fraction;
|
---|
[bff16dd] | 232 |
|
---|
| 233 | if (b.parts.exp > 0) {
|
---|
[1266543] | 234 | frac2 |= FLOAT64_HIDDEN_BIT_MASK;
|
---|
[bff16dd] | 235 | } else {
|
---|
| 236 | ++exp;
|
---|
| 237 | };
|
---|
| 238 |
|
---|
[e979fea] | 239 | frac1 <<= (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
| 240 | frac2 <<= (64 - FLOAT64_FRACTION_SIZE - 2);
|
---|
[bff16dd] | 241 |
|
---|
[1266543] | 242 | mul64integers(frac1, frac2, &frac1, &frac2);
|
---|
[bff16dd] | 243 |
|
---|
[e979fea] | 244 | frac2 |= (frac1 != 0);
|
---|
| 245 | if (frac2 & (0x1ll << 62)) {
|
---|
| 246 | frac2 <<= 1;
|
---|
| 247 | exp--;
|
---|
[bff16dd] | 248 | }
|
---|
| 249 |
|
---|
[e979fea] | 250 | result = finishFloat64(exp, frac2, result.parts.sign);
|
---|
| 251 | return result;
|
---|
[12c6f2d] | 252 | }
|
---|
| 253 |
|
---|
[bff16dd] | 254 | /** Multiply two 64 bit numbers and return result in two parts
|
---|
| 255 | * @param a first operand
|
---|
| 256 | * @param b second operand
|
---|
| 257 | * @param lo lower part from result
|
---|
| 258 | * @param hi higher part of result
|
---|
| 259 | */
|
---|
[aa59fa0] | 260 | void mul64integers(uint64_t a,uint64_t b, uint64_t *lo, uint64_t *hi)
|
---|
[bff16dd] | 261 | {
|
---|
[aa59fa0] | 262 | uint64_t low, high, middle1, middle2;
|
---|
| 263 | uint32_t alow, blow;
|
---|
[e979fea] | 264 |
|
---|
[bff16dd] | 265 | alow = a & 0xFFFFFFFF;
|
---|
| 266 | blow = b & 0xFFFFFFFF;
|
---|
| 267 |
|
---|
[e6a40ac] | 268 | a >>= 32;
|
---|
| 269 | b >>= 32;
|
---|
[bff16dd] | 270 |
|
---|
[aa59fa0] | 271 | low = ((uint64_t)alow) * blow;
|
---|
[bff16dd] | 272 | middle1 = a * blow;
|
---|
| 273 | middle2 = alow * b;
|
---|
| 274 | high = a * b;
|
---|
| 275 |
|
---|
| 276 | middle1 += middle2;
|
---|
[aa59fa0] | 277 | high += (((uint64_t)(middle1 < middle2)) << 32) + (middle1 >> 32);
|
---|
[1266543] | 278 | middle1 <<= 32;
|
---|
[bff16dd] | 279 | low += middle1;
|
---|
| 280 | high += (low < middle1);
|
---|
| 281 | *lo = low;
|
---|
| 282 | *hi = high;
|
---|
[e6a40ac] | 283 |
|
---|
[bff16dd] | 284 | return;
|
---|
| 285 | }
|
---|
[3af72dc] | 286 |
|
---|
| 287 |
|
---|