source: mainline/libc/malloc/malloc.c@ a116ef22

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since a116ef22 was 8fe1cdb, checked in by Ondrej Palkovsky <ondrap@…>, 19 years ago

Added support for multithreading (using futexes) into malloc.

  • Property mode set to 100644
File size: 153.1 KB
Line 
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441#include <sys/types.h> /* For size_t */
442
443/** Non-default helenos customizations */
444#define LACKS_FCNTL_H
445#define LACKS_SYS_MMAN_H
446#define LACKS_SYS_PARAM_H
447#undef HAVE_MMAP
448#define HAVE_MMAP 0
449#define LACKS_ERRNO_H
450/* Set errno? */
451#undef MALLOC_FAILURE_ACTION
452#define MALLOC_FAILURE_ACTION
453
454/* The maximum possible size_t value has all bits set */
455#define MAX_SIZE_T (~(size_t)0)
456
457#define ONLY_MSPACES 0
458#define MSPACES 0
459#define MALLOC_ALIGNMENT ((size_t)8U)
460#define FOOTERS 0
461#define ABORT abort()
462#define ABORT_ON_ASSERT_FAILURE 1
463#define PROCEED_ON_ERROR 0
464#define USE_LOCKS 1
465#define INSECURE 0
466#define HAVE_MMAP 0
467
468#define MMAP_CLEARS 1
469
470#define HAVE_MORECORE 1
471#define MORECORE_CONTIGUOUS 1
472#define MORECORE sbrk
473#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
474
475#ifndef DEFAULT_TRIM_THRESHOLD
476#ifndef MORECORE_CANNOT_TRIM
477#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
478#else /* MORECORE_CANNOT_TRIM */
479#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
480#endif /* MORECORE_CANNOT_TRIM */
481#endif /* DEFAULT_TRIM_THRESHOLD */
482#ifndef DEFAULT_MMAP_THRESHOLD
483#if HAVE_MMAP
484#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
485#else /* HAVE_MMAP */
486#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
487#endif /* HAVE_MMAP */
488#endif /* DEFAULT_MMAP_THRESHOLD */
489#ifndef USE_BUILTIN_FFS
490#define USE_BUILTIN_FFS 0
491#endif /* USE_BUILTIN_FFS */
492#ifndef USE_DEV_RANDOM
493#define USE_DEV_RANDOM 0
494#endif /* USE_DEV_RANDOM */
495#ifndef NO_MALLINFO
496#define NO_MALLINFO 0
497#endif /* NO_MALLINFO */
498#ifndef MALLINFO_FIELD_TYPE
499#define MALLINFO_FIELD_TYPE size_t
500#endif /* MALLINFO_FIELD_TYPE */
501
502/*
503 mallopt tuning options. SVID/XPG defines four standard parameter
504 numbers for mallopt, normally defined in malloc.h. None of these
505 are used in this malloc, so setting them has no effect. But this
506 malloc does support the following options.
507*/
508
509#define M_TRIM_THRESHOLD (-1)
510#define M_GRANULARITY (-2)
511#define M_MMAP_THRESHOLD (-3)
512
513/*
514 ========================================================================
515 To make a fully customizable malloc.h header file, cut everything
516 above this line, put into file malloc.h, edit to suit, and #include it
517 on the next line, as well as in programs that use this malloc.
518 ========================================================================
519*/
520
521#include "malloc.h"
522
523/*------------------------------ internal #includes ---------------------- */
524
525#include <stdio.h> /* for printing in malloc_stats */
526#include <string.h>
527
528#ifndef LACKS_ERRNO_H
529#include <errno.h> /* for MALLOC_FAILURE_ACTION */
530#endif /* LACKS_ERRNO_H */
531#if FOOTERS
532#include <time.h> /* for magic initialization */
533#endif /* FOOTERS */
534#ifndef LACKS_STDLIB_H
535#include <stdlib.h> /* for abort() */
536#endif /* LACKS_STDLIB_H */
537#ifdef DEBUG
538#if ABORT_ON_ASSERT_FAILURE
539#define assert(x) {if(!(x)) {printf(#x);ABORT;}}
540#else /* ABORT_ON_ASSERT_FAILURE */
541#include <assert.h>
542#endif /* ABORT_ON_ASSERT_FAILURE */
543#else /* DEBUG */
544#define assert(x)
545#endif /* DEBUG */
546#if USE_BUILTIN_FFS
547#ifndef LACKS_STRINGS_H
548#include <strings.h> /* for ffs */
549#endif /* LACKS_STRINGS_H */
550#endif /* USE_BUILTIN_FFS */
551#if HAVE_MMAP
552#ifndef LACKS_SYS_MMAN_H
553#include <sys/mman.h> /* for mmap */
554#endif /* LACKS_SYS_MMAN_H */
555#ifndef LACKS_FCNTL_H
556#include <fcntl.h>
557#endif /* LACKS_FCNTL_H */
558#endif /* HAVE_MMAP */
559#if HAVE_MORECORE
560#ifndef LACKS_UNISTD_H
561#include <unistd.h> /* for sbrk */
562#else /* LACKS_UNISTD_H */
563#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
564extern void* sbrk(ptrdiff_t);
565#endif /* FreeBSD etc */
566#endif /* LACKS_UNISTD_H */
567#endif /* HAVE_MMAP */
568
569#ifndef WIN32
570#ifndef malloc_getpagesize
571# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
572# ifndef _SC_PAGE_SIZE
573# define _SC_PAGE_SIZE _SC_PAGESIZE
574# endif
575# endif
576# ifdef _SC_PAGE_SIZE
577# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
578# else
579# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
580 extern size_t getpagesize();
581# define malloc_getpagesize getpagesize()
582# else
583# ifdef WIN32 /* use supplied emulation of getpagesize */
584# define malloc_getpagesize getpagesize()
585# else
586# ifndef LACKS_SYS_PARAM_H
587# include <sys/param.h>
588# endif
589# ifdef EXEC_PAGESIZE
590# define malloc_getpagesize EXEC_PAGESIZE
591# else
592# ifdef NBPG
593# ifndef CLSIZE
594# define malloc_getpagesize NBPG
595# else
596# define malloc_getpagesize (NBPG * CLSIZE)
597# endif
598# else
599# ifdef NBPC
600# define malloc_getpagesize NBPC
601# else
602# ifdef PAGESIZE
603# define malloc_getpagesize PAGESIZE
604# else /* just guess */
605# define malloc_getpagesize ((size_t)4096U)
606# endif
607# endif
608# endif
609# endif
610# endif
611# endif
612# endif
613#endif
614#endif
615
616/* ------------------- size_t and alignment properties -------------------- */
617
618/* The byte and bit size of a size_t */
619#define SIZE_T_SIZE (sizeof(size_t))
620#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
621
622/* Some constants coerced to size_t */
623/* Annoying but necessary to avoid errors on some plaftorms */
624#define SIZE_T_ZERO ((size_t)0)
625#define SIZE_T_ONE ((size_t)1)
626#define SIZE_T_TWO ((size_t)2)
627#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
628#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
629#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
630#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
631
632/* The bit mask value corresponding to MALLOC_ALIGNMENT */
633#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
634
635/* True if address a has acceptable alignment */
636#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
637
638/* the number of bytes to offset an address to align it */
639#define align_offset(A)\
640 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
641 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
642
643/* -------------------------- MMAP preliminaries ------------------------- */
644
645/*
646 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
647 checks to fail so compiler optimizer can delete code rather than
648 using so many "#if"s.
649*/
650
651
652/* MORECORE and MMAP must return MFAIL on failure */
653#define MFAIL ((void*)(MAX_SIZE_T))
654#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
655
656#if !HAVE_MMAP
657#define IS_MMAPPED_BIT (SIZE_T_ZERO)
658#define USE_MMAP_BIT (SIZE_T_ZERO)
659#define CALL_MMAP(s) MFAIL
660#define CALL_MUNMAP(a, s) (-1)
661#define DIRECT_MMAP(s) MFAIL
662
663#else /* HAVE_MMAP */
664#define IS_MMAPPED_BIT (SIZE_T_ONE)
665#define USE_MMAP_BIT (SIZE_T_ONE)
666
667#ifndef WIN32
668#define CALL_MUNMAP(a, s) munmap((a), (s))
669#define MMAP_PROT (PROT_READ|PROT_WRITE)
670#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
671#define MAP_ANONYMOUS MAP_ANON
672#endif /* MAP_ANON */
673#ifdef MAP_ANONYMOUS
674#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
675#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
676#else /* MAP_ANONYMOUS */
677/*
678 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
679 is unlikely to be needed, but is supplied just in case.
680*/
681#define MMAP_FLAGS (MAP_PRIVATE)
682static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
683#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
684 (dev_zero_fd = open("/dev/zero", O_RDWR), \
685 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
686 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
687#endif /* MAP_ANONYMOUS */
688
689#define DIRECT_MMAP(s) CALL_MMAP(s)
690#else /* WIN32 */
691
692/* Win32 MMAP via VirtualAlloc */
693static void* win32mmap(size_t size) {
694 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
695 return (ptr != 0)? ptr: MFAIL;
696}
697
698/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
699static void* win32direct_mmap(size_t size) {
700 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
701 PAGE_READWRITE);
702 return (ptr != 0)? ptr: MFAIL;
703}
704
705/* This function supports releasing coalesed segments */
706static int win32munmap(void* ptr, size_t size) {
707 MEMORY_BASIC_INFORMATION minfo;
708 char* cptr = ptr;
709 while (size) {
710 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
711 return -1;
712 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
713 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
714 return -1;
715 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
716 return -1;
717 cptr += minfo.RegionSize;
718 size -= minfo.RegionSize;
719 }
720 return 0;
721}
722
723#define CALL_MMAP(s) win32mmap(s)
724#define CALL_MUNMAP(a, s) win32munmap((a), (s))
725#define DIRECT_MMAP(s) win32direct_mmap(s)
726#endif /* WIN32 */
727#endif /* HAVE_MMAP */
728
729#if HAVE_MMAP && HAVE_MREMAP
730#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
731#else /* HAVE_MMAP && HAVE_MREMAP */
732#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
733#endif /* HAVE_MMAP && HAVE_MREMAP */
734
735#if HAVE_MORECORE
736#define CALL_MORECORE(S) MORECORE(S)
737#else /* HAVE_MORECORE */
738#define CALL_MORECORE(S) MFAIL
739#endif /* HAVE_MORECORE */
740
741/* mstate bit set if continguous morecore disabled or failed */
742#define USE_NONCONTIGUOUS_BIT (4U)
743
744/* segment bit set in create_mspace_with_base */
745#define EXTERN_BIT (8U)
746
747
748/* --------------------------- Lock preliminaries ------------------------ */
749
750#if USE_LOCKS
751
752/*
753 When locks are defined, there are up to two global locks:
754
755 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
756 MORECORE. In many cases sys_alloc requires two calls, that should
757 not be interleaved with calls by other threads. This does not
758 protect against direct calls to MORECORE by other threads not
759 using this lock, so there is still code to cope the best we can on
760 interference.
761
762 * magic_init_mutex ensures that mparams.magic and other
763 unique mparams values are initialized only once.
764*/
765
766/* By default use posix locks */
767#include <futex.h>
768#define MLOCK_T atomic_t
769#define INITIAL_LOCK(l) futex_initialize(l, 1)
770/* futex_down cannot fail, but can return different
771 * retvals for OK
772 */
773#define ACQUIRE_LOCK(l) ({futex_down(l);0;})
774#define RELEASE_LOCK(l) futex_up(l)
775
776#if HAVE_MORECORE
777static MLOCK_T morecore_mutex = FUTEX_INITIALIZER;
778#endif /* HAVE_MORECORE */
779
780static MLOCK_T magic_init_mutex = FUTEX_INITIALIZER;
781
782
783#define USE_LOCK_BIT (2U)
784#else /* USE_LOCKS */
785#define USE_LOCK_BIT (0U)
786#define INITIAL_LOCK(l)
787#endif /* USE_LOCKS */
788
789#if USE_LOCKS && HAVE_MORECORE
790#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
791#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
792#else /* USE_LOCKS && HAVE_MORECORE */
793#define ACQUIRE_MORECORE_LOCK()
794#define RELEASE_MORECORE_LOCK()
795#endif /* USE_LOCKS && HAVE_MORECORE */
796
797#if USE_LOCKS
798#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
799#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
800#else /* USE_LOCKS */
801#define ACQUIRE_MAGIC_INIT_LOCK()
802#define RELEASE_MAGIC_INIT_LOCK()
803#endif /* USE_LOCKS */
804
805
806/* ----------------------- Chunk representations ------------------------ */
807
808/*
809 (The following includes lightly edited explanations by Colin Plumb.)
810
811 The malloc_chunk declaration below is misleading (but accurate and
812 necessary). It declares a "view" into memory allowing access to
813 necessary fields at known offsets from a given base.
814
815 Chunks of memory are maintained using a `boundary tag' method as
816 originally described by Knuth. (See the paper by Paul Wilson
817 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
818 techniques.) Sizes of free chunks are stored both in the front of
819 each chunk and at the end. This makes consolidating fragmented
820 chunks into bigger chunks fast. The head fields also hold bits
821 representing whether chunks are free or in use.
822
823 Here are some pictures to make it clearer. They are "exploded" to
824 show that the state of a chunk can be thought of as extending from
825 the high 31 bits of the head field of its header through the
826 prev_foot and PINUSE_BIT bit of the following chunk header.
827
828 A chunk that's in use looks like:
829
830 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
831 | Size of previous chunk (if P = 1) |
832 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
834 | Size of this chunk 1| +-+
835 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
836 | |
837 +- -+
838 | |
839 +- -+
840 | :
841 +- size - sizeof(size_t) available payload bytes -+
842 : |
843 chunk-> +- -+
844 | |
845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
847 | Size of next chunk (may or may not be in use) | +-+
848 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
849
850 And if it's free, it looks like this:
851
852 chunk-> +- -+
853 | User payload (must be in use, or we would have merged!) |
854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
856 | Size of this chunk 0| +-+
857 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
858 | Next pointer |
859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
860 | Prev pointer |
861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
862 | :
863 +- size - sizeof(struct chunk) unused bytes -+
864 : |
865 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
866 | Size of this chunk |
867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
869 | Size of next chunk (must be in use, or we would have merged)| +-+
870 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
871 | :
872 +- User payload -+
873 : |
874 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
875 |0|
876 +-+
877 Note that since we always merge adjacent free chunks, the chunks
878 adjacent to a free chunk must be in use.
879
880 Given a pointer to a chunk (which can be derived trivially from the
881 payload pointer) we can, in O(1) time, find out whether the adjacent
882 chunks are free, and if so, unlink them from the lists that they
883 are on and merge them with the current chunk.
884
885 Chunks always begin on even word boundaries, so the mem portion
886 (which is returned to the user) is also on an even word boundary, and
887 thus at least double-word aligned.
888
889 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
890 chunk size (which is always a multiple of two words), is an in-use
891 bit for the *previous* chunk. If that bit is *clear*, then the
892 word before the current chunk size contains the previous chunk
893 size, and can be used to find the front of the previous chunk.
894 The very first chunk allocated always has this bit set, preventing
895 access to non-existent (or non-owned) memory. If pinuse is set for
896 any given chunk, then you CANNOT determine the size of the
897 previous chunk, and might even get a memory addressing fault when
898 trying to do so.
899
900 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
901 the chunk size redundantly records whether the current chunk is
902 inuse. This redundancy enables usage checks within free and realloc,
903 and reduces indirection when freeing and consolidating chunks.
904
905 Each freshly allocated chunk must have both cinuse and pinuse set.
906 That is, each allocated chunk borders either a previously allocated
907 and still in-use chunk, or the base of its memory arena. This is
908 ensured by making all allocations from the the `lowest' part of any
909 found chunk. Further, no free chunk physically borders another one,
910 so each free chunk is known to be preceded and followed by either
911 inuse chunks or the ends of memory.
912
913 Note that the `foot' of the current chunk is actually represented
914 as the prev_foot of the NEXT chunk. This makes it easier to
915 deal with alignments etc but can be very confusing when trying
916 to extend or adapt this code.
917
918 The exceptions to all this are
919
920 1. The special chunk `top' is the top-most available chunk (i.e.,
921 the one bordering the end of available memory). It is treated
922 specially. Top is never included in any bin, is used only if
923 no other chunk is available, and is released back to the
924 system if it is very large (see M_TRIM_THRESHOLD). In effect,
925 the top chunk is treated as larger (and thus less well
926 fitting) than any other available chunk. The top chunk
927 doesn't update its trailing size field since there is no next
928 contiguous chunk that would have to index off it. However,
929 space is still allocated for it (TOP_FOOT_SIZE) to enable
930 separation or merging when space is extended.
