source: mainline/libc/malloc/malloc.c@ 56972c81

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 56972c81 was 7ad3c2f, checked in by Ondrej Palkovsky <ondrap@…>, 19 years ago

Added malloc implementation.

  • Property mode set to 100644
File size: 156.2 KB
Line 
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441#ifndef WIN32
442#ifdef _WIN32
443#define WIN32 1
444#endif /* _WIN32 */
445#endif /* WIN32 */
446#ifdef WIN32
447#define WIN32_LEAN_AND_MEAN
448#include <windows.h>
449#define HAVE_MMAP 1
450#define HAVE_MORECORE 0
451#define LACKS_UNISTD_H
452#define LACKS_SYS_PARAM_H
453#define LACKS_SYS_MMAN_H
454#define LACKS_STRING_H
455#define LACKS_STRINGS_H
456#define LACKS_SYS_TYPES_H
457#define LACKS_ERRNO_H
458#define MALLOC_FAILURE_ACTION
459#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
460#endif /* WIN32 */
461
462#if defined(DARWIN) || defined(_DARWIN)
463/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
464#ifndef HAVE_MORECORE
465#define HAVE_MORECORE 0
466#define HAVE_MMAP 1
467#endif /* HAVE_MORECORE */
468#endif /* DARWIN */
469
470#ifndef LACKS_SYS_TYPES_H
471#include <sys/types.h> /* For size_t */
472#endif /* LACKS_SYS_TYPES_H */
473
474/* The maximum possible size_t value has all bits set */
475#define MAX_SIZE_T (~(size_t)0)
476
477#ifndef ONLY_MSPACES
478#define ONLY_MSPACES 0
479#endif /* ONLY_MSPACES */
480#ifndef MSPACES
481#if ONLY_MSPACES
482#define MSPACES 1
483#else /* ONLY_MSPACES */
484#define MSPACES 0
485#endif /* ONLY_MSPACES */
486#endif /* MSPACES */
487#ifndef MALLOC_ALIGNMENT
488#define MALLOC_ALIGNMENT ((size_t)8U)
489#endif /* MALLOC_ALIGNMENT */
490#ifndef FOOTERS
491#define FOOTERS 0
492#endif /* FOOTERS */
493#ifndef ABORT
494#define ABORT abort()
495#endif /* ABORT */
496#ifndef ABORT_ON_ASSERT_FAILURE
497#define ABORT_ON_ASSERT_FAILURE 1
498#endif /* ABORT_ON_ASSERT_FAILURE */
499#ifndef PROCEED_ON_ERROR
500#define PROCEED_ON_ERROR 0
501#endif /* PROCEED_ON_ERROR */
502#ifndef USE_LOCKS
503#define USE_LOCKS 0
504#endif /* USE_LOCKS */
505#ifndef INSECURE
506#define INSECURE 0
507#endif /* INSECURE */
508#ifndef HAVE_MMAP
509#define HAVE_MMAP 1
510#endif /* HAVE_MMAP */
511#ifndef MMAP_CLEARS
512#define MMAP_CLEARS 1
513#endif /* MMAP_CLEARS */
514#ifndef HAVE_MREMAP
515#ifdef linux
516#define HAVE_MREMAP 1
517#else /* linux */
518#define HAVE_MREMAP 0
519#endif /* linux */
520#endif /* HAVE_MREMAP */
521#ifndef MALLOC_FAILURE_ACTION
522#define MALLOC_FAILURE_ACTION errno = ENOMEM;
523#endif /* MALLOC_FAILURE_ACTION */
524#ifndef HAVE_MORECORE
525#if ONLY_MSPACES
526#define HAVE_MORECORE 0
527#else /* ONLY_MSPACES */
528#define HAVE_MORECORE 1
529#endif /* ONLY_MSPACES */
530#endif /* HAVE_MORECORE */
531#if !HAVE_MORECORE
532#define MORECORE_CONTIGUOUS 0
533#else /* !HAVE_MORECORE */
534#ifndef MORECORE
535#define MORECORE sbrk
536#endif /* MORECORE */
537#ifndef MORECORE_CONTIGUOUS
538#define MORECORE_CONTIGUOUS 1
539#endif /* MORECORE_CONTIGUOUS */
540#endif /* HAVE_MORECORE */
541#ifndef DEFAULT_GRANULARITY
542#if MORECORE_CONTIGUOUS
543#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
544#else /* MORECORE_CONTIGUOUS */
545#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
546#endif /* MORECORE_CONTIGUOUS */
547#endif /* DEFAULT_GRANULARITY */
548#ifndef DEFAULT_TRIM_THRESHOLD
549#ifndef MORECORE_CANNOT_TRIM
550#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
551#else /* MORECORE_CANNOT_TRIM */
552#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
553#endif /* MORECORE_CANNOT_TRIM */
554#endif /* DEFAULT_TRIM_THRESHOLD */
555#ifndef DEFAULT_MMAP_THRESHOLD
556#if HAVE_MMAP
557#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
558#else /* HAVE_MMAP */
559#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
560#endif /* HAVE_MMAP */
561#endif /* DEFAULT_MMAP_THRESHOLD */
562#ifndef USE_BUILTIN_FFS
563#define USE_BUILTIN_FFS 0
564#endif /* USE_BUILTIN_FFS */
565#ifndef USE_DEV_RANDOM
566#define USE_DEV_RANDOM 0
567#endif /* USE_DEV_RANDOM */
568#ifndef NO_MALLINFO
569#define NO_MALLINFO 0
570#endif /* NO_MALLINFO */
571#ifndef MALLINFO_FIELD_TYPE
572#define MALLINFO_FIELD_TYPE size_t
573#endif /* MALLINFO_FIELD_TYPE */
574
575/*
576 mallopt tuning options. SVID/XPG defines four standard parameter
577 numbers for mallopt, normally defined in malloc.h. None of these
578 are used in this malloc, so setting them has no effect. But this
579 malloc does support the following options.
580*/
581
582#define M_TRIM_THRESHOLD (-1)
583#define M_GRANULARITY (-2)
584#define M_MMAP_THRESHOLD (-3)
585
586/** Non-default helenos customizations */
587#define LACKS_FCNTL_H
588#define LACKS_SYS_MMAN_H
589#define LACKS_SYS_PARAM_H
590#undef HAVE_MMAP
591#define HAVE_MMAP 0
592#define LACKS_ERRNO_H
593/* Set errno? */
594#undef MALLOC_FAILURE_ACTION
595#define MALLOC_FAILURE_ACTION
596
597
598/*
599 ========================================================================
600 To make a fully customizable malloc.h header file, cut everything
601 above this line, put into file malloc.h, edit to suit, and #include it
602 on the next line, as well as in programs that use this malloc.
603 ========================================================================
604*/
605
606#include "malloc.h"
607
608/*------------------------------ internal #includes ---------------------- */
609
610#ifdef WIN32
611#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
612#endif /* WIN32 */
613
614#include <stdio.h> /* for printing in malloc_stats */
615
616#ifndef LACKS_ERRNO_H
617#include <errno.h> /* for MALLOC_FAILURE_ACTION */
618#endif /* LACKS_ERRNO_H */
619#if FOOTERS
620#include <time.h> /* for magic initialization */
621#endif /* FOOTERS */
622#ifndef LACKS_STDLIB_H
623#include <stdlib.h> /* for abort() */
624#endif /* LACKS_STDLIB_H */
625#ifdef DEBUG
626#if ABORT_ON_ASSERT_FAILURE
627#define assert(x) if(!(x)) ABORT
628#else /* ABORT_ON_ASSERT_FAILURE */
629#include <assert.h>
630#endif /* ABORT_ON_ASSERT_FAILURE */
631#else /* DEBUG */
632#define assert(x)
633#endif /* DEBUG */
634#ifndef LACKS_STRING_H
635#include <string.h> /* for memset etc */
636#endif /* LACKS_STRING_H */
637#if USE_BUILTIN_FFS
638#ifndef LACKS_STRINGS_H
639#include <strings.h> /* for ffs */
640#endif /* LACKS_STRINGS_H */
641#endif /* USE_BUILTIN_FFS */
642#if HAVE_MMAP
643#ifndef LACKS_SYS_MMAN_H
644#include <sys/mman.h> /* for mmap */
645#endif /* LACKS_SYS_MMAN_H */
646#ifndef LACKS_FCNTL_H
647#include <fcntl.h>
648#endif /* LACKS_FCNTL_H */
649#endif /* HAVE_MMAP */
650#if HAVE_MORECORE
651#ifndef LACKS_UNISTD_H
652#include <unistd.h> /* for sbrk */
653#else /* LACKS_UNISTD_H */
654#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
655extern void* sbrk(ptrdiff_t);
656#endif /* FreeBSD etc */
657#endif /* LACKS_UNISTD_H */
658#endif /* HAVE_MMAP */
659
660#ifndef WIN32
661#ifndef malloc_getpagesize
662# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
663# ifndef _SC_PAGE_SIZE
664# define _SC_PAGE_SIZE _SC_PAGESIZE
665# endif
666# endif
667# ifdef _SC_PAGE_SIZE
668# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
669# else
670# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
671 extern size_t getpagesize();
672# define malloc_getpagesize getpagesize()
673# else
674# ifdef WIN32 /* use supplied emulation of getpagesize */
675# define malloc_getpagesize getpagesize()
676# else
677# ifndef LACKS_SYS_PARAM_H
678# include <sys/param.h>
679# endif
680# ifdef EXEC_PAGESIZE
681# define malloc_getpagesize EXEC_PAGESIZE
682# else
683# ifdef NBPG
684# ifndef CLSIZE
685# define malloc_getpagesize NBPG
686# else
687# define malloc_getpagesize (NBPG * CLSIZE)
688# endif
689# else
690# ifdef NBPC
691# define malloc_getpagesize NBPC
692# else
693# ifdef PAGESIZE
694# define malloc_getpagesize PAGESIZE
695# else /* just guess */
696# define malloc_getpagesize ((size_t)4096U)
697# endif
698# endif
699# endif
700# endif
701# endif
702# endif
703# endif
704#endif
705#endif
706
707/* ------------------- size_t and alignment properties -------------------- */
708
709/* The byte and bit size of a size_t */
710#define SIZE_T_SIZE (sizeof(size_t))
711#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
712
713/* Some constants coerced to size_t */
714/* Annoying but necessary to avoid errors on some plaftorms */
715#define SIZE_T_ZERO ((size_t)0)
716#define SIZE_T_ONE ((size_t)1)
717#define SIZE_T_TWO ((size_t)2)
718#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
719#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
720#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
721#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
722
723/* The bit mask value corresponding to MALLOC_ALIGNMENT */
724#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
725
726/* True if address a has acceptable alignment */
727#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
728
729/* the number of bytes to offset an address to align it */
730#define align_offset(A)\
731 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
732 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
733
734/* -------------------------- MMAP preliminaries ------------------------- */
735
736/*
737 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
738 checks to fail so compiler optimizer can delete code rather than
739 using so many "#if"s.
740*/
741
742
743/* MORECORE and MMAP must return MFAIL on failure */
744#define MFAIL ((void*)(MAX_SIZE_T))
745#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
746
747#if !HAVE_MMAP
748#define IS_MMAPPED_BIT (SIZE_T_ZERO)
749#define USE_MMAP_BIT (SIZE_T_ZERO)
750#define CALL_MMAP(s) MFAIL
751#define CALL_MUNMAP(a, s) (-1)
752#define DIRECT_MMAP(s) MFAIL
753
754#else /* HAVE_MMAP */
755#define IS_MMAPPED_BIT (SIZE_T_ONE)
756#define USE_MMAP_BIT (SIZE_T_ONE)
757
758#ifndef WIN32
759#define CALL_MUNMAP(a, s) munmap((a), (s))
760#define MMAP_PROT (PROT_READ|PROT_WRITE)
761#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
762#define MAP_ANONYMOUS MAP_ANON
763#endif /* MAP_ANON */
764#ifdef MAP_ANONYMOUS
765#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
766#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
767#else /* MAP_ANONYMOUS */
768/*
769 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
770 is unlikely to be needed, but is supplied just in case.
771*/
772#define MMAP_FLAGS (MAP_PRIVATE)
773static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
774#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
775 (dev_zero_fd = open("/dev/zero", O_RDWR), \
776 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
777 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
778#endif /* MAP_ANONYMOUS */
779
780#define DIRECT_MMAP(s) CALL_MMAP(s)
781#else /* WIN32 */
782
783/* Win32 MMAP via VirtualAlloc */
784static void* win32mmap(size_t size) {
785 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
786 return (ptr != 0)? ptr: MFAIL;
787}
788
789/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
790static void* win32direct_mmap(size_t size) {
791 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
792 PAGE_READWRITE);
793 return (ptr != 0)? ptr: MFAIL;
794}
795
796/* This function supports releasing coalesed segments */
797static int win32munmap(void* ptr, size_t size) {
798 MEMORY_BASIC_INFORMATION minfo;
799 char* cptr = ptr;
800 while (size) {
801 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
802 return -1;
803 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
804 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
805 return -1;
806 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
807 return -1;
808 cptr += minfo.RegionSize;
809 size -= minfo.RegionSize;
810 }
811 return 0;
812}
813
814#define CALL_MMAP(s) win32mmap(s)
815#define CALL_MUNMAP(a, s) win32munmap((a), (s))
816#define DIRECT_MMAP(s) win32direct_mmap(s)
817#endif /* WIN32 */
818#endif /* HAVE_MMAP */
819
820#if HAVE_MMAP && HAVE_MREMAP
821#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
822#else /* HAVE_MMAP && HAVE_MREMAP */
823#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
824#endif /* HAVE_MMAP && HAVE_MREMAP */
825
826#if HAVE_MORECORE
827#define CALL_MORECORE(S) MORECORE(S)
828#else /* HAVE_MORECORE */
829#define CALL_MORECORE(S) MFAIL
830#endif /* HAVE_MORECORE */
831
832/* mstate bit set if continguous morecore disabled or failed */
833#define USE_NONCONTIGUOUS_BIT (4U)
834
835/* segment bit set in create_mspace_with_base */
836#define EXTERN_BIT (8U)
837
838
839/* --------------------------- Lock preliminaries ------------------------ */
840
841#if USE_LOCKS
842
843/*
844 When locks are defined, there are up to two global locks:
845
846 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
847 MORECORE. In many cases sys_alloc requires two calls, that should
848 not be interleaved with calls by other threads. This does not
849 protect against direct calls to MORECORE by other threads not
850 using this lock, so there is still code to cope the best we can on
851 interference.
852
853 * magic_init_mutex ensures that mparams.magic and other
854 unique mparams values are initialized only once.
855*/
856
857#ifndef WIN32
858/* By default use posix locks */
859#include <pthread.h>
860#define MLOCK_T pthread_mutex_t
861#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
862#define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
863#define RELEASE_LOCK(l) pthread_mutex_unlock(l)
864
865#if HAVE_MORECORE
866static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
867#endif /* HAVE_MORECORE */
868
869static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
870
871#else /* WIN32 */
872/*
873 Because lock-protected regions have bounded times, and there
874 are no recursive lock calls, we can use simple spinlocks.
875*/
876
877#define MLOCK_T long
878static int win32_acquire_lock (MLOCK_T *sl) {
879 for (;;) {
880#ifdef InterlockedCompareExchangePointer
881 if (!InterlockedCompareExchange(sl, 1, 0))
882 return 0;
883#else /* Use older void* version */
884 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
885 return 0;
886#endif /* InterlockedCompareExchangePointer */
887 Sleep (0);
888 }
889}
890
891static void win32_release_lock (MLOCK_T *sl) {
892 InterlockedExchange (sl, 0);
893}
894
895#define INITIAL_LOCK(l) *(l)=0
896#define ACQUIRE_LOCK(l) win32_acquire_lock(l)
897#define RELEASE_LOCK(l) win32_release_lock(l)
898#if HAVE_MORECORE
899static MLOCK_T morecore_mutex;
900#endif /* HAVE_MORECORE */
901static MLOCK_T magic_init_mutex;
902#endif /* WIN32 */
903
904#define USE_LOCK_BIT (2U)
905#else /* USE_LOCKS */
906#define USE_LOCK_BIT (0U)
907#define INITIAL_LOCK(l)
908#endif /* USE_LOCKS */
909
910#if USE_LOCKS && HAVE_MORECORE
911#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
912#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
913#else /* USE_LOCKS && HAVE_MORECORE */
914#define ACQUIRE_MORECORE_LOCK()
915#define RELEASE_MORECORE_LOCK()
916#endif /* USE_LOCKS && HAVE_MORECORE */
917
918#if USE_LOCKS
919#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
920#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
921#else /* USE_LOCKS */
922#define ACQUIRE_MAGIC_INIT_LOCK()
923#define RELEASE_MAGIC_INIT_LOCK()
924#endif /* USE_LOCKS */
925
926
927/* ----------------------- Chunk representations ------------------------ */
928
929/*
930 (The following includes lightly edited explanations by Colin Plumb.)
931
932 The malloc_chunk declaration below is misleading (but accurate and
933 necessary). It declares a "view" into memory allowing access to
934 necessary fields at known offsets from a given base.
