source: mainline/libc/malloc/malloc.c@ 29a9f62

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 29a9f62 was 29a9f62, checked in by Ondrej Palkovsky <ondrap@…>, 19 years ago

Added symbolic links 'libarch','libadt','libipc' into libc/include,
so that it can be easily used from anywhere.
Renamed thread_main to thread_main.
Allowed MIPS to compile with -O0.
Added non-preemptible threads support (not yet secured by futexes).
Added simple way to hold Thread Local Storage. Support for compiler
will be added later.
This update breaks IA64 uspace.

There is some forgotten spinlock_lock() in futexes, amd64 gets locked
in the secod uspace thread probably with preemption disabled.

  • Property mode set to 100644
File size: 153.9 KB
Line 
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441#include <sys/types.h> /* For size_t */
442
443/** Non-default helenos customizations */
444#define LACKS_FCNTL_H
445#define LACKS_SYS_MMAN_H
446#define LACKS_SYS_PARAM_H
447#undef HAVE_MMAP
448#define HAVE_MMAP 0
449#define LACKS_ERRNO_H
450/* Set errno? */
451#undef MALLOC_FAILURE_ACTION
452#define MALLOC_FAILURE_ACTION
453
454/* The maximum possible size_t value has all bits set */
455#define MAX_SIZE_T (~(size_t)0)
456
457#define ONLY_MSPACES 0
458#define MSPACES 0
459#define MALLOC_ALIGNMENT ((size_t)8U)
460#define FOOTERS 0
461#define ABORT abort()
462#define ABORT_ON_ASSERT_FAILURE 1
463#define PROCEED_ON_ERROR 0
464#define USE_LOCKS 0
465#define INSECURE 0
466#define HAVE_MMAP 0
467
468#define MMAP_CLEARS 1
469
470#define HAVE_MORECORE 1
471#define MORECORE_CONTIGUOUS 1
472#define MORECORE sbrk
473#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
474
475#ifndef DEFAULT_TRIM_THRESHOLD
476#ifndef MORECORE_CANNOT_TRIM
477#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
478#else /* MORECORE_CANNOT_TRIM */
479#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
480#endif /* MORECORE_CANNOT_TRIM */
481#endif /* DEFAULT_TRIM_THRESHOLD */
482#ifndef DEFAULT_MMAP_THRESHOLD
483#if HAVE_MMAP
484#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
485#else /* HAVE_MMAP */
486#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
487#endif /* HAVE_MMAP */
488#endif /* DEFAULT_MMAP_THRESHOLD */
489#ifndef USE_BUILTIN_FFS
490#define USE_BUILTIN_FFS 0
491#endif /* USE_BUILTIN_FFS */
492#ifndef USE_DEV_RANDOM
493#define USE_DEV_RANDOM 0
494#endif /* USE_DEV_RANDOM */
495#ifndef NO_MALLINFO
496#define NO_MALLINFO 0
497#endif /* NO_MALLINFO */
498#ifndef MALLINFO_FIELD_TYPE
499#define MALLINFO_FIELD_TYPE size_t
500#endif /* MALLINFO_FIELD_TYPE */
501
502/*
503 mallopt tuning options. SVID/XPG defines four standard parameter
504 numbers for mallopt, normally defined in malloc.h. None of these
505 are used in this malloc, so setting them has no effect. But this
506 malloc does support the following options.
507*/
508
509#define M_TRIM_THRESHOLD (-1)
510#define M_GRANULARITY (-2)
511#define M_MMAP_THRESHOLD (-3)
512
513/*
514 ========================================================================
515 To make a fully customizable malloc.h header file, cut everything
516 above this line, put into file malloc.h, edit to suit, and #include it
517 on the next line, as well as in programs that use this malloc.