931
932 3. Chunks allocated via mmap, which have the lowest-order bit
933 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
934 PINUSE_BIT in their head fields. Because they are allocated
935 one-by-one, each must carry its own prev_foot field, which is
936 also used to hold the offset this chunk has within its mmapped
937 region, which is needed to preserve alignment. Each mmapped
938 chunk is trailed by the first two fields of a fake next-chunk
939 for sake of usage checks.
940
941*/
942
943struct malloc_chunk {
944 size_t prev_foot; /* Size of previous chunk (if free). */
945 size_t head; /* Size and inuse bits. */
946 struct malloc_chunk* fd; /* double links -- used only if free. */
947 struct malloc_chunk* bk;
948};
949
950typedef struct malloc_chunk mchunk;
951typedef struct malloc_chunk* mchunkptr;
952typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
953typedef unsigned int bindex_t; /* Described below */
954typedef unsigned int binmap_t; /* Described below */
955typedef unsigned int flag_t; /* The type of various bit flag sets */
956
957/* ------------------- Chunks sizes and alignments ----------------------- */
958
959#define MCHUNK_SIZE (sizeof(mchunk))
960
961#if FOOTERS
962#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
963#else /* FOOTERS */
964#define CHUNK_OVERHEAD (SIZE_T_SIZE)
965#endif /* FOOTERS */
966
967/* MMapped chunks need a second word of overhead ... */
968#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
969/* ... and additional padding for fake next-chunk at foot */
970#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
971
972/* The smallest size we can malloc is an aligned minimal chunk */
973#define MIN_CHUNK_SIZE\
974 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
975
976/* conversion from malloc headers to user pointers, and back */
977#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
978#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
979/* chunk associated with aligned address A */
980#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
981
982/* Bounds on request (not chunk) sizes. */
983#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
984#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
985
986/* pad request bytes into a usable size */
987#define pad_request(req) \
988 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
989
990/* pad request, checking for minimum (but not maximum) */
991#define request2size(req) \
992 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
993
994
995/* ------------------ Operations on head and foot fields ----------------- */
996
997/*
998 The head field of a chunk is or'ed with PINUSE_BIT when previous
999 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1000 use. If the chunk was obtained with mmap, the prev_foot field has
1001 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1002 mmapped region to the base of the chunk.
1003*/
1004
1005#define PINUSE_BIT (SIZE_T_ONE)
1006#define CINUSE_BIT (SIZE_T_TWO)
1007#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1008
1009/* Head value for fenceposts */
1010#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1011
1012/* extraction of fields from head words */
1013#define cinuse(p) ((p)->head & CINUSE_BIT)
1014#define pinuse(p) ((p)->head & PINUSE_BIT)
1015#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1016
1017#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1018#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1019
1020/* Treat space at ptr +/- offset as a chunk */
1021#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1022#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1023
1024/* Ptr to next or previous physical malloc_chunk. */
1025#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1026#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1027
1028/* extract next chunk's pinuse bit */
1029#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1030
1031/* Get/set size at footer */
1032#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1033#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1034
1035/* Set size, pinuse bit, and foot */
1036#define set_size_and_pinuse_of_free_chunk(p, s)\
1037 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1038
1039/* Set size, pinuse bit, foot, and clear next pinuse */
1040#define set_free_with_pinuse(p, s, n)\
1041 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1042
1043#define is_mmapped(p)\
1044 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1045
1046/* Get the internal overhead associated with chunk p */
1047#define overhead_for(p)\
1048 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1049
1050/* Return true if malloced space is not necessarily cleared */
1051#if MMAP_CLEARS
1052#define calloc_must_clear(p) (!is_mmapped(p))
1053#else /* MMAP_CLEARS */
1054#define calloc_must_clear(p) (1)
1055#endif /* MMAP_CLEARS */
1056
1057/* ---------------------- Overlaid data structures ----------------------- */
1058
1059/*
1060 When chunks are not in use, they are treated as nodes of either
1061 lists or trees.
1062
1063 "Small" chunks are stored in circular doubly-linked lists, and look
1064 like this:
1065
1066 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1067 | Size of previous chunk |
1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1069 `head:' | Size of chunk, in bytes |P|
1070 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1071 | Forward pointer to next chunk in list |
1072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1073 | Back pointer to previous chunk in list |
1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1075 | Unused space (may be 0 bytes long) .
1076 . .
1077 . |
1078nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1079 `foot:' | Size of chunk, in bytes |
1080 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1081
1082 Larger chunks are kept in a form of bitwise digital trees (aka
1083 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1084 free chunks greater than 256 bytes, their size doesn't impose any
1085 constraints on user chunk sizes. Each node looks like:
1086
1087 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1088 | Size of previous chunk |
1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1090 `head:' | Size of chunk, in bytes |P|
1091 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1092 | Forward pointer to next chunk of same size |
1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1094 | Back pointer to previous chunk of same size |
1095 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1096 | Pointer to left child (child[0]) |
1097 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1098 | Pointer to right child (child[1]) |
1099 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1100 | Pointer to parent |
1101 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1102 | bin index of this chunk |
1103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1104 | Unused space .
1105 . |
1106nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1107 `foot:' | Size of chunk, in bytes |
1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1109
1110 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1111 of the same size are arranged in a circularly-linked list, with only
1112 the oldest chunk (the next to be used, in our FIFO ordering)
1113 actually in the tree. (Tree members are distinguished by a non-null
1114 parent pointer.) If a chunk with the same size an an existing node
1115 is inserted, it is linked off the existing node using pointers that
1116 work in the same way as fd/bk pointers of small chunks.
1117
1118 Each tree contains a power of 2 sized range of chunk sizes (the
1119 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1120 tree level, with the chunks in the smaller half of the range (0x100
1121 <= x < 0x140 for the top nose) in the left subtree and the larger
1122 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1123 done by inspecting individual bits.
1124
1125 Using these rules, each node's left subtree contains all smaller
1126 sizes than its right subtree. However, the node at the root of each
1127 subtree has no particular ordering relationship to either. (The
1128 dividing line between the subtree sizes is based on trie relation.)
1129 If we remove the last chunk of a given size from the interior of the
1130 tree, we need to replace it with a leaf node. The tree ordering
1131 rules permit a node to be replaced by any leaf below it.
1132
1133 The smallest chunk in a tree (a common operation in a best-fit
1134 allocator) can be found by walking a path to the leftmost leaf in
1135 the tree. Unlike a usual binary tree, where we follow left child
1136 pointers until we reach a null, here we follow the right child
1137 pointer any time the left one is null, until we reach a leaf with
1138 both child pointers null. The smallest chunk in the tree will be
1139 somewhere along that path.
1140
1141 The worst case number of steps to add, find, or remove a node is
1142 bounded by the number of bits differentiating chunks within
1143 bins. Under current bin calculations, this ranges from 6 up to 21
1144 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1145 is of course much better.
1146*/
1147
1148struct malloc_tree_chunk {
1149 /* The first four fields must be compatible with malloc_chunk */
1150 size_t prev_foot;
1151 size_t head;
1152 struct malloc_tree_chunk* fd;
1153 struct malloc_tree_chunk* bk;
1154
1155 struct malloc_tree_chunk* child[2];
1156 struct malloc_tree_chunk* parent;
1157 bindex_t index;
1158};
1159
1160typedef struct malloc_tree_chunk tchunk;
1161typedef struct malloc_tree_chunk* tchunkptr;
1162typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1163
1164/* A little helper macro for trees */
1165#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1166
1167/* ----------------------------- Segments -------------------------------- */
1168
1169/*
1170 Each malloc space may include non-contiguous segments, held in a
1171 list headed by an embedded malloc_segment record representing the
1172 top-most space. Segments also include flags holding properties of
1173 the space. Large chunks that are directly allocated by mmap are not
1174 included in this list. They are instead independently created and
1175 destroyed without otherwise keeping track of them.
1176
1177 Segment management mainly comes into play for spaces allocated by
1178 MMAP. Any call to MMAP might or might not return memory that is
1179 adjacent to an existing segment. MORECORE normally contiguously
1180 extends the current space, so this space is almost always adjacent,
1181 which is simpler and faster to deal with. (This is why MORECORE is
1182 used preferentially to MMAP when both are available -- see
1183 sys_alloc.) When allocating using MMAP, we don't use any of the
1184 hinting mechanisms (inconsistently) supported in various
1185 implementations of unix mmap, or distinguish reserving from
1186 committing memory. Instead, we just ask for space, and exploit
1187 contiguity when we get it. It is probably possible to do
1188 better than this on some systems, but no general scheme seems
1189 to be significantly better.
1190
1191 Management entails a simpler variant of the consolidation scheme
1192 used for chunks to reduce fragmentation -- new adjacent memory is
1193 normally prepended or appended to an existing segment. However,
1194 there are limitations compared to chunk consolidation that mostly
1195 reflect the fact that segment processing is relatively infrequent
1196 (occurring only when getting memory from system) and that we
1197 don't expect to have huge numbers of segments:
1198
1199 * Segments are not indexed, so traversal requires linear scans. (It
1200 would be possible to index these, but is not worth the extra
1201 overhead and complexity for most programs on most platforms.)
1202 * New segments are only appended to old ones when holding top-most
1203 memory; if they cannot be prepended to others, they are held in
1204 different segments.
1205
1206 Except for the top-most segment of an mstate, each segment record
1207 is kept at the tail of its segment. Segments are added by pushing
1208 segment records onto the list headed by &mstate.seg for the
1209 containing mstate.
1210
1211 Segment flags control allocation/merge/deallocation policies:
1212 * If EXTERN_BIT set, then we did not allocate this segment,
1213 and so should not try to deallocate or merge with others.
1214 (This currently holds only for the initial segment passed
1215 into create_mspace_with_base.)
1216 * If IS_MMAPPED_BIT set, the segment may be merged with
1217 other surrounding mmapped segments and trimmed/de-allocated
1218 using munmap.
1219 * If neither bit is set, then the segment was obtained using
1220 MORECORE so can be merged with surrounding MORECORE'd segments
1221 and deallocated/trimmed using MORECORE with negative arguments.
1222*/
1223
1224struct malloc_segment {
1225 char* base; /* base address */
1226 size_t size; /* allocated size */
1227 struct malloc_segment* next; /* ptr to next segment */
1228 flag_t sflags; /* mmap and extern flag */
1229};
1230
1231#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1232#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1233
1234typedef struct malloc_segment msegment;
1235typedef struct malloc_segment* msegmentptr;
1236
1237/* ---------------------------- malloc_state ----------------------------- */
1238
1239/*
1240 A malloc_state holds all of the bookkeeping for a space.
1241 The main fields are:
1242
1243 Top
1244 The topmost chunk of the currently active segment. Its size is
1245 cached in topsize. The actual size of topmost space is
1246 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1247 fenceposts and segment records if necessary when getting more
1248 space from the system. The size at which to autotrim top is
1249 cached from mparams in trim_check, except that it is disabled if
1250 an autotrim fails.
1251
1252 Designated victim (dv)
1253 This is the preferred chunk for servicing small requests that
1254 don't have exact fits. It is normally the chunk split off most
1255 recently to service another small request. Its size is cached in
1256 dvsize. The link fields of this chunk are not maintained since it
1257 is not kept in a bin.
1258
1259 SmallBins
1260 An array of bin headers for free chunks. These bins hold chunks
1261 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1262 chunks of all the same size, spaced 8 bytes apart. To simplify
1263 use in double-linked lists, each bin header acts as a malloc_chunk
1264 pointing to the real first node, if it exists (else pointing to
1265 itself). This avoids special-casing for headers. But to avoid
1266 waste, we allocate only the fd/bk pointers of bins, and then use
1267 repositioning tricks to treat these as the fields of a chunk.
1268
1269 TreeBins
1270 Treebins are pointers to the roots of trees holding a range of
1271 sizes. There are 2 equally spaced treebins for each power of two
1272 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1273 larger.
1274
1275 Bin maps
1276 There is one bit map for small bins ("smallmap") and one for
1277 treebins ("treemap). Each bin sets its bit when non-empty, and
1278 clears the bit when empty. Bit operations are then used to avoid
1279 bin-by-bin searching -- nearly all "search" is done without ever
1280 looking at bins that won't be selected. The bit maps
1281 conservatively use 32 bits per map word, even if on 64bit system.
1282 For a good description of some of the bit-based techniques used
1283 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1284 supplement at http://hackersdelight.org/). Many of these are
1285 intended to reduce the branchiness of paths through malloc etc, as
1286 well as to reduce the number of memory locations read or written.
1287
1288 Segments
1289 A list of segments headed by an embedded malloc_segment record
1290 representing the initial space.
1291
1292 Address check support
1293 The least_addr field is the least address ever obtained from
1294 MORECORE or MMAP. Attempted frees and reallocs of any address less
1295 than this are trapped (unless INSECURE is defined).
1296
1297 Magic tag
1298 A cross-check field that should always hold same value as mparams.magic.
1299
1300 Flags
1301 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1302
1303 Statistics
1304 Each space keeps track of current and maximum system memory
1305 obtained via MORECORE or MMAP.
1306
1307 Locking
1308 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1309 around every public call using this mspace.
1310*/
1311
1312/* Bin types, widths and sizes */
1313#define NSMALLBINS (32U)
1314#define NTREEBINS (32U)
1315#define SMALLBIN_SHIFT (3U)
1316#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1317#define TREEBIN_SHIFT (8U)
1318#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1319#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1320#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1321
1322struct malloc_state {
1323 binmap_t smallmap;
1324 binmap_t treemap;
1325 size_t dvsize;
1326 size_t topsize;
1327 char* least_addr;
1328 mchunkptr dv;
1329 mchunkptr top;
1330 size_t trim_check;
1331 size_t magic;
1332 mchunkptr smallbins[(NSMALLBINS+1)*2];
1333 tbinptr treebins[NTREEBINS];
1334 size_t footprint;
1335 size_t max_footprint;
1336 flag_t mflags;
1337#if USE_LOCKS
1338 MLOCK_T mutex; /* locate lock among fields that rarely change */
1339#endif /* USE_LOCKS */
1340 msegment seg;
1341};
1342
1343typedef struct malloc_state* mstate;
1344
1345/* ------------- Global malloc_state and malloc_params ------------------- */
1346
1347/*
1348 malloc_params holds global properties, including those that can be
1349 dynamically set using mallopt. There is a single instance, mparams,
1350 initialized in init_mparams.
1351*/
1352
1353struct malloc_params {
1354 size_t magic;
1355 size_t page_size;
1356 size_t granularity;
1357 size_t mmap_threshold;
1358 size_t trim_threshold;
1359 flag_t default_mflags;
1360};
1361
1362static struct malloc_params mparams;
1363
1364/* The global malloc_state used for all non-"mspace" calls */
1365static struct malloc_state _gm_;
1366#define gm (&_gm_)
1367#define is_global(M) ((M) == &_gm_)
1368#define is_initialized(M) ((M)->top != 0)
1369
1370/* -------------------------- system alloc setup ------------------------- */
1371
1372/* Operations on mflags */
1373
1374#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
1375#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
1376#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
1377
1378#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
1379#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
1380#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
1381
1382#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
1383#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
1384
1385#define set_lock(M,L)\
1386 ((M)->mflags = (L)?\
1387 ((M)->mflags | USE_LOCK_BIT) :\
1388 ((M)->mflags & ~USE_LOCK_BIT))
1389
1390/* page-align a size */
1391#define page_align(S)\
1392 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
1393
1394/* granularity-align a size */
1395#define granularity_align(S)\
1396 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
1397
1398#define is_page_aligned(S)\
1399 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
1400#define is_granularity_aligned(S)\
1401 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
1402
1403/* True if segment S holds address A */
1404#define segment_holds(S, A)\
1405 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
1406
1407/* Return segment holding given address */
1408static msegmentptr segment_holding(mstate m, char* addr) {
1409 msegmentptr sp = &m->seg;
1410 for (;;) {
1411 if (addr >= sp->base && addr < sp->base + sp->size)
1412 return sp;
1413 if ((sp = sp->next) == 0)
1414 return 0;
1415 }
1416}
1417
1418/* Return true if segment contains a segment link */
1419static int has_segment_link(mstate m, msegmentptr ss) {
1420 msegmentptr sp = &m->seg;
1421 for (;;) {
1422 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
1423 return 1;
1424 if ((sp = sp->next) == 0)
1425 return 0;
1426 }
1427}
1428
1429#ifndef MORECORE_CANNOT_TRIM
1430#define should_trim(M,s) ((s) > (M)->trim_check)
1431#else /* MORECORE_CANNOT_TRIM */
1432#define should_trim(M,s) (0)
1433#endif /* MORECORE_CANNOT_TRIM */
1434
1435/*
1436 TOP_FOOT_SIZE is padding at the end of a segment, including space
1437 that may be needed to place segment records and fenceposts when new
1438 noncontiguous segments are added.