935
936 Chunks of memory are maintained using a `boundary tag' method as
937 originally described by Knuth. (See the paper by Paul Wilson
938 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
939 techniques.) Sizes of free chunks are stored both in the front of
940 each chunk and at the end. This makes consolidating fragmented
941 chunks into bigger chunks fast. The head fields also hold bits
942 representing whether chunks are free or in use.
943
944 Here are some pictures to make it clearer. They are "exploded" to
945 show that the state of a chunk can be thought of as extending from
946 the high 31 bits of the head field of its header through the
947 prev_foot and PINUSE_BIT bit of the following chunk header.
948
949 A chunk that's in use looks like:
950
951 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
952 | Size of previous chunk (if P = 1) |
953 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
955 | Size of this chunk 1| +-+
956 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
957 | |
958 +- -+
959 | |
960 +- -+
961 | :
962 +- size - sizeof(size_t) available payload bytes -+
963 : |
964 chunk-> +- -+
965 | |
966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
968 | Size of next chunk (may or may not be in use) | +-+
969 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
970
971 And if it's free, it looks like this:
972
973 chunk-> +- -+
974 | User payload (must be in use, or we would have merged!) |
975 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
976 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
977 | Size of this chunk 0| +-+
978 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
979 | Next pointer |
980 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
981 | Prev pointer |
982 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
983 | :
984 +- size - sizeof(struct chunk) unused bytes -+
985 : |
986 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
987 | Size of this chunk |
988 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
990 | Size of next chunk (must be in use, or we would have merged)| +-+
991 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
992 | :
993 +- User payload -+
994 : |
995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
996 |0|
997 +-+
998 Note that since we always merge adjacent free chunks, the chunks
999 adjacent to a free chunk must be in use.
1000
1001 Given a pointer to a chunk (which can be derived trivially from the
1002 payload pointer) we can, in O(1) time, find out whether the adjacent
1003 chunks are free, and if so, unlink them from the lists that they
1004 are on and merge them with the current chunk.
1005
1006 Chunks always begin on even word boundaries, so the mem portion
1007 (which is returned to the user) is also on an even word boundary, and
1008 thus at least double-word aligned.
1009
1010 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
1011 chunk size (which is always a multiple of two words), is an in-use
1012 bit for the *previous* chunk. If that bit is *clear*, then the
1013 word before the current chunk size contains the previous chunk
1014 size, and can be used to find the front of the previous chunk.
1015 The very first chunk allocated always has this bit set, preventing
1016 access to non-existent (or non-owned) memory. If pinuse is set for
1017 any given chunk, then you CANNOT determine the size of the
1018 previous chunk, and might even get a memory addressing fault when
1019 trying to do so.
1020
1021 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
1022 the chunk size redundantly records whether the current chunk is
1023 inuse. This redundancy enables usage checks within free and realloc,
1024 and reduces indirection when freeing and consolidating chunks.
1025
1026 Each freshly allocated chunk must have both cinuse and pinuse set.
1027 That is, each allocated chunk borders either a previously allocated
1028 and still in-use chunk, or the base of its memory arena. This is
1029 ensured by making all allocations from the the `lowest' part of any
1030 found chunk. Further, no free chunk physically borders another one,
1031 so each free chunk is known to be preceded and followed by either
1032 inuse chunks or the ends of memory.
1033
1034 Note that the `foot' of the current chunk is actually represented
1035 as the prev_foot of the NEXT chunk. This makes it easier to
1036 deal with alignments etc but can be very confusing when trying
1037 to extend or adapt this code.
1038
1039 The exceptions to all this are
1040
1041 1. The special chunk `top' is the top-most available chunk (i.e.,
1042 the one bordering the end of available memory). It is treated
1043 specially. Top is never included in any bin, is used only if
1044 no other chunk is available, and is released back to the
1045 system if it is very large (see M_TRIM_THRESHOLD). In effect,
1046 the top chunk is treated as larger (and thus less well
1047 fitting) than any other available chunk. The top chunk
1048 doesn't update its trailing size field since there is no next
1049 contiguous chunk that would have to index off it. However,
1050 space is still allocated for it (TOP_FOOT_SIZE) to enable
1051 separation or merging when space is extended.
1052
1053 3. Chunks allocated via mmap, which have the lowest-order bit
1054 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
1055 PINUSE_BIT in their head fields. Because they are allocated
1056 one-by-one, each must carry its own prev_foot field, which is
1057 also used to hold the offset this chunk has within its mmapped
1058 region, which is needed to preserve alignment. Each mmapped
1059 chunk is trailed by the first two fields of a fake next-chunk
1060 for sake of usage checks.
1061
1062*/
1063
1064struct malloc_chunk {
1065 size_t prev_foot; /* Size of previous chunk (if free). */
1066 size_t head; /* Size and inuse bits. */
1067 struct malloc_chunk* fd; /* double links -- used only if free. */
1068 struct malloc_chunk* bk;
1069};
1070
1071typedef struct malloc_chunk mchunk;
1072typedef struct malloc_chunk* mchunkptr;
1073typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
1074typedef unsigned int bindex_t; /* Described below */
1075typedef unsigned int binmap_t; /* Described below */
1076typedef unsigned int flag_t; /* The type of various bit flag sets */
1077
1078/* ------------------- Chunks sizes and alignments ----------------------- */
1079
1080#define MCHUNK_SIZE (sizeof(mchunk))
1081
1082#if FOOTERS
1083#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1084#else /* FOOTERS */
1085#define CHUNK_OVERHEAD (SIZE_T_SIZE)
1086#endif /* FOOTERS */
1087
1088/* MMapped chunks need a second word of overhead ... */
1089#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
1090/* ... and additional padding for fake next-chunk at foot */
1091#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
1092
1093/* The smallest size we can malloc is an aligned minimal chunk */
1094#define MIN_CHUNK_SIZE\
1095 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1096
1097/* conversion from malloc headers to user pointers, and back */
1098#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
1099#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1100/* chunk associated with aligned address A */
1101#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
1102
1103/* Bounds on request (not chunk) sizes. */
1104#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
1105#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1106
1107/* pad request bytes into a usable size */
1108#define pad_request(req) \
1109 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1110
1111/* pad request, checking for minimum (but not maximum) */
1112#define request2size(req) \
1113 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1114
1115
1116/* ------------------ Operations on head and foot fields ----------------- */
1117
1118/*
1119 The head field of a chunk is or'ed with PINUSE_BIT when previous
1120 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1121 use. If the chunk was obtained with mmap, the prev_foot field has
1122 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1123 mmapped region to the base of the chunk.
1124*/
1125
1126#define PINUSE_BIT (SIZE_T_ONE)
1127#define CINUSE_BIT (SIZE_T_TWO)
1128#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1129
1130/* Head value for fenceposts */
1131#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1132
1133/* extraction of fields from head words */
1134#define cinuse(p) ((p)->head & CINUSE_BIT)
1135#define pinuse(p) ((p)->head & PINUSE_BIT)
1136#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1137
1138#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1139#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1140
1141/* Treat space at ptr +/- offset as a chunk */
1142#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1143#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1144
1145/* Ptr to next or previous physical malloc_chunk. */
1146#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1147#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1148
1149/* extract next chunk's pinuse bit */
1150#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1151
1152/* Get/set size at footer */
1153#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1154#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1155
1156/* Set size, pinuse bit, and foot */
1157#define set_size_and_pinuse_of_free_chunk(p, s)\
1158 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1159
1160/* Set size, pinuse bit, foot, and clear next pinuse */
1161#define set_free_with_pinuse(p, s, n)\
1162 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1163
1164#define is_mmapped(p)\
1165 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1166
1167/* Get the internal overhead associated with chunk p */
1168#define overhead_for(p)\
1169 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1170
1171/* Return true if malloced space is not necessarily cleared */
1172#if MMAP_CLEARS
1173#define calloc_must_clear(p) (!is_mmapped(p))
1174#else /* MMAP_CLEARS */
1175#define calloc_must_clear(p) (1)
1176#endif /* MMAP_CLEARS */
1177
1178/* ---------------------- Overlaid data structures ----------------------- */
1179
1180/*
1181 When chunks are not in use, they are treated as nodes of either
1182 lists or trees.
1183
1184 "Small" chunks are stored in circular doubly-linked lists, and look
1185 like this:
1186
1187 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1188 | Size of previous chunk |
1189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190 `head:' | Size of chunk, in bytes |P|
1191 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192 | Forward pointer to next chunk in list |
1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1194 | Back pointer to previous chunk in list |
1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196 | Unused space (may be 0 bytes long) .
1197 . .
1198 . |
1199nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1200 `foot:' | Size of chunk, in bytes |
1201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1202
1203 Larger chunks are kept in a form of bitwise digital trees (aka
1204 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1205 free chunks greater than 256 bytes, their size doesn't impose any
1206 constraints on user chunk sizes. Each node looks like:
1207
1208 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 | Size of previous chunk |
1210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 `head:' | Size of chunk, in bytes |P|
1212 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 | Forward pointer to next chunk of same size |
1214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1215 | Back pointer to previous chunk of same size |
1216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217 | Pointer to left child (child[0]) |
1218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219 | Pointer to right child (child[1]) |
1220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1221 | Pointer to parent |
1222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1223 | bin index of this chunk |
1224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1225 | Unused space .
1226 . |
1227nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1228 `foot:' | Size of chunk, in bytes |
1229 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1230
1231 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1232 of the same size are arranged in a circularly-linked list, with only
1233 the oldest chunk (the next to be used, in our FIFO ordering)
1234 actually in the tree. (Tree members are distinguished by a non-null
1235 parent pointer.) If a chunk with the same size an an existing node
1236 is inserted, it is linked off the existing node using pointers that
1237 work in the same way as fd/bk pointers of small chunks.
1238
1239 Each tree contains a power of 2 sized range of chunk sizes (the
1240 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1241 tree level, with the chunks in the smaller half of the range (0x100
1242 <= x < 0x140 for the top nose) in the left subtree and the larger
1243 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1244 done by inspecting individual bits.
1245
1246 Using these rules, each node's left subtree contains all smaller
1247 sizes than its right subtree. However, the node at the root of each
1248 subtree has no particular ordering relationship to either. (The
1249 dividing line between the subtree sizes is based on trie relation.)
1250 If we remove the last chunk of a given size from the interior of the
1251 tree, we need to replace it with a leaf node. The tree ordering
1252 rules permit a node to be replaced by any leaf below it.
1253
1254 The smallest chunk in a tree (a common operation in a best-fit
1255 allocator) can be found by walking a path to the leftmost leaf in
1256 the tree. Unlike a usual binary tree, where we follow left child
1257 pointers until we reach a null, here we follow the right child
1258 pointer any time the left one is null, until we reach a leaf with
1259 both child pointers null. The smallest chunk in the tree will be
1260 somewhere along that path.
1261
1262 The worst case number of steps to add, find, or remove a node is
1263 bounded by the number of bits differentiating chunks within
1264 bins. Under current bin calculations, this ranges from 6 up to 21
1265 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1266 is of course much better.
1267*/
1268
1269struct malloc_tree_chunk {
1270 /* The first four fields must be compatible with malloc_chunk */
1271 size_t prev_foot;
1272 size_t head;
1273 struct malloc_tree_chunk* fd;
1274 struct malloc_tree_chunk* bk;
1275
1276 struct malloc_tree_chunk* child[2];
1277 struct malloc_tree_chunk* parent;
1278 bindex_t index;
1279};
1280
1281typedef struct malloc_tree_chunk tchunk;
1282typedef struct malloc_tree_chunk* tchunkptr;
1283typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1284
1285/* A little helper macro for trees */
1286#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1287
1288/* ----------------------------- Segments -------------------------------- */
1289
1290/*
1291 Each malloc space may include non-contiguous segments, held in a
1292 list headed by an embedded malloc_segment record representing the
1293 top-most space. Segments also include flags holding properties of
1294 the space. Large chunks that are directly allocated by mmap are not
1295 included in this list. They are instead independently created and
1296 destroyed without otherwise keeping track of them.
1297
1298 Segment management mainly comes into play for spaces allocated by
1299 MMAP. Any call to MMAP might or might not return memory that is
1300 adjacent to an existing segment. MORECORE normally contiguously
1301 extends the current space, so this space is almost always adjacent,
1302 which is simpler and faster to deal with. (This is why MORECORE is
1303 used preferentially to MMAP when both are available -- see
1304 sys_alloc.) When allocating using MMAP, we don't use any of the
1305 hinting mechanisms (inconsistently) supported in various
1306 implementations of unix mmap, or distinguish reserving from
1307 committing memory. Instead, we just ask for space, and exploit
1308 contiguity when we get it. It is probably possible to do
1309 better than this on some systems, but no general scheme seems
1310 to be significantly better.
1311
1312 Management entails a simpler variant of the consolidation scheme
1313 used for chunks to reduce fragmentation -- new adjacent memory is
1314 normally prepended or appended to an existing segment. However,
1315 there are limitations compared to chunk consolidation that mostly
1316 reflect the fact that segment processing is relatively infrequent
1317 (occurring only when getting memory from system) and that we
1318 don't expect to have huge numbers of segments:
1319
1320 * Segments are not indexed, so traversal requires linear scans. (It
1321 would be possible to index these, but is not worth the extra
1322 overhead and complexity for most programs on most platforms.)
1323 * New segments are only appended to old ones when holding top-most
1324 memory; if they cannot be prepended to others, they are held in
1325 different segments.
1326
1327 Except for the top-most segment of an mstate, each segment record
1328 is kept at the tail of its segment. Segments are added by pushing
1329 segment records onto the list headed by &mstate.seg for the
1330 containing mstate.
1331
1332 Segment flags control allocation/merge/deallocation policies:
1333 * If EXTERN_BIT set, then we did not allocate this segment,
1334 and so should not try to deallocate or merge with others.
1335 (This currently holds only for the initial segment passed
1336 into create_mspace_with_base.)
1337 * If IS_MMAPPED_BIT set, the segment may be merged with
1338 other surrounding mmapped segments and trimmed/de-allocated
1339 using munmap.
1340 * If neither bit is set, then the segment was obtained using
1341 MORECORE so can be merged with surrounding MORECORE'd segments
1342 and deallocated/trimmed using MORECORE with negative arguments.
1343*/
1344
1345struct malloc_segment {
1346 char* base; /* base address */
1347 size_t size; /* allocated size */
1348 struct malloc_segment* next; /* ptr to next segment */
1349 flag_t sflags; /* mmap and extern flag */
1350};
1351
1352#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1353#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1354
1355typedef struct malloc_segment msegment;
1356typedef struct malloc_segment* msegmentptr;
1357
1358/* ---------------------------- malloc_state ----------------------------- */
1359
1360/*
1361 A malloc_state holds all of the bookkeeping for a space.
1362 The main fields are:
1363
1364 Top
1365 The topmost chunk of the currently active segment. Its size is
1366 cached in topsize. The actual size of topmost space is
1367 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1368 fenceposts and segment records if necessary when getting more
1369 space from the system. The size at which to autotrim top is
1370 cached from mparams in trim_check, except that it is disabled if
1371 an autotrim fails.
1372
1373 Designated victim (dv)
1374 This is the preferred chunk for servicing small requests that
1375 don't have exact fits. It is normally the chunk split off most
1376 recently to service another small request. Its size is cached in
1377 dvsize. The link fields of this chunk are not maintained since it
1378 is not kept in a bin.
1379
1380 SmallBins
1381 An array of bin headers for free chunks. These bins hold chunks
1382 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1383 chunks of all the same size, spaced 8 bytes apart. To simplify
1384 use in double-linked lists, each bin header acts as a malloc_chunk
1385 pointing to the real first node, if it exists (else pointing to
1386 itself). This avoids special-casing for headers. But to avoid
1387 waste, we allocate only the fd/bk pointers of bins, and then use
1388 repositioning tricks to treat these as the fields of a chunk.
1389
1390 TreeBins
1391 Treebins are pointers to the roots of trees holding a range of
1392 sizes. There are 2 equally spaced treebins for each power of two
1393 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1394 larger.
1395
1396 Bin maps
1397 There is one bit map for small bins ("smallmap") and one for
1398 treebins ("treemap). Each bin sets its bit when non-empty, and
1399 clears the bit when empty. Bit operations are then used to avoid
1400 bin-by-bin searching -- nearly all "search" is done without ever
1401 looking at bins that won't be selected. The bit maps
1402 conservatively use 32 bits per map word, even if on 64bit system.
1403 For a good description of some of the bit-based techniques used
1404 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1405 supplement at http://hackersdelight.org/). Many of these are
1406 intended to reduce the branchiness of paths through malloc etc, as
1407 well as to reduce the number of memory locations read or written.
1408
1409 Segments
1410 A list of segments headed by an embedded malloc_segment record
1411 representing the initial space.
1412
1413 Address check support
1414 The least_addr field is the least address ever obtained from
1415 MORECORE or MMAP. Attempted frees and reallocs of any address less
1416 than this are trapped (unless INSECURE is defined).
1417
1418 Magic tag
1419 A cross-check field that should always hold same value as mparams.magic.
1420
1421 Flags
1422 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1423
1424 Statistics
1425 Each space keeps track of current and maximum system memory
1426 obtained via MORECORE or MMAP.
1427
1428 Locking
1429 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1430 around every public call using this mspace.