518 ========================================================================
519*/
520
521#include "malloc.h"
522
523/*------------------------------ internal #includes ---------------------- */
524
525#include <stdio.h> /* for printing in malloc_stats */
526#include <string.h>
527
528#ifndef LACKS_ERRNO_H
529#include <errno.h> /* for MALLOC_FAILURE_ACTION */
530#endif /* LACKS_ERRNO_H */
531#if FOOTERS
532#include <time.h> /* for magic initialization */
533#endif /* FOOTERS */
534#ifndef LACKS_STDLIB_H
535#include <stdlib.h> /* for abort() */
536#endif /* LACKS_STDLIB_H */
537#ifdef DEBUG
538#if ABORT_ON_ASSERT_FAILURE
539#define assert(x) {if(!(x)) {printf(#x);ABORT;}}
540#else /* ABORT_ON_ASSERT_FAILURE */
541#include <assert.h>
542#endif /* ABORT_ON_ASSERT_FAILURE */
543#else /* DEBUG */
544#define assert(x)
545#endif /* DEBUG */
546#if USE_BUILTIN_FFS
547#ifndef LACKS_STRINGS_H
548#include <strings.h> /* for ffs */
549#endif /* LACKS_STRINGS_H */
550#endif /* USE_BUILTIN_FFS */
551#if HAVE_MMAP
552#ifndef LACKS_SYS_MMAN_H
553#include <sys/mman.h> /* for mmap */
554#endif /* LACKS_SYS_MMAN_H */
555#ifndef LACKS_FCNTL_H
556#include <fcntl.h>
557#endif /* LACKS_FCNTL_H */
558#endif /* HAVE_MMAP */
559#if HAVE_MORECORE
560#ifndef LACKS_UNISTD_H
561#include <unistd.h> /* for sbrk */
562#else /* LACKS_UNISTD_H */
563#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
564extern void* sbrk(ptrdiff_t);
565#endif /* FreeBSD etc */
566#endif /* LACKS_UNISTD_H */
567#endif /* HAVE_MMAP */
568
569#ifndef WIN32
570#ifndef malloc_getpagesize
571# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
572# ifndef _SC_PAGE_SIZE
573# define _SC_PAGE_SIZE _SC_PAGESIZE
574# endif
575# endif
576# ifdef _SC_PAGE_SIZE
577# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
578# else
579# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
580 extern size_t getpagesize();
581# define malloc_getpagesize getpagesize()
582# else
583# ifdef WIN32 /* use supplied emulation of getpagesize */
584# define malloc_getpagesize getpagesize()
585# else
586# ifndef LACKS_SYS_PARAM_H
587# include <sys/param.h>
588# endif
589# ifdef EXEC_PAGESIZE
590# define malloc_getpagesize EXEC_PAGESIZE
591# else
592# ifdef NBPG
593# ifndef CLSIZE
594# define malloc_getpagesize NBPG
595# else
596# define malloc_getpagesize (NBPG * CLSIZE)
597# endif
598# else
599# ifdef NBPC
600# define malloc_getpagesize NBPC
601# else
602# ifdef PAGESIZE
603# define malloc_getpagesize PAGESIZE
604# else /* just guess */
605# define malloc_getpagesize ((size_t)4096U)
606# endif
607# endif
608# endif
609# endif
610# endif
611# endif
612# endif
613#endif
614#endif
615
616/* ------------------- size_t and alignment properties -------------------- */
617
618/* The byte and bit size of a size_t */
619#define SIZE_T_SIZE (sizeof(size_t))
620#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
621
622/* Some constants coerced to size_t */
623/* Annoying but necessary to avoid errors on some plaftorms */
624#define SIZE_T_ZERO ((size_t)0)
625#define SIZE_T_ONE ((size_t)1)
626#define SIZE_T_TWO ((size_t)2)
627#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
628#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
629#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
630#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
631
632/* The bit mask value corresponding to MALLOC_ALIGNMENT */
633#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
634
635/* True if address a has acceptable alignment */
636#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
637
638/* the number of bytes to offset an address to align it */
639#define align_offset(A)\
640 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
641 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
642
643/* -------------------------- MMAP preliminaries ------------------------- */
644
645/*
646 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
647 checks to fail so compiler optimizer can delete code rather than
648 using so many "#if"s.