1439*/
1440#define TOP_FOOT_SIZE\
1441 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
1442
1443
1444/* ------------------------------- Hooks -------------------------------- */
1445
1446/*
1447 PREACTION should be defined to return 0 on success, and nonzero on
1448 failure. If you are not using locking, you can redefine these to do
1449 anything you like.
1450*/
1451
1452#if USE_LOCKS
1453
1454/* Ensure locks are initialized */
1455#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
1456
1457#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
1458#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
1459#else /* USE_LOCKS */
1460
1461#ifndef PREACTION
1462#define PREACTION(M) (0)
1463#endif /* PREACTION */
1464
1465#ifndef POSTACTION
1466#define POSTACTION(M)
1467#endif /* POSTACTION */
1468
1469#endif /* USE_LOCKS */
1470
1471/*
1472 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
1473 USAGE_ERROR_ACTION is triggered on detected bad frees and
1474 reallocs. The argument p is an address that might have triggered the
1475 fault. It is ignored by the two predefined actions, but might be
1476 useful in custom actions that try to help diagnose errors.
1477*/
1478
1479#if PROCEED_ON_ERROR
1480
1481/* A count of the number of corruption errors causing resets */
1482int malloc_corruption_error_count;
1483
1484/* default corruption action */
1485static void reset_on_error(mstate m);
1486
1487#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
1488#define USAGE_ERROR_ACTION(m, p)
1489
1490#else /* PROCEED_ON_ERROR */
1491
1492#ifndef CORRUPTION_ERROR_ACTION
1493#define CORRUPTION_ERROR_ACTION(m) ABORT
1494#endif /* CORRUPTION_ERROR_ACTION */
1495
1496#ifndef USAGE_ERROR_ACTION
1497#define USAGE_ERROR_ACTION(m,p) ABORT
1498#endif /* USAGE_ERROR_ACTION */
1499
1500#endif /* PROCEED_ON_ERROR */
1501
1502/* -------------------------- Debugging setup ---------------------------- */
1503
1504#if ! DEBUG
1505
1506#define check_free_chunk(M,P)
1507#define check_inuse_chunk(M,P)
1508#define check_malloced_chunk(M,P,N)
1509#define check_mmapped_chunk(M,P)
1510#define check_malloc_state(M)
1511#define check_top_chunk(M,P)
1512
1513#else /* DEBUG */
1514#define check_free_chunk(M,P) do_check_free_chunk(M,P)
1515#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
1516#define check_top_chunk(M,P) do_check_top_chunk(M,P)
1517#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
1518#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
1519#define check_malloc_state(M) do_check_malloc_state(M)
1520
1521static void do_check_any_chunk(mstate m, mchunkptr p);
1522static void do_check_top_chunk(mstate m, mchunkptr p);
1523static void do_check_mmapped_chunk(mstate m, mchunkptr p);
1524static void do_check_inuse_chunk(mstate m, mchunkptr p);
1525static void do_check_free_chunk(mstate m, mchunkptr p);
1526static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
1527static void do_check_tree(mstate m, tchunkptr t);
1528static void do_check_treebin(mstate m, bindex_t i);
1529static void do_check_smallbin(mstate m, bindex_t i);
1530static void do_check_malloc_state(mstate m);
1531static int bin_find(mstate m, mchunkptr x);
1532static size_t traverse_and_check(mstate m);
1533#endif /* DEBUG */
1534
1535/* ---------------------------- Indexing Bins ---------------------------- */
1536
1537#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
1538#define small_index(s) ((s) >> SMALLBIN_SHIFT)
1539#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
1540#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
1541
1542/* addressing by index. See above about smallbin repositioning */
1543#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
1544#define treebin_at(M,i) (&((M)->treebins[i]))
1545
1546/* assign tree index for size S to variable I */
1547#if defined(__GNUC__) && defined(i386)
1548#define compute_tree_index(S, I)\
1549{\
1550 size_t X = S >> TREEBIN_SHIFT;\
1551 if (X == 0)\
1552 I = 0;\
1553 else if (X > 0xFFFF)\
1554 I = NTREEBINS-1;\
1555 else {\
1556 unsigned int K;\
1557 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
1558 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
1559 }\
1560}
1561#else /* GNUC */
1562#define compute_tree_index(S, I)\
1563{\
1564 size_t X = S >> TREEBIN_SHIFT;\
1565 if (X == 0)\
1566 I = 0;\
1567 else if (X > 0xFFFF)\
1568 I = NTREEBINS-1;\
1569 else {\
1570 unsigned int Y = (unsigned int)X;\
1571 unsigned int N = ((Y - 0x100) >> 16) & 8;\
1572 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
1573 N += K;\
1574 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
1575 K = 14 - N + ((Y <<= K) >> 15);\
1576 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
1577 }\
1578}
1579#endif /* GNUC */
1580
1581/* Bit representing maximum resolved size in a treebin at i */
1582#define bit_for_tree_index(i) \
1583 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
1584
1585/* Shift placing maximum resolved bit in a treebin at i as sign bit */
1586#define leftshift_for_tree_index(i) \
1587 ((i == NTREEBINS-1)? 0 : \
1588 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
1589
1590/* The size of the smallest chunk held in bin with index i */
1591#define minsize_for_tree_index(i) \
1592 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
1593 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
1594
1595
1596/* ------------------------ Operations on bin maps ----------------------- */
1597
1598/* bit corresponding to given index */
1599#define idx2bit(i) ((binmap_t)(1) << (i))
1600
1601/* Mark/Clear bits with given index */
1602#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
1603#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
1604#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
1605
1606#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
1607#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
1608#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
1609
1610/* index corresponding to given bit */
1611
1612#if defined(__GNUC__) && defined(i386)
1613#define compute_bit2idx(X, I)\
1614{\
1615 unsigned int J;\
1616 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
1617 I = (bindex_t)J;\
1618}
1619
1620#else /* GNUC */
1621#if USE_BUILTIN_FFS
1622#define compute_bit2idx(X, I) I = ffs(X)-1
1623
1624#else /* USE_BUILTIN_FFS */
1625#define compute_bit2idx(X, I)\
1626{\
1627 unsigned int Y = X - 1;\
1628 unsigned int K = Y >> (16-4) & 16;\
1629 unsigned int N = K; Y >>= K;\
1630 N += K = Y >> (8-3) & 8; Y >>= K;\
1631 N += K = Y >> (4-2) & 4; Y >>= K;\
1632 N += K = Y >> (2-1) & 2; Y >>= K;\
1633 N += K = Y >> (1-0) & 1; Y >>= K;\
1634 I = (bindex_t)(N + Y);\
1635}
1636#endif /* USE_BUILTIN_FFS */
1637#endif /* GNUC */
1638
1639/* isolate the least set bit of a bitmap */
1640#define least_bit(x) ((x) & -(x))
1641
1642/* mask with all bits to left of least bit of x on */
1643#define left_bits(x) ((x<<1) | -(x<<1))
1644
1645/* mask with all bits to left of or equal to least bit of x on */
1646#define same_or_left_bits(x) ((x) | -(x))
1647
1648
1649/* ----------------------- Runtime Check Support ------------------------- */
1650
1651/*
1652 For security, the main invariant is that malloc/free/etc never
1653 writes to a static address other than malloc_state, unless static
1654 malloc_state itself has been corrupted, which cannot occur via
1655 malloc (because of these checks). In essence this means that we
1656 believe all pointers, sizes, maps etc held in malloc_state, but
1657 check all of those linked or offsetted from other embedded data
1658 structures. These checks are interspersed with main code in a way
1659 that tends to minimize their run-time cost.
1660
1661 When FOOTERS is defined, in addition to range checking, we also
1662 verify footer fields of inuse chunks, which can be used guarantee
1663 that the mstate controlling malloc/free is intact. This is a
1664 streamlined version of the approach described by William Robertson
1665 et al in "Run-time Detection of Heap-based Overflows" LISA'03
1666 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
1667 of an inuse chunk holds the xor of its mstate and a random seed,
1668 that is checked upon calls to free() and realloc(). This is
1669 (probablistically) unguessable from outside the program, but can be
1670 computed by any code successfully malloc'ing any chunk, so does not
1671 itself provide protection against code that has already broken
1672 security through some other means. Unlike Robertson et al, we
1673 always dynamically check addresses of all offset chunks (previous,
1674 next, etc). This turns out to be cheaper than relying on hashes.
1675*/
1676
1677#if !INSECURE
1678/* Check if address a is at least as high as any from MORECORE or MMAP */
1679#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
1680/* Check if address of next chunk n is higher than base chunk p */
1681#define ok_next(p, n) ((char*)(p) < (char*)(n))
1682/* Check if p has its cinuse bit on */
1683#define ok_cinuse(p) cinuse(p)
1684/* Check if p has its pinuse bit on */
1685#define ok_pinuse(p) pinuse(p)
1686
1687#else /* !INSECURE */
1688#define ok_address(M, a) (1)
1689#define ok_next(b, n) (1)
1690#define ok_cinuse(p) (1)
1691#define ok_pinuse(p) (1)
1692#endif /* !INSECURE */
1693
1694#if (FOOTERS && !INSECURE)
1695/* Check if (alleged) mstate m has expected magic field */
1696#define ok_magic(M) ((M)->magic == mparams.magic)
1697#else /* (FOOTERS && !INSECURE) */
1698#define ok_magic(M) (1)
1699#endif /* (FOOTERS && !INSECURE) */
1700
1701
1702/* In gcc, use __builtin_expect to minimize impact of checks */
1703#if !INSECURE
1704#if defined(__GNUC__) && __GNUC__ >= 3
1705#define RTCHECK(e) __builtin_expect(e, 1)
1706#else /* GNUC */
1707#define RTCHECK(e) (e)
1708#endif /* GNUC */
1709#else /* !INSECURE */
1710#define RTCHECK(e) (1)
1711#endif /* !INSECURE */
1712
1713/* macros to set up inuse chunks with or without footers */
1714
1715#if !FOOTERS
1716
1717#define mark_inuse_foot(M,p,s)
1718
1719/* Set cinuse bit and pinuse bit of next chunk */
1720#define set_inuse(M,p,s)\
1721 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1722 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1723
1724/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
1725#define set_inuse_and_pinuse(M,p,s)\
1726 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1727 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1728
1729/* Set size, cinuse and pinuse bit of this chunk */
1730#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1731 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
1732
1733#else /* FOOTERS */
1734
1735/* Set foot of inuse chunk to be xor of mstate and seed */
1736#define mark_inuse_foot(M,p,s)\
1737 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
1738
1739#define get_mstate_for(p)\
1740 ((mstate)(((mchunkptr)((char*)(p) +\
1741 (chunksize(p))))->prev_foot ^ mparams.magic))
1742
1743#define set_inuse(M,p,s)\
1744 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1745 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
1746 mark_inuse_foot(M,p,s))
1747
1748#define set_inuse_and_pinuse(M,p,s)\
1749 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1750 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
1751 mark_inuse_foot(M,p,s))
1752
1753#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1754 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1755 mark_inuse_foot(M, p, s))
1756
1757#endif /* !FOOTERS */
1758
1759/* ---------------------------- setting mparams -------------------------- */
1760
1761/* Initialize mparams */
1762static int init_mparams(void) {
1763 if (mparams.page_size == 0) {
1764 size_t s;
1765
1766 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1767 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
1768#if MORECORE_CONTIGUOUS
1769 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
1770#else /* MORECORE_CONTIGUOUS */
1771 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
1772#endif /* MORECORE_CONTIGUOUS */
1773
1774#if (FOOTERS && !INSECURE)
1775 {
1776#if USE_DEV_RANDOM
1777 int fd;
1778 unsigned char buf[sizeof(size_t)];
1779 /* Try to use /dev/urandom, else fall back on using time */
1780 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
1781 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
1782 s = *((size_t *) buf);
1783 close(fd);
1784 }
1785 else
1786#endif /* USE_DEV_RANDOM */
1787 s = (size_t)(time(0) ^ (size_t)0x55555555U);
1788
1789 s |= (size_t)8U; /* ensure nonzero */
1790 s &= ~(size_t)7U; /* improve chances of fault for bad values */
1791
1792 }
1793#else /* (FOOTERS && !INSECURE) */
1794 s = (size_t)0x58585858U;
1795#endif /* (FOOTERS && !INSECURE) */
1796 ACQUIRE_MAGIC_INIT_LOCK();
1797 if (mparams.magic == 0) {
1798 mparams.magic = s;
1799 /* Set up lock for main malloc area */
1800 INITIAL_LOCK(&gm->mutex);
1801 gm->mflags = mparams.default_mflags;
1802 }
1803 RELEASE_MAGIC_INIT_LOCK();
1804
1805#ifndef WIN32
1806 mparams.page_size = malloc_getpagesize;
1807 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
1808 DEFAULT_GRANULARITY : mparams.page_size);
1809#else /* WIN32 */
1810 {
1811 SYSTEM_INFO system_info;
1812 GetSystemInfo(&system_info);
1813 mparams.page_size = system_info.dwPageSize;
1814 mparams.granularity = system_info.dwAllocationGranularity;
1815 }
1816#endif /* WIN32 */
1817
1818 /* Sanity-check configuration:
1819 size_t must be unsigned and as wide as pointer type.
1820 ints must be at least 4 bytes.
1821 alignment must be at least 8.