1431*/
1432
1433/* Bin types, widths and sizes */
1434#define NSMALLBINS (32U)
1435#define NTREEBINS (32U)
1436#define SMALLBIN_SHIFT (3U)
1437#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1438#define TREEBIN_SHIFT (8U)
1439#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1440#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1441#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1442
1443struct malloc_state {
1444 binmap_t smallmap;
1445 binmap_t treemap;
1446 size_t dvsize;
1447 size_t topsize;
1448 char* least_addr;
1449 mchunkptr dv;
1450 mchunkptr top;
1451 size_t trim_check;
1452 size_t magic;
1453 mchunkptr smallbins[(NSMALLBINS+1)*2];
1454 tbinptr treebins[NTREEBINS];
1455 size_t footprint;
1456 size_t max_footprint;
1457 flag_t mflags;
1458#if USE_LOCKS
1459 MLOCK_T mutex; /* locate lock among fields that rarely change */
1460#endif /* USE_LOCKS */
1461 msegment seg;
1462};
1463
1464typedef struct malloc_state* mstate;
1465
1466/* ------------- Global malloc_state and malloc_params ------------------- */
1467
1468/*
1469 malloc_params holds global properties, including those that can be
1470 dynamically set using mallopt. There is a single instance, mparams,
1471 initialized in init_mparams.
1472*/
1473
1474struct malloc_params {
1475 size_t magic;
1476 size_t page_size;
1477 size_t granularity;
1478 size_t mmap_threshold;
1479 size_t trim_threshold;
1480 flag_t default_mflags;
1481};
1482
1483static struct malloc_params mparams;
1484
1485/* The global malloc_state used for all non-"mspace" calls */
1486static struct malloc_state _gm_;
1487#define gm (&_gm_)
1488#define is_global(M) ((M) == &_gm_)
1489#define is_initialized(M) ((M)->top != 0)
1490
1491/* -------------------------- system alloc setup ------------------------- */
1492
1493/* Operations on mflags */
1494
1495#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
1496#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
1497#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
1498
1499#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
1500#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
1501#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
1502
1503#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
1504#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
1505
1506#define set_lock(M,L)\
1507 ((M)->mflags = (L)?\
1508 ((M)->mflags | USE_LOCK_BIT) :\
1509 ((M)->mflags & ~USE_LOCK_BIT))
1510
1511/* page-align a size */
1512#define page_align(S)\
1513 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
1514
1515/* granularity-align a size */
1516#define granularity_align(S)\
1517 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
1518
1519#define is_page_aligned(S)\
1520 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
1521#define is_granularity_aligned(S)\
1522 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
1523
1524/* True if segment S holds address A */
1525#define segment_holds(S, A)\
1526 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
1527
1528/* Return segment holding given address */
1529static msegmentptr segment_holding(mstate m, char* addr) {
1530 msegmentptr sp = &m->seg;
1531 for (;;) {
1532 if (addr >= sp->base && addr < sp->base + sp->size)
1533 return sp;
1534 if ((sp = sp->next) == 0)
1535 return 0;
1536 }
1537}
1538
1539/* Return true if segment contains a segment link */
1540static int has_segment_link(mstate m, msegmentptr ss) {
1541 msegmentptr sp = &m->seg;
1542 for (;;) {
1543 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
1544 return 1;
1545 if ((sp = sp->next) == 0)
1546 return 0;
1547 }
1548}
1549
1550#ifndef MORECORE_CANNOT_TRIM
1551#define should_trim(M,s) ((s) > (M)->trim_check)
1552#else /* MORECORE_CANNOT_TRIM */
1553#define should_trim(M,s) (0)
1554#endif /* MORECORE_CANNOT_TRIM */
1555
1556/*
1557 TOP_FOOT_SIZE is padding at the end of a segment, including space
1558 that may be needed to place segment records and fenceposts when new
1559 noncontiguous segments are added.
1560*/
1561#define TOP_FOOT_SIZE\
1562 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
1563
1564
1565/* ------------------------------- Hooks -------------------------------- */
1566
1567/*
1568 PREACTION should be defined to return 0 on success, and nonzero on
1569 failure. If you are not using locking, you can redefine these to do
1570 anything you like.
1571*/
1572
1573#if USE_LOCKS
1574
1575/* Ensure locks are initialized */
1576#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
1577
1578#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
1579#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
1580#else /* USE_LOCKS */
1581
1582#ifndef PREACTION
1583#define PREACTION(M) (0)
1584#endif /* PREACTION */
1585
1586#ifndef POSTACTION
1587#define POSTACTION(M)
1588#endif /* POSTACTION */
1589
1590#endif /* USE_LOCKS */
1591
1592/*
1593 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
1594 USAGE_ERROR_ACTION is triggered on detected bad frees and
1595 reallocs. The argument p is an address that might have triggered the
1596 fault. It is ignored by the two predefined actions, but might be
1597 useful in custom actions that try to help diagnose errors.
1598*/
1599
1600#if PROCEED_ON_ERROR
1601
1602/* A count of the number of corruption errors causing resets */
1603int malloc_corruption_error_count;
1604
1605/* default corruption action */
1606static void reset_on_error(mstate m);
1607
1608#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
1609#define USAGE_ERROR_ACTION(m, p)
1610
1611#else /* PROCEED_ON_ERROR */
1612
1613#ifndef CORRUPTION_ERROR_ACTION
1614#define CORRUPTION_ERROR_ACTION(m) ABORT
1615#endif /* CORRUPTION_ERROR_ACTION */
1616
1617#ifndef USAGE_ERROR_ACTION
1618#define USAGE_ERROR_ACTION(m,p) ABORT
1619#endif /* USAGE_ERROR_ACTION */
1620
1621#endif /* PROCEED_ON_ERROR */
1622
1623/* -------------------------- Debugging setup ---------------------------- */
1624
1625#if ! DEBUG
1626
1627#define check_free_chunk(M,P)
1628#define check_inuse_chunk(M,P)
1629#define check_malloced_chunk(M,P,N)
1630#define check_mmapped_chunk(M,P)
1631#define check_malloc_state(M)
1632#define check_top_chunk(M,P)
1633
1634#else /* DEBUG */
1635#define check_free_chunk(M,P) do_check_free_chunk(M,P)
1636#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
1637#define check_top_chunk(M,P) do_check_top_chunk(M,P)
1638#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
1639#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
1640#define check_malloc_state(M) do_check_malloc_state(M)
1641
1642static void do_check_any_chunk(mstate m, mchunkptr p);
1643static void do_check_top_chunk(mstate m, mchunkptr p);
1644static void do_check_mmapped_chunk(mstate m, mchunkptr p);
1645static void do_check_inuse_chunk(mstate m, mchunkptr p);
1646static void do_check_free_chunk(mstate m, mchunkptr p);
1647static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
1648static void do_check_tree(mstate m, tchunkptr t);
1649static void do_check_treebin(mstate m, bindex_t i);
1650static void do_check_smallbin(mstate m, bindex_t i);
1651static void do_check_malloc_state(mstate m);
1652static int bin_find(mstate m, mchunkptr x);
1653static size_t traverse_and_check(mstate m);
1654#endif /* DEBUG */
1655
1656/* ---------------------------- Indexing Bins ---------------------------- */
1657
1658#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
1659#define small_index(s) ((s) >> SMALLBIN_SHIFT)
1660#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
1661#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
1662
1663/* addressing by index. See above about smallbin repositioning */
1664#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
1665#define treebin_at(M,i) (&((M)->treebins[i]))
1666
1667/* assign tree index for size S to variable I */
1668#if defined(__GNUC__) && defined(i386)
1669#define compute_tree_index(S, I)\
1670{\
1671 size_t X = S >> TREEBIN_SHIFT;\
1672 if (X == 0)\
1673 I = 0;\
1674 else if (X > 0xFFFF)\
1675 I = NTREEBINS-1;\
1676 else {\
1677 unsigned int K;\
1678 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
1679 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
1680 }\
1681}
1682#else /* GNUC */
1683#define compute_tree_index(S, I)\
1684{\
1685 size_t X = S >> TREEBIN_SHIFT;\
1686 if (X == 0)\
1687 I = 0;\
1688 else if (X > 0xFFFF)\
1689 I = NTREEBINS-1;\
1690 else {\
1691 unsigned int Y = (unsigned int)X;\
1692 unsigned int N = ((Y - 0x100) >> 16) & 8;\
1693 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
1694 N += K;\
1695 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
1696 K = 14 - N + ((Y <<= K) >> 15);\
1697 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
1698 }\
1699}
1700#endif /* GNUC */
1701
1702/* Bit representing maximum resolved size in a treebin at i */
1703#define bit_for_tree_index(i) \
1704 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
1705
1706/* Shift placing maximum resolved bit in a treebin at i as sign bit */
1707#define leftshift_for_tree_index(i) \
1708 ((i == NTREEBINS-1)? 0 : \
1709 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
1710
1711/* The size of the smallest chunk held in bin with index i */
1712#define minsize_for_tree_index(i) \
1713 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
1714 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
1715
1716
1717/* ------------------------ Operations on bin maps ----------------------- */
1718
1719/* bit corresponding to given index */
1720#define idx2bit(i) ((binmap_t)(1) << (i))
1721
1722/* Mark/Clear bits with given index */
1723#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
1724#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
1725#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
1726
1727#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
1728#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
1729#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
1730
1731/* index corresponding to given bit */
1732
1733#if defined(__GNUC__) && defined(i386)
1734#define compute_bit2idx(X, I)\
1735{\
1736 unsigned int J;\
1737 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
1738 I = (bindex_t)J;\
1739}
1740
1741#else /* GNUC */
1742#if USE_BUILTIN_FFS
1743#define compute_bit2idx(X, I) I = ffs(X)-1
1744
1745#else /* USE_BUILTIN_FFS */
1746#define compute_bit2idx(X, I)\
1747{\
1748 unsigned int Y = X - 1;\
1749 unsigned int K = Y >> (16-4) & 16;\
1750 unsigned int N = K; Y >>= K;\
1751 N += K = Y >> (8-3) & 8; Y >>= K;\
1752 N += K = Y >> (4-2) & 4; Y >>= K;\
1753 N += K = Y >> (2-1) & 2; Y >>= K;\
1754 N += K = Y >> (1-0) & 1; Y >>= K;\
1755 I = (bindex_t)(N + Y);\
1756}
1757#endif /* USE_BUILTIN_FFS */
1758#endif /* GNUC */
1759
1760/* isolate the least set bit of a bitmap */
1761#define least_bit(x) ((x) & -(x))
1762
1763/* mask with all bits to left of least bit of x on */
1764#define left_bits(x) ((x<<1) | -(x<<1))
1765
1766/* mask with all bits to left of or equal to least bit of x on */
1767#define same_or_left_bits(x) ((x) | -(x))
1768
1769
1770/* ----------------------- Runtime Check Support ------------------------- */
1771
1772/*
1773 For security, the main invariant is that malloc/free/etc never
1774 writes to a static address other than malloc_state, unless static
1775 malloc_state itself has been corrupted, which cannot occur via
1776 malloc (because of these checks). In essence this means that we
1777 believe all pointers, sizes, maps etc held in malloc_state, but
1778 check all of those linked or offsetted from other embedded data
1779 structures. These checks are interspersed with main code in a way
1780 that tends to minimize their run-time cost.
1781
1782 When FOOTERS is defined, in addition to range checking, we also
1783 verify footer fields of inuse chunks, which can be used guarantee
1784 that the mstate controlling malloc/free is intact. This is a
1785 streamlined version of the approach described by William Robertson
1786 et al in "Run-time Detection of Heap-based Overflows" LISA'03
1787 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
1788 of an inuse chunk holds the xor of its mstate and a random seed,
1789 that is checked upon calls to free() and realloc(). This is
1790 (probablistically) unguessable from outside the program, but can be
1791 computed by any code successfully malloc'ing any chunk, so does not
1792 itself provide protection against code that has already broken
1793 security through some other means. Unlike Robertson et al, we
1794 always dynamically check addresses of all offset chunks (previous,
1795 next, etc). This turns out to be cheaper than relying on hashes.
1796*/
1797
1798#if !INSECURE
1799/* Check if address a is at least as high as any from MORECORE or MMAP */
1800#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
1801/* Check if address of next chunk n is higher than base chunk p */
1802#define ok_next(p, n) ((char*)(p) < (char*)(n))
1803/* Check if p has its cinuse bit on */
1804#define ok_cinuse(p) cinuse(p)
1805/* Check if p has its pinuse bit on */
1806#define ok_pinuse(p) pinuse(p)
1807
1808#else /* !INSECURE */
1809#define ok_address(M, a) (1)
1810#define ok_next(b, n) (1)
1811#define ok_cinuse(p) (1)
1812#define ok_pinuse(p) (1)
1813#endif /* !INSECURE */
1814
1815#if (FOOTERS && !INSECURE)
1816/* Check if (alleged) mstate m has expected magic field */
1817#define ok_magic(M) ((M)->magic == mparams.magic)
1818#else /* (FOOTERS && !INSECURE) */
1819#define ok_magic(M) (1)
1820#endif /* (FOOTERS && !INSECURE) */
1821
1822
1823/* In gcc, use __builtin_expect to minimize impact of checks */
1824#if !INSECURE
1825#if defined(__GNUC__) && __GNUC__ >= 3
1826#define RTCHECK(e) __builtin_expect(e, 1)
1827#else /* GNUC */
1828#define RTCHECK(e) (e)
1829#endif /* GNUC */
1830#else /* !INSECURE */
1831#define RTCHECK(e) (1)
1832#endif /* !INSECURE */
1833
1834/* macros to set up inuse chunks with or without footers */
1835
1836#if !FOOTERS
1837
1838#define mark_inuse_foot(M,p,s)
1839
1840/* Set cinuse bit and pinuse bit of next chunk */
1841#define set_inuse(M,p,s)\
1842 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1843 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1844
1845/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
1846#define set_inuse_and_pinuse(M,p,s)\
1847 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1848 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1849
1850/* Set size, cinuse and pinuse bit of this chunk */
1851#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1852 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
1853
1854#else /* FOOTERS */
1855
1856/* Set foot of inuse chunk to be xor of mstate and seed */
1857#define mark_inuse_foot(M,p,s)\
1858 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
1859
1860#define get_mstate_for(p)\
1861 ((mstate)(((mchunkptr)((char*)(p) +\
1862 (chunksize(p))))->prev_foot ^ mparams.magic))
1863
1864#define set_inuse(M,p,s)\
1865 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1866 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
1867 mark_inuse_foot(M,p,s))
1868
1869#define set_inuse_and_pinuse(M,p,s)\
1870 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1871 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
1872 mark_inuse_foot(M,p,s))
1873
1874#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1875 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1876 mark_inuse_foot(M, p, s))
1877
1878#endif /* !FOOTERS */
1879
1880/* ---------------------------- setting mparams -------------------------- */
1881
1882/* Initialize mparams */
1883static int init_mparams(void) {
1884 if (mparams.page_size == 0) {
1885 size_t s;
1886
1887 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1888 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
1889#if MORECORE_CONTIGUOUS
1890 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
1891#else /* MORECORE_CONTIGUOUS */
1892 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
1893#endif /* MORECORE_CONTIGUOUS */
1894
1895#if (FOOTERS && !INSECURE)
1896 {
1897#if USE_DEV_RANDOM
1898 int fd;
1899 unsigned char buf[sizeof(size_t)];
1900 /* Try to use /dev/urandom, else fall back on using time */
1901 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
1902 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
1903 s = *((size_t *) buf);
1904 close(fd);
1905 }
1906 else
1907#endif /* USE_DEV_RANDOM */
1908 s = (size_t)(time(0) ^ (size_t)0x55555555U);
1909
1910 s |= (size_t)8U; /* ensure nonzero */
1911 s &= ~(size_t)7U; /* improve chances of fault for bad values */
1912
1913 }
1914#else /* (FOOTERS && !INSECURE) */
1915 s = (size_t)0x58585858U;
1916#endif /* (FOOTERS && !INSECURE) */
1917 ACQUIRE_MAGIC_INIT_LOCK();
1918 if (mparams.magic == 0) {
1919 mparams.magic = s;
1920 /* Set up lock for main malloc area */
1921 INITIAL_LOCK(&gm->mutex);
1922 gm->mflags = mparams.default_mflags;
1923 }
1924 RELEASE_MAGIC_INIT_LOCK();
1925
1926#ifndef WIN32
1927 mparams.page_size = malloc_getpagesize;
1928 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
1929 DEFAULT_GRANULARITY : mparams.page_size);
1930#else /* WIN32 */
1931 {
1932 SYSTEM_INFO system_info;
1933 GetSystemInfo(&system_info);
1934 mparams.page_size = system_info.dwPageSize;
1935 mparams.granularity = system_info.dwAllocationGranularity;
1936 }
1937#endif /* WIN32 */
1938
1939 /* Sanity-check configuration:
1940 size_t must be unsigned and as wide as pointer type.
1941 ints must be at least 4 bytes.
1942 alignment must be at least 8.
