[b5440cf] | 1 | /*
|
---|
| 2 | * Copyright (C) 2005 Josef Cejka
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
[12c6f2d] | 29 | #include<sftypes.h>
|
---|
| 30 | #include<add.h>
|
---|
[e6a40ac] | 31 | #include<div.h>
|
---|
[12c6f2d] | 32 | #include<comparison.h>
|
---|
[e6a40ac] | 33 | #include<mul.h>
|
---|
[e979fea] | 34 | #include<common.h>
|
---|
| 35 |
|
---|
[b5440cf] | 36 |
|
---|
[12c6f2d] | 37 | float32 divFloat32(float32 a, float32 b)
|
---|
| 38 | {
|
---|
[1266543] | 39 | float32 result;
|
---|
| 40 | __s32 aexp, bexp, cexp;
|
---|
| 41 | __u64 afrac, bfrac, cfrac;
|
---|
[12c6f2d] | 42 |
|
---|
[1266543] | 43 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 44 |
|
---|
| 45 | if (isFloat32NaN(a)) {
|
---|
| 46 | if (isFloat32SigNaN(a)) {
|
---|
| 47 | /*FIXME: SigNaN*/
|
---|
| 48 | }
|
---|
| 49 | /*NaN*/
|
---|
| 50 | return a;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | if (isFloat32NaN(b)) {
|
---|
| 54 | if (isFloat32SigNaN(b)) {
|
---|
| 55 | /*FIXME: SigNaN*/
|
---|
| 56 | }
|
---|
| 57 | /*NaN*/
|
---|
| 58 | return b;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | if (isFloat32Infinity(a)) {
|
---|
| 62 | if (isFloat32Infinity(b)) {
|
---|
| 63 | /*FIXME: inf / inf */
|
---|
| 64 | result.binary = FLOAT32_NAN;
|
---|
| 65 | return result;
|
---|
| 66 | }
|
---|
| 67 | /* inf / num */
|
---|
| 68 | result.parts.exp = a.parts.exp;
|
---|
| 69 | result.parts.fraction = a.parts.fraction;
|
---|
| 70 | return result;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | if (isFloat32Infinity(b)) {
|
---|
| 74 | if (isFloat32Zero(a)) {
|
---|
| 75 | /* FIXME 0 / inf */
|
---|
| 76 | result.parts.exp = 0;
|
---|
| 77 | result.parts.fraction = 0;
|
---|
| 78 | return result;
|
---|
| 79 | }
|
---|
| 80 | /* FIXME: num / inf*/
|
---|
| 81 | result.parts.exp = 0;
|
---|
| 82 | result.parts.fraction = 0;
|
---|
| 83 | return result;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | if (isFloat32Zero(b)) {
|
---|
| 87 | if (isFloat32Zero(a)) {
|
---|
| 88 | /*FIXME: 0 / 0*/
|
---|
| 89 | result.binary = FLOAT32_NAN;
|
---|
| 90 | return result;
|
---|
| 91 | }
|
---|
| 92 | /* FIXME: division by zero */
|
---|
| 93 | result.parts.exp = 0;
|
---|
| 94 | result.parts.fraction = 0;
|
---|
| 95 | return result;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | afrac = a.parts.fraction;
|
---|
| 100 | aexp = a.parts.exp;
|
---|
| 101 | bfrac = b.parts.fraction;
|
---|
| 102 | bexp = b.parts.exp;
|
---|
| 103 |
|
---|
| 104 | /* denormalized numbers */
|
---|
| 105 | if (aexp == 0) {
|
---|
| 106 | if (afrac == 0) {
|
---|
| 107 | result.parts.exp = 0;
|
---|
| 108 | result.parts.fraction = 0;
|
---|
| 109 | return result;
|
---|
| 110 | }
|
---|
| 111 | /* normalize it*/
|
---|
| 112 |
|
---|
| 113 | afrac <<= 1;
|
---|
| 114 | /* afrac is nonzero => it must stop */
|
---|
| 115 | while (! (afrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
| 116 | afrac <<= 1;
|
---|
| 117 | aexp--;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | if (bexp == 0) {
|
---|
| 122 | bfrac <<= 1;
|
---|
| 123 | /* bfrac is nonzero => it must stop */
|
---|
| 124 | while (! (bfrac & FLOAT32_HIDDEN_BIT_MASK) ) {
|
---|
| 125 | bfrac <<= 1;
|
---|
| 126 | bexp--;
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | afrac = (afrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE - 1 );
|
---|
| 131 | bfrac = (bfrac | FLOAT32_HIDDEN_BIT_MASK ) << (32 - FLOAT32_FRACTION_SIZE );
|
---|
| 132 |
|
---|
| 133 | if ( bfrac <= (afrac << 1) ) {
|
---|
| 134 | afrac >>= 1;
|
---|
| 135 | aexp++;