649*/
650
651
652/* MORECORE and MMAP must return MFAIL on failure */
653#define MFAIL ((void*)(MAX_SIZE_T))
654#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
655
656#if !HAVE_MMAP
657#define IS_MMAPPED_BIT (SIZE_T_ZERO)
658#define USE_MMAP_BIT (SIZE_T_ZERO)
659#define CALL_MMAP(s) MFAIL
660#define CALL_MUNMAP(a, s) (-1)
661#define DIRECT_MMAP(s) MFAIL
662
663#else /* HAVE_MMAP */
664#define IS_MMAPPED_BIT (SIZE_T_ONE)
665#define USE_MMAP_BIT (SIZE_T_ONE)
666
667#ifndef WIN32
668#define CALL_MUNMAP(a, s) munmap((a), (s))
669#define MMAP_PROT (PROT_READ|PROT_WRITE)
670#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
671#define MAP_ANONYMOUS MAP_ANON
672#endif /* MAP_ANON */
673#ifdef MAP_ANONYMOUS
674#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
675#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
676#else /* MAP_ANONYMOUS */
677/*
678 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
679 is unlikely to be needed, but is supplied just in case.
680*/
681#define MMAP_FLAGS (MAP_PRIVATE)
682static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
683#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
684 (dev_zero_fd = open("/dev/zero", O_RDWR), \
685 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
686 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
687#endif /* MAP_ANONYMOUS */
688
689#define DIRECT_MMAP(s) CALL_MMAP(s)
690#else /* WIN32 */
691
692/* Win32 MMAP via VirtualAlloc */
693static void* win32mmap(size_t size) {
694 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
695 return (ptr != 0)? ptr: MFAIL;
696}
697
698/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
699static void* win32direct_mmap(size_t size) {
700 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
701 PAGE_READWRITE);
702 return (ptr != 0)? ptr: MFAIL;
703}
704
705/* This function supports releasing coalesed segments */
706static int win32munmap(void* ptr, size_t size) {
707 MEMORY_BASIC_INFORMATION minfo;
708 char* cptr = ptr;
709 while (size) {
710 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
711 return -1;
712 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
713 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
714 return -1;
715 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
716 return -1;
717 cptr += minfo.RegionSize;
718 size -= minfo.RegionSize;
719 }
720 return 0;
721}
722
723#define CALL_MMAP(s) win32mmap(s)
724#define CALL_MUNMAP(a, s) win32munmap((a), (s))
725#define DIRECT_MMAP(s) win32direct_mmap(s)
726#endif /* WIN32 */
727#endif /* HAVE_MMAP */
728
729#if HAVE_MMAP && HAVE_MREMAP
730#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
731#else /* HAVE_MMAP && HAVE_MREMAP */
732#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
733#endif /* HAVE_MMAP && HAVE_MREMAP */
734
735#if HAVE_MORECORE
736#define CALL_MORECORE(S) MORECORE(S)
737#else /* HAVE_MORECORE */
738#define CALL_MORECORE(S) MFAIL
739#endif /* HAVE_MORECORE */
740
741/* mstate bit set if continguous morecore disabled or failed */
742#define USE_NONCONTIGUOUS_BIT (4U)
743
744/* segment bit set in create_mspace_with_base */
745#define EXTERN_BIT (8U)
746
747
748/* --------------------------- Lock preliminaries ------------------------ */
749
750#if USE_LOCKS
751
752/*
753 When locks are defined, there are up to two global locks:
754
755 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
756 MORECORE. In many cases sys_alloc requires two calls, that should
757 not be interleaved with calls by other threads. This does not
758 protect against direct calls to MORECORE by other threads not
759 using this lock, so there is still code to cope the best we can on
760 interference.
761
762 * magic_init_mutex ensures that mparams.magic and other
763 unique mparams values are initialized only once.