1822 Alignment, min chunk size, and page size must all be powers of 2.
1823 */
1824 if ((sizeof(size_t) != sizeof(char*)) ||
1825 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
1826 (sizeof(int) < 4) ||
1827 (MALLOC_ALIGNMENT < (size_t)8U) ||
1828 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
1829 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
1830 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
1831 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
1832 ABORT;
1833 }
1834 return 0;
1835}
1836
1837/* support for mallopt */
1838static int change_mparam(int param_number, int value) {
1839 size_t val = (size_t)value;
1840 init_mparams();
1841 switch(param_number) {
1842 case M_TRIM_THRESHOLD:
1843 mparams.trim_threshold = val;
1844 return 1;
1845 case M_GRANULARITY:
1846 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
1847 mparams.granularity = val;
1848 return 1;
1849 }
1850 else
1851 return 0;
1852 case M_MMAP_THRESHOLD:
1853 mparams.mmap_threshold = val;
1854 return 1;
1855 default:
1856 return 0;
1857 }
1858}
1859
1860#if DEBUG
1861/* ------------------------- Debugging Support --------------------------- */
1862
1863/* Check properties of any chunk, whether free, inuse, mmapped etc */
1864static void do_check_any_chunk(mstate m, mchunkptr p) {
1865 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1866 assert(ok_address(m, p));
1867}
1868
1869/* Check properties of top chunk */
1870static void do_check_top_chunk(mstate m, mchunkptr p) {
1871 msegmentptr sp = segment_holding(m, (char*)p);
1872 size_t sz = chunksize(p);
1873 assert(sp != 0);
1874 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1875 assert(ok_address(m, p));
1876 assert(sz == m->topsize);
1877 assert(sz > 0);
1878 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
1879 assert(pinuse(p));
1880 assert(!next_pinuse(p));
1881}
1882
1883/* Check properties of (inuse) mmapped chunks */
1884static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
1885 size_t sz = chunksize(p);
1886 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
1887 assert(is_mmapped(p));
1888 assert(use_mmap(m));
1889 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1890 assert(ok_address(m, p));
1891 assert(!is_small(sz));
1892 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
1893 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
1894 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
1895}
1896
1897/* Check properties of inuse chunks */
1898static void do_check_inuse_chunk(mstate m, mchunkptr p) {
1899 do_check_any_chunk(m, p);
1900 assert(cinuse(p));
1901 assert(next_pinuse(p));
1902 /* If not pinuse and not mmapped, previous chunk has OK offset */
1903 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
1904 if (is_mmapped(p))
1905 do_check_mmapped_chunk(m, p);
1906}
1907
1908/* Check properties of free chunks */
1909static void do_check_free_chunk(mstate m, mchunkptr p) {
1910 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1911 mchunkptr next = chunk_plus_offset(p, sz);
1912 do_check_any_chunk(m, p);
1913 assert(!cinuse(p));
1914 assert(!next_pinuse(p));
1915 assert (!is_mmapped(p));
1916 if (p != m->dv && p != m->top) {
1917 if (sz >= MIN_CHUNK_SIZE) {
1918 assert((sz & CHUNK_ALIGN_MASK) == 0);
1919 assert(is_aligned(chunk2mem(p)));
1920 assert(next->prev_foot == sz);
1921 assert(pinuse(p));
1922 assert (next == m->top || cinuse(next));
1923 assert(p->fd->bk == p);
1924 assert(p->bk->fd == p);
1925 }
1926 else /* markers are always of size SIZE_T_SIZE */
1927 assert(sz == SIZE_T_SIZE);
1928 }
1929}
1930
1931/* Check properties of malloced chunks at the point they are malloced */
1932static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
1933 if (mem != 0) {
1934 mchunkptr p = mem2chunk(mem);
1935 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1936 do_check_inuse_chunk(m, p);
1937 assert((sz & CHUNK_ALIGN_MASK) == 0);
1938 assert(sz >= MIN_CHUNK_SIZE);
1939 assert(sz >= s);
1940 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
1941 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
1942 }
1943}
1944
1945/* Check a tree and its subtrees. */
1946static void do_check_tree(mstate m, tchunkptr t) {
1947 tchunkptr head = 0;
1948 tchunkptr u = t;
1949 bindex_t tindex = t->index;
1950 size_t tsize = chunksize(t);
1951 bindex_t idx;
1952 compute_tree_index(tsize, idx);
1953 assert(tindex == idx);
1954 assert(tsize >= MIN_LARGE_SIZE);
1955 assert(tsize >= minsize_for_tree_index(idx));
1956 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
1957
1958 do { /* traverse through chain of same-sized nodes */
1959 do_check_any_chunk(m, ((mchunkptr)u));
1960 assert(u->index == tindex);
1961 assert(chunksize(u) == tsize);
1962 assert(!cinuse(u));
1963 assert(!next_pinuse(u));
1964 assert(u->fd->bk == u);
1965 assert(u->bk->fd == u);
1966 if (u->parent == 0) {
1967 assert(u->child[0] == 0);
1968 assert(u->child[1] == 0);
1969 }
1970 else {
1971 assert(head == 0); /* only one node on chain has parent */
1972 head = u;
1973 assert(u->parent != u);
1974 assert (u->parent->child[0] == u ||
1975 u->parent->child[1] == u ||
1976 *((tbinptr*)(u->parent)) == u);
1977 if (u->child[0] != 0) {
1978 assert(u->child[0]->parent == u);
1979 assert(u->child[0] != u);
1980 do_check_tree(m, u->child[0]);
1981 }
1982 if (u->child[1] != 0) {
1983 assert(u->child[1]->parent == u);
1984 assert(u->child[1] != u);
1985 do_check_tree(m, u->child[1]);
1986 }
1987 if (u->child[0] != 0 && u->child[1] != 0) {
1988 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
1989 }
1990 }
1991 u = u->fd;
1992 } while (u != t);
1993 assert(head != 0);
1994}
1995
1996/* Check all the chunks in a treebin. */
1997static void do_check_treebin(mstate m, bindex_t i) {
1998 tbinptr* tb = treebin_at(m, i);
1999 tchunkptr t = *tb;
2000 int empty = (m->treemap & (1U << i)) == 0;
2001 if (t == 0)
2002 assert(empty);
2003 if (!empty)
2004 do_check_tree(m, t);
2005}
2006
2007/* Check all the chunks in a smallbin. */
2008static void do_check_smallbin(mstate m, bindex_t i) {
2009 sbinptr b = smallbin_at(m, i);
2010 mchunkptr p = b->bk;
2011 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2012 if (p == b)
2013 assert(empty);
2014 if (!empty) {
2015 for (; p != b; p = p->bk) {
2016 size_t size = chunksize(p);
2017 mchunkptr q;
2018 /* each chunk claims to be free */
2019 do_check_free_chunk(m, p);
2020 /* chunk belongs in bin */
2021 assert(small_index(size) == i);
2022 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2023 /* chunk is followed by an inuse chunk */
2024 q = next_chunk(p);
2025 if (q->head != FENCEPOST_HEAD)
2026 do_check_inuse_chunk(m, q);
2027 }
2028 }
2029}
2030
2031/* Find x in a bin. Used in other check functions. */
2032static int bin_find(mstate m, mchunkptr x) {
2033 size_t size = chunksize(x);
2034 if (is_small(size)) {
2035 bindex_t sidx = small_index(size);
2036 sbinptr b = smallbin_at(m, sidx);
2037 if (smallmap_is_marked(m, sidx)) {
2038 mchunkptr p = b;
2039 do {
2040 if (p == x)
2041 return 1;
2042 } while ((p = p->fd) != b);
2043 }
2044 }
2045 else {
2046 bindex_t tidx;
2047 compute_tree_index(size, tidx);
2048 if (treemap_is_marked(m, tidx)) {
2049 tchunkptr t = *treebin_at(m, tidx);
2050 size_t sizebits = size << leftshift_for_tree_index(tidx);
2051 while (t != 0 && chunksize(t) != size) {
2052 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2053 sizebits <<= 1;
2054 }
2055 if (t != 0) {
2056 tchunkptr u = t;
2057 do {
2058 if (u == (tchunkptr)x)
2059 return 1;
2060 } while ((u = u->fd) != t);
2061 }
2062 }
2063 }
2064 return 0;
2065}
2066
2067/* Traverse each chunk and check it; return total */
2068static size_t traverse_and_check(mstate m) {
2069 size_t sum = 0;
2070 if (is_initialized(m)) {
2071 msegmentptr s = &m->seg;
2072 sum += m->topsize + TOP_FOOT_SIZE;
2073 while (s != 0) {
2074 mchunkptr q = align_as_chunk(s->base);
2075 mchunkptr lastq = 0;
2076 assert(pinuse(q));
2077 while (segment_holds(s, q) &&
2078 q != m->top && q->head != FENCEPOST_HEAD) {
2079 sum += chunksize(q);
2080 if (cinuse(q)) {
2081 assert(!bin_find(m, q));
2082 do_check_inuse_chunk(m, q);
2083 }
2084 else {
2085 assert(q == m->dv || bin_find(m, q));
2086 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2087 do_check_free_chunk(m, q);
2088 }
2089 lastq = q;
2090 q = next_chunk(q);
2091 }
2092 s = s->next;
2093 }
2094 }
2095 return sum;
2096}
2097
2098/* Check all properties of malloc_state. */
2099static void do_check_malloc_state(mstate m) {
2100 bindex_t i;
2101 size_t total;
2102 /* check bins */
2103 for (i = 0; i < NSMALLBINS; ++i)
2104 do_check_smallbin(m, i);
2105 for (i = 0; i < NTREEBINS; ++i)
2106 do_check_treebin(m, i);
2107
2108 if (m->dvsize != 0) { /* check dv chunk */
2109 do_check_any_chunk(m, m->dv);
2110 assert(m->dvsize == chunksize(m->dv));
2111 assert(m->dvsize >= MIN_CHUNK_SIZE);
2112 assert(bin_find(m, m->dv) == 0);
2113 }
2114
2115 if (m->top != 0) { /* check top chunk */
2116 do_check_top_chunk(m, m->top);
2117 assert(m->topsize == chunksize(m->top));
2118 assert(m->topsize > 0);
2119 assert(bin_find(m, m->top) == 0);
2120 }
2121
2122 total = traverse_and_check(m);
2123 assert(total <= m->footprint);
2124 assert(m->footprint <= m->max_footprint);
2125}
2126#endif /* DEBUG */
2127
2128/* ----------------------------- statistics ------------------------------ */
2129
2130#if !NO_MALLINFO
2131static struct mallinfo internal_mallinfo(mstate m) {
2132 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2133 if (!PREACTION(m)) {
2134 check_malloc_state(m);
2135 if (is_initialized(m)) {
2136 size_t nfree = SIZE_T_ONE; /* top always free */
2137 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2138 size_t sum = mfree;
2139 msegmentptr s = &m->seg;
2140 while (s != 0) {
2141 mchunkptr q = align_as_chunk(s->base);
2142 while (segment_holds(s, q) &&
2143 q != m->top && q->head != FENCEPOST_HEAD) {
2144 size_t sz = chunksize(q);
2145 sum += sz;
2146 if (!cinuse(q)) {
2147 mfree += sz;
2148 ++nfree;
2149 }
2150 q = next_chunk(q);
2151 }
2152 s = s->next;
2153 }
2154
2155 nm.arena = sum;
2156 nm.ordblks = nfree;
2157 nm.hblkhd = m->footprint - sum;
2158 nm.usmblks = m->max_footprint;
2159 nm.uordblks = m->footprint - mfree;
2160 nm.fordblks = mfree;
2161 nm.keepcost = m->topsize;
2162 }
2163
2164 POSTACTION(m);
2165 }
2166 return nm;
2167}
2168#endif /* !NO_MALLINFO */
2169
2170static void internal_malloc_stats(mstate m) {
2171 if (!PREACTION(m)) {
2172 size_t maxfp = 0;
2173 size_t fp = 0;
2174 size_t used = 0;
2175 check_malloc_state(m);
2176 if (is_initialized(m)) {
2177 msegmentptr s = &m->seg;
2178 maxfp = m->max_footprint;
2179 fp = m->footprint;
2180 used = fp - (m->topsize + TOP_FOOT_SIZE);
2181
2182 while (s != 0) {
2183 mchunkptr q = align_as_chunk(s->base);
2184 while (segment_holds(s, q) &&
2185 q != m->top && q->head != FENCEPOST_HEAD) {
2186 if (!cinuse(q))
2187 used -= chunksize(q);
2188 q = next_chunk(q);
2189 }
2190 s = s->next;
2191 }
2192 }
2193
2194 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2195 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2196 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2197
2198 POSTACTION(m);
2199 }
2200}
2201
2202/* ----------------------- Operations on smallbins ----------------------- */
2203
2204/*
2205 Various forms of linking and unlinking are defined as macros. Even
2206 the ones for trees, which are very long but have very short typical
2207 paths. This is ugly but reduces reliance on inlining support of
2208 compilers.
2209*/
2210
2211/* Link a free chunk into a smallbin */
2212#define insert_small_chunk(M, P, S) {\
2213 bindex_t I = small_index(S);\
2214 mchunkptr B = smallbin_at(M, I);\
2215 mchunkptr F = B;\
2216 assert(S >= MIN_CHUNK_SIZE);\
2217 if (!smallmap_is_marked(M, I))\
2218 mark_smallmap(M, I);\
2219 else if (RTCHECK(ok_address(M, B->fd)))\
2220 F = B->fd;\
2221 else {\
2222 CORRUPTION_ERROR_ACTION(M);\
2223 }\
2224 B->fd = P;\
2225 F->bk = P;\
2226 P->fd = F;\
2227 P->bk = B;\
2228}
2229
2230/* Unlink a chunk from a smallbin */
2231#define unlink_small_chunk(M, P, S) {\
2232 mchunkptr F = P->fd;\
2233 mchunkptr B = P->bk;\
2234 bindex_t I = small_index(S);\
2235 assert(P != B);\
2236 assert(P != F);\
2237 assert(chunksize(P) == small_index2size(I));\
2238 if (F == B)\
2239 clear_smallmap(M, I);\
2240 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2241 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2242 F->bk = B;\
2243 B->fd = F;\
2244 }\
2245 else {\
2246 CORRUPTION_ERROR_ACTION(M);\
2247 }\
2248}
2249
2250/* Unlink the first chunk from a smallbin */
2251#define unlink_first_small_chunk(M, B, P, I) {\
2252 mchunkptr F = P->fd;\
2253 assert(P != B);\
2254 assert(P != F);\
2255 assert(chunksize(P) == small_index2size(I));\
2256 if (B == F)\
2257 clear_smallmap(M, I);\
2258 else if (RTCHECK(ok_address(M, F))) {\
2259 B->fd = F;\
2260 F->bk = B;\
2261 }\
2262 else {\
2263 CORRUPTION_ERROR_ACTION(M);\
2264 }\
2265}
2266
2267/* Replace dv node, binning the old one */
2268/* Used only when dvsize known to be small */
2269#define replace_dv(M, P, S) {\
2270 size_t DVS = M->dvsize;\
2271 if (DVS != 0) {\
2272 mchunkptr DV = M->dv;\
2273 assert(is_small(DVS));\
2274 insert_small_chunk(M, DV, DVS);\
2275 }\
2276 M->dvsize = S;\
2277 M->dv = P;\
2278}
2279
2280/* ------------------------- Operations on trees ------------------------- */
2281
2282/* Insert chunk into tree */
2283#define insert_large_chunk(M, X, S) {\
2284 tbinptr* H;\
2285 bindex_t I;\
2286 compute_tree_index(S, I);\
2287 H = treebin_at(M, I);\
2288 X->index = I;\
2289 X->child[0] = X->child[1] = 0;\
2290 if (!treemap_is_marked(M, I)) {\
2291 mark_treemap(M, I);\
2292 *H = X;\
2293 X->parent = (tchunkptr)H;\
2294 X->fd = X->bk = X;\
2295 }\
2296 else {\
2297 tchunkptr T = *H;\
2298 size_t K = S << leftshift_for_tree_index(I);\
2299 for (;;) {\
2300 if (chunksize(T) != S) {\
2301 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2302 K <<= 1;\
2303 if (*C != 0)\
2304 T = *C;\
2305 else if (RTCHECK(ok_address(M, C))) {\
2306 *C = X;\
2307 X->parent = T;\
2308 X->fd = X->bk = X;\
2309 break;\
2310 }\
2311 else {\
2312 CORRUPTION_ERROR_ACTION(M);\
2313 break;\
2314 }\
2315 }\
2316 else {\
2317 tchunkptr F = T->fd;\
2318 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2319 T->fd = F->bk = X;\
2320 X->fd = F;\
2321 X->bk = T;\
2322 X->parent = 0;\
2323 break;\
2324 }\
2325 else {\
2326 CORRUPTION_ERROR_ACTION(M);\
2327 break;\
2328 }\
2329 }\
2330 }\
2331 }\
2332}
2333
2334/*
2335 Unlink steps:
2336
2337 1. If x is a chained node, unlink it from its same-sized fd/bk links
2338 and choose its bk node as its replacement.
2339 2. If x was the last node of its size, but not a leaf node, it must
2340 be replaced with a leaf node (not merely one with an open left or
2341 right), to make sure that lefts and rights of descendents
2342 correspond properly to bit masks. We use the rightmost descendent
2343 of x. We could use any other leaf, but this is easy to locate and
2344 tends to counteract removal of leftmosts elsewhere, and so keeps
2345 paths shorter than minimally guaranteed. This doesn't loop much
2346 because on average a node in a tree is near the bottom.
2347 3. If x is the base of a chain (i.e., has parent links) relink
2348 x's parent and children to x's replacement (or null if none).
2349*/
2350
2351#define unlink_large_chunk(M, X) {\
2352 tchunkptr XP = X->parent;\
2353 tchunkptr R;\
2354 if (X->bk != X) {\
2355 tchunkptr F = X->fd;\
2356 R = X->bk;\
2357 if (RTCHECK(ok_address(M, F))) {\
2358 F->bk = R;\
2359 R->fd = F;\
2360 }\
2361 else {\
2362 CORRUPTION_ERROR_ACTION(M);\
2363 }\
2364 }\
2365 else {\
2366 tchunkptr* RP;\
2367 if (((R = *(RP = &(X->child[1]))) != 0) ||\
2368 ((R = *(RP = &(X->child[0]))) != 0)) {\
2369 tchunkptr* CP;\
2370 while ((*(CP = &(R->child[1])) != 0) ||\
2371 (*(CP = &(R->child[0])) != 0)) {\
2372 R = *(RP = CP);\
2373 }\
2374 if (RTCHECK(ok_address(M, RP)))\
2375 *RP = 0;\
2376 else {\
2377 CORRUPTION_ERROR_ACTION(M);\
2378 }\
2379 }\
2380 }\
2381 if (XP != 0) {\
2382 tbinptr* H = treebin_at(M, X->index);\
2383 if (X == *H) {\
2384 if ((*H = R) == 0) \
2385 clear_treemap(M, X->index);\
2386 }\
2387 else if (RTCHECK(ok_address(M, XP))) {\
2388 if (XP->child[0] == X) \
2389 XP->child[0] = R;\
2390 else \
2391 XP->child[1] = R;\
2392 }\
2393 else\
2394 CORRUPTION_ERROR_ACTION(M);\
2395 if (R != 0) {\
2396 if (RTCHECK(ok_address(M, R))) {\
2397 tchunkptr C0, C1;\
2398 R->parent = XP;\
2399 if ((C0 = X->child[0]) != 0) {\
2400 if (RTCHECK(ok_address(M, C0))) {\
2401 R->child[0] = C0;\
2402 C0->parent = R;\
2403 }\
2404 else\
2405 CORRUPTION_ERROR_ACTION(M);\
2406 }\
2407 if ((C1 = X->child[1]) != 0) {\
2408 if (RTCHECK(ok_address(M, C1))) {\
2409 R->child[1] = C1;\
2410 C1->parent = R;\
2411 }\
2412 else\
2413 CORRUPTION_ERROR_ACTION(M);\
2414 }\
2415 }\
2416 else\
2417 CORRUPTION_ERROR_ACTION(M);\
2418 }\
2419 }\
2420}
2421
2422/* Relays to large vs small bin operations */
2423
2424#define insert_chunk(M, P, S)\
2425 if (is_small(S)) insert_small_chunk(M, P, S)\
2426 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
2427
2428#define unlink_chunk(M, P, S)\
2429 if (is_small(S)) unlink_small_chunk(M, P, S)\
2430 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
2431
2432
2433/* Relays to internal calls to malloc/free from realloc, memalign etc */
2434
2435#if ONLY_MSPACES
2436#define internal_malloc(m, b) mspace_malloc(m, b)
2437#define internal_free(m, mem) mspace_free(m,mem);
2438#else /* ONLY_MSPACES */
2439#if MSPACES
2440#define internal_malloc(m, b)\
2441 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
2442#define internal_free(m, mem)\
2443 if (m == gm) dlfree(mem); else mspace_free(m,mem);
2444#else /* MSPACES */
2445#define internal_malloc(m, b) dlmalloc(b)
2446#define internal_free(m, mem) dlfree(mem)
2447#endif /* MSPACES */
2448#endif /* ONLY_MSPACES */
2449
2450/* ----------------------- Direct-mmapping chunks ----------------------- */
2451
2452/*
2453 Directly mmapped chunks are set up with an offset to the start of
2454 the mmapped region stored in the prev_foot field of the chunk. This
2455 allows reconstruction of the required argument to MUNMAP when freed,
2456 and also allows adjustment of the returned chunk to meet alignment
2457 requirements (especially in memalign). There is also enough space
2458 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
2459 the PINUSE bit so frees can be checked.