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | cexp = aexp - bexp + FLOAT32_BIAS - 2;
|
---|
| 139 |
|
---|
| 140 | cfrac = (afrac << 32) / bfrac;
|
---|
| 141 | if (( cfrac & 0x3F ) == 0) {
|
---|
| 142 | cfrac |= ( bfrac * cfrac != afrac << 32 );
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | /* pack and round */
|
---|
| 146 |
|
---|
[e6a40ac] | 147 | /* find first nonzero digit and shift result and detect possibly underflow */
|
---|
[1266543] | 148 | while ((cexp > 0) && (cfrac) && (!(cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7 )))) {
|
---|
| 149 | cexp--;
|
---|
| 150 | cfrac <<= 1;
|
---|
| 151 | /* TODO: fix underflow */
|
---|
| 152 | };
|
---|
| 153 |
|
---|
| 154 | cfrac += (0x1 << 6); /* FIXME: 7 is not sure*/
|
---|
| 155 |
|
---|
| 156 | if (cfrac & (FLOAT32_HIDDEN_BIT_MASK << 7)) {
|
---|
| 157 | ++cexp;
|
---|
| 158 | cfrac >>= 1;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | /* check overflow */
|
---|
| 162 | if (cexp >= FLOAT32_MAX_EXPONENT ) {
|
---|
| 163 | /* FIXME: overflow, return infinity */
|
---|
| 164 | result.parts.exp = FLOAT32_MAX_EXPONENT;
|
---|
| 165 | result.parts.fraction = 0;
|
---|
| 166 | return result;
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | if (cexp < 0) {
|
---|
| 170 | /* FIXME: underflow */
|
---|
| 171 | result.parts.exp = 0;
|
---|
| 172 | if ((cexp + FLOAT32_FRACTION_SIZE) < 0) {
|
---|
| 173 | result.parts.fraction = 0;
|
---|
| 174 | return result;
|
---|
| 175 | }
|
---|
| 176 | cfrac >>= 1;
|
---|
| 177 | while (cexp < 0) {
|
---|
| 178 | cexp ++;
|
---|
| 179 | cfrac >>= 1;
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | } else {
|
---|
| 183 | result.parts.exp = (__u32)cexp;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | result.parts.fraction = ((cfrac >> 6) & (~FLOAT32_HIDDEN_BIT_MASK));
|
---|
| 187 |
|
---|
| 188 | return result;
|
---|
[12c6f2d] | 189 | }
|
---|
[b5440cf] | 190 |
|
---|
[e6a40ac] | 191 | float64 divFloat64(float64 a, float64 b)
|
---|
| 192 | {
|
---|
| 193 | float64 result;
|
---|
| 194 | __s32 aexp, bexp, cexp;
|
---|
| 195 | __u64 afrac, bfrac, cfrac;
|
---|
| 196 | __u64 remlo, remhi;
|
---|
| 197 |
|
---|
| 198 | result.parts.sign = a.parts.sign ^ b.parts.sign;
|
---|
| 199 |
|
---|
| 200 | if (isFloat64NaN(a)) {
|
---|
| 201 | if (isFloat64SigNaN(a)) {
|
---|
| 202 | /*FIXME: SigNaN*/
|
---|
| 203 | }
|
---|
| 204 | /*NaN*/
|
---|
| 205 | return a;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | if (isFloat64NaN(b)) {
|
---|
| 209 | if (isFloat64SigNaN(b)) {
|
---|
| 210 | /*FIXME: SigNaN*/
|
---|
| 211 | }
|
---|
| 212 | /*NaN*/
|
---|
| 213 | return b;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | if (isFloat64Infinity(a)) {
|
---|
| 217 | if (isFloat64Infinity(b)) {
|
---|
| 218 | /*FIXME: inf / inf */
|
---|
| 219 | result.binary = FLOAT64_NAN;
|
---|
| 220 | return result;
|
---|
| 221 | }
|
---|
| 222 | /* inf / num */
|
---|
| 223 | result.parts.exp = a.parts.exp;
|
---|
| 224 | result.parts.fraction = a.parts.fraction;
|
---|
| 225 | return result;
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | if (isFloat64Infinity(b)) {
|
---|
| 229 | if (isFloat64Zero(a)) {
|
---|
| 230 | /* FIXME 0 / inf */
|
---|
| 231 | result.parts.exp = 0;
|
---|
| 232 | result.parts.fraction = 0;
|
---|
| 233 | return result;
|
---|
| 234 | }
|
---|
| 235 | /* FIXME: num / inf*/
|
---|
| 236 | result.parts.exp = 0;
|
---|
| 237 | result.parts.fraction = 0;
|
---|
| 238 | return result;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | if (isFloat64Zero(b)) {
|
---|
| 242 | if (isFloat64Zero(a)) {