764*/
765
766#ifndef WIN32
767/* By default use posix locks */
768#include <pthread.h>
769#define MLOCK_T pthread_mutex_t
770#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL)
771#define ACQUIRE_LOCK(l) pthread_mutex_lock(l)
772#define RELEASE_LOCK(l) pthread_mutex_unlock(l)
773
774#if HAVE_MORECORE
775static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER;
776#endif /* HAVE_MORECORE */
777
778static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER;
779
780#else /* WIN32 */
781/*
782 Because lock-protected regions have bounded times, and there
783 are no recursive lock calls, we can use simple spinlocks.
784*/
785
786#define MLOCK_T long
787static int win32_acquire_lock (MLOCK_T *sl) {
788 for (;;) {
789#ifdef InterlockedCompareExchangePointer
790 if (!InterlockedCompareExchange(sl, 1, 0))
791 return 0;
792#else /* Use older void* version */
793 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0))
794 return 0;
795#endif /* InterlockedCompareExchangePointer */
796 Sleep (0);
797 }
798}
799
800static void win32_release_lock (MLOCK_T *sl) {
801 InterlockedExchange (sl, 0);
802}
803
804#define INITIAL_LOCK(l) *(l)=0
805#define ACQUIRE_LOCK(l) win32_acquire_lock(l)
806#define RELEASE_LOCK(l) win32_release_lock(l)
807#if HAVE_MORECORE
808static MLOCK_T morecore_mutex;
809#endif /* HAVE_MORECORE */
810static MLOCK_T magic_init_mutex;
811#endif /* WIN32 */
812
813#define USE_LOCK_BIT (2U)
814#else /* USE_LOCKS */
815#define USE_LOCK_BIT (0U)
816#define INITIAL_LOCK(l)
817#endif /* USE_LOCKS */
818
819#if USE_LOCKS && HAVE_MORECORE
820#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
821#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
822#else /* USE_LOCKS && HAVE_MORECORE */
823#define ACQUIRE_MORECORE_LOCK()
824#define RELEASE_MORECORE_LOCK()
825#endif /* USE_LOCKS && HAVE_MORECORE */
826
827#if USE_LOCKS
828#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
829#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
830#else /* USE_LOCKS */
831#define ACQUIRE_MAGIC_INIT_LOCK()
832#define RELEASE_MAGIC_INIT_LOCK()
833#endif /* USE_LOCKS */
834
835
836/* ----------------------- Chunk representations ------------------------ */
837
838/*
839 (The following includes lightly edited explanations by Colin Plumb.)
840
841 The malloc_chunk declaration below is misleading (but accurate and
842 necessary). It declares a "view" into memory allowing access to
843 necessary fields at known offsets from a given base.
844
845 Chunks of memory are maintained using a `boundary tag' method as
846 originally described by Knuth. (See the paper by Paul Wilson
847 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
848 techniques.) Sizes of free chunks are stored both in the front of
849 each chunk and at the end. This makes consolidating fragmented
850 chunks into bigger chunks fast. The head fields also hold bits
851 representing whether chunks are free or in use.
852
853 Here are some pictures to make it clearer. They are "exploded" to
854 show that the state of a chunk can be thought of as extending from
855 the high 31 bits of the head field of its header through the
856 prev_foot and PINUSE_BIT bit of the following chunk header.
857
858 A chunk that's in use looks like:
859
860 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
861 | Size of previous chunk (if P = 1) |
862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
864 | Size of this chunk 1| +-+
865 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
866 | |
867 +- -+
868 | |
869 +- -+
870 | :
871 +- size - sizeof(size_t) available payload bytes -+
872 : |
873 chunk-> +- -+
874 | |
875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
877 | Size of next chunk (may or may not be in use) | +-+
878 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
879
880 And if it's free, it looks like this:
881
882 chunk-> +- -+
883 | User payload (must be in use, or we would have merged!) |
884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
886 | Size of this chunk 0| +-+
887 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
888 | Next pointer |
889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
890 | Prev pointer |
891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
892 | :
893 +- size - sizeof(struct chunk) unused bytes -+
894 : |
895 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
896 | Size of this chunk |
897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
898 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
899 | Size of next chunk (must be in use, or we would have merged)| +-+
900 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
901 | :
902 +- User payload -+
903 : |
904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
905 |0|
906 +-+
907 Note that since we always merge adjacent free chunks, the chunks
908 adjacent to a free chunk must be in use.