1943 Alignment, min chunk size, and page size must all be powers of 2.
1944 */
1945 if ((sizeof(size_t) != sizeof(char*)) ||
1946 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
1947 (sizeof(int) < 4) ||
1948 (MALLOC_ALIGNMENT < (size_t)8U) ||
1949 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
1950 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
1951 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
1952 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
1953 ABORT;
1954 }
1955 return 0;
1956}
1957
1958/* support for mallopt */
1959static int change_mparam(int param_number, int value) {
1960 size_t val = (size_t)value;
1961 init_mparams();
1962 switch(param_number) {
1963 case M_TRIM_THRESHOLD:
1964 mparams.trim_threshold = val;
1965 return 1;
1966 case M_GRANULARITY:
1967 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
1968 mparams.granularity = val;
1969 return 1;
1970 }
1971 else
1972 return 0;
1973 case M_MMAP_THRESHOLD:
1974 mparams.mmap_threshold = val;
1975 return 1;
1976 default:
1977 return 0;
1978 }
1979}
1980
1981#if DEBUG
1982/* ------------------------- Debugging Support --------------------------- */
1983
1984/* Check properties of any chunk, whether free, inuse, mmapped etc */
1985static void do_check_any_chunk(mstate m, mchunkptr p) {
1986 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1987 assert(ok_address(m, p));
1988}
1989
1990/* Check properties of top chunk */
1991static void do_check_top_chunk(mstate m, mchunkptr p) {
1992 msegmentptr sp = segment_holding(m, (char*)p);
1993 size_t sz = chunksize(p);
1994 assert(sp != 0);
1995 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1996 assert(ok_address(m, p));
1997 assert(sz == m->topsize);
1998 assert(sz > 0);
1999 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
2000 assert(pinuse(p));
2001 assert(!next_pinuse(p));
2002}
2003
2004/* Check properties of (inuse) mmapped chunks */
2005static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
2006 size_t sz = chunksize(p);
2007 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
2008 assert(is_mmapped(p));
2009 assert(use_mmap(m));
2010 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
2011 assert(ok_address(m, p));
2012 assert(!is_small(sz));
2013 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
2014 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
2015 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
2016}
2017
2018/* Check properties of inuse chunks */
2019static void do_check_inuse_chunk(mstate m, mchunkptr p) {
2020 do_check_any_chunk(m, p);
2021 assert(cinuse(p));
2022 assert(next_pinuse(p));
2023 /* If not pinuse and not mmapped, previous chunk has OK offset */
2024 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
2025 if (is_mmapped(p))
2026 do_check_mmapped_chunk(m, p);
2027}
2028
2029/* Check properties of free chunks */
2030static void do_check_free_chunk(mstate m, mchunkptr p) {
2031 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2032 mchunkptr next = chunk_plus_offset(p, sz);
2033 do_check_any_chunk(m, p);
2034 assert(!cinuse(p));
2035 assert(!next_pinuse(p));
2036 assert (!is_mmapped(p));
2037 if (p != m->dv && p != m->top) {
2038 if (sz >= MIN_CHUNK_SIZE) {
2039 assert((sz & CHUNK_ALIGN_MASK) == 0);
2040 assert(is_aligned(chunk2mem(p)));
2041 assert(next->prev_foot == sz);
2042 assert(pinuse(p));
2043 assert (next == m->top || cinuse(next));
2044 assert(p->fd->bk == p);
2045 assert(p->bk->fd == p);
2046 }
2047 else /* markers are always of size SIZE_T_SIZE */
2048 assert(sz == SIZE_T_SIZE);
2049 }
2050}
2051
2052/* Check properties of malloced chunks at the point they are malloced */
2053static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
2054 if (mem != 0) {
2055 mchunkptr p = mem2chunk(mem);
2056 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
2057 do_check_inuse_chunk(m, p);
2058 assert((sz & CHUNK_ALIGN_MASK) == 0);
2059 assert(sz >= MIN_CHUNK_SIZE);
2060 assert(sz >= s);
2061 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
2062 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
2063 }
2064}
2065
2066/* Check a tree and its subtrees. */
2067static void do_check_tree(mstate m, tchunkptr t) {
2068 tchunkptr head = 0;
2069 tchunkptr u = t;
2070 bindex_t tindex = t->index;
2071 size_t tsize = chunksize(t);
2072 bindex_t idx;
2073 compute_tree_index(tsize, idx);
2074 assert(tindex == idx);
2075 assert(tsize >= MIN_LARGE_SIZE);
2076 assert(tsize >= minsize_for_tree_index(idx));
2077 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
2078
2079 do { /* traverse through chain of same-sized nodes */
2080 do_check_any_chunk(m, ((mchunkptr)u));
2081 assert(u->index == tindex);
2082 assert(chunksize(u) == tsize);
2083 assert(!cinuse(u));
2084 assert(!next_pinuse(u));
2085 assert(u->fd->bk == u);
2086 assert(u->bk->fd == u);
2087 if (u->parent == 0) {
2088 assert(u->child[0] == 0);
2089 assert(u->child[1] == 0);
2090 }
2091 else {
2092 assert(head == 0); /* only one node on chain has parent */
2093 head = u;
2094 assert(u->parent != u);
2095 assert (u->parent->child[0] == u ||
2096 u->parent->child[1] == u ||
2097 *((tbinptr*)(u->parent)) == u);
2098 if (u->child[0] != 0) {
2099 assert(u->child[0]->parent == u);
2100 assert(u->child[0] != u);
2101 do_check_tree(m, u->child[0]);
2102 }
2103 if (u->child[1] != 0) {
2104 assert(u->child[1]->parent == u);
2105 assert(u->child[1] != u);
2106 do_check_tree(m, u->child[1]);
2107 }
2108 if (u->child[0] != 0 && u->child[1] != 0) {
2109 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2110 }
2111 }
2112 u = u->fd;
2113 } while (u != t);
2114 assert(head != 0);
2115}
2116
2117/* Check all the chunks in a treebin. */
2118static void do_check_treebin(mstate m, bindex_t i) {
2119 tbinptr* tb = treebin_at(m, i);
2120 tchunkptr t = *tb;
2121 int empty = (m->treemap & (1U << i)) == 0;
2122 if (t == 0)
2123 assert(empty);
2124 if (!empty)
2125 do_check_tree(m, t);
2126}
2127
2128/* Check all the chunks in a smallbin. */
2129static void do_check_smallbin(mstate m, bindex_t i) {
2130 sbinptr b = smallbin_at(m, i);
2131 mchunkptr p = b->bk;
2132 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2133 if (p == b)
2134 assert(empty);
2135 if (!empty) {
2136 for (; p != b; p = p->bk) {
2137 size_t size = chunksize(p);
2138 mchunkptr q;
2139 /* each chunk claims to be free */
2140 do_check_free_chunk(m, p);
2141 /* chunk belongs in bin */
2142 assert(small_index(size) == i);
2143 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2144 /* chunk is followed by an inuse chunk */
2145 q = next_chunk(p);
2146 if (q->head != FENCEPOST_HEAD)
2147 do_check_inuse_chunk(m, q);
2148 }
2149 }
2150}
2151
2152/* Find x in a bin. Used in other check functions. */
2153static int bin_find(mstate m, mchunkptr x) {
2154 size_t size = chunksize(x);
2155 if (is_small(size)) {
2156 bindex_t sidx = small_index(size);
2157 sbinptr b = smallbin_at(m, sidx);
2158 if (smallmap_is_marked(m, sidx)) {
2159 mchunkptr p = b;
2160 do {
2161 if (p == x)
2162 return 1;
2163 } while ((p = p->fd) != b);
2164 }
2165 }
2166 else {
2167 bindex_t tidx;
2168 compute_tree_index(size, tidx);
2169 if (treemap_is_marked(m, tidx)) {
2170 tchunkptr t = *treebin_at(m, tidx);
2171 size_t sizebits = size << leftshift_for_tree_index(tidx);
2172 while (t != 0 && chunksize(t) != size) {
2173 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2174 sizebits <<= 1;
2175 }
2176 if (t != 0) {
2177 tchunkptr u = t;
2178 do {
2179 if (u == (tchunkptr)x)
2180 return 1;
2181 } while ((u = u->fd) != t);
2182 }
2183 }
2184 }
2185 return 0;
2186}
2187
2188/* Traverse each chunk and check it; return total */
2189static size_t traverse_and_check(mstate m) {
2190 size_t sum = 0;
2191 if (is_initialized(m)) {
2192 msegmentptr s = &m->seg;
2193 sum += m->topsize + TOP_FOOT_SIZE;
2194 while (s != 0) {
2195 mchunkptr q = align_as_chunk(s->base);
2196 mchunkptr lastq = 0;
2197 assert(pinuse(q));
2198 while (segment_holds(s, q) &&
2199 q != m->top && q->head != FENCEPOST_HEAD) {
2200 sum += chunksize(q);
2201 if (cinuse(q)) {
2202 assert(!bin_find(m, q));
2203 do_check_inuse_chunk(m, q);
2204 }
2205 else {
2206 assert(q == m->dv || bin_find(m, q));
2207 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2208 do_check_free_chunk(m, q);
2209 }
2210 lastq = q;
2211 q = next_chunk(q);
2212 }
2213 s = s->next;
2214 }
2215 }
2216 return sum;
2217}
2218
2219/* Check all properties of malloc_state. */
2220static void do_check_malloc_state(mstate m) {
2221 bindex_t i;
2222 size_t total;
2223 /* check bins */
2224 for (i = 0; i < NSMALLBINS; ++i)
2225 do_check_smallbin(m, i);
2226 for (i = 0; i < NTREEBINS; ++i)
2227 do_check_treebin(m, i);
2228
2229 if (m->dvsize != 0) { /* check dv chunk */
2230 do_check_any_chunk(m, m->dv);
2231 assert(m->dvsize == chunksize(m->dv));
2232 assert(m->dvsize >= MIN_CHUNK_SIZE);
2233 assert(bin_find(m, m->dv) == 0);
2234 }
2235
2236 if (m->top != 0) { /* check top chunk */
2237 do_check_top_chunk(m, m->top);
2238 assert(m->topsize == chunksize(m->top));
2239 assert(m->topsize > 0);
2240 assert(bin_find(m, m->top) == 0);
2241 }
2242
2243 total = traverse_and_check(m);
2244 assert(total <= m->footprint);
2245 assert(m->footprint <= m->max_footprint);
2246}
2247#endif /* DEBUG */
2248
2249/* ----------------------------- statistics ------------------------------ */
2250
2251#if !NO_MALLINFO
2252static struct mallinfo internal_mallinfo(mstate m) {
2253 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2254 if (!PREACTION(m)) {
2255 check_malloc_state(m);
2256 if (is_initialized(m)) {
2257 size_t nfree = SIZE_T_ONE; /* top always free */
2258 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2259 size_t sum = mfree;
2260 msegmentptr s = &m->seg;
2261 while (s != 0) {
2262 mchunkptr q = align_as_chunk(s->base);
2263 while (segment_holds(s, q) &&
2264 q != m->top && q->head != FENCEPOST_HEAD) {
2265 size_t sz = chunksize(q);
2266 sum += sz;
2267 if (!cinuse(q)) {
2268 mfree += sz;
2269 ++nfree;
2270 }
2271 q = next_chunk(q);
2272 }
2273 s = s->next;
2274 }
2275
2276 nm.arena = sum;
2277 nm.ordblks = nfree;
2278 nm.hblkhd = m->footprint - sum;
2279 nm.usmblks = m->max_footprint;
2280 nm.uordblks = m->footprint - mfree;
2281 nm.fordblks = mfree;
2282 nm.keepcost = m->topsize;
2283 }
2284
2285 POSTACTION(m);
2286 }
2287 return nm;
2288}
2289#endif /* !NO_MALLINFO */
2290
2291static void internal_malloc_stats(mstate m) {
2292 if (!PREACTION(m)) {
2293 size_t maxfp = 0;
2294 size_t fp = 0;
2295 size_t used = 0;
2296 check_malloc_state(m);
2297 if (is_initialized(m)) {
2298 msegmentptr s = &m->seg;
2299 maxfp = m->max_footprint;
2300 fp = m->footprint;
2301 used = fp - (m->topsize + TOP_FOOT_SIZE);
2302
2303 while (s != 0) {
2304 mchunkptr q = align_as_chunk(s->base);
2305 while (segment_holds(s, q) &&
2306 q != m->top && q->head != FENCEPOST_HEAD) {
2307 if (!cinuse(q))
2308 used -= chunksize(q);
2309 q = next_chunk(q);
2310 }
2311 s = s->next;
2312 }
2313 }
2314
2315 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2316 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2317 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2318
2319 POSTACTION(m);
2320 }
2321}
2322
2323/* ----------------------- Operations on smallbins ----------------------- */
2324
2325/*
2326 Various forms of linking and unlinking are defined as macros. Even
2327 the ones for trees, which are very long but have very short typical
2328 paths. This is ugly but reduces reliance on inlining support of
2329 compilers.
2330*/
2331
2332/* Link a free chunk into a smallbin */
2333#define insert_small_chunk(M, P, S) {\
2334 bindex_t I = small_index(S);\
2335 mchunkptr B = smallbin_at(M, I);\
2336 mchunkptr F = B;\
2337 assert(S >= MIN_CHUNK_SIZE);\
2338 if (!smallmap_is_marked(M, I))\
2339 mark_smallmap(M, I);\
2340 else if (RTCHECK(ok_address(M, B->fd)))\
2341 F = B->fd;\
2342 else {\
2343 CORRUPTION_ERROR_ACTION(M);\
2344 }\
2345 B->fd = P;\
2346 F->bk = P;\
2347 P->fd = F;\
2348 P->bk = B;\
2349}
2350
2351/* Unlink a chunk from a smallbin */
2352#define unlink_small_chunk(M, P, S) {\
2353 mchunkptr F = P->fd;\
2354 mchunkptr B = P->bk;\
2355 bindex_t I = small_index(S);\
2356 assert(P != B);\
2357 assert(P != F);\
2358 assert(chunksize(P) == small_index2size(I));\
2359 if (F == B)\
2360 clear_smallmap(M, I);\
2361 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2362 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2363 F->bk = B;\
2364 B->fd = F;\
2365 }\
2366 else {\
2367 CORRUPTION_ERROR_ACTION(M);\
2368 }\
2369}
2370
2371/* Unlink the first chunk from a smallbin */
2372#define unlink_first_small_chunk(M, B, P, I) {\
2373 mchunkptr F = P->fd;\
2374 assert(P != B);\
2375 assert(P != F);\
2376 assert(chunksize(P) == small_index2size(I));\
2377 if (B == F)\
2378 clear_smallmap(M, I);\
2379 else if (RTCHECK(ok_address(M, F))) {\
2380 B->fd = F;\
2381 F->bk = B;\
2382 }\
2383 else {\
2384 CORRUPTION_ERROR_ACTION(M);\
2385 }\
2386}
2387
2388/* Replace dv node, binning the old one */
2389/* Used only when dvsize known to be small */
2390#define replace_dv(M, P, S) {\
2391 size_t DVS = M->dvsize;\
2392 if (DVS != 0) {\
2393 mchunkptr DV = M->dv;\
2394 assert(is_small(DVS));\
2395 insert_small_chunk(M, DV, DVS);\
2396 }\
2397 M->dvsize = S;\
2398 M->dv = P;\
2399}
2400
2401/* ------------------------- Operations on trees ------------------------- */
2402
2403/* Insert chunk into tree */
2404#define insert_large_chunk(M, X, S) {\
2405 tbinptr* H;\
2406 bindex_t I;\
2407 compute_tree_index(S, I);\
2408 H = treebin_at(M, I);\
2409 X->index = I;\
2410 X->child[0] = X->child[1] = 0;\
2411 if (!treemap_is_marked(M, I)) {\
2412 mark_treemap(M, I);\
2413 *H = X;\
2414 X->parent = (tchunkptr)H;\
2415 X->fd = X->bk = X;\
2416 }\
2417 else {\
2418 tchunkptr T = *H;\
2419 size_t K = S << leftshift_for_tree_index(I);\
2420 for (;;) {\
2421 if (chunksize(T) != S) {\
2422 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2423 K <<= 1;\
2424 if (*C != 0)\
2425 T = *C;\
2426 else if (RTCHECK(ok_address(M, C))) {\
2427 *C = X;\
2428 X->parent = T;\
2429 X->fd = X->bk = X;\
2430 break;\
2431 }\
2432 else {\
2433 CORRUPTION_ERROR_ACTION(M);\
2434 break;\
2435 }\
2436 }\
2437 else {\
2438 tchunkptr F = T->fd;\
2439 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2440 T->fd = F->bk = X;\
2441 X->fd = F;\
2442 X->bk = T;\
2443 X->parent = 0;\
2444 break;\
2445 }\
2446 else {\
2447 CORRUPTION_ERROR_ACTION(M);\
2448 break;\
2449 }\
2450 }\
2451 }\
2452 }\
2453}
2454
2455/*
2456 Unlink steps:
2457
2458 1. If x is a chained node, unlink it from its same-sized fd/bk links
2459 and choose its bk node as its replacement.
2460 2. If x was the last node of its size, but not a leaf node, it must
2461 be replaced with a leaf node (not merely one with an open left or
2462 right), to make sure that lefts and rights of descendents
2463 correspond properly to bit masks. We use the rightmost descendent
2464 of x. We could use any other leaf, but this is easy to locate and
2465 tends to counteract removal of leftmosts elsewhere, and so keeps
2466 paths shorter than minimally guaranteed. This doesn't loop much
2467 because on average a node in a tree is near the bottom.