|
---|
| 243 | /*FIXME: 0 / 0*/
|
---|
| 244 | result.binary = FLOAT64_NAN;
|
---|
| 245 | return result;
|
---|
| 246 | }
|
---|
| 247 | /* FIXME: division by zero */
|
---|
| 248 | result.parts.exp = 0;
|
---|
| 249 | result.parts.fraction = 0;
|
---|
| 250 | return result;
|
---|
| 251 | }
|
---|
| 252 |
|
---|
| 253 |
|
---|
| 254 | afrac = a.parts.fraction;
|
---|
| 255 | aexp = a.parts.exp;
|
---|
| 256 | bfrac = b.parts.fraction;
|
---|
| 257 | bexp = b.parts.exp;
|
---|
| 258 |
|
---|
| 259 | /* denormalized numbers */
|
---|
| 260 | if (aexp == 0) {
|
---|
| 261 | if (afrac == 0) {
|
---|
| 262 | result.parts.exp = 0;
|
---|
| 263 | result.parts.fraction = 0;
|
---|
| 264 | return result;
|
---|
| 265 | }
|
---|
| 266 | /* normalize it*/
|
---|
| 267 |
|
---|
| 268 | afrac <<= 1;
|
---|
| 269 | /* afrac is nonzero => it must stop */
|
---|
| 270 | while (! (afrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
| 271 | afrac <<= 1;
|
---|
| 272 | aexp--;
|
---|
| 273 | }
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 | if (bexp == 0) {
|
---|
| 277 | bfrac <<= 1;
|
---|
| 278 | /* bfrac is nonzero => it must stop */
|
---|
| 279 | while (! (bfrac & FLOAT64_HIDDEN_BIT_MASK) ) {
|
---|
| 280 | bfrac <<= 1;
|
---|
| 281 | bexp--;
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | afrac = (afrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 2 );
|
---|
| 286 | bfrac = (bfrac | FLOAT64_HIDDEN_BIT_MASK ) << (64 - FLOAT64_FRACTION_SIZE - 1);
|
---|
| 287 |
|
---|
| 288 | if ( bfrac <= (afrac << 1) ) {
|
---|
| 289 | afrac >>= 1;
|
---|
| 290 | aexp++;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | cexp = aexp - bexp + FLOAT64_BIAS - 2;
|
---|
| 294 |
|
---|
| 295 | cfrac = divFloat64estim(afrac, bfrac);
|
---|
| 296 |
|
---|
| 297 | if (( cfrac & 0x1FF ) <= 2) { /*FIXME:?? */
|
---|
| 298 | mul64integers( bfrac, cfrac, &remlo, &remhi);
|
---|
| 299 | /* (__u128)afrac << 64 - ( ((__u128)remhi<<64) + (__u128)remlo )*/
|
---|
| 300 | remhi = afrac - remhi - ( remlo > 0);
|
---|
| 301 | remlo = - remlo;
|
---|
| 302 |
|
---|
| 303 | while ((__s64) remhi < 0) {
|
---|
| 304 | cfrac--;
|
---|
| 305 | remlo += bfrac;
|
---|
| 306 | remhi += ( remlo < bfrac );
|
---|
| 307 | }
|
---|
| 308 | cfrac |= ( remlo != 0 );
|
---|
| 309 | }
|
---|
| 310 |
|
---|
[e979fea] | 311 | /* round and shift */
|
---|
| 312 | result = finishFloat64(cexp, cfrac, result.parts.sign);
|
---|
| 313 | return result;
|
---|
[e6a40ac] | 314 |
|
---|
| 315 | }
|
---|
| 316 |
|
---|
| 317 | __u64 divFloat64estim(__u64 a, __u64 b)
|
---|
| 318 | {
|
---|
| 319 | __u64 bhi;
|
---|
| 320 | __u64 remhi, remlo;
|
---|
| 321 | __u64 result;
|
---|
| 322 |
|
---|
| 323 | if ( b <= a ) {
|
---|
| 324 | return 0xFFFFFFFFFFFFFFFFull;
|
---|
| 325 | }
|
---|
| 326 |
|
---|
| 327 | bhi = b >> 32;
|
---|
| 328 | result = ((bhi << 32) <= a) ?( 0xFFFFFFFFull << 32) : ( a / bhi) << 32;
|
---|
| 329 | mul64integers(b, result, &remlo, &remhi);
|
---|
| 330 |
|
---|
| 331 | remhi = a - remhi - (remlo > 0);
|
---|
| 332 | remlo = - remlo;
|
---|
| 333 |
|
---|
| 334 | b <<= 32;
|
---|
| 335 | while ( (__s64) remhi < 0 ) {
|
---|
| 336 | result -= 0x1ll << 32;
|
---|
| 337 | remlo += b;
|
---|
| 338 | remhi += bhi + ( remlo < b );
|
---|
| 339 | }
|
---|
| 340 | remhi = (remhi << 32) | (remlo >> 32);
|
---|
| 341 | if (( bhi << 32) <= remhi) {
|
---|
| 342 | result |= 0xFFFFFFFF;
|
---|
| 343 | } else {
|
---|
| 344 | result |= remhi / bhi;
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 |
|
---|
| 348 | return result;
|
---|
| 349 | }
|
---|
| 350 |
|
---|