909
910 Given a pointer to a chunk (which can be derived trivially from the
911 payload pointer) we can, in O(1) time, find out whether the adjacent
912 chunks are free, and if so, unlink them from the lists that they
913 are on and merge them with the current chunk.
914
915 Chunks always begin on even word boundaries, so the mem portion
916 (which is returned to the user) is also on an even word boundary, and
917 thus at least double-word aligned.
918
919 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
920 chunk size (which is always a multiple of two words), is an in-use
921 bit for the *previous* chunk. If that bit is *clear*, then the
922 word before the current chunk size contains the previous chunk
923 size, and can be used to find the front of the previous chunk.
924 The very first chunk allocated always has this bit set, preventing
925 access to non-existent (or non-owned) memory. If pinuse is set for
926 any given chunk, then you CANNOT determine the size of the
927 previous chunk, and might even get a memory addressing fault when
928 trying to do so.
929
930 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
931 the chunk size redundantly records whether the current chunk is
932 inuse. This redundancy enables usage checks within free and realloc,
933 and reduces indirection when freeing and consolidating chunks.
934
935 Each freshly allocated chunk must have both cinuse and pinuse set.
936 That is, each allocated chunk borders either a previously allocated
937 and still in-use chunk, or the base of its memory arena. This is
938 ensured by making all allocations from the the `lowest' part of any
939 found chunk. Further, no free chunk physically borders another one,
940 so each free chunk is known to be preceded and followed by either
941 inuse chunks or the ends of memory.
942
943 Note that the `foot' of the current chunk is actually represented
944 as the prev_foot of the NEXT chunk. This makes it easier to
945 deal with alignments etc but can be very confusing when trying
946 to extend or adapt this code.
947
948 The exceptions to all this are
949
950 1. The special chunk `top' is the top-most available chunk (i.e.,
951 the one bordering the end of available memory). It is treated
952 specially. Top is never included in any bin, is used only if
953 no other chunk is available, and is released back to the
954 system if it is very large (see M_TRIM_THRESHOLD). In effect,
955 the top chunk is treated as larger (and thus less well
956 fitting) than any other available chunk. The top chunk
957 doesn't update its trailing size field since there is no next
958 contiguous chunk that would have to index off it. However,
959 space is still allocated for it (TOP_FOOT_SIZE) to enable
960 separation or merging when space is extended.
961
962 3. Chunks allocated via mmap, which have the lowest-order bit
963 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
964 PINUSE_BIT in their head fields. Because they are allocated
965 one-by-one, each must carry its own prev_foot field, which is
966 also used to hold the offset this chunk has within its mmapped
967 region, which is needed to preserve alignment. Each mmapped
968 chunk is trailed by the first two fields of a fake next-chunk
969 for sake of usage checks.
970
971*/
972
973struct malloc_chunk {
974 size_t prev_foot; /* Size of previous chunk (if free). */
975 size_t head; /* Size and inuse bits. */
976 struct malloc_chunk* fd; /* double links -- used only if free. */
977 struct malloc_chunk* bk;
978};
979
980typedef struct malloc_chunk mchunk;
981typedef struct malloc_chunk* mchunkptr;
982typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
983typedef unsigned int bindex_t; /* Described below */
984typedef unsigned int binmap_t; /* Described below */
985typedef unsigned int flag_t; /* The type of various bit flag sets */
986
987/* ------------------- Chunks sizes and alignments ----------------------- */
988
989#define MCHUNK_SIZE (sizeof(mchunk))
990
991#if FOOTERS
992#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
993#else /* FOOTERS */
994#define CHUNK_OVERHEAD (SIZE_T_SIZE)
995#endif /* FOOTERS */
996
997/* MMapped chunks need a second word of overhead ... */
998#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
999/* ... and additional padding for fake next-chunk at foot */
1000#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
1001
1002/* The smallest size we can malloc is an aligned minimal chunk */
1003#define MIN_CHUNK_SIZE\
1004 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1005
1006/* conversion from malloc headers to user pointers, and back */
1007#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
1008#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
1009/* chunk associated with aligned address A */
1010#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
1011
1012/* Bounds on request (not chunk) sizes. */
1013#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
1014#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
1015
1016/* pad request bytes into a usable size */
1017#define pad_request(req) \
1018 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
1019
1020/* pad request, checking for minimum (but not maximum) */
1021#define request2size(req) \
1022 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1023
1024
1025/* ------------------ Operations on head and foot fields ----------------- */
1026
1027/*
1028 The head field of a chunk is or'ed with PINUSE_BIT when previous
1029 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1030 use. If the chunk was obtained with mmap, the prev_foot field has
1031 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1032 mmapped region to the base of the chunk.