2468 3. If x is the base of a chain (i.e., has parent links) relink
2469 x's parent and children to x's replacement (or null if none).
2470*/
2471
2472#define unlink_large_chunk(M, X) {\
2473 tchunkptr XP = X->parent;\
2474 tchunkptr R;\
2475 if (X->bk != X) {\
2476 tchunkptr F = X->fd;\
2477 R = X->bk;\
2478 if (RTCHECK(ok_address(M, F))) {\
2479 F->bk = R;\
2480 R->fd = F;\
2481 }\
2482 else {\
2483 CORRUPTION_ERROR_ACTION(M);\
2484 }\
2485 }\
2486 else {\
2487 tchunkptr* RP;\
2488 if (((R = *(RP = &(X->child[1]))) != 0) ||\
2489 ((R = *(RP = &(X->child[0]))) != 0)) {\
2490 tchunkptr* CP;\
2491 while ((*(CP = &(R->child[1])) != 0) ||\
2492 (*(CP = &(R->child[0])) != 0)) {\
2493 R = *(RP = CP);\
2494 }\
2495 if (RTCHECK(ok_address(M, RP)))\
2496 *RP = 0;\
2497 else {\
2498 CORRUPTION_ERROR_ACTION(M);\
2499 }\
2500 }\
2501 }\
2502 if (XP != 0) {\
2503 tbinptr* H = treebin_at(M, X->index);\
2504 if (X == *H) {\
2505 if ((*H = R) == 0) \
2506 clear_treemap(M, X->index);\
2507 }\
2508 else if (RTCHECK(ok_address(M, XP))) {\
2509 if (XP->child[0] == X) \
2510 XP->child[0] = R;\
2511 else \
2512 XP->child[1] = R;\
2513 }\
2514 else\
2515 CORRUPTION_ERROR_ACTION(M);\
2516 if (R != 0) {\
2517 if (RTCHECK(ok_address(M, R))) {\
2518 tchunkptr C0, C1;\
2519 R->parent = XP;\
2520 if ((C0 = X->child[0]) != 0) {\
2521 if (RTCHECK(ok_address(M, C0))) {\
2522 R->child[0] = C0;\
2523 C0->parent = R;\
2524 }\
2525 else\
2526 CORRUPTION_ERROR_ACTION(M);\
2527 }\
2528 if ((C1 = X->child[1]) != 0) {\
2529 if (RTCHECK(ok_address(M, C1))) {\
2530 R->child[1] = C1;\
2531 C1->parent = R;\
2532 }\
2533 else\
2534 CORRUPTION_ERROR_ACTION(M);\
2535 }\
2536 }\
2537 else\
2538 CORRUPTION_ERROR_ACTION(M);\
2539 }\
2540 }\
2541}
2542
2543/* Relays to large vs small bin operations */
2544
2545#define insert_chunk(M, P, S)\
2546 if (is_small(S)) insert_small_chunk(M, P, S)\
2547 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
2548
2549#define unlink_chunk(M, P, S)\
2550 if (is_small(S)) unlink_small_chunk(M, P, S)\
2551 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
2552
2553
2554/* Relays to internal calls to malloc/free from realloc, memalign etc */
2555
2556#if ONLY_MSPACES
2557#define internal_malloc(m, b) mspace_malloc(m, b)
2558#define internal_free(m, mem) mspace_free(m,mem);
2559#else /* ONLY_MSPACES */
2560#if MSPACES
2561#define internal_malloc(m, b)\
2562 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
2563#define internal_free(m, mem)\
2564 if (m == gm) dlfree(mem); else mspace_free(m,mem);
2565#else /* MSPACES */
2566#define internal_malloc(m, b) dlmalloc(b)
2567#define internal_free(m, mem) dlfree(mem)
2568#endif /* MSPACES */
2569#endif /* ONLY_MSPACES */
2570
2571/* ----------------------- Direct-mmapping chunks ----------------------- */
2572
2573/*
2574 Directly mmapped chunks are set up with an offset to the start of
2575 the mmapped region stored in the prev_foot field of the chunk. This
2576 allows reconstruction of the required argument to MUNMAP when freed,
2577 and also allows adjustment of the returned chunk to meet alignment
2578 requirements (especially in memalign). There is also enough space
2579 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
2580 the PINUSE bit so frees can be checked.
2581*/
2582
2583/* Malloc using mmap */
2584static void* mmap_alloc(mstate m, size_t nb) {
2585 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2586 if (mmsize > nb) { /* Check for wrap around 0 */
2587 char* mm = (char*)(DIRECT_MMAP(mmsize));
2588 if (mm != CMFAIL) {
2589 size_t offset = align_offset(chunk2mem(mm));
2590 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
2591 mchunkptr p = (mchunkptr)(mm + offset);
2592 p->prev_foot = offset | IS_MMAPPED_BIT;
2593 (p)->head = (psize|CINUSE_BIT);
2594 mark_inuse_foot(m, p, psize);
2595 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
2596 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
2597
2598 if (mm < m->least_addr)
2599 m->least_addr = mm;
2600 if ((m->footprint += mmsize) > m->max_footprint)
2601 m->max_footprint = m->footprint;
2602 assert(is_aligned(chunk2mem(p)));
2603 check_mmapped_chunk(m, p);
2604 return chunk2mem(p);
2605 }
2606 }
2607 return 0;
2608}
2609
2610/* Realloc using mmap */
2611static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
2612 size_t oldsize = chunksize(oldp);
2613 if (is_small(nb)) /* Can't shrink mmap regions below small size */
2614 return 0;
2615 /* Keep old chunk if big enough but not too big */
2616 if (oldsize >= nb + SIZE_T_SIZE &&
2617 (oldsize - nb) <= (mparams.granularity << 1))
2618 return oldp;
2619 else {
2620 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
2621 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
2622 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
2623 CHUNK_ALIGN_MASK);
2624 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
2625 oldmmsize, newmmsize, 1);
2626 if (cp != CMFAIL) {
2627 mchunkptr newp = (mchunkptr)(cp + offset);
2628 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
2629 newp->head = (psize|CINUSE_BIT);
2630 mark_inuse_foot(m, newp, psize);
2631 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
2632 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
2633
2634 if (cp < m->least_addr)
2635 m->least_addr = cp;
2636 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
2637 m->max_footprint = m->footprint;
2638 check_mmapped_chunk(m, newp);
2639 return newp;
2640 }
2641 }
2642 return 0;
2643}
2644
2645/* -------------------------- mspace management -------------------------- */
2646
2647/* Initialize top chunk and its size */
2648static void init_top(mstate m, mchunkptr p, size_t psize) {
2649 /* Ensure alignment */
2650 size_t offset = align_offset(chunk2mem(p));
2651 p = (mchunkptr)((char*)p + offset);
2652 psize -= offset;
2653
2654 m->top = p;
2655 m->topsize = psize;
2656 p->head = psize | PINUSE_BIT;
2657 /* set size of fake trailing chunk holding overhead space only once */
2658 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
2659 m->trim_check = mparams.trim_threshold; /* reset on each update */
2660}
2661
2662/* Initialize bins for a new mstate that is otherwise zeroed out */
2663static void init_bins(mstate m) {
2664 /* Establish circular links for smallbins */
2665 bindex_t i;
2666 for (i = 0; i < NSMALLBINS; ++i) {
2667 sbinptr bin = smallbin_at(m,i);
2668 bin->fd = bin->bk = bin;
2669 }
2670}
2671
2672#if PROCEED_ON_ERROR
2673
2674/* default corruption action */
2675static void reset_on_error(mstate m) {
2676 int i;
2677 ++malloc_corruption_error_count;
2678 /* Reinitialize fields to forget about all memory */
2679 m->smallbins = m->treebins = 0;
2680 m->dvsize = m->topsize = 0;
2681 m->seg.base = 0;
2682 m->seg.size = 0;
2683 m->seg.next = 0;
2684 m->top = m->dv = 0;
2685 for (i = 0; i < NTREEBINS; ++i)
2686 *treebin_at(m, i) = 0;
2687 init_bins(m);
2688}
2689#endif /* PROCEED_ON_ERROR */
2690
2691/* Allocate chunk and prepend remainder with chunk in successor base. */
2692static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
2693 size_t nb) {
2694 mchunkptr p = align_as_chunk(newbase);
2695 mchunkptr oldfirst = align_as_chunk(oldbase);
2696 size_t psize = (char*)oldfirst - (char*)p;
2697 mchunkptr q = chunk_plus_offset(p, nb);
2698 size_t qsize = psize - nb;
2699 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2700
2701 assert((char*)oldfirst > (char*)q);
2702 assert(pinuse(oldfirst));
2703 assert(qsize >= MIN_CHUNK_SIZE);
2704
2705 /* consolidate remainder with first chunk of old base */
2706 if (oldfirst == m->top) {
2707 size_t tsize = m->topsize += qsize;
2708 m->top = q;
2709 q->head = tsize | PINUSE_BIT;
2710 check_top_chunk(m, q);
2711 }
2712 else if (oldfirst == m->dv) {
2713 size_t dsize = m->dvsize += qsize;
2714 m->dv = q;
2715 set_size_and_pinuse_of_free_chunk(q, dsize);
2716 }
2717 else {
2718 if (!cinuse(oldfirst)) {
2719 size_t nsize = chunksize(oldfirst);
2720 unlink_chunk(m, oldfirst, nsize);
2721 oldfirst = chunk_plus_offset(oldfirst, nsize);
2722 qsize += nsize;
2723 }
2724 set_free_with_pinuse(q, qsize, oldfirst);
2725 insert_chunk(m, q, qsize);
2726 check_free_chunk(m, q);
2727 }
2728
2729 check_malloced_chunk(m, chunk2mem(p), nb);
2730 return chunk2mem(p);
2731}
2732
2733
2734/* Add a segment to hold a new noncontiguous region */
2735static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
2736 /* Determine locations and sizes of segment, fenceposts, old top */
2737 char* old_top = (char*)m->top;
2738 msegmentptr oldsp = segment_holding(m, old_top);
2739 char* old_end = oldsp->base + oldsp->size;
2740 size_t ssize = pad_request(sizeof(struct malloc_segment));
2741 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2742 size_t offset = align_offset(chunk2mem(rawsp));
2743 char* asp = rawsp + offset;
2744 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
2745 mchunkptr sp = (mchunkptr)csp;
2746 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
2747 mchunkptr tnext = chunk_plus_offset(sp, ssize);
2748 mchunkptr p = tnext;
2749 int nfences = 0;
2750
2751 /* reset top to new space */
2752 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2753
2754 /* Set up segment record */
2755 assert(is_aligned(ss));
2756 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
2757 *ss = m->seg; /* Push current record */
2758 m->seg.base = tbase;
2759 m->seg.size = tsize;
2760 m->seg.sflags = mmapped;
2761 m->seg.next = ss;
2762
2763 /* Insert trailing fenceposts */
2764 for (;;) {
2765 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
2766 p->head = FENCEPOST_HEAD;
2767 ++nfences;
2768 if ((char*)(&(nextp->head)) < old_end)
2769 p = nextp;
2770 else
2771 break;
2772 }
2773 assert(nfences >= 2);
2774
2775 /* Insert the rest of old top into a bin as an ordinary free chunk */
2776 if (csp != old_top) {
2777 mchunkptr q = (mchunkptr)old_top;
2778 size_t psize = csp - old_top;
2779 mchunkptr tn = chunk_plus_offset(q, psize);
2780 set_free_with_pinuse(q, psize, tn);
2781 insert_chunk(m, q, psize);
2782 }
2783
2784 check_top_chunk(m, m->top);
2785}
2786
2787/* -------------------------- System allocation -------------------------- */
2788
2789/* Get memory from system using MORECORE or MMAP */
2790static void* sys_alloc(mstate m, size_t nb) {
2791 char* tbase = CMFAIL;
2792 size_t tsize = 0;
2793 flag_t mmap_flag = 0;
2794
2795 init_mparams();
2796
2797 /* Directly map large chunks */
2798 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
2799 void* mem = mmap_alloc(m, nb);
2800 if (mem != 0)
2801 return mem;
2802 }
2803
2804 /*
2805 Try getting memory in any of three ways (in most-preferred to
2806 least-preferred order):
2807 1. A call to MORECORE that can normally contiguously extend memory.
2808 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
2809 or main space is mmapped or a previous contiguous call failed)
2810 2. A call to MMAP new space (disabled if not HAVE_MMAP).
2811 Note that under the default settings, if MORECORE is unable to
2812 fulfill a request, and HAVE_MMAP is true, then mmap is
2813 used as a noncontiguous system allocator. This is a useful backup
2814 strategy for systems with holes in address spaces -- in this case
2815 sbrk cannot contiguously expand the heap, but mmap may be able to
2816 find space.
2817 3. A call to MORECORE that cannot usually contiguously extend memory.