2460*/
2461
2462/* Malloc using mmap */
2463static void* mmap_alloc(mstate m, size_t nb) {
2464 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2465 if (mmsize > nb) { /* Check for wrap around 0 */
2466 char* mm = (char*)(DIRECT_MMAP(mmsize));
2467 if (mm != CMFAIL) {
2468 size_t offset = align_offset(chunk2mem(mm));
2469 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
2470 mchunkptr p = (mchunkptr)(mm + offset);
2471 p->prev_foot = offset | IS_MMAPPED_BIT;
2472 (p)->head = (psize|CINUSE_BIT);
2473 mark_inuse_foot(m, p, psize);
2474 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
2475 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
2476
2477 if (mm < m->least_addr)
2478 m->least_addr = mm;
2479 if ((m->footprint += mmsize) > m->max_footprint)
2480 m->max_footprint = m->footprint;
2481 assert(is_aligned(chunk2mem(p)));
2482 check_mmapped_chunk(m, p);
2483 return chunk2mem(p);
2484 }
2485 }
2486 return 0;
2487}
2488
2489/* Realloc using mmap */
2490static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
2491 size_t oldsize = chunksize(oldp);
2492 if (is_small(nb)) /* Can't shrink mmap regions below small size */
2493 return 0;
2494 /* Keep old chunk if big enough but not too big */
2495 if (oldsize >= nb + SIZE_T_SIZE &&
2496 (oldsize - nb) <= (mparams.granularity << 1))
2497 return oldp;
2498 else {
2499 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
2500 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
2501 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
2502 CHUNK_ALIGN_MASK);
2503 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
2504 oldmmsize, newmmsize, 1);
2505 if (cp != CMFAIL) {
2506 mchunkptr newp = (mchunkptr)(cp + offset);
2507 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
2508 newp->head = (psize|CINUSE_BIT);
2509 mark_inuse_foot(m, newp, psize);
2510 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
2511 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
2512
2513 if (cp < m->least_addr)
2514 m->least_addr = cp;
2515 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
2516 m->max_footprint = m->footprint;
2517 check_mmapped_chunk(m, newp);
2518 return newp;
2519 }
2520 }
2521 return 0;
2522}
2523
2524/* -------------------------- mspace management -------------------------- */
2525
2526/* Initialize top chunk and its size */
2527static void init_top(mstate m, mchunkptr p, size_t psize) {
2528 /* Ensure alignment */
2529 size_t offset = align_offset(chunk2mem(p));
2530 p = (mchunkptr)((char*)p + offset);
2531 psize -= offset;
2532
2533 m->top = p;
2534 m->topsize = psize;
2535 p->head = psize | PINUSE_BIT;
2536 /* set size of fake trailing chunk holding overhead space only once */
2537 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
2538 m->trim_check = mparams.trim_threshold; /* reset on each update */
2539}
2540
2541/* Initialize bins for a new mstate that is otherwise zeroed out */
2542static void init_bins(mstate m) {
2543 /* Establish circular links for smallbins */
2544 bindex_t i;
2545 for (i = 0; i < NSMALLBINS; ++i) {
2546 sbinptr bin = smallbin_at(m,i);
2547 bin->fd = bin->bk = bin;
2548 }
2549}
2550
2551#if PROCEED_ON_ERROR
2552
2553/* default corruption action */
2554static void reset_on_error(mstate m) {
2555 int i;
2556 ++malloc_corruption_error_count;
2557 /* Reinitialize fields to forget about all memory */
2558 m->smallbins = m->treebins = 0;
2559 m->dvsize = m->topsize = 0;
2560 m->seg.base = 0;
2561 m->seg.size = 0;
2562 m->seg.next = 0;
2563 m->top = m->dv = 0;
2564 for (i = 0; i < NTREEBINS; ++i)
2565 *treebin_at(m, i) = 0;
2566 init_bins(m);
2567}
2568#endif /* PROCEED_ON_ERROR */
2569
2570/* Allocate chunk and prepend remainder with chunk in successor base. */
2571static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
2572 size_t nb) {
2573 mchunkptr p = align_as_chunk(newbase);
2574 mchunkptr oldfirst = align_as_chunk(oldbase);
2575 size_t psize = (char*)oldfirst - (char*)p;
2576 mchunkptr q = chunk_plus_offset(p, nb);
2577 size_t qsize = psize - nb;
2578 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2579
2580 assert((char*)oldfirst > (char*)q);
2581 assert(pinuse(oldfirst));
2582 assert(qsize >= MIN_CHUNK_SIZE);
2583
2584 /* consolidate remainder with first chunk of old base */
2585 if (oldfirst == m->top) {
2586 size_t tsize = m->topsize += qsize;
2587 m->top = q;
2588 q->head = tsize | PINUSE_BIT;
2589 check_top_chunk(m, q);
2590 }
2591 else if (oldfirst == m->dv) {
2592 size_t dsize = m->dvsize += qsize;
2593 m->dv = q;
2594 set_size_and_pinuse_of_free_chunk(q, dsize);
2595 }
2596 else {
2597 if (!cinuse(oldfirst)) {
2598 size_t nsize = chunksize(oldfirst);
2599 unlink_chunk(m, oldfirst, nsize);
2600 oldfirst = chunk_plus_offset(oldfirst, nsize);
2601 qsize += nsize;
2602 }
2603 set_free_with_pinuse(q, qsize, oldfirst);
2604 insert_chunk(m, q, qsize);
2605 check_free_chunk(m, q);
2606 }
2607
2608 check_malloced_chunk(m, chunk2mem(p), nb);
2609 return chunk2mem(p);
2610}
2611
2612
2613/* Add a segment to hold a new noncontiguous region */
2614static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
2615 /* Determine locations and sizes of segment, fenceposts, old top */
2616 char* old_top = (char*)m->top;
2617 msegmentptr oldsp = segment_holding(m, old_top);
2618 char* old_end = oldsp->base + oldsp->size;
2619 size_t ssize = pad_request(sizeof(struct malloc_segment));
2620 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2621 size_t offset = align_offset(chunk2mem(rawsp));
2622 char* asp = rawsp + offset;
2623 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
2624 mchunkptr sp = (mchunkptr)csp;
2625 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
2626 mchunkptr tnext = chunk_plus_offset(sp, ssize);
2627 mchunkptr p = tnext;
2628 int nfences = 0;
2629
2630 /* reset top to new space */
2631 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2632
2633 /* Set up segment record */
2634 assert(is_aligned(ss));
2635 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
2636 *ss = m->seg; /* Push current record */
2637 m->seg.base = tbase;
2638 m->seg.size = tsize;
2639 m->seg.sflags = mmapped;
2640 m->seg.next = ss;
2641
2642 /* Insert trailing fenceposts */
2643 for (;;) {
2644 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
2645 p->head = FENCEPOST_HEAD;
2646 ++nfences;
2647 if ((char*)(&(nextp->head)) < old_end)
2648 p = nextp;
2649 else
2650 break;
2651 }
2652 assert(nfences >= 2);
2653
2654 /* Insert the rest of old top into a bin as an ordinary free chunk */
2655 if (csp != old_top) {
2656 mchunkptr q = (mchunkptr)old_top;
2657 size_t psize = csp - old_top;
2658 mchunkptr tn = chunk_plus_offset(q, psize);
2659 set_free_with_pinuse(q, psize, tn);
2660 insert_chunk(m, q, psize);
2661 }
2662
2663 check_top_chunk(m, m->top);
2664}
2665
2666/* -------------------------- System allocation -------------------------- */
2667
2668/* Get memory from system using MORECORE or MMAP */
2669static void* sys_alloc(mstate m, size_t nb) {
2670 char* tbase = CMFAIL;
2671 size_t tsize = 0;
2672 flag_t mmap_flag = 0;
2673
2674 init_mparams();
2675
2676 /* Directly map large chunks */
2677 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
2678 void* mem = mmap_alloc(m, nb);
2679 if (mem != 0)
2680 return mem;
2681 }
2682
2683 /*
2684 Try getting memory in any of three ways (in most-preferred to
2685 least-preferred order):
2686 1. A call to MORECORE that can normally contiguously extend memory.
2687 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
2688 or main space is mmapped or a previous contiguous call failed)
2689 2. A call to MMAP new space (disabled if not HAVE_MMAP).
2690 Note that under the default settings, if MORECORE is unable to
2691 fulfill a request, and HAVE_MMAP is true, then mmap is
2692 used as a noncontiguous system allocator. This is a useful backup
2693 strategy for systems with holes in address spaces -- in this case
2694 sbrk cannot contiguously expand the heap, but mmap may be able to
2695 find space.
2696 3. A call to MORECORE that cannot usually contiguously extend memory.
2697 (disabled if not HAVE_MORECORE)
2698 */
2699
2700 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
2701 char* br = CMFAIL;
2702 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
2703 size_t asize = 0;
2704 ACQUIRE_MORECORE_LOCK();
2705
2706 if (ss == 0) { /* First time through or recovery */
2707 char* base = (char*)CALL_MORECORE(0);
2708 if (base != CMFAIL) {
2709 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2710 /* Adjust to end on a page boundary */
2711 if (!is_page_aligned(base))
2712 asize += (page_align((size_t)base) - (size_t)base);
2713 /* Can't call MORECORE if size is negative when treated as signed */
2714 if (asize < HALF_MAX_SIZE_T &&
2715 (br = (char*)(CALL_MORECORE(asize))) == base) {
2716 tbase = base;
2717 tsize = asize;
2718 }
2719 }
2720 }
2721 else {
2722 /* Subtract out existing available top space from MORECORE request. */
2723 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
2724 /* Use mem here only if it did continuously extend old space */
2725 if (asize < HALF_MAX_SIZE_T &&
2726 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
2727 tbase = br;
2728 tsize = asize;
2729 }
2730 }
2731
2732 if (tbase == CMFAIL) { /* Cope with partial failure */
2733 if (br != CMFAIL) { /* Try to use/extend the space we did get */
2734 if (asize < HALF_MAX_SIZE_T &&
2735 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
2736 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
2737 if (esize < HALF_MAX_SIZE_T) {
2738 char* end = (char*)CALL_MORECORE(esize);
2739 if (end != CMFAIL)
2740 asize += esize;
2741 else { /* Can't use; try to release */
2742 CALL_MORECORE(-asize);
2743 br = CMFAIL;
2744 }
2745 }
2746 }
2747 }
2748 if (br != CMFAIL) { /* Use the space we did get */
2749 tbase = br;
2750 tsize = asize;
2751 }
2752 else
2753 disable_contiguous(m); /* Don't try contiguous path in the future */
2754 }
2755
2756 RELEASE_MORECORE_LOCK();
2757 }
2758
2759 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
2760 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
2761 size_t rsize = granularity_align(req);
2762 if (rsize > nb) { /* Fail if wraps around zero */
2763 char* mp = (char*)(CALL_MMAP(rsize));
2764 if (mp != CMFAIL) {
2765 tbase = mp;
2766 tsize = rsize;
2767 mmap_flag = IS_MMAPPED_BIT;
2768 }
2769 }
2770 }
2771
2772 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
2773 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2774 if (asize < HALF_MAX_SIZE_T) {
2775 char* br = CMFAIL;
2776 char* end = CMFAIL;
2777 ACQUIRE_MORECORE_LOCK();
2778 br = (char*)(CALL_MORECORE(asize));
2779 end = (char*)(CALL_MORECORE(0));
2780 RELEASE_MORECORE_LOCK();
2781 if (br != CMFAIL && end != CMFAIL && br < end) {
2782 size_t ssize = end - br;
2783 if (ssize > nb + TOP_FOOT_SIZE) {
2784 tbase = br;
2785 tsize = ssize;
2786 }
2787 }
2788 }
2789 }
2790
2791 if (tbase != CMFAIL) {
2792
2793 if ((m->footprint += tsize) > m->max_footprint)
2794 m->max_footprint = m->footprint;
2795
2796 if (!is_initialized(m)) { /* first-time initialization */
2797 m->seg.base = m->least_addr = tbase;
2798 m->seg.size = tsize;
2799 m->seg.sflags = mmap_flag;
2800 m->magic = mparams.magic;
2801 init_bins(m);
2802 if (is_global(m))
2803 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2804 else {
2805 /* Offset top by embedded malloc_state */
2806 mchunkptr mn = next_chunk(mem2chunk(m));
2807 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
2808 }
2809 }
2810
2811 else {
2812 /* Try to merge with an existing segment */
2813 msegmentptr sp = &m->seg;
2814 while (sp != 0 && tbase != sp->base + sp->size)
2815 sp = sp->next;
2816 if (sp != 0 &&
2817 !is_extern_segment(sp) &&
2818 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
2819 segment_holds(sp, m->top)) { /* append */
2820 sp->size += tsize;
2821 init_top(m, m->top, m->topsize + tsize);
2822 }
2823 else {
2824 if (tbase < m->least_addr)
2825 m->least_addr = tbase;
2826 sp = &m->seg;
2827 while (sp != 0 && sp->base != tbase + tsize)
2828 sp = sp->next;
2829 if (sp != 0 &&
2830 !is_extern_segment(sp) &&
2831 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
2832 char* oldbase = sp->base;
2833 sp->base = tbase;
2834 sp->size += tsize;
2835 return prepend_alloc(m, tbase, oldbase, nb);
2836 }
2837 else
2838 add_segment(m, tbase, tsize, mmap_flag);
2839 }
2840 }
2841
2842 if (nb < m->topsize) { /* Allocate from new or extended top space */
2843 size_t rsize = m->topsize -= nb;
2844 mchunkptr p = m->top;
2845 mchunkptr r = m->top = chunk_plus_offset(p, nb);
2846 r->head = rsize | PINUSE_BIT;
2847 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2848 check_top_chunk(m, m->top);
2849 check_malloced_chunk(m, chunk2mem(p), nb);
2850 return chunk2mem(p);
2851 }
2852 }
2853
2854 MALLOC_FAILURE_ACTION;
2855 return 0;
2856}
2857
2858/* ----------------------- system deallocation -------------------------- */
2859
2860/* Unmap and unlink any mmapped segments that don't contain used chunks */
2861static size_t release_unused_segments(mstate m) {
2862 size_t released = 0;
2863 msegmentptr pred = &m->seg;
2864 msegmentptr sp = pred->next;
2865 while (sp != 0) {
2866 char* base = sp->base;
2867 size_t size = sp->size;
2868 msegmentptr next = sp->next;
2869 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
2870 mchunkptr p = align_as_chunk(base);
2871 size_t psize = chunksize(p);
2872 /* Can unmap if first chunk holds entire segment and not pinned */
2873 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
2874 tchunkptr tp = (tchunkptr)p;
2875 assert(segment_holds(sp, (char*)sp));
2876 if (p == m->dv) {
2877 m->dv = 0;
2878 m->dvsize = 0;
2879 }
2880 else {
2881 unlink_large_chunk(m, tp);
2882 }
2883 if (CALL_MUNMAP(base, size) == 0) {
2884 released += size;
2885 m->footprint -= size;
2886 /* unlink obsoleted record */
2887 sp = pred;
2888 sp->next = next;
2889 }
2890 else { /* back out if cannot unmap */
2891 insert_large_chunk(m, tp, psize);
2892 }
2893 }
2894 }
2895 pred = sp;
2896 sp = next;
2897 }
2898 return released;
2899}
2900
2901static int sys_trim(mstate m, size_t pad) {
2902 size_t released = 0;
2903 if (pad < MAX_REQUEST && is_initialized(m)) {
2904 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
2905
2906 if (m->topsize > pad) {
2907 /* Shrink top space in granularity-size units, keeping at least one */
2908 size_t unit = mparams.granularity;