1033*/
1034
1035#define PINUSE_BIT (SIZE_T_ONE)
1036#define CINUSE_BIT (SIZE_T_TWO)
1037#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1038
1039/* Head value for fenceposts */
1040#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1041
1042/* extraction of fields from head words */
1043#define cinuse(p) ((p)->head & CINUSE_BIT)
1044#define pinuse(p) ((p)->head & PINUSE_BIT)
1045#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1046
1047#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1048#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1049
1050/* Treat space at ptr +/- offset as a chunk */
1051#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1052#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1053
1054/* Ptr to next or previous physical malloc_chunk. */
1055#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1056#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1057
1058/* extract next chunk's pinuse bit */
1059#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1060
1061/* Get/set size at footer */
1062#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1063#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1064
1065/* Set size, pinuse bit, and foot */
1066#define set_size_and_pinuse_of_free_chunk(p, s)\
1067 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1068
1069/* Set size, pinuse bit, foot, and clear next pinuse */
1070#define set_free_with_pinuse(p, s, n)\
1071 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1072
1073#define is_mmapped(p)\
1074 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1075
1076/* Get the internal overhead associated with chunk p */
1077#define overhead_for(p)\
1078 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1079
1080/* Return true if malloced space is not necessarily cleared */
1081#if MMAP_CLEARS
1082#define calloc_must_clear(p) (!is_mmapped(p))
1083#else /* MMAP_CLEARS */
1084#define calloc_must_clear(p) (1)
1085#endif /* MMAP_CLEARS */
1086
1087/* ---------------------- Overlaid data structures ----------------------- */
1088
1089/*
1090 When chunks are not in use, they are treated as nodes of either
1091 lists or trees.
1092
1093 "Small" chunks are stored in circular doubly-linked lists, and look
1094 like this:
1095
1096 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1097 | Size of previous chunk |
1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1099 `head:' | Size of chunk, in bytes |P|
1100 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1101 | Forward pointer to next chunk in list |
1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | Back pointer to previous chunk in list |
1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1105 | Unused space (may be 0 bytes long) .
1106 . .
1107 . |
1108nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1109 `foot:' | Size of chunk, in bytes |
1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1111
1112 Larger chunks are kept in a form of bitwise digital trees (aka
1113 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1114 free chunks greater than 256 bytes, their size doesn't impose any
1115 constraints on user chunk sizes. Each node looks like:
1116
1117 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1118 | Size of previous chunk |
1119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1120 `head:' | Size of chunk, in bytes |P|
1121 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1122 | Forward pointer to next chunk of same size |
1123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1124 | Back pointer to previous chunk of same size |
1125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1126 | Pointer to left child (child[0]) |
1127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1128 | Pointer to right child (child[1]) |
1129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1130 | Pointer to parent |
1131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1132 | bin index of this chunk |
1133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1134 | Unused space .
1135 . |
1136nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1137 `foot:' | Size of chunk, in bytes |
1138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1139
1140 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1141 of the same size are arranged in a circularly-linked list, with only
1142 the oldest chunk (the next to be used, in our FIFO ordering)
1143 actually in the tree. (Tree members are distinguished by a non-null
1144 parent pointer.) If a chunk with the same size an an existing node
1145 is inserted, it is linked off the existing node using pointers that
1146 work in the same way as fd/bk pointers of small chunks.