2818 (disabled if not HAVE_MORECORE)
2819 */
2820
2821 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
2822 char* br = CMFAIL;
2823 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
2824 size_t asize = 0;
2825 ACQUIRE_MORECORE_LOCK();
2826
2827 if (ss == 0) { /* First time through or recovery */
2828 char* base = (char*)CALL_MORECORE(0);
2829 if (base != CMFAIL) {
2830 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2831 /* Adjust to end on a page boundary */
2832 if (!is_page_aligned(base))
2833 asize += (page_align((size_t)base) - (size_t)base);
2834 /* Can't call MORECORE if size is negative when treated as signed */
2835 if (asize < HALF_MAX_SIZE_T &&
2836 (br = (char*)(CALL_MORECORE(asize))) == base) {
2837 tbase = base;
2838 tsize = asize;
2839 }
2840 }
2841 }
2842 else {
2843 /* Subtract out existing available top space from MORECORE request. */
2844 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
2845 /* Use mem here only if it did continuously extend old space */
2846 if (asize < HALF_MAX_SIZE_T &&
2847 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
2848 tbase = br;
2849 tsize = asize;
2850 }
2851 }
2852
2853 if (tbase == CMFAIL) { /* Cope with partial failure */
2854 if (br != CMFAIL) { /* Try to use/extend the space we did get */
2855 if (asize < HALF_MAX_SIZE_T &&
2856 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
2857 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
2858 if (esize < HALF_MAX_SIZE_T) {
2859 char* end = (char*)CALL_MORECORE(esize);
2860 if (end != CMFAIL)
2861 asize += esize;
2862 else { /* Can't use; try to release */
2863 CALL_MORECORE(-asize);
2864 br = CMFAIL;
2865 }
2866 }
2867 }
2868 }
2869 if (br != CMFAIL) { /* Use the space we did get */
2870 tbase = br;
2871 tsize = asize;
2872 }
2873 else
2874 disable_contiguous(m); /* Don't try contiguous path in the future */
2875 }
2876
2877 RELEASE_MORECORE_LOCK();
2878 }
2879
2880 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
2881 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
2882 size_t rsize = granularity_align(req);
2883 if (rsize > nb) { /* Fail if wraps around zero */
2884 char* mp = (char*)(CALL_MMAP(rsize));
2885 if (mp != CMFAIL) {
2886 tbase = mp;
2887 tsize = rsize;
2888 mmap_flag = IS_MMAPPED_BIT;
2889 }
2890 }
2891 }
2892
2893 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
2894 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2895 if (asize < HALF_MAX_SIZE_T) {
2896 char* br = CMFAIL;
2897 char* end = CMFAIL;
2898 ACQUIRE_MORECORE_LOCK();
2899 br = (char*)(CALL_MORECORE(asize));
2900 end = (char*)(CALL_MORECORE(0));
2901 RELEASE_MORECORE_LOCK();
2902 if (br != CMFAIL && end != CMFAIL && br < end) {
2903 size_t ssize = end - br;
2904 if (ssize > nb + TOP_FOOT_SIZE) {
2905 tbase = br;
2906 tsize = ssize;
2907 }
2908 }
2909 }
2910 }
2911
2912 if (tbase != CMFAIL) {
2913
2914 if ((m->footprint += tsize) > m->max_footprint)
2915 m->max_footprint = m->footprint;
2916
2917 if (!is_initialized(m)) { /* first-time initialization */
2918 m->seg.base = m->least_addr = tbase;
2919 m->seg.size = tsize;
2920 m->seg.sflags = mmap_flag;
2921 m->magic = mparams.magic;
2922 init_bins(m);
2923 if (is_global(m))
2924 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2925 else {
2926 /* Offset top by embedded malloc_state */
2927 mchunkptr mn = next_chunk(mem2chunk(m));
2928 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
2929 }
2930 }
2931
2932 else {
2933 /* Try to merge with an existing segment */
2934 msegmentptr sp = &m->seg;
2935 while (sp != 0 && tbase != sp->base + sp->size)
2936 sp = sp->next;
2937 if (sp != 0 &&
2938 !is_extern_segment(sp) &&
2939 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
2940 segment_holds(sp, m->top)) { /* append */
2941 sp->size += tsize;
2942 init_top(m, m->top, m->topsize + tsize);
2943 }
2944 else {
2945 if (tbase < m->least_addr)
2946 m->least_addr = tbase;
2947 sp = &m->seg;
2948 while (sp != 0 && sp->base != tbase + tsize)
2949 sp = sp->next;
2950 if (sp != 0 &&
2951 !is_extern_segment(sp) &&
2952 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
2953 char* oldbase = sp->base;
2954 sp->base = tbase;
2955 sp->size += tsize;
2956 return prepend_alloc(m, tbase, oldbase, nb);
2957 }
2958 else
2959 add_segment(m, tbase, tsize, mmap_flag);
2960 }
2961 }
2962
2963 if (nb < m->topsize) { /* Allocate from new or extended top space */
2964 size_t rsize = m->topsize -= nb;
2965 mchunkptr p = m->top;
2966 mchunkptr r = m->top = chunk_plus_offset(p, nb);
2967 r->head = rsize | PINUSE_BIT;
2968 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2969 check_top_chunk(m, m->top);
2970 check_malloced_chunk(m, chunk2mem(p), nb);
2971 return chunk2mem(p);
2972 }
2973 }
2974
2975 MALLOC_FAILURE_ACTION;
2976 return 0;
2977}
2978
2979/* ----------------------- system deallocation -------------------------- */
2980
2981/* Unmap and unlink any mmapped segments that don't contain used chunks */
2982static size_t release_unused_segments(mstate m) {
2983 size_t released = 0;
2984 msegmentptr pred = &m->seg;
2985 msegmentptr sp = pred->next;
2986 while (sp != 0) {
2987 char* base = sp->base;
2988 size_t size = sp->size;
2989 msegmentptr next = sp->next;
2990 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
2991 mchunkptr p = align_as_chunk(base);
2992 size_t psize = chunksize(p);
2993 /* Can unmap if first chunk holds entire segment and not pinned */
2994 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
2995 tchunkptr tp = (tchunkptr)p;
2996 assert(segment_holds(sp, (char*)sp));
2997 if (p == m->dv) {
2998 m->dv = 0;
2999 m->dvsize = 0;
3000 }
3001 else {
3002 unlink_large_chunk(m, tp);
3003 }
3004 if (CALL_MUNMAP(base, size) == 0) {
3005 released += size;
3006 m->footprint -= size;
3007 /* unlink obsoleted record */
3008 sp = pred;
3009 sp->next = next;
3010 }
3011 else { /* back out if cannot unmap */
3012 insert_large_chunk(m, tp, psize);
3013 }
3014 }
3015 }
3016 pred = sp;
3017 sp = next;
3018 }
3019 return released;
3020}
3021
3022static int sys_trim(mstate m, size_t pad) {
3023 size_t released = 0;
3024 if (pad < MAX_REQUEST && is_initialized(m)) {
3025 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
3026
3027 if (m->topsize > pad) {
3028 /* Shrink top space in granularity-size units, keeping at least one */
3029 size_t unit = mparams.granularity;
3030 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
3031 SIZE_T_ONE) * unit;
3032 msegmentptr sp = segment_holding(m, (char*)m->top);
3033
3034 if (!is_extern_segment(sp)) {
3035 if (is_mmapped_segment(sp)) {
3036 if (HAVE_MMAP &&
3037 sp->size >= extra &&
3038 !has_segment_link(m, sp)) { /* can't shrink if pinned */
3039 size_t newsize = sp->size - extra;
3040 /* Prefer mremap, fall back to munmap */
3041 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
3042 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
3043 released = extra;
3044 }
3045 }
3046 }
3047 else if (HAVE_MORECORE) {
3048 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
3049 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
3050 ACQUIRE_MORECORE_LOCK();
3051 {
3052 /* Make sure end of memory is where we last set it. */
3053 char* old_br = (char*)(CALL_MORECORE(0));
3054 if (old_br == sp->base + sp->size) {
3055 char* rel_br = (char*)(CALL_MORECORE(-extra));
3056 char* new_br = (char*)(CALL_MORECORE(0));
3057 if (rel_br != CMFAIL && new_br < old_br)
3058 released = old_br - new_br;
3059 }
3060 }
3061 RELEASE_MORECORE_LOCK();
3062 }
3063 }
3064
3065 if (released != 0) {
3066 sp->size -= released;
3067 m->footprint -= released;
3068 init_top(m, m->top, m->topsize - released);
3069 check_top_chunk(m, m->top);
3070 }
3071 }
3072
3073 /* Unmap any unused mmapped segments */
3074 if (HAVE_MMAP)
3075 released += release_unused_segments(m);
3076
3077 /* On failure, disable autotrim to avoid repeated failed future calls */
3078 if (released == 0)
3079 m->trim_check = MAX_SIZE_T;
3080 }
3081
3082 return (released != 0)? 1 : 0;
3083}
3084
3085/* ---------------------------- malloc support --------------------------- */
3086
3087/* allocate a large request from the best fitting chunk in a treebin */
3088static void* tmalloc_large(mstate m, size_t nb) {
3089 tchunkptr v = 0;
3090 size_t rsize = -nb; /* Unsigned negation */
3091 tchunkptr t;
3092 bindex_t idx;
3093 compute_tree_index(nb, idx);
3094
3095 if ((t = *treebin_at(m, idx)) != 0) {
3096 /* Traverse tree for this bin looking for node with size == nb */
3097 size_t sizebits = nb << leftshift_for_tree_index(idx);
3098 tchunkptr rst = 0; /* The deepest untaken right subtree */
3099 for (;;) {
3100 tchunkptr rt;
3101 size_t trem = chunksize(t) - nb;
3102 if (trem < rsize) {
3103 v = t;
3104 if ((rsize = trem) == 0)
3105 break;
3106 }
3107 rt = t->child[1];
3108 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3109 if (rt != 0 && rt != t)
3110 rst = rt;
3111 if (t == 0) {
3112 t = rst; /* set t to least subtree holding sizes > nb */
3113 break;
3114 }
3115 sizebits <<= 1;
3116 }
3117 }
3118
3119 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3120 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3121 if (leftbits != 0) {
3122 bindex_t i;
3123 binmap_t leastbit = least_bit(leftbits);
3124 compute_bit2idx(leastbit, i);
3125 t = *treebin_at(m, i);
3126 }
3127 }
3128
3129 while (t != 0) { /* find smallest of tree or subtree */
3130 size_t trem = chunksize(t) - nb;
3131 if (trem < rsize) {
3132 rsize = trem;
3133 v = t;
3134 }
3135 t = leftmost_child(t);
3136 }
3137
3138 /* If dv is a better fit, return 0 so malloc will use it */
3139 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3140 if (RTCHECK(ok_address(m, v))) { /* split */
3141 mchunkptr r = chunk_plus_offset(v, nb);
3142 assert(chunksize(v) == rsize + nb);
3143 if (RTCHECK(ok_next(v, r))) {
3144 unlink_large_chunk(m, v);
3145 if (rsize < MIN_CHUNK_SIZE)
3146 set_inuse_and_pinuse(m, v, (rsize + nb));
3147 else {
3148 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3149 set_size_and_pinuse_of_free_chunk(r, rsize);
3150 insert_chunk(m, r, rsize);
3151 }
3152 return chunk2mem(v);
3153 }
3154 }
3155 CORRUPTION_ERROR_ACTION(m);
3156 }
3157 return 0;
3158}
3159
3160/* allocate a small request from the best fitting chunk in a treebin */
3161static void* tmalloc_small(mstate m, size_t nb) {
3162 tchunkptr t, v;
3163 size_t rsize;
3164 bindex_t i;
3165 binmap_t leastbit = least_bit(m->treemap);
3166 compute_bit2idx(leastbit, i);
3167
3168 v = t = *treebin_at(m, i);
3169 rsize = chunksize(t) - nb;
3170
3171 while ((t = leftmost_child(t)) != 0) {
3172 size_t trem = chunksize(t) - nb;
3173 if (trem < rsize) {
3174 rsize = trem;
3175 v = t;
3176 }
3177 }
3178
3179 if (RTCHECK(ok_address(m, v))) {
3180 mchunkptr r = chunk_plus_offset(v, nb);
3181 assert(chunksize(v) == rsize + nb);
3182 if (RTCHECK(ok_next(v, r))) {
3183 unlink_large_chunk(m, v);
3184 if (rsize < MIN_CHUNK_SIZE)
3185 set_inuse_and_pinuse(m, v, (rsize + nb));
3186 else {
3187 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3188 set_size_and_pinuse_of_free_chunk(r, rsize);
3189 replace_dv(m, r, rsize);
3190 }
3191 return chunk2mem(v);
3192 }
3193 }
3194
3195 CORRUPTION_ERROR_ACTION(m);
3196 return 0;
3197}
3198
3199/* --------------------------- realloc support --------------------------- */
3200
3201static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3202 if (bytes >= MAX_REQUEST) {
3203 MALLOC_FAILURE_ACTION;
3204 return 0;
3205 }
3206 if (!PREACTION(m)) {
3207 mchunkptr oldp = mem2chunk(oldmem);
3208 size_t oldsize = chunksize(oldp);
3209 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3210 mchunkptr newp = 0;
3211 void* extra = 0;
3212
3213 /* Try to either shrink or extend into top. Else malloc-copy-free */
3214
3215 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3216 ok_next(oldp, next) && ok_pinuse(next))) {
3217 size_t nb = request2size(bytes);
3218 if (is_mmapped(oldp))
3219 newp = mmap_resize(m, oldp, nb);
3220 else if (oldsize >= nb) { /* already big enough */
3221 size_t rsize = oldsize - nb;
3222 newp = oldp;
3223 if (rsize >= MIN_CHUNK_SIZE) {
3224 mchunkptr remainder = chunk_plus_offset(newp, nb);
3225 set_inuse(m, newp, nb);
3226 set_inuse(m, remainder, rsize);
3227 extra = chunk2mem(remainder);
3228 }
3229 }
3230 else if (next == m->top && oldsize + m->topsize > nb) {
3231 /* Expand into top */
3232 size_t newsize = oldsize + m->topsize;
3233 size_t newtopsize = newsize - nb;
3234 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3235 set_inuse(m, oldp, nb);
3236 newtop->head = newtopsize |PINUSE_BIT;
3237 m->top = newtop;
3238 m->topsize = newtopsize;
3239 newp = oldp;
3240 }
3241 }
3242 else {
3243 USAGE_ERROR_ACTION(m, oldmem);
3244 POSTACTION(m);
3245 return 0;
3246 }
3247
3248 POSTACTION(m);
3249
3250 if (newp != 0) {
3251 if (extra != 0) {
3252 internal_free(m, extra);
3253 }
3254 check_inuse_chunk(m, newp);
3255 return chunk2mem(newp);
3256 }
3257 else {
3258 void* newmem = internal_malloc(m, bytes);
3259 if (newmem != 0) {
3260 size_t oc = oldsize - overhead_for(oldp);
3261 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3262 internal_free(m, oldmem);
3263 }
3264 return newmem;
3265 }
3266 }
3267 return 0;
3268}
3269
3270/* --------------------------- memalign support -------------------------- */
3271
3272static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3273 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3274 return internal_malloc(m, bytes);
3275 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3276 alignment = MIN_CHUNK_SIZE;
3277 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3278 size_t a = MALLOC_ALIGNMENT << 1;
3279 while (a < alignment) a <<= 1;
3280 alignment = a;
3281 }
3282
3283 if (bytes >= MAX_REQUEST - alignment) {
3284 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3285 MALLOC_FAILURE_ACTION;
3286 }
3287 }
3288 else {
3289 size_t nb = request2size(bytes);
3290 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3291 char* mem = (char*)internal_malloc(m, req);
3292 if (mem != 0) {
3293 void* leader = 0;
3294 void* trailer = 0;
3295 mchunkptr p = mem2chunk(mem);
3296
3297 if (PREACTION(m)) return 0;
3298 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3299 /*
3300 Find an aligned spot inside chunk. Since we need to give
3301 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3302 the first calculation places us at a spot with less than
3303 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3304 We've allocated enough total room so that this is always
3305 possible.
3306 */
3307 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3308 alignment -
3309 SIZE_T_ONE)) &
3310 -alignment));
3311 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3312 br : br+alignment;
3313 mchunkptr newp = (mchunkptr)pos;
3314 size_t leadsize = pos - (char*)(p);
3315 size_t newsize = chunksize(p) - leadsize;
3316
3317 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3318 newp->prev_foot = p->prev_foot + leadsize;
3319 newp->head = (newsize|CINUSE_BIT);
3320 }
3321 else { /* Otherwise, give back leader, use the rest */
3322 set_inuse(m, newp, newsize);
3323 set_inuse(m, p, leadsize);
3324 leader = chunk2mem(p);
3325 }
3326 p = newp;
3327 }
3328
3329 /* Give back spare room at the end */
3330 if (!is_mmapped(p)) {
3331 size_t size = chunksize(p);
3332 if (size > nb + MIN_CHUNK_SIZE) {
3333 size_t remainder_size = size - nb;
3334 mchunkptr remainder = chunk_plus_offset(p, nb);
3335 set_inuse(m, p, nb);
3336 set_inuse(m, remainder, remainder_size);
3337 trailer = chunk2mem(remainder);
3338 }
3339 }
3340
3341 assert (chunksize(p) >= nb);
3342 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3343 check_inuse_chunk(m, p);
3344 POSTACTION(m);
3345 if (leader != 0) {
3346 internal_free(m, leader);
3347 }
3348 if (trailer != 0) {
3349 internal_free(m, trailer);
3350 }
3351 return chunk2mem(p);
3352 }
3353 }
3354 return 0;
3355}
3356
3357/* ------------------------ comalloc/coalloc support --------------------- */
3358
3359static void** ialloc(mstate m,
3360 size_t n_elements,
3361 size_t* sizes,
3362 int opts,
3363 void* chunks[]) {
3364 /*
3365 This provides common support for independent_X routines, handling
3366 all of the combinations that can result.
3367
3368 The opts arg has:
3369 bit 0 set if all elements are same size (using sizes[0])
3370 bit 1 set if elements should be zeroed
3371 */
3372
3373 size_t element_size; /* chunksize of each element, if all same */
3374 size_t contents_size; /* total size of elements */
3375 size_t array_size; /* request size of pointer array */
3376 void* mem; /* malloced aggregate space */
3377 mchunkptr p; /* corresponding chunk */
3378 size_t remainder_size; /* remaining bytes while splitting */
3379 void** marray; /* either "chunks" or malloced ptr array */
3380 mchunkptr array_chunk; /* chunk for malloced ptr array */
3381 flag_t was_enabled; /* to disable mmap */
3382 size_t size;
3383 size_t i;
3384
3385 /* compute array length, if needed */
3386 if (chunks != 0) {
3387 if (n_elements == 0)
3388 return chunks; /* nothing to do */
3389 marray = chunks;
3390 array_size = 0;
3391 }
3392 else {
3393 /* if empty req, must still return chunk representing empty array */
3394 if (n_elements == 0)
3395 return (void**)internal_malloc(m, 0);
3396 marray = 0;
3397 array_size = request2size(n_elements * (sizeof(void*)));
3398 }
3399
3400 /* compute total element size */
3401 if (opts & 0x1) { /* all-same-size */
3402 element_size = request2size(*sizes);
3403 contents_size = n_elements * element_size;
3404 }
3405 else { /* add up all the sizes */
3406 element_size = 0;
3407 contents_size = 0;
3408 for (i = 0; i != n_elements; ++i)
3409 contents_size += request2size(sizes[i]);
3410 }
3411
3412 size = contents_size + array_size;
3413
3414 /*
3415 Allocate the aggregate chunk. First disable direct-mmapping so
3416 malloc won't use it, since we would not be able to later
3417 free/realloc space internal to a segregated mmap region.
3418 */
3419 was_enabled = use_mmap(m);
3420 disable_mmap(m);
3421 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3422 if (was_enabled)
3423 enable_mmap(m);
3424 if (mem == 0)
3425 return 0;
3426
3427 if (PREACTION(m)) return 0;
3428 p = mem2chunk(mem);
3429 remainder_size = chunksize(p);
3430
3431 assert(!is_mmapped(p));
3432
3433 if (opts & 0x2) { /* optionally clear the elements */
3434 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3435 }
3436
3437 /* If not provided, allocate the pointer array as final part of chunk */
3438 if (marray == 0) {
3439 size_t array_chunk_size;
3440 array_chunk = chunk_plus_offset(p, contents_size);
3441 array_chunk_size = remainder_size - contents_size;
3442 marray = (void**) (chunk2mem(array_chunk));
3443 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3444 remainder_size = contents_size;
3445 }
3446
3447 /* split out elements */
3448 for (i = 0; ; ++i) {
3449 marray[i] = chunk2mem(p);
3450 if (i != n_elements-1) {
3451 if (element_size != 0)
3452 size = element_size;
3453 else
3454 size = request2size(sizes[i]);
3455 remainder_size -= size;
3456 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3457 p = chunk_plus_offset(p, size);
3458 }
3459 else { /* the final element absorbs any overallocation slop */
3460 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3461 break;
3462 }
3463 }
3464
3465#if DEBUG
3466 if (marray != chunks) {
3467 /* final element must have exactly exhausted chunk */
3468 if (element_size != 0) {
3469 assert(remainder_size == element_size);
3470 }
3471 else {
3472 assert(remainder_size == request2size(sizes[i]));
3473 }
3474 check_inuse_chunk(m, mem2chunk(marray));
3475 }
3476 for (i = 0; i != n_elements; ++i)
3477 check_inuse_chunk(m, mem2chunk(marray[i]));
3478
3479#endif /* DEBUG */
3480
3481 POSTACTION(m);
3482 return marray;
3483}
3484
3485
3486/* -------------------------- public routines ---------------------------- */
3487
3488#if !ONLY_MSPACES
3489
3490void* dlmalloc(size_t bytes) {
3491 /*
3492 Basic algorithm:
3493 If a small request (< 256 bytes minus per-chunk overhead):
3494 1. If one exists, use a remainderless chunk in associated smallbin.