2909 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
2910 SIZE_T_ONE) * unit;
2911 msegmentptr sp = segment_holding(m, (char*)m->top);
2912
2913 if (!is_extern_segment(sp)) {
2914 if (is_mmapped_segment(sp)) {
2915 if (HAVE_MMAP &&
2916 sp->size >= extra &&
2917 !has_segment_link(m, sp)) { /* can't shrink if pinned */
2918 size_t newsize = sp->size - extra;
2919 /* Prefer mremap, fall back to munmap */
2920 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
2921 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
2922 released = extra;
2923 }
2924 }
2925 }
2926 else if (HAVE_MORECORE) {
2927 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
2928 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
2929 ACQUIRE_MORECORE_LOCK();
2930 {
2931 /* Make sure end of memory is where we last set it. */
2932 char* old_br = (char*)(CALL_MORECORE(0));
2933 if (old_br == sp->base + sp->size) {
2934 char* rel_br = (char*)(CALL_MORECORE(-extra));
2935 char* new_br = (char*)(CALL_MORECORE(0));
2936 if (rel_br != CMFAIL && new_br < old_br)
2937 released = old_br - new_br;
2938 }
2939 }
2940 RELEASE_MORECORE_LOCK();
2941 }
2942 }
2943
2944 if (released != 0) {
2945 sp->size -= released;
2946 m->footprint -= released;
2947 init_top(m, m->top, m->topsize - released);
2948 check_top_chunk(m, m->top);
2949 }
2950 }
2951
2952 /* Unmap any unused mmapped segments */
2953 if (HAVE_MMAP)
2954 released += release_unused_segments(m);
2955
2956 /* On failure, disable autotrim to avoid repeated failed future calls */
2957 if (released == 0)
2958 m->trim_check = MAX_SIZE_T;
2959 }
2960
2961 return (released != 0)? 1 : 0;
2962}
2963
2964/* ---------------------------- malloc support --------------------------- */
2965
2966/* allocate a large request from the best fitting chunk in a treebin */
2967static void* tmalloc_large(mstate m, size_t nb) {
2968 tchunkptr v = 0;
2969 size_t rsize = -nb; /* Unsigned negation */
2970 tchunkptr t;
2971 bindex_t idx;
2972 compute_tree_index(nb, idx);
2973
2974 if ((t = *treebin_at(m, idx)) != 0) {
2975 /* Traverse tree for this bin looking for node with size == nb */
2976 size_t sizebits = nb << leftshift_for_tree_index(idx);
2977 tchunkptr rst = 0; /* The deepest untaken right subtree */
2978 for (;;) {
2979 tchunkptr rt;
2980 size_t trem = chunksize(t) - nb;
2981 if (trem < rsize) {
2982 v = t;
2983 if ((rsize = trem) == 0)
2984 break;
2985 }
2986 rt = t->child[1];
2987 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2988 if (rt != 0 && rt != t)
2989 rst = rt;
2990 if (t == 0) {
2991 t = rst; /* set t to least subtree holding sizes > nb */
2992 break;
2993 }
2994 sizebits <<= 1;
2995 }
2996 }
2997
2998 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
2999 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3000 if (leftbits != 0) {
3001 bindex_t i;
3002 binmap_t leastbit = least_bit(leftbits);
3003 compute_bit2idx(leastbit, i);
3004 t = *treebin_at(m, i);
3005 }
3006 }
3007
3008 while (t != 0) { /* find smallest of tree or subtree */
3009 size_t trem = chunksize(t) - nb;
3010 if (trem < rsize) {
3011 rsize = trem;
3012 v = t;
3013 }
3014 t = leftmost_child(t);
3015 }
3016
3017 /* If dv is a better fit, return 0 so malloc will use it */
3018 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3019 if (RTCHECK(ok_address(m, v))) { /* split */
3020 mchunkptr r = chunk_plus_offset(v, nb);
3021 assert(chunksize(v) == rsize + nb);
3022 if (RTCHECK(ok_next(v, r))) {
3023 unlink_large_chunk(m, v);
3024 if (rsize < MIN_CHUNK_SIZE)
3025 set_inuse_and_pinuse(m, v, (rsize + nb));
3026 else {
3027 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3028 set_size_and_pinuse_of_free_chunk(r, rsize);
3029 insert_chunk(m, r, rsize);
3030 }
3031 return chunk2mem(v);
3032 }
3033 }
3034 CORRUPTION_ERROR_ACTION(m);
3035 }
3036 return 0;
3037}
3038
3039/* allocate a small request from the best fitting chunk in a treebin */
3040static void* tmalloc_small(mstate m, size_t nb) {
3041 tchunkptr t, v;
3042 size_t rsize;
3043 bindex_t i;
3044 binmap_t leastbit = least_bit(m->treemap);
3045 compute_bit2idx(leastbit, i);
3046
3047 v = t = *treebin_at(m, i);
3048 rsize = chunksize(t) - nb;
3049
3050 while ((t = leftmost_child(t)) != 0) {
3051 size_t trem = chunksize(t) - nb;
3052 if (trem < rsize) {
3053 rsize = trem;
3054 v = t;
3055 }
3056 }
3057
3058 if (RTCHECK(ok_address(m, v))) {
3059 mchunkptr r = chunk_plus_offset(v, nb);
3060 assert(chunksize(v) == rsize + nb);
3061 if (RTCHECK(ok_next(v, r))) {
3062 unlink_large_chunk(m, v);
3063 if (rsize < MIN_CHUNK_SIZE)
3064 set_inuse_and_pinuse(m, v, (rsize + nb));
3065 else {
3066 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3067 set_size_and_pinuse_of_free_chunk(r, rsize);
3068 replace_dv(m, r, rsize);
3069 }
3070 return chunk2mem(v);
3071 }
3072 }
3073
3074 CORRUPTION_ERROR_ACTION(m);
3075 return 0;
3076}
3077
3078/* --------------------------- realloc support --------------------------- */
3079
3080static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3081 if (bytes >= MAX_REQUEST) {
3082 MALLOC_FAILURE_ACTION;
3083 return 0;
3084 }
3085 if (!PREACTION(m)) {
3086 mchunkptr oldp = mem2chunk(oldmem);
3087 size_t oldsize = chunksize(oldp);
3088 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3089 mchunkptr newp = 0;
3090 void* extra = 0;
3091
3092 /* Try to either shrink or extend into top. Else malloc-copy-free */
3093
3094 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3095 ok_next(oldp, next) && ok_pinuse(next))) {
3096 size_t nb = request2size(bytes);
3097 if (is_mmapped(oldp))
3098 newp = mmap_resize(m, oldp, nb);
3099 else if (oldsize >= nb) { /* already big enough */
3100 size_t rsize = oldsize - nb;
3101 newp = oldp;
3102 if (rsize >= MIN_CHUNK_SIZE) {
3103 mchunkptr remainder = chunk_plus_offset(newp, nb);
3104 set_inuse(m, newp, nb);
3105 set_inuse(m, remainder, rsize);
3106 extra = chunk2mem(remainder);
3107 }
3108 }
3109 else if (next == m->top && oldsize + m->topsize > nb) {
3110 /* Expand into top */
3111 size_t newsize = oldsize + m->topsize;
3112 size_t newtopsize = newsize - nb;
3113 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3114 set_inuse(m, oldp, nb);
3115 newtop->head = newtopsize |PINUSE_BIT;
3116 m->top = newtop;
3117 m->topsize = newtopsize;
3118 newp = oldp;
3119 }
3120 }
3121 else {
3122 USAGE_ERROR_ACTION(m, oldmem);
3123 POSTACTION(m);
3124 return 0;
3125 }
3126
3127 POSTACTION(m);
3128
3129 if (newp != 0) {
3130 if (extra != 0) {
3131 internal_free(m, extra);
3132 }
3133 check_inuse_chunk(m, newp);
3134 return chunk2mem(newp);
3135 }
3136 else {
3137 void* newmem = internal_malloc(m, bytes);
3138 if (newmem != 0) {
3139 size_t oc = oldsize - overhead_for(oldp);
3140 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3141 internal_free(m, oldmem);
3142 }
3143 return newmem;
3144 }
3145 }
3146 return 0;
3147}
3148
3149/* --------------------------- memalign support -------------------------- */
3150
3151static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3152 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3153 return internal_malloc(m, bytes);
3154 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3155 alignment = MIN_CHUNK_SIZE;
3156 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3157 size_t a = MALLOC_ALIGNMENT << 1;
3158 while (a < alignment) a <<= 1;
3159 alignment = a;
3160 }
3161
3162 if (bytes >= MAX_REQUEST - alignment) {
3163 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3164 MALLOC_FAILURE_ACTION;
3165 }
3166 }
3167 else {
3168 size_t nb = request2size(bytes);
3169 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3170 char* mem = (char*)internal_malloc(m, req);
3171 if (mem != 0) {
3172 void* leader = 0;
3173 void* trailer = 0;
3174 mchunkptr p = mem2chunk(mem);
3175
3176 if (PREACTION(m)) return 0;
3177 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3178 /*
3179 Find an aligned spot inside chunk. Since we need to give
3180 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3181 the first calculation places us at a spot with less than
3182 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3183 We've allocated enough total room so that this is always
3184 possible.
3185 */
3186 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3187 alignment -
3188 SIZE_T_ONE)) &
3189 -alignment));
3190 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3191 br : br+alignment;
3192 mchunkptr newp = (mchunkptr)pos;
3193 size_t leadsize = pos - (char*)(p);
3194 size_t newsize = chunksize(p) - leadsize;
3195
3196 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3197 newp->prev_foot = p->prev_foot + leadsize;
3198 newp->head = (newsize|CINUSE_BIT);
3199 }
3200 else { /* Otherwise, give back leader, use the rest */
3201 set_inuse(m, newp, newsize);
3202 set_inuse(m, p, leadsize);
3203 leader = chunk2mem(p);
3204 }
3205 p = newp;
3206 }
3207
3208 /* Give back spare room at the end */
3209 if (!is_mmapped(p)) {
3210 size_t size = chunksize(p);
3211 if (size > nb + MIN_CHUNK_SIZE) {
3212 size_t remainder_size = size - nb;
3213 mchunkptr remainder = chunk_plus_offset(p, nb);
3214 set_inuse(m, p, nb);
3215 set_inuse(m, remainder, remainder_size);
3216 trailer = chunk2mem(remainder);
3217 }
3218 }
3219
3220 assert (chunksize(p) >= nb);
3221 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3222 check_inuse_chunk(m, p);
3223 POSTACTION(m);
3224 if (leader != 0) {
3225 internal_free(m, leader);
3226 }
3227 if (trailer != 0) {
3228 internal_free(m, trailer);
3229 }
3230 return chunk2mem(p);
3231 }
3232 }
3233 return 0;
3234}
3235
3236/* ------------------------ comalloc/coalloc support --------------------- */
3237
3238static void** ialloc(mstate m,
3239 size_t n_elements,
3240 size_t* sizes,
3241 int opts,
3242 void* chunks[]) {
3243 /*
3244 This provides common support for independent_X routines, handling
3245 all of the combinations that can result.
3246
3247 The opts arg has:
3248 bit 0 set if all elements are same size (using sizes[0])
3249 bit 1 set if elements should be zeroed
3250 */
3251
3252 size_t element_size; /* chunksize of each element, if all same */
3253 size_t contents_size; /* total size of elements */
3254 size_t array_size; /* request size of pointer array */
3255 void* mem; /* malloced aggregate space */
3256 mchunkptr p; /* corresponding chunk */
3257 size_t remainder_size; /* remaining bytes while splitting */
3258 void** marray; /* either "chunks" or malloced ptr array */
3259 mchunkptr array_chunk; /* chunk for malloced ptr array */
3260 flag_t was_enabled; /* to disable mmap */
3261 size_t size;
3262 size_t i;
3263
3264 /* compute array length, if needed */
3265 if (chunks != 0) {
3266 if (n_elements == 0)
3267 return chunks; /* nothing to do */
3268 marray = chunks;
3269 array_size = 0;
3270 }
3271 else {
3272 /* if empty req, must still return chunk representing empty array */
3273 if (n_elements == 0)
3274 return (void**)internal_malloc(m, 0);
3275 marray = 0;
3276 array_size = request2size(n_elements * (sizeof(void*)));
3277 }
3278
3279 /* compute total element size */
3280 if (opts & 0x1) { /* all-same-size */
3281 element_size = request2size(*sizes);
3282 contents_size = n_elements * element_size;
3283 }
3284 else { /* add up all the sizes */
3285 element_size = 0;
3286 contents_size = 0;
3287 for (i = 0; i != n_elements; ++i)
3288 contents_size += request2size(sizes[i]);
3289 }
3290
3291 size = contents_size + array_size;
3292
3293 /*
3294 Allocate the aggregate chunk. First disable direct-mmapping so
3295 malloc won't use it, since we would not be able to later
3296 free/realloc space internal to a segregated mmap region.
3297 */
3298 was_enabled = use_mmap(m);
3299 disable_mmap(m);
3300 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3301 if (was_enabled)
3302 enable_mmap(m);
3303 if (mem == 0)
3304 return 0;
3305
3306 if (PREACTION(m)) return 0;
3307 p = mem2chunk(mem);
3308 remainder_size = chunksize(p);
3309
3310 assert(!is_mmapped(p));
3311
3312 if (opts & 0x2) { /* optionally clear the elements */
3313 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3314 }
3315
3316 /* If not provided, allocate the pointer array as final part of chunk */
3317 if (marray == 0) {
3318 size_t array_chunk_size;
3319 array_chunk = chunk_plus_offset(p, contents_size);
3320 array_chunk_size = remainder_size - contents_size;
3321 marray = (void**) (chunk2mem(array_chunk));
3322 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3323 remainder_size = contents_size;
3324 }
3325
3326 /* split out elements */
3327 for (i = 0; ; ++i) {
3328 marray[i] = chunk2mem(p);
3329 if (i != n_elements-1) {
3330 if (element_size != 0)
3331 size = element_size;
3332 else
3333 size = request2size(sizes[i]);
3334 remainder_size -= size;
3335 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3336 p = chunk_plus_offset(p, size);
3337 }
3338 else { /* the final element absorbs any overallocation slop */
3339 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3340 break;
3341 }
3342 }
3343
3344#if DEBUG
3345 if (marray != chunks) {
3346 /* final element must have exactly exhausted chunk */
3347 if (element_size != 0) {
3348 assert(remainder_size == element_size);
3349 }
3350 else {
3351 assert(remainder_size == request2size(sizes[i]));
3352 }
3353 check_inuse_chunk(m, mem2chunk(marray));
3354 }
3355 for (i = 0; i != n_elements; ++i)
3356 check_inuse_chunk(m, mem2chunk(marray[i]));
3357
3358#endif /* DEBUG */
3359
3360 POSTACTION(m);
3361 return marray;
3362}
3363
3364
3365/* -------------------------- public routines ---------------------------- */
3366
3367#if !ONLY_MSPACES
3368
3369void* dlmalloc(size_t bytes) {
3370 /*
3371 Basic algorithm:
3372 If a small request (< 256 bytes minus per-chunk overhead):
3373 1. If one exists, use a remainderless chunk in associated smallbin.
3374 (Remainderless means that there are too few excess bytes to
3375 represent as a chunk.)
3376 2. If it is big enough, use the dv chunk, which is normally the
3377 chunk adjacent to the one used for the most recent small request.
3378 3. If one exists, split the smallest available chunk in a bin,
3379 saving remainder in dv.
3380 4. If it is big enough, use the top chunk.
3381 5. If available, get memory from system and use it
3382 Otherwise, for a large request:
3383 1. Find the smallest available binned chunk that fits, and use it
3384 if it is better fitting than dv chunk, splitting if necessary.
3385 2. If better fitting than any binned chunk, use the dv chunk.