1147
1148 Each tree contains a power of 2 sized range of chunk sizes (the
1149 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1150 tree level, with the chunks in the smaller half of the range (0x100
1151 <= x < 0x140 for the top nose) in the left subtree and the larger
1152 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1153 done by inspecting individual bits.
1154
1155 Using these rules, each node's left subtree contains all smaller
1156 sizes than its right subtree. However, the node at the root of each
1157 subtree has no particular ordering relationship to either. (The
1158 dividing line between the subtree sizes is based on trie relation.)
1159 If we remove the last chunk of a given size from the interior of the
1160 tree, we need to replace it with a leaf node. The tree ordering
1161 rules permit a node to be replaced by any leaf below it.
1162
1163 The smallest chunk in a tree (a common operation in a best-fit
1164 allocator) can be found by walking a path to the leftmost leaf in
1165 the tree. Unlike a usual binary tree, where we follow left child
1166 pointers until we reach a null, here we follow the right child
1167 pointer any time the left one is null, until we reach a leaf with
1168 both child pointers null. The smallest chunk in the tree will be
1169 somewhere along that path.
1170
1171 The worst case number of steps to add, find, or remove a node is
1172 bounded by the number of bits differentiating chunks within
1173 bins. Under current bin calculations, this ranges from 6 up to 21
1174 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1175 is of course much better.
1176*/
1177
1178struct malloc_tree_chunk {
1179 /* The first four fields must be compatible with malloc_chunk */
1180 size_t prev_foot;
1181 size_t head;
1182 struct malloc_tree_chunk* fd;
1183 struct malloc_tree_chunk* bk;
1184
1185 struct malloc_tree_chunk* child[2];
1186 struct malloc_tree_chunk* parent;
1187 bindex_t index;
1188};
1189
1190typedef struct malloc_tree_chunk tchunk;
1191typedef struct malloc_tree_chunk* tchunkptr;
1192typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1193
1194/* A little helper macro for trees */
1195#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1196
1197/* ----------------------------- Segments -------------------------------- */
1198
1199/*
1200 Each malloc space may include non-contiguous segments, held in a
1201 list headed by an embedded malloc_segment record representing the
1202 top-most space. Segments also include flags holding properties of
1203 the space. Large chunks that are directly allocated by mmap are not
1204 included in this list. They are instead independently created and
1205 destroyed without otherwise keeping track of them.
1206
1207 Segment management mainly comes into play for spaces allocated by
1208 MMAP. Any call to MMAP might or might not return memory that is
1209 adjacent to an existing segment. MORECORE normally contiguously
1210 extends the current space, so this space is almost always adjacent,
1211 which is simpler and faster to deal with. (This is why MORECORE is
1212 used preferentially to MMAP when both are available -- see
1213 sys_alloc.) When allocating using MMAP, we don't use any of the
1214 hinting mechanisms (inconsistently) supported in various
1215 implementations of unix mmap, or distinguish reserving from
1216 committing memory. Instead, we just ask for space, and exploit
1217 contiguity when we get it. It is probably possible to do
1218 better than this on some systems, but no general scheme seems
1219 to be significantly better.
1220
1221 Management entails a simpler variant of the consolidation scheme
1222 used for chunks to reduce fragmentation -- new adjacent memory is
1223 normally prepended or appended to an existing segment. However,
1224 there are limitations compared to chunk consolidation that mostly
1225 reflect the fact that segment processing is relatively infrequent
1226 (occurring only when getting memory from system) and that we
1227 don't expect to have huge numbers of segments:
1228
1229 * Segments are not indexed, so traversal requires linear scans. (It
1230 would be possible to index these, but is not worth the extra
1231 overhead and complexity for most programs on most platforms.)
1232 * New segments are only appended to old ones when holding top-most
1233 memory; if they cannot be prepended to others, they are held in
1234 different segments.
1235
1236 Except for the top-most segment of an mstate, each segment record
1237 is kept at the tail of its segment. Segments are added by pushing
1238 segment records onto the list headed by &mstate.seg for the
1239 containing mstate.