3495 (Remainderless means that there are too few excess bytes to
3496 represent as a chunk.)
3497 2. If it is big enough, use the dv chunk, which is normally the
3498 chunk adjacent to the one used for the most recent small request.
3499 3. If one exists, split the smallest available chunk in a bin,
3500 saving remainder in dv.
3501 4. If it is big enough, use the top chunk.
3502 5. If available, get memory from system and use it
3503 Otherwise, for a large request:
3504 1. Find the smallest available binned chunk that fits, and use it
3505 if it is better fitting than dv chunk, splitting if necessary.
3506 2. If better fitting than any binned chunk, use the dv chunk.
3507 3. If it is big enough, use the top chunk.
3508 4. If request size >= mmap threshold, try to directly mmap this chunk.
3509 5. If available, get memory from system and use it
3510
3511 The ugly goto's here ensure that postaction occurs along all paths.
3512 */
3513
3514 if (!PREACTION(gm)) {
3515 void* mem;
3516 size_t nb;
3517 if (bytes <= MAX_SMALL_REQUEST) {
3518 bindex_t idx;
3519 binmap_t smallbits;
3520 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3521 idx = small_index(nb);
3522 smallbits = gm->smallmap >> idx;
3523
3524 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3525 mchunkptr b, p;
3526 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3527 b = smallbin_at(gm, idx);
3528 p = b->fd;
3529 assert(chunksize(p) == small_index2size(idx));
3530 unlink_first_small_chunk(gm, b, p, idx);
3531 set_inuse_and_pinuse(gm, p, small_index2size(idx));
3532 mem = chunk2mem(p);
3533 check_malloced_chunk(gm, mem, nb);
3534 goto postaction;
3535 }
3536
3537 else if (nb > gm->dvsize) {
3538 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3539 mchunkptr b, p, r;
3540 size_t rsize;
3541 bindex_t i;
3542 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3543 binmap_t leastbit = least_bit(leftbits);
3544 compute_bit2idx(leastbit, i);
3545 b = smallbin_at(gm, i);
3546 p = b->fd;
3547 assert(chunksize(p) == small_index2size(i));
3548 unlink_first_small_chunk(gm, b, p, i);
3549 rsize = small_index2size(i) - nb;
3550 /* Fit here cannot be remainderless if 4byte sizes */
3551 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3552 set_inuse_and_pinuse(gm, p, small_index2size(i));
3553 else {
3554 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3555 r = chunk_plus_offset(p, nb);
3556 set_size_and_pinuse_of_free_chunk(r, rsize);
3557 replace_dv(gm, r, rsize);
3558 }
3559 mem = chunk2mem(p);
3560 check_malloced_chunk(gm, mem, nb);
3561 goto postaction;
3562 }
3563
3564 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
3565 check_malloced_chunk(gm, mem, nb);
3566 goto postaction;
3567 }
3568 }
3569 }
3570 else if (bytes >= MAX_REQUEST)
3571 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3572 else {
3573 nb = pad_request(bytes);
3574 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
3575 check_malloced_chunk(gm, mem, nb);
3576 goto postaction;
3577 }
3578 }
3579
3580 if (nb <= gm->dvsize) {
3581 size_t rsize = gm->dvsize - nb;
3582 mchunkptr p = gm->dv;
3583 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3584 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
3585 gm->dvsize = rsize;
3586 set_size_and_pinuse_of_free_chunk(r, rsize);
3587 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3588 }
3589 else { /* exhaust dv */
3590 size_t dvs = gm->dvsize;
3591 gm->dvsize = 0;
3592 gm->dv = 0;
3593 set_inuse_and_pinuse(gm, p, dvs);
3594 }
3595 mem = chunk2mem(p);
3596 check_malloced_chunk(gm, mem, nb);
3597 goto postaction;
3598 }
3599
3600 else if (nb < gm->topsize) { /* Split top */
3601 size_t rsize = gm->topsize -= nb;
3602 mchunkptr p = gm->top;
3603 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
3604 r->head = rsize | PINUSE_BIT;
3605 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3606 mem = chunk2mem(p);
3607 check_top_chunk(gm, gm->top);
3608 check_malloced_chunk(gm, mem, nb);
3609 goto postaction;
3610 }
3611
3612 mem = sys_alloc(gm, nb);
3613
3614 postaction:
3615 POSTACTION(gm);
3616 return mem;
3617 }
3618
3619 return 0;
3620}
3621
3622void dlfree(void* mem) {
3623 /*
3624 Consolidate freed chunks with preceeding or succeeding bordering
3625 free chunks, if they exist, and then place in a bin. Intermixed
3626 with special cases for top, dv, mmapped chunks, and usage errors.
3627 */
3628
3629 if (mem != 0) {
3630 mchunkptr p = mem2chunk(mem);
3631#if FOOTERS
3632 mstate fm = get_mstate_for(p);
3633 if (!ok_magic(fm)) {
3634 USAGE_ERROR_ACTION(fm, p);
3635 return;
3636 }
3637#else /* FOOTERS */
3638#define fm gm
3639#endif /* FOOTERS */
3640 if (!PREACTION(fm)) {
3641 check_inuse_chunk(fm, p);
3642 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3643 size_t psize = chunksize(p);
3644 mchunkptr next = chunk_plus_offset(p, psize);
3645 if (!pinuse(p)) {
3646 size_t prevsize = p->prev_foot;
3647 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3648 prevsize &= ~IS_MMAPPED_BIT;
3649 psize += prevsize + MMAP_FOOT_PAD;
3650 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3651 fm->footprint -= psize;
3652 goto postaction;
3653 }
3654 else {
3655 mchunkptr prev = chunk_minus_offset(p, prevsize);
3656 psize += prevsize;
3657 p = prev;
3658 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3659 if (p != fm->dv) {
3660 unlink_chunk(fm, p, prevsize);
3661 }
3662 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3663 fm->dvsize = psize;
3664 set_free_with_pinuse(p, psize, next);
3665 goto postaction;
3666 }
3667 }
3668 else
3669 goto erroraction;
3670 }
3671 }
3672
3673 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3674 if (!cinuse(next)) { /* consolidate forward */
3675 if (next == fm->top) {
3676 size_t tsize = fm->topsize += psize;
3677 fm->top = p;
3678 p->head = tsize | PINUSE_BIT;
3679 if (p == fm->dv) {
3680 fm->dv = 0;
3681 fm->dvsize = 0;
3682 }
3683 if (should_trim(fm, tsize))
3684 sys_trim(fm, 0);
3685 goto postaction;
3686 }
3687 else if (next == fm->dv) {
3688 size_t dsize = fm->dvsize += psize;
3689 fm->dv = p;
3690 set_size_and_pinuse_of_free_chunk(p, dsize);
3691 goto postaction;
3692 }
3693 else {
3694 size_t nsize = chunksize(next);
3695 psize += nsize;
3696 unlink_chunk(fm, next, nsize);
3697 set_size_and_pinuse_of_free_chunk(p, psize);
3698 if (p == fm->dv) {
3699 fm->dvsize = psize;
3700 goto postaction;
3701 }
3702 }
3703 }
3704 else
3705 set_free_with_pinuse(p, psize, next);
3706 insert_chunk(fm, p, psize);
3707 check_free_chunk(fm, p);
3708 goto postaction;
3709 }
3710 }
3711 erroraction:
3712 USAGE_ERROR_ACTION(fm, p);
3713 postaction:
3714 POSTACTION(fm);
3715 }
3716 }
3717#if !FOOTERS
3718#undef fm
3719#endif /* FOOTERS */
3720}
3721
3722void* dlcalloc(size_t n_elements, size_t elem_size) {
3723 void* mem;
3724 size_t req = 0;
3725 if (n_elements != 0) {
3726 req = n_elements * elem_size;
3727 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
3728 (req / n_elements != elem_size))
3729 req = MAX_SIZE_T; /* force downstream failure on overflow */
3730 }
3731 mem = dlmalloc(req);
3732 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
3733 memset(mem, 0, req);
3734 return mem;
3735}
3736
3737void* dlrealloc(void* oldmem, size_t bytes) {
3738 if (oldmem == 0)
3739 return dlmalloc(bytes);
3740#ifdef REALLOC_ZERO_BYTES_FREES
3741 if (bytes == 0) {
3742 dlfree(oldmem);
3743 return 0;
3744 }
3745#endif /* REALLOC_ZERO_BYTES_FREES */
3746 else {
3747#if ! FOOTERS
3748 mstate m = gm;
3749#else /* FOOTERS */
3750 mstate m = get_mstate_for(mem2chunk(oldmem));
3751 if (!ok_magic(m)) {
3752 USAGE_ERROR_ACTION(m, oldmem);
3753 return 0;
3754 }
3755#endif /* FOOTERS */
3756 return internal_realloc(m, oldmem, bytes);
3757 }
3758}
3759
3760void* dlmemalign(size_t alignment, size_t bytes) {
3761 return internal_memalign(gm, alignment, bytes);
3762}
3763
3764void** dlindependent_calloc(size_t n_elements, size_t elem_size,
3765 void* chunks[]) {
3766 size_t sz = elem_size; /* serves as 1-element array */
3767 return ialloc(gm, n_elements, &sz, 3, chunks);
3768}
3769
3770void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
3771 void* chunks[]) {
3772 return ialloc(gm, n_elements, sizes, 0, chunks);
3773}
3774
3775void* dlvalloc(size_t bytes) {
3776 size_t pagesz;
3777 init_mparams();
3778 pagesz = mparams.page_size;
3779 return dlmemalign(pagesz, bytes);
3780}
3781
3782void* dlpvalloc(size_t bytes) {
3783 size_t pagesz;
3784 init_mparams();
3785 pagesz = mparams.page_size;
3786 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
3787}
3788
3789int dlmalloc_trim(size_t pad) {
3790 int result = 0;
3791 if (!PREACTION(gm)) {
3792 result = sys_trim(gm, pad);
3793 POSTACTION(gm);
3794 }
3795 return result;
3796}
3797
3798size_t dlmalloc_footprint(void) {
3799 return gm->footprint;
3800}
3801
3802size_t dlmalloc_max_footprint(void) {
3803 return gm->max_footprint;
3804}
3805
3806#if !NO_MALLINFO
3807struct mallinfo dlmallinfo(void) {
3808 return internal_mallinfo(gm);
3809}
3810#endif /* NO_MALLINFO */
3811
3812void dlmalloc_stats() {
3813 internal_malloc_stats(gm);
3814}
3815
3816size_t dlmalloc_usable_size(void* mem) {
3817 if (mem != 0) {
3818 mchunkptr p = mem2chunk(mem);
3819 if (cinuse(p))
3820 return chunksize(p) - overhead_for(p);
3821 }
3822 return 0;
3823}
3824
3825int dlmallopt(int param_number, int value) {
3826 return change_mparam(param_number, value);
3827}
3828
3829#endif /* !ONLY_MSPACES */
3830
3831/* ----------------------------- user mspaces ---------------------------- */
3832
3833#if MSPACES
3834
3835static mstate init_user_mstate(char* tbase, size_t tsize) {
3836 size_t msize = pad_request(sizeof(struct malloc_state));
3837 mchunkptr mn;
3838 mchunkptr msp = align_as_chunk(tbase);
3839 mstate m = (mstate)(chunk2mem(msp));
3840 memset(m, 0, msize);
3841 INITIAL_LOCK(&m->mutex);
3842 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
3843 m->seg.base = m->least_addr = tbase;
3844 m->seg.size = m->footprint = m->max_footprint = tsize;
3845 m->magic = mparams.magic;
3846 m->mflags = mparams.default_mflags;
3847 disable_contiguous(m);
3848 init_bins(m);
3849 mn = next_chunk(mem2chunk(m));
3850 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
3851 check_top_chunk(m, m->top);
3852 return m;
3853}
3854
3855mspace create_mspace(size_t capacity, int locked) {
3856 mstate m = 0;
3857 size_t msize = pad_request(sizeof(struct malloc_state));
3858 init_mparams(); /* Ensure pagesize etc initialized */
3859
3860 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3861 size_t rs = ((capacity == 0)? mparams.granularity :
3862 (capacity + TOP_FOOT_SIZE + msize));
3863 size_t tsize = granularity_align(rs);
3864 char* tbase = (char*)(CALL_MMAP(tsize));
3865 if (tbase != CMFAIL) {
3866 m = init_user_mstate(tbase, tsize);
3867 m->seg.sflags = IS_MMAPPED_BIT;
3868 set_lock(m, locked);
3869 }
3870 }
3871 return (mspace)m;
3872}
3873
3874mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
3875 mstate m = 0;
3876 size_t msize = pad_request(sizeof(struct malloc_state));
3877 init_mparams(); /* Ensure pagesize etc initialized */
3878
3879 if (capacity > msize + TOP_FOOT_SIZE &&
3880 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3881 m = init_user_mstate((char*)base, capacity);
3882 m->seg.sflags = EXTERN_BIT;
3883 set_lock(m, locked);
3884 }
3885 return (mspace)m;
3886}
3887
3888size_t destroy_mspace(mspace msp) {
3889 size_t freed = 0;
3890 mstate ms = (mstate)msp;
3891 if (ok_magic(ms)) {
3892 msegmentptr sp = &ms->seg;
3893 while (sp != 0) {
3894 char* base = sp->base;
3895 size_t size = sp->size;
3896 flag_t flag = sp->sflags;
3897 sp = sp->next;
3898 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
3899 CALL_MUNMAP(base, size) == 0)
3900 freed += size;
3901 }
3902 }
3903 else {
3904 USAGE_ERROR_ACTION(ms,ms);
3905 }
3906 return freed;
3907}
3908
3909/*
3910 mspace versions of routines are near-clones of the global
3911 versions. This is not so nice but better than the alternatives.