3386 3. If it is big enough, use the top chunk.
3387 4. If request size >= mmap threshold, try to directly mmap this chunk.
3388 5. If available, get memory from system and use it
3389
3390 The ugly goto's here ensure that postaction occurs along all paths.
3391 */
3392
3393 if (!PREACTION(gm)) {
3394 void* mem;
3395 size_t nb;
3396 if (bytes <= MAX_SMALL_REQUEST) {
3397 bindex_t idx;
3398 binmap_t smallbits;
3399 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3400 idx = small_index(nb);
3401 smallbits = gm->smallmap >> idx;
3402
3403 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3404 mchunkptr b, p;
3405 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3406 b = smallbin_at(gm, idx);
3407 p = b->fd;
3408 assert(chunksize(p) == small_index2size(idx));
3409 unlink_first_small_chunk(gm, b, p, idx);
3410 set_inuse_and_pinuse(gm, p, small_index2size(idx));
3411 mem = chunk2mem(p);
3412 check_malloced_chunk(gm, mem, nb);
3413 goto postaction;
3414 }
3415
3416 else if (nb > gm->dvsize) {
3417 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3418 mchunkptr b, p, r;
3419 size_t rsize;
3420 bindex_t i;
3421 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3422 binmap_t leastbit = least_bit(leftbits);
3423 compute_bit2idx(leastbit, i);
3424 b = smallbin_at(gm, i);
3425 p = b->fd;
3426 assert(chunksize(p) == small_index2size(i));
3427 unlink_first_small_chunk(gm, b, p, i);
3428 rsize = small_index2size(i) - nb;
3429 /* Fit here cannot be remainderless if 4byte sizes */
3430 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3431 set_inuse_and_pinuse(gm, p, small_index2size(i));
3432 else {
3433 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3434 r = chunk_plus_offset(p, nb);
3435 set_size_and_pinuse_of_free_chunk(r, rsize);
3436 replace_dv(gm, r, rsize);
3437 }
3438 mem = chunk2mem(p);
3439 check_malloced_chunk(gm, mem, nb);
3440 goto postaction;
3441 }
3442
3443 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
3444 check_malloced_chunk(gm, mem, nb);
3445 goto postaction;
3446 }
3447 }
3448 }
3449 else if (bytes >= MAX_REQUEST)
3450 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3451 else {
3452 nb = pad_request(bytes);
3453 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
3454 check_malloced_chunk(gm, mem, nb);
3455 goto postaction;
3456 }
3457 }
3458
3459 if (nb <= gm->dvsize) {
3460 size_t rsize = gm->dvsize - nb;
3461 mchunkptr p = gm->dv;
3462 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3463 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
3464 gm->dvsize = rsize;
3465 set_size_and_pinuse_of_free_chunk(r, rsize);
3466 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3467 }
3468 else { /* exhaust dv */
3469 size_t dvs = gm->dvsize;
3470 gm->dvsize = 0;
3471 gm->dv = 0;
3472 set_inuse_and_pinuse(gm, p, dvs);
3473 }
3474 mem = chunk2mem(p);
3475 check_malloced_chunk(gm, mem, nb);
3476 goto postaction;
3477 }
3478
3479 else if (nb < gm->topsize) { /* Split top */
3480 size_t rsize = gm->topsize -= nb;
3481 mchunkptr p = gm->top;
3482 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
3483 r->head = rsize | PINUSE_BIT;
3484 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3485 mem = chunk2mem(p);
3486 check_top_chunk(gm, gm->top);
3487 check_malloced_chunk(gm, mem, nb);
3488 goto postaction;
3489 }
3490
3491 mem = sys_alloc(gm, nb);
3492
3493 postaction:
3494 POSTACTION(gm);
3495 return mem;
3496 }
3497
3498 return 0;
3499}
3500
3501void dlfree(void* mem) {
3502 /*
3503 Consolidate freed chunks with preceeding or succeeding bordering
3504 free chunks, if they exist, and then place in a bin. Intermixed
3505 with special cases for top, dv, mmapped chunks, and usage errors.
3506 */
3507
3508 if (mem != 0) {
3509 mchunkptr p = mem2chunk(mem);
3510#if FOOTERS
3511 mstate fm = get_mstate_for(p);
3512 if (!ok_magic(fm)) {
3513 USAGE_ERROR_ACTION(fm, p);
3514 return;
3515 }
3516#else /* FOOTERS */
3517#define fm gm
3518#endif /* FOOTERS */
3519 if (!PREACTION(fm)) {
3520 check_inuse_chunk(fm, p);
3521 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3522 size_t psize = chunksize(p);
3523 mchunkptr next = chunk_plus_offset(p, psize);
3524 if (!pinuse(p)) {
3525 size_t prevsize = p->prev_foot;
3526 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3527 prevsize &= ~IS_MMAPPED_BIT;
3528 psize += prevsize + MMAP_FOOT_PAD;
3529 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3530 fm->footprint -= psize;
3531 goto postaction;
3532 }
3533 else {
3534 mchunkptr prev = chunk_minus_offset(p, prevsize);
3535 psize += prevsize;
3536 p = prev;
3537 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3538 if (p != fm->dv) {
3539 unlink_chunk(fm, p, prevsize);
3540 }
3541 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3542 fm->dvsize = psize;
3543 set_free_with_pinuse(p, psize, next);
3544 goto postaction;
3545 }
3546 }
3547 else
3548 goto erroraction;
3549 }
3550 }
3551
3552 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3553 if (!cinuse(next)) { /* consolidate forward */
3554 if (next == fm->top) {
3555 size_t tsize = fm->topsize += psize;
3556 fm->top = p;
3557 p->head = tsize | PINUSE_BIT;
3558 if (p == fm->dv) {
3559 fm->dv = 0;
3560 fm->dvsize = 0;
3561 }
3562 if (should_trim(fm, tsize))
3563 sys_trim(fm, 0);
3564 goto postaction;
3565 }
3566 else if (next == fm->dv) {
3567 size_t dsize = fm->dvsize += psize;
3568 fm->dv = p;
3569 set_size_and_pinuse_of_free_chunk(p, dsize);
3570 goto postaction;
3571 }
3572 else {
3573 size_t nsize = chunksize(next);
3574 psize += nsize;
3575 unlink_chunk(fm, next, nsize);
3576 set_size_and_pinuse_of_free_chunk(p, psize);
3577 if (p == fm->dv) {
3578 fm->dvsize = psize;
3579 goto postaction;
3580 }
3581 }
3582 }
3583 else
3584 set_free_with_pinuse(p, psize, next);
3585 insert_chunk(fm, p, psize);
3586 check_free_chunk(fm, p);
3587 goto postaction;
3588 }
3589 }
3590 erroraction:
3591 USAGE_ERROR_ACTION(fm, p);
3592 postaction:
3593 POSTACTION(fm);
3594 }
3595 }
3596#if !FOOTERS
3597#undef fm
3598#endif /* FOOTERS */
3599}
3600
3601void* dlcalloc(size_t n_elements, size_t elem_size) {
3602 void* mem;
3603 size_t req = 0;
3604 if (n_elements != 0) {
3605 req = n_elements * elem_size;
3606 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
3607 (req / n_elements != elem_size))
3608 req = MAX_SIZE_T; /* force downstream failure on overflow */
3609 }
3610 mem = dlmalloc(req);
3611 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
3612 memset(mem, 0, req);
3613 return mem;
3614}
3615
3616void* dlrealloc(void* oldmem, size_t bytes) {
3617 if (oldmem == 0)
3618 return dlmalloc(bytes);
3619#ifdef REALLOC_ZERO_BYTES_FREES
3620 if (bytes == 0) {
3621 dlfree(oldmem);
3622 return 0;
3623 }
3624#endif /* REALLOC_ZERO_BYTES_FREES */
3625 else {
3626#if ! FOOTERS
3627 mstate m = gm;
3628#else /* FOOTERS */
3629 mstate m = get_mstate_for(mem2chunk(oldmem));
3630 if (!ok_magic(m)) {
3631 USAGE_ERROR_ACTION(m, oldmem);
3632 return 0;
3633 }
3634#endif /* FOOTERS */
3635 return internal_realloc(m, oldmem, bytes);
3636 }
3637}
3638
3639void* dlmemalign(size_t alignment, size_t bytes) {
3640 return internal_memalign(gm, alignment, bytes);
3641}
3642
3643void** dlindependent_calloc(size_t n_elements, size_t elem_size,
3644 void* chunks[]) {
3645 size_t sz = elem_size; /* serves as 1-element array */
3646 return ialloc(gm, n_elements, &sz, 3, chunks);
3647}
3648
3649void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
3650 void* chunks[]) {
3651 return ialloc(gm, n_elements, sizes, 0, chunks);
3652}
3653
3654void* dlvalloc(size_t bytes) {
3655 size_t pagesz;
3656 init_mparams();
3657 pagesz = mparams.page_size;
3658 return dlmemalign(pagesz, bytes);
3659}
3660
3661void* dlpvalloc(size_t bytes) {
3662 size_t pagesz;
3663 init_mparams();
3664 pagesz = mparams.page_size;
3665 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
3666}
3667
3668int dlmalloc_trim(size_t pad) {
3669 int result = 0;
3670 if (!PREACTION(gm)) {
3671 result = sys_trim(gm, pad);
3672 POSTACTION(gm);
3673 }
3674 return result;
3675}
3676
3677size_t dlmalloc_footprint(void) {
3678 return gm->footprint;
3679}
3680
3681size_t dlmalloc_max_footprint(void) {
3682 return gm->max_footprint;
3683}
3684
3685#if !NO_MALLINFO
3686struct mallinfo dlmallinfo(void) {
3687 return internal_mallinfo(gm);
3688}
3689#endif /* NO_MALLINFO */
3690
3691void dlmalloc_stats() {
3692 internal_malloc_stats(gm);
3693}
3694
3695size_t dlmalloc_usable_size(void* mem) {
3696 if (mem != 0) {
3697 mchunkptr p = mem2chunk(mem);
3698 if (cinuse(p))
3699 return chunksize(p) - overhead_for(p);
3700 }
3701 return 0;
3702}
3703
3704int dlmallopt(int param_number, int value) {
3705 return change_mparam(param_number, value);
3706}
3707
3708#endif /* !ONLY_MSPACES */
3709
3710/* ----------------------------- user mspaces ---------------------------- */
3711
3712#if MSPACES
3713
3714static mstate init_user_mstate(char* tbase, size_t tsize) {
3715 size_t msize = pad_request(sizeof(struct malloc_state));
3716 mchunkptr mn;
3717 mchunkptr msp = align_as_chunk(tbase);
3718 mstate m = (mstate)(chunk2mem(msp));
3719 memset(m, 0, msize);
3720 INITIAL_LOCK(&m->mutex);
3721 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
3722 m->seg.base = m->least_addr = tbase;
3723 m->seg.size = m->footprint = m->max_footprint = tsize;
3724 m->magic = mparams.magic;
3725 m->mflags = mparams.default_mflags;
3726 disable_contiguous(m);
3727 init_bins(m);
3728 mn = next_chunk(mem2chunk(m));
3729 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
3730 check_top_chunk(m, m->top);
3731 return m;
3732}
3733
3734mspace create_mspace(size_t capacity, int locked) {
3735 mstate m = 0;
3736 size_t msize = pad_request(sizeof(struct malloc_state));
3737 init_mparams(); /* Ensure pagesize etc initialized */
3738
3739 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3740 size_t rs = ((capacity == 0)? mparams.granularity :
3741 (capacity + TOP_FOOT_SIZE + msize));
3742 size_t tsize = granularity_align(rs);
3743 char* tbase = (char*)(CALL_MMAP(tsize));
3744 if (tbase != CMFAIL) {
3745 m = init_user_mstate(tbase, tsize);
3746 m->seg.sflags = IS_MMAPPED_BIT;
3747 set_lock(m, locked);
3748 }
3749 }
3750 return (mspace)m;
3751}
3752
3753mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
3754 mstate m = 0;
3755 size_t msize = pad_request(sizeof(struct malloc_state));
3756 init_mparams(); /* Ensure pagesize etc initialized */
3757
3758 if (capacity > msize + TOP_FOOT_SIZE &&
3759 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3760 m = init_user_mstate((char*)base, capacity);
3761 m->seg.sflags = EXTERN_BIT;
3762 set_lock(m, locked);
3763 }
3764 return (mspace)m;
3765}
3766
3767size_t destroy_mspace(mspace msp) {
3768 size_t freed = 0;
3769 mstate ms = (mstate)msp;
3770 if (ok_magic(ms)) {
3771 msegmentptr sp = &ms->seg;
3772 while (sp != 0) {
3773 char* base = sp->base;
3774 size_t size = sp->size;
3775 flag_t flag = sp->sflags;
3776 sp = sp->next;
3777 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
3778 CALL_MUNMAP(base, size) == 0)
3779 freed += size;
3780 }
3781 }
3782 else {
3783 USAGE_ERROR_ACTION(ms,ms);
3784 }
3785 return freed;
3786}
3787
3788/*
3789 mspace versions of routines are near-clones of the global
3790 versions. This is not so nice but better than the alternatives.