3912*/
3913
3914
3915void* mspace_malloc(mspace msp, size_t bytes) {
3916 mstate ms = (mstate)msp;
3917 if (!ok_magic(ms)) {
3918 USAGE_ERROR_ACTION(ms,ms);
3919 return 0;
3920 }
3921 if (!PREACTION(ms)) {
3922 void* mem;
3923 size_t nb;
3924 if (bytes <= MAX_SMALL_REQUEST) {
3925 bindex_t idx;
3926 binmap_t smallbits;
3927 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3928 idx = small_index(nb);
3929 smallbits = ms->smallmap >> idx;
3930
3931 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3932 mchunkptr b, p;
3933 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3934 b = smallbin_at(ms, idx);
3935 p = b->fd;
3936 assert(chunksize(p) == small_index2size(idx));
3937 unlink_first_small_chunk(ms, b, p, idx);
3938 set_inuse_and_pinuse(ms, p, small_index2size(idx));
3939 mem = chunk2mem(p);
3940 check_malloced_chunk(ms, mem, nb);
3941 goto postaction;
3942 }
3943
3944 else if (nb > ms->dvsize) {
3945 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3946 mchunkptr b, p, r;
3947 size_t rsize;
3948 bindex_t i;
3949 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3950 binmap_t leastbit = least_bit(leftbits);
3951 compute_bit2idx(leastbit, i);
3952 b = smallbin_at(ms, i);
3953 p = b->fd;
3954 assert(chunksize(p) == small_index2size(i));
3955 unlink_first_small_chunk(ms, b, p, i);
3956 rsize = small_index2size(i) - nb;
3957 /* Fit here cannot be remainderless if 4byte sizes */
3958 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3959 set_inuse_and_pinuse(ms, p, small_index2size(i));
3960 else {
3961 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3962 r = chunk_plus_offset(p, nb);
3963 set_size_and_pinuse_of_free_chunk(r, rsize);
3964 replace_dv(ms, r, rsize);
3965 }
3966 mem = chunk2mem(p);
3967 check_malloced_chunk(ms, mem, nb);
3968 goto postaction;
3969 }
3970
3971 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
3972 check_malloced_chunk(ms, mem, nb);
3973 goto postaction;
3974 }
3975 }
3976 }
3977 else if (bytes >= MAX_REQUEST)
3978 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3979 else {
3980 nb = pad_request(bytes);
3981 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
3982 check_malloced_chunk(ms, mem, nb);
3983 goto postaction;
3984 }
3985 }
3986
3987 if (nb <= ms->dvsize) {
3988 size_t rsize = ms->dvsize - nb;
3989 mchunkptr p = ms->dv;
3990 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3991 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
3992 ms->dvsize = rsize;
3993 set_size_and_pinuse_of_free_chunk(r, rsize);
3994 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3995 }
3996 else { /* exhaust dv */
3997 size_t dvs = ms->dvsize;
3998 ms->dvsize = 0;
3999 ms->dv = 0;
4000 set_inuse_and_pinuse(ms, p, dvs);
4001 }
4002 mem = chunk2mem(p);
4003 check_malloced_chunk(ms, mem, nb);
4004 goto postaction;
4005 }
4006
4007 else if (nb < ms->topsize) { /* Split top */
4008 size_t rsize = ms->topsize -= nb;
4009 mchunkptr p = ms->top;
4010 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
4011 r->head = rsize | PINUSE_BIT;
4012 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
4013 mem = chunk2mem(p);
4014 check_top_chunk(ms, ms->top);
4015 check_malloced_chunk(ms, mem, nb);
4016 goto postaction;
4017 }
4018
4019 mem = sys_alloc(ms, nb);
4020
4021 postaction:
4022 POSTACTION(ms);
4023 return mem;
4024 }
4025
4026 return 0;
4027}
4028
4029void mspace_free(mspace msp, void* mem) {
4030 if (mem != 0) {
4031 mchunkptr p = mem2chunk(mem);
4032#if FOOTERS
4033 mstate fm = get_mstate_for(p);
4034#else /* FOOTERS */
4035 mstate fm = (mstate)msp;
4036#endif /* FOOTERS */
4037 if (!ok_magic(fm)) {
4038 USAGE_ERROR_ACTION(fm, p);
4039 return;
4040 }
4041 if (!PREACTION(fm)) {
4042 check_inuse_chunk(fm, p);
4043 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4044 size_t psize = chunksize(p);
4045 mchunkptr next = chunk_plus_offset(p, psize);
4046 if (!pinuse(p)) {
4047 size_t prevsize = p->prev_foot;
4048 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4049 prevsize &= ~IS_MMAPPED_BIT;
4050 psize += prevsize + MMAP_FOOT_PAD;
4051 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4052 fm->footprint -= psize;
4053 goto postaction;
4054 }
4055 else {
4056 mchunkptr prev = chunk_minus_offset(p, prevsize);
4057 psize += prevsize;
4058 p = prev;
4059 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4060 if (p != fm->dv) {
4061 unlink_chunk(fm, p, prevsize);
4062 }
4063 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4064 fm->dvsize = psize;
4065 set_free_with_pinuse(p, psize, next);
4066 goto postaction;
4067 }
4068 }
4069 else
4070 goto erroraction;
4071 }
4072 }
4073
4074 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4075 if (!cinuse(next)) { /* consolidate forward */
4076 if (next == fm->top) {
4077 size_t tsize = fm->topsize += psize;
4078 fm->top = p;
4079 p->head = tsize | PINUSE_BIT;
4080 if (p == fm->dv) {
4081 fm->dv = 0;
4082 fm->dvsize = 0;
4083 }
4084 if (should_trim(fm, tsize))
4085 sys_trim(fm, 0);
4086 goto postaction;
4087 }
4088 else if (next == fm->dv) {
4089 size_t dsize = fm->dvsize += psize;
4090 fm->dv = p;
4091 set_size_and_pinuse_of_free_chunk(p, dsize);
4092 goto postaction;
4093 }
4094 else {
4095 size_t nsize = chunksize(next);
4096 psize += nsize;
4097 unlink_chunk(fm, next, nsize);
4098 set_size_and_pinuse_of_free_chunk(p, psize);
4099 if (p == fm->dv) {
4100 fm->dvsize = psize;
4101 goto postaction;
4102 }
4103 }
4104 }
4105 else
4106 set_free_with_pinuse(p, psize, next);
4107 insert_chunk(fm, p, psize);
4108 check_free_chunk(fm, p);
4109 goto postaction;
4110 }
4111 }
4112 erroraction:
4113 USAGE_ERROR_ACTION(fm, p);
4114 postaction:
4115 POSTACTION(fm);
4116 }
4117 }
4118}
4119
4120void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4121 void* mem;
4122 size_t req = 0;
4123 mstate ms = (mstate)msp;
4124 if (!ok_magic(ms)) {
4125 USAGE_ERROR_ACTION(ms,ms);
4126 return 0;
4127 }
4128 if (n_elements != 0) {
4129 req = n_elements * elem_size;
4130 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4131 (req / n_elements != elem_size))
4132 req = MAX_SIZE_T; /* force downstream failure on overflow */
4133 }
4134 mem = internal_malloc(ms, req);
4135 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4136 memset(mem, 0, req);
4137 return mem;
4138}
4139
4140void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4141 if (oldmem == 0)
4142 return mspace_malloc(msp, bytes);
4143#ifdef REALLOC_ZERO_BYTES_FREES
4144 if (bytes == 0) {
4145 mspace_free(msp, oldmem);
4146 return 0;
4147 }
4148#endif /* REALLOC_ZERO_BYTES_FREES */
4149 else {
4150#if FOOTERS
4151 mchunkptr p = mem2chunk(oldmem);
4152 mstate ms = get_mstate_for(p);
4153#else /* FOOTERS */
4154 mstate ms = (mstate)msp;
4155#endif /* FOOTERS */
4156 if (!ok_magic(ms)) {
4157 USAGE_ERROR_ACTION(ms,ms);
4158 return 0;
4159 }
4160 return internal_realloc(ms, oldmem, bytes);
4161 }
4162}
4163
4164void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4165 mstate ms = (mstate)msp;
4166 if (!ok_magic(ms)) {
4167 USAGE_ERROR_ACTION(ms,ms);
4168 return 0;
4169 }
4170 return internal_memalign(ms, alignment, bytes);
4171}
4172
4173void** mspace_independent_calloc(mspace msp, size_t n_elements,
4174 size_t elem_size, void* chunks[]) {
4175 size_t sz = elem_size; /* serves as 1-element array */
4176 mstate ms = (mstate)msp;
4177 if (!ok_magic(ms)) {
4178 USAGE_ERROR_ACTION(ms,ms);
4179 return 0;
4180 }
4181 return ialloc(ms, n_elements, &sz, 3, chunks);
4182}
4183
4184void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4185 size_t sizes[], void* chunks[]) {
4186 mstate ms = (mstate)msp;
4187 if (!ok_magic(ms)) {
4188 USAGE_ERROR_ACTION(ms,ms);
4189 return 0;
4190 }
4191 return ialloc(ms, n_elements, sizes, 0, chunks);
4192}
4193
4194int mspace_trim(mspace msp, size_t pad) {
4195 int result = 0;
4196 mstate ms = (mstate)msp;
4197 if (ok_magic(ms)) {
4198 if (!PREACTION(ms)) {
4199 result = sys_trim(ms, pad);
4200 POSTACTION(ms);
4201 }
4202 }
4203 else {
4204 USAGE_ERROR_ACTION(ms,ms);
4205 }
4206 return result;
4207}
4208
4209void mspace_malloc_stats(mspace msp) {
4210 mstate ms = (mstate)msp;
4211 if (ok_magic(ms)) {
4212 internal_malloc_stats(ms);
4213 }
4214 else {
4215 USAGE_ERROR_ACTION(ms,ms);
4216 }
4217}
4218
4219size_t mspace_footprint(mspace msp) {
4220 size_t result;
4221 mstate ms = (mstate)msp;
4222 if (ok_magic(ms)) {
4223 result = ms->footprint;
4224 }
4225 USAGE_ERROR_ACTION(ms,ms);
4226 return result;
4227}
4228
4229
4230size_t mspace_max_footprint(mspace msp) {
4231 size_t result;
4232 mstate ms = (mstate)msp;
4233 if (ok_magic(ms)) {
4234 result = ms->max_footprint;
4235 }
4236 USAGE_ERROR_ACTION(ms,ms);
4237 return result;
4238}
4239
4240
4241#if !NO_MALLINFO
4242struct mallinfo mspace_mallinfo(mspace msp) {
4243 mstate ms = (mstate)msp;
4244 if (!ok_magic(ms)) {
4245 USAGE_ERROR_ACTION(ms,ms);
4246 }
4247 return internal_mallinfo(ms);
4248}
4249#endif /* NO_MALLINFO */
4250
4251int mspace_mallopt(int param_number, int value) {
4252 return change_mparam(param_number, value);
4253}
4254
4255#endif /* MSPACES */
4256
4257/* -------------------- Alternative MORECORE functions ------------------- */
4258
4259/*
4260 Guidelines for creating a custom version of MORECORE:
4261
4262 * For best performance, MORECORE should allocate in multiples of pagesize.
4263 * MORECORE may allocate more memory than requested. (Or even less,
4264 but this will usually result in a malloc failure.)
4265 * MORECORE must not allocate memory when given argument zero, but
4266 instead return one past the end address of memory from previous
4267 nonzero call.
4268 * For best performance, consecutive calls to MORECORE with positive
4269 arguments should return increasing addresses, indicating that
4270 space has been contiguously extended.
4271 * Even though consecutive calls to MORECORE need not return contiguous
4272 addresses, it must be OK for malloc'ed chunks to span multiple
4273 regions in those cases where they do happen to be contiguous.
4274 * MORECORE need not handle negative arguments -- it may instead
4275 just return MFAIL when given negative arguments.
4276 Negative arguments are always multiples of pagesize. MORECORE
4277 must not misinterpret negative args as large positive unsigned
4278 args. You can suppress all such calls from even occurring by defining
4279 MORECORE_CANNOT_TRIM,
4280
4281 As an example alternative MORECORE, here is a custom allocator
4282 kindly contributed for pre-OSX macOS. It uses virtually but not
4283 necessarily physically contiguous non-paged memory (locked in,
4284 present and won't get swapped out). You can use it by uncommenting
4285 this section, adding some #includes, and setting up the appropriate
4286 defines above:
4287
4288 #define MORECORE osMoreCore
4289
4290 There is also a shutdown routine that should somehow be called for
4291 cleanup upon program exit.
4292
4293 #define MAX_POOL_ENTRIES 100
4294 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4295 static int next_os_pool;
4296 void *our_os_pools[MAX_POOL_ENTRIES];
4297
4298 void *osMoreCore(int size)
4299 {
4300 void *ptr = 0;
4301 static void *sbrk_top = 0;
4302
4303 if (size > 0)
4304 {
4305 if (size < MINIMUM_MORECORE_SIZE)
4306 size = MINIMUM_MORECORE_SIZE;
4307 if (CurrentExecutionLevel() == kTaskLevel)
4308 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4309 if (ptr == 0)
4310 {
4311 return (void *) MFAIL;
4312 }
4313 // save ptrs so they can be freed during cleanup
4314 our_os_pools[next_os_pool] = ptr;
4315 next_os_pool++;
4316 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4317 sbrk_top = (char *) ptr + size;
4318 return ptr;
4319 }
4320 else if (size < 0)
4321 {
4322 // we don't currently support shrink behavior
4323 return (void *) MFAIL;
4324 }
4325 else
4326 {
4327 return sbrk_top;
4328 }
4329 }
4330
4331 // cleanup any allocated memory pools
4332 // called as last thing before shutting down driver
4333
4334 void osCleanupMem(void)
4335 {
4336 void **ptr;
4337
4338 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4339 if (*ptr)
4340 {
4341 PoolDeallocate(*ptr);
4342 *ptr = 0;
4343 }
4344 }
4345
4346*/
4347
4348
4349/* -----------------------------------------------------------------------
4350History:
4351 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4352 * Add max_footprint functions
4353 * Ensure all appropriate literals are size_t
4354 * Fix conditional compilation problem for some #define settings
4355 * Avoid concatenating segments with the one provided
4356 in create_mspace_with_base
4357 * Rename some variables to avoid compiler shadowing warnings
4358 * Use explicit lock initialization.
4359 * Better handling of sbrk interference.
4360 * Simplify and fix segment insertion, trimming and mspace_destroy
4361 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4362 * Thanks especially to Dennis Flanagan for help on these.
4363
4364 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4365 * Fix memalign brace error.
4366
4367 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4368 * Fix improper #endif nesting in C++
4369 * Add explicit casts needed for C++
4370
4371 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4372 * Use trees for large bins
4373 * Support mspaces
4374 * Use segments to unify sbrk-based and mmap-based system allocation,
4375 removing need for emulation on most platforms without sbrk.
4376 * Default safety checks
4377 * Optional footer checks. Thanks to William Robertson for the idea.
4378 * Internal code refactoring
4379 * Incorporate suggestions and platform-specific changes.
4380 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4381 Aaron Bachmann, Emery Berger, and others.
4382 * Speed up non-fastbin processing enough to remove fastbins.
4383 * Remove useless cfree() to avoid conflicts with other apps.
4384 * Remove internal memcpy, memset. Compilers handle builtins better.
4385 * Remove some options that no one ever used and rename others.
4386
4387 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4388 * Fix malloc_state bitmap array misdeclaration
4389
4390 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4391 * Allow tuning of FIRST_SORTED_BIN_SIZE
4392 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4393 * Better detection and support for non-contiguousness of MORECORE.
4394 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4395 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4396 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4397 * Raised default trim and map thresholds to 256K.
4398 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4399 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4400 * Branch-free bin calculation
4401 * Default trim and mmap thresholds now 256K.
4402
4403 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4404 * Introduce independent_comalloc and independent_calloc.
4405 Thanks to Michael Pachos for motivation and help.
4406 * Make optional .h file available
4407 * Allow > 2GB requests on 32bit systems.
4408 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4409 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4410 and Anonymous.
4411 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4412 helping test this.)
4413 * memalign: check alignment arg
4414 * realloc: don't try to shift chunks backwards, since this
4415 leads to more fragmentation in some programs and doesn't
4416 seem to help in any others.
4417 * Collect all cases in malloc requiring system memory into sysmalloc
4418 * Use mmap as backup to sbrk
4419 * Place all internal state in malloc_state
4420 * Introduce fastbins (although similar to 2.5.1)
4421 * Many minor tunings and cosmetic improvements
4422 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4423 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4424 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4425 * Include errno.h to support default failure action.
4426
4427 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4428 * return null for negative arguments
4429 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4430 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4431 (e.g. WIN32 platforms)
4432 * Cleanup header file inclusion for WIN32 platforms
4433 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4434 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4435 memory allocation routines
4436 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4437 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4438 usage of 'assert' in non-WIN32 code
4439 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4440 avoid infinite loop
4441 * Always call 'fREe()' rather than 'free()'
4442
4443 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4444 * Fixed ordering problem with boundary-stamping
4445
4446 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4447 * Added pvalloc, as recommended by H.J. Liu
4448 * Added 64bit pointer support mainly from Wolfram Gloger
4449 * Added anonymously donated WIN32 sbrk emulation
4450 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4451 * malloc_extend_top: fix mask error that caused wastage after
4452 foreign sbrks
4453 * Add linux mremap support code from HJ Liu
4454
4455 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4456 * Integrated most documentation with the code.
4457 * Add support for mmap, with help from
4458 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4459 * Use last_remainder in more cases.
4460 * Pack bins using idea from colin@nyx10.cs.du.edu
4461 * Use ordered bins instead of best-fit threshhold
4462 * Eliminate block-local decls to simplify tracing and debugging.
4463 * Support another case of realloc via move into top
4464 * Fix error occuring when initial sbrk_base not word-aligned.
4465 * Rely on page size for units instead of SBRK_UNIT to
4466 avoid surprises about sbrk alignment conventions.
4467 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4468 (raymond@es.ele.tue.nl) for the suggestion.
4469 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4470 * More precautions for cases where other routines call sbrk,
4471 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4472 * Added macros etc., allowing use in linux libc from
4473 H.J. Lu (hjl@gnu.ai.mit.edu)
4474 * Inverted this history list
4475
4476 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4477 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4478 * Removed all preallocation code since under current scheme
4479 the work required to undo bad preallocations exceeds
4480 the work saved in good cases for most test programs.
4481 * No longer use return list or unconsolidated bins since
4482 no scheme using them consistently outperforms those that don't
4483 given above changes.
4484 * Use best fit for very large chunks to prevent some worst-cases.
4485 * Added some support for debugging
4486
4487 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4488 * Removed footers when chunks are in use. Thanks to
4489 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4490
4491 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4492 * Added malloc_trim, with help from Wolfram Gloger
4493 (wmglo@Dent.MED.Uni-Muenchen.DE).
4494
4495 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4496
4497 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4498 * realloc: try to expand in both directions
4499 * malloc: swap order of clean-bin strategy;
4500 * realloc: only conditionally expand backwards
4501 * Try not to scavenge used bins
4502 * Use bin counts as a guide to preallocation
4503 * Occasionally bin return list chunks in first scan
4504 * Add a few optimizations from colin@nyx10.cs.du.edu
4505
4506 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4507 * faster bin computation & slightly different binning
4508 * merged all consolidations to one part of malloc proper
4509 (eliminating old malloc_find_space & malloc_clean_bin)
4510 * Scan 2 returns chunks (not just 1)
4511 * Propagate failure in realloc if malloc returns 0
4512 * Add stuff to allow compilation on non-ANSI compilers
4513 from kpv@research.att.com
4514
4515 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4516 * removed potential for odd address access in prev_chunk
4517 * removed dependency on getpagesize.h
4518 * misc cosmetics and a bit more internal documentation
4519 * anticosmetics: mangled names in macros to evade debugger strangeness
4520 * tested on sparc, hp-700, dec-mips, rs6000
4521 with gcc & native cc (hp, dec only) allowing
4522 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4523
4524 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4525 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4526 structure of old version, but most details differ.)
4527
4528*/
Note: See TracBrowser for help on using the repository browser.