3791*/
3792
3793
3794void* mspace_malloc(mspace msp, size_t bytes) {
3795 mstate ms = (mstate)msp;
3796 if (!ok_magic(ms)) {
3797 USAGE_ERROR_ACTION(ms,ms);
3798 return 0;
3799 }
3800 if (!PREACTION(ms)) {
3801 void* mem;
3802 size_t nb;
3803 if (bytes <= MAX_SMALL_REQUEST) {
3804 bindex_t idx;
3805 binmap_t smallbits;
3806 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3807 idx = small_index(nb);
3808 smallbits = ms->smallmap >> idx;
3809
3810 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3811 mchunkptr b, p;
3812 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3813 b = smallbin_at(ms, idx);
3814 p = b->fd;
3815 assert(chunksize(p) == small_index2size(idx));
3816 unlink_first_small_chunk(ms, b, p, idx);
3817 set_inuse_and_pinuse(ms, p, small_index2size(idx));
3818 mem = chunk2mem(p);
3819 check_malloced_chunk(ms, mem, nb);
3820 goto postaction;
3821 }
3822
3823 else if (nb > ms->dvsize) {
3824 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3825 mchunkptr b, p, r;
3826 size_t rsize;
3827 bindex_t i;
3828 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3829 binmap_t leastbit = least_bit(leftbits);
3830 compute_bit2idx(leastbit, i);
3831 b = smallbin_at(ms, i);
3832 p = b->fd;
3833 assert(chunksize(p) == small_index2size(i));
3834 unlink_first_small_chunk(ms, b, p, i);
3835 rsize = small_index2size(i) - nb;
3836 /* Fit here cannot be remainderless if 4byte sizes */
3837 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3838 set_inuse_and_pinuse(ms, p, small_index2size(i));
3839 else {
3840 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3841 r = chunk_plus_offset(p, nb);
3842 set_size_and_pinuse_of_free_chunk(r, rsize);
3843 replace_dv(ms, r, rsize);
3844 }
3845 mem = chunk2mem(p);
3846 check_malloced_chunk(ms, mem, nb);
3847 goto postaction;
3848 }
3849
3850 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
3851 check_malloced_chunk(ms, mem, nb);
3852 goto postaction;
3853 }
3854 }
3855 }
3856 else if (bytes >= MAX_REQUEST)
3857 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3858 else {
3859 nb = pad_request(bytes);
3860 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
3861 check_malloced_chunk(ms, mem, nb);
3862 goto postaction;
3863 }
3864 }
3865
3866 if (nb <= ms->dvsize) {
3867 size_t rsize = ms->dvsize - nb;
3868 mchunkptr p = ms->dv;
3869 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3870 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
3871 ms->dvsize = rsize;
3872 set_size_and_pinuse_of_free_chunk(r, rsize);
3873 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3874 }
3875 else { /* exhaust dv */
3876 size_t dvs = ms->dvsize;
3877 ms->dvsize = 0;
3878 ms->dv = 0;
3879 set_inuse_and_pinuse(ms, p, dvs);
3880 }
3881 mem = chunk2mem(p);
3882 check_malloced_chunk(ms, mem, nb);
3883 goto postaction;
3884 }
3885
3886 else if (nb < ms->topsize) { /* Split top */
3887 size_t rsize = ms->topsize -= nb;
3888 mchunkptr p = ms->top;
3889 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
3890 r->head = rsize | PINUSE_BIT;
3891 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3892 mem = chunk2mem(p);
3893 check_top_chunk(ms, ms->top);
3894 check_malloced_chunk(ms, mem, nb);
3895 goto postaction;
3896 }
3897
3898 mem = sys_alloc(ms, nb);
3899
3900 postaction:
3901 POSTACTION(ms);
3902 return mem;
3903 }
3904
3905 return 0;
3906}
3907
3908void mspace_free(mspace msp, void* mem) {
3909 if (mem != 0) {
3910 mchunkptr p = mem2chunk(mem);
3911#if FOOTERS
3912 mstate fm = get_mstate_for(p);
3913#else /* FOOTERS */
3914 mstate fm = (mstate)msp;
3915#endif /* FOOTERS */
3916 if (!ok_magic(fm)) {
3917 USAGE_ERROR_ACTION(fm, p);
3918 return;
3919 }
3920 if (!PREACTION(fm)) {
3921 check_inuse_chunk(fm, p);
3922 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3923 size_t psize = chunksize(p);
3924 mchunkptr next = chunk_plus_offset(p, psize);
3925 if (!pinuse(p)) {
3926 size_t prevsize = p->prev_foot;
3927 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3928 prevsize &= ~IS_MMAPPED_BIT;
3929 psize += prevsize + MMAP_FOOT_PAD;
3930 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3931 fm->footprint -= psize;
3932 goto postaction;
3933 }
3934 else {
3935 mchunkptr prev = chunk_minus_offset(p, prevsize);
3936 psize += prevsize;
3937 p = prev;
3938 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3939 if (p != fm->dv) {
3940 unlink_chunk(fm, p, prevsize);
3941 }
3942 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3943 fm->dvsize = psize;
3944 set_free_with_pinuse(p, psize, next);
3945 goto postaction;
3946 }
3947 }
3948 else
3949 goto erroraction;
3950 }
3951 }
3952
3953 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3954 if (!cinuse(next)) { /* consolidate forward */
3955 if (next == fm->top) {
3956 size_t tsize = fm->topsize += psize;
3957 fm->top = p;
3958 p->head = tsize | PINUSE_BIT;
3959 if (p == fm->dv) {
3960 fm->dv = 0;
3961 fm->dvsize = 0;
3962 }
3963 if (should_trim(fm, tsize))
3964 sys_trim(fm, 0);
3965 goto postaction;
3966 }
3967 else if (next == fm->dv) {
3968 size_t dsize = fm->dvsize += psize;
3969 fm->dv = p;
3970 set_size_and_pinuse_of_free_chunk(p, dsize);
3971 goto postaction;
3972 }
3973 else {
3974 size_t nsize = chunksize(next);
3975 psize += nsize;
3976 unlink_chunk(fm, next, nsize);
3977 set_size_and_pinuse_of_free_chunk(p, psize);
3978 if (p == fm->dv) {
3979 fm->dvsize = psize;
3980 goto postaction;
3981 }
3982 }
3983 }
3984 else
3985 set_free_with_pinuse(p, psize, next);
3986 insert_chunk(fm, p, psize);
3987 check_free_chunk(fm, p);
3988 goto postaction;
3989 }
3990 }
3991 erroraction:
3992 USAGE_ERROR_ACTION(fm, p);
3993 postaction:
3994 POSTACTION(fm);
3995 }
3996 }
3997}
3998
3999void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4000 void* mem;
4001 size_t req = 0;
4002 mstate ms = (mstate)msp;
4003 if (!ok_magic(ms)) {
4004 USAGE_ERROR_ACTION(ms,ms);
4005 return 0;
4006 }
4007 if (n_elements != 0) {
4008 req = n_elements * elem_size;
4009 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4010 (req / n_elements != elem_size))
4011 req = MAX_SIZE_T; /* force downstream failure on overflow */
4012 }
4013 mem = internal_malloc(ms, req);
4014 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4015 memset(mem, 0, req);
4016 return mem;
4017}
4018
4019void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4020 if (oldmem == 0)
4021 return mspace_malloc(msp, bytes);
4022#ifdef REALLOC_ZERO_BYTES_FREES
4023 if (bytes == 0) {
4024 mspace_free(msp, oldmem);
4025 return 0;
4026 }
4027#endif /* REALLOC_ZERO_BYTES_FREES */
4028 else {
4029#if FOOTERS
4030 mchunkptr p = mem2chunk(oldmem);
4031 mstate ms = get_mstate_for(p);
4032#else /* FOOTERS */
4033 mstate ms = (mstate)msp;
4034#endif /* FOOTERS */
4035 if (!ok_magic(ms)) {
4036 USAGE_ERROR_ACTION(ms,ms);
4037 return 0;
4038 }
4039 return internal_realloc(ms, oldmem, bytes);
4040 }
4041}
4042
4043void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4044 mstate ms = (mstate)msp;
4045 if (!ok_magic(ms)) {
4046 USAGE_ERROR_ACTION(ms,ms);
4047 return 0;
4048 }
4049 return internal_memalign(ms, alignment, bytes);
4050}
4051
4052void** mspace_independent_calloc(mspace msp, size_t n_elements,
4053 size_t elem_size, void* chunks[]) {
4054 size_t sz = elem_size; /* serves as 1-element array */
4055 mstate ms = (mstate)msp;
4056 if (!ok_magic(ms)) {
4057 USAGE_ERROR_ACTION(ms,ms);
4058 return 0;
4059 }
4060 return ialloc(ms, n_elements, &sz, 3, chunks);
4061}
4062
4063void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4064 size_t sizes[], void* chunks[]) {
4065 mstate ms = (mstate)msp;
4066 if (!ok_magic(ms)) {
4067 USAGE_ERROR_ACTION(ms,ms);
4068 return 0;
4069 }
4070 return ialloc(ms, n_elements, sizes, 0, chunks);
4071}
4072
4073int mspace_trim(mspace msp, size_t pad) {
4074 int result = 0;
4075 mstate ms = (mstate)msp;
4076 if (ok_magic(ms)) {
4077 if (!PREACTION(ms)) {
4078 result = sys_trim(ms, pad);
4079 POSTACTION(ms);
4080 }
4081 }
4082 else {
4083 USAGE_ERROR_ACTION(ms,ms);
4084 }
4085 return result;
4086}
4087
4088void mspace_malloc_stats(mspace msp) {
4089 mstate ms = (mstate)msp;
4090 if (ok_magic(ms)) {
4091 internal_malloc_stats(ms);
4092 }
4093 else {
4094 USAGE_ERROR_ACTION(ms,ms);
4095 }
4096}
4097
4098size_t mspace_footprint(mspace msp) {
4099 size_t result;
4100 mstate ms = (mstate)msp;
4101 if (ok_magic(ms)) {
4102 result = ms->footprint;
4103 }
4104 USAGE_ERROR_ACTION(ms,ms);
4105 return result;
4106}
4107
4108
4109size_t mspace_max_footprint(mspace msp) {
4110 size_t result;
4111 mstate ms = (mstate)msp;
4112 if (ok_magic(ms)) {
4113 result = ms->max_footprint;
4114 }
4115 USAGE_ERROR_ACTION(ms,ms);
4116 return result;
4117}
4118
4119
4120#if !NO_MALLINFO
4121struct mallinfo mspace_mallinfo(mspace msp) {
4122 mstate ms = (mstate)msp;
4123 if (!ok_magic(ms)) {
4124 USAGE_ERROR_ACTION(ms,ms);
4125 }
4126 return internal_mallinfo(ms);
4127}
4128#endif /* NO_MALLINFO */
4129
4130int mspace_mallopt(int param_number, int value) {
4131 return change_mparam(param_number, value);
4132}
4133
4134#endif /* MSPACES */
4135
4136/* -------------------- Alternative MORECORE functions ------------------- */
4137
4138/*
4139 Guidelines for creating a custom version of MORECORE:
4140
4141 * For best performance, MORECORE should allocate in multiples of pagesize.
4142 * MORECORE may allocate more memory than requested. (Or even less,
4143 but this will usually result in a malloc failure.)
4144 * MORECORE must not allocate memory when given argument zero, but
4145 instead return one past the end address of memory from previous
4146 nonzero call.
4147 * For best performance, consecutive calls to MORECORE with positive
4148 arguments should return increasing addresses, indicating that
4149 space has been contiguously extended.
4150 * Even though consecutive calls to MORECORE need not return contiguous
4151 addresses, it must be OK for malloc'ed chunks to span multiple
4152 regions in those cases where they do happen to be contiguous.
4153 * MORECORE need not handle negative arguments -- it may instead
4154 just return MFAIL when given negative arguments.
4155 Negative arguments are always multiples of pagesize. MORECORE
4156 must not misinterpret negative args as large positive unsigned
4157 args. You can suppress all such calls from even occurring by defining
4158 MORECORE_CANNOT_TRIM,
4159
4160 As an example alternative MORECORE, here is a custom allocator
4161 kindly contributed for pre-OSX macOS. It uses virtually but not
4162 necessarily physically contiguous non-paged memory (locked in,
4163 present and won't get swapped out). You can use it by uncommenting
4164 this section, adding some #includes, and setting up the appropriate
4165 defines above:
4166
4167 #define MORECORE osMoreCore
4168
4169 There is also a shutdown routine that should somehow be called for
4170 cleanup upon program exit.
4171
4172 #define MAX_POOL_ENTRIES 100
4173 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4174 static int next_os_pool;
4175 void *our_os_pools[MAX_POOL_ENTRIES];
4176
4177 void *osMoreCore(int size)
4178 {
4179 void *ptr = 0;
4180 static void *sbrk_top = 0;
4181
4182 if (size > 0)
4183 {
4184 if (size < MINIMUM_MORECORE_SIZE)
4185 size = MINIMUM_MORECORE_SIZE;
4186 if (CurrentExecutionLevel() == kTaskLevel)
4187 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4188 if (ptr == 0)
4189 {
4190 return (void *) MFAIL;
4191 }
4192 // save ptrs so they can be freed during cleanup
4193 our_os_pools[next_os_pool] = ptr;
4194 next_os_pool++;
4195 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4196 sbrk_top = (char *) ptr + size;
4197 return ptr;
4198 }
4199 else if (size < 0)
4200 {
4201 // we don't currently support shrink behavior
4202 return (void *) MFAIL;
4203 }
4204 else
4205 {
4206 return sbrk_top;
4207 }
4208 }
4209
4210 // cleanup any allocated memory pools
4211 // called as last thing before shutting down driver
4212
4213 void osCleanupMem(void)
4214 {
4215 void **ptr;
4216
4217 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4218 if (*ptr)
4219 {
4220 PoolDeallocate(*ptr);
4221 *ptr = 0;
4222 }
4223 }
4224
4225*/
4226
4227
4228/* -----------------------------------------------------------------------
4229History:
4230 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4231 * Add max_footprint functions
4232 * Ensure all appropriate literals are size_t
4233 * Fix conditional compilation problem for some #define settings
4234 * Avoid concatenating segments with the one provided
4235 in create_mspace_with_base
4236 * Rename some variables to avoid compiler shadowing warnings
4237 * Use explicit lock initialization.
4238 * Better handling of sbrk interference.
4239 * Simplify and fix segment insertion, trimming and mspace_destroy
4240 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4241 * Thanks especially to Dennis Flanagan for help on these.
4242
4243 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4244 * Fix memalign brace error.
4245
4246 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4247 * Fix improper #endif nesting in C++
4248 * Add explicit casts needed for C++
4249
4250 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4251 * Use trees for large bins
4252 * Support mspaces
4253 * Use segments to unify sbrk-based and mmap-based system allocation,
4254 removing need for emulation on most platforms without sbrk.
4255 * Default safety checks
4256 * Optional footer checks. Thanks to William Robertson for the idea.
4257 * Internal code refactoring
4258 * Incorporate suggestions and platform-specific changes.
4259 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4260 Aaron Bachmann, Emery Berger, and others.
4261 * Speed up non-fastbin processing enough to remove fastbins.
4262 * Remove useless cfree() to avoid conflicts with other apps.
4263 * Remove internal memcpy, memset. Compilers handle builtins better.
4264 * Remove some options that no one ever used and rename others.
4265
4266 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4267 * Fix malloc_state bitmap array misdeclaration
4268
4269 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4270 * Allow tuning of FIRST_SORTED_BIN_SIZE
4271 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4272 * Better detection and support for non-contiguousness of MORECORE.
4273 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4274 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4275 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4276 * Raised default trim and map thresholds to 256K.
4277 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4278 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4279 * Branch-free bin calculation
4280 * Default trim and mmap thresholds now 256K.
4281
4282 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4283 * Introduce independent_comalloc and independent_calloc.
4284 Thanks to Michael Pachos for motivation and help.
4285 * Make optional .h file available
4286 * Allow > 2GB requests on 32bit systems.
4287 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4288 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4289 and Anonymous.
4290 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4291 helping test this.)
4292 * memalign: check alignment arg
4293 * realloc: don't try to shift chunks backwards, since this
4294 leads to more fragmentation in some programs and doesn't
4295 seem to help in any others.
4296 * Collect all cases in malloc requiring system memory into sysmalloc
4297 * Use mmap as backup to sbrk
4298 * Place all internal state in malloc_state
4299 * Introduce fastbins (although similar to 2.5.1)
4300 * Many minor tunings and cosmetic improvements
4301 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4302 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4303 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4304 * Include errno.h to support default failure action.
4305
4306 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4307 * return null for negative arguments
4308 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4309 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4310 (e.g. WIN32 platforms)
4311 * Cleanup header file inclusion for WIN32 platforms
4312 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4313 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4314 memory allocation routines
4315 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4316 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4317 usage of 'assert' in non-WIN32 code
4318 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4319 avoid infinite loop
4320 * Always call 'fREe()' rather than 'free()'
4321
4322 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4323 * Fixed ordering problem with boundary-stamping
4324
4325 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4326 * Added pvalloc, as recommended by H.J. Liu
4327 * Added 64bit pointer support mainly from Wolfram Gloger
4328 * Added anonymously donated WIN32 sbrk emulation
4329 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4330 * malloc_extend_top: fix mask error that caused wastage after
4331 foreign sbrks
4332 * Add linux mremap support code from HJ Liu
4333
4334 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4335 * Integrated most documentation with the code.
4336 * Add support for mmap, with help from
4337 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4338 * Use last_remainder in more cases.
4339 * Pack bins using idea from colin@nyx10.cs.du.edu
4340 * Use ordered bins instead of best-fit threshhold
4341 * Eliminate block-local decls to simplify tracing and debugging.
4342 * Support another case of realloc via move into top
4343 * Fix error occuring when initial sbrk_base not word-aligned.
4344 * Rely on page size for units instead of SBRK_UNIT to
4345 avoid surprises about sbrk alignment conventions.
4346 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4347 (raymond@es.ele.tue.nl) for the suggestion.
4348 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4349 * More precautions for cases where other routines call sbrk,
4350 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4351 * Added macros etc., allowing use in linux libc from
4352 H.J. Lu (hjl@gnu.ai.mit.edu)
4353 * Inverted this history list
4354
4355 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4356 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4357 * Removed all preallocation code since under current scheme
4358 the work required to undo bad preallocations exceeds
4359 the work saved in good cases for most test programs.
4360 * No longer use return list or unconsolidated bins since
4361 no scheme using them consistently outperforms those that don't
4362 given above changes.
4363 * Use best fit for very large chunks to prevent some worst-cases.
4364 * Added some support for debugging
4365
4366 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4367 * Removed footers when chunks are in use. Thanks to
4368 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4369
4370 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4371 * Added malloc_trim, with help from Wolfram Gloger
4372 (wmglo@Dent.MED.Uni-Muenchen.DE).
4373
4374 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4375
4376 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4377 * realloc: try to expand in both directions
4378 * malloc: swap order of clean-bin strategy;
4379 * realloc: only conditionally expand backwards
4380 * Try not to scavenge used bins
4381 * Use bin counts as a guide to preallocation
4382 * Occasionally bin return list chunks in first scan
4383 * Add a few optimizations from colin@nyx10.cs.du.edu
4384
4385 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4386 * faster bin computation & slightly different binning
4387 * merged all consolidations to one part of malloc proper
4388 (eliminating old malloc_find_space & malloc_clean_bin)
4389 * Scan 2 returns chunks (not just 1)
4390 * Propagate failure in realloc if malloc returns 0
4391 * Add stuff to allow compilation on non-ANSI compilers
4392 from kpv@research.att.com
4393
4394 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4395 * removed potential for odd address access in prev_chunk
4396 * removed dependency on getpagesize.h
4397 * misc cosmetics and a bit more internal documentation
4398 * anticosmetics: mangled names in macros to evade debugger strangeness
4399 * tested on sparc, hp-700, dec-mips, rs6000
4400 with gcc & native cc (hp, dec only) allowing
4401 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4402
4403 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4404 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4405 structure of old version, but most details differ.)
4406
4407*/
Note: See TracBrowser for help on using the repository browser.