1240
1241 Segment flags control allocation/merge/deallocation policies:
1242 * If EXTERN_BIT set, then we did not allocate this segment,
1243 and so should not try to deallocate or merge with others.
1244 (This currently holds only for the initial segment passed
1245 into create_mspace_with_base.)
1246 * If IS_MMAPPED_BIT set, the segment may be merged with
1247 other surrounding mmapped segments and trimmed/de-allocated
1248 using munmap.
1249 * If neither bit is set, then the segment was obtained using
1250 MORECORE so can be merged with surrounding MORECORE'd segments
1251 and deallocated/trimmed using MORECORE with negative arguments.
1252*/
1253
1254struct malloc_segment {
1255 char* base; /* base address */
1256 size_t size; /* allocated size */
1257 struct malloc_segment* next; /* ptr to next segment */
1258 flag_t sflags; /* mmap and extern flag */
1259};
1260
1261#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1262#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1263
1264typedef struct malloc_segment msegment;
1265typedef struct malloc_segment* msegmentptr;
1266
1267/* ---------------------------- malloc_state ----------------------------- */
1268
1269/*
1270 A malloc_state holds all of the bookkeeping for a space.
1271 The main fields are:
1272
1273 Top
1274 The topmost chunk of the currently active segment. Its size is
1275 cached in topsize. The actual size of topmost space is
1276 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1277 fenceposts and segment records if necessary when getting more
1278 space from the system. The size at which to autotrim top is
1279 cached from mparams in trim_check, except that it is disabled if
1280 an autotrim fails.
1281
1282 Designated victim (dv)
1283 This is the preferred chunk for servicing small requests that
1284 don't have exact fits. It is normally the chunk split off most
1285 recently to service another small request. Its size is cached in
1286 dvsize. The link fields of this chunk are not maintained since it
1287 is not kept in a bin.
1288
1289 SmallBins
1290 An array of bin headers for free chunks. These bins hold chunks
1291 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1292 chunks of all the same size, spaced 8 bytes apart. To simplify
1293 use in double-linked lists, each bin header acts as a malloc_chunk
1294 pointing to the real first node, if it exists (else pointing to
1295 itself). This avoids special-casing for headers. But to avoid
1296 waste, we allocate only the fd/bk pointers of bins, and then use
1297 repositioning tricks to treat these as the fields of a chunk.
1298
1299 TreeBins
1300 Treebins are pointers to the roots of trees holding a range of
1301 sizes. There are 2 equally spaced treebins for each power of two
1302 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1303 larger.
1304
1305 Bin maps
1306 There is one bit map for small bins ("smallmap") and one for
1307 treebins ("treemap). Each bin sets its bit when non-empty, and
1308 clears the bit when empty. Bit operations are then used to avoid
1309 bin-by-bin searching -- nearly all "search" is done without ever
1310 looking at bins that won't be selected. The bit maps
1311 conservatively use 32 bits per map word, even if on 64bit system.
1312 For a good description of some of the bit-based techniques used
1313 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1314 supplement at http://hackersdelight.org/). Many of these are
1315 intended to reduce the branchiness of paths through malloc etc, as
1316 well as to reduce the number of memory locations read or written.
1317
1318 Segments
1319 A list of segments headed by an embedded malloc_segment record
1320 representing the initial space.
1321
1322 Address check support
1323 The least_addr field is the least address ever obtained from
1324 MORECORE or MMAP. Attempted frees and reallocs of any address less
1325 than this are trapped (unless INSECURE is defined).
1326
1327 Magic tag
1328 A cross-check field that should always hold same value as mparams.magic.
1329
1330 Flags
1331 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1332
1333 Statistics
1334 Each space keeps track of current and maximum system memory
1335 obtained via MORECORE or MMAP.
1336
1337 Locking
1338 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1339 around every public call using this mspace.
1340*/
1341
1342/* Bin types, widths and sizes */
1343#define NSMALLBINS (32U)
1344#define NTREEBINS (32U)
1345#define SMALLBIN_SHIFT (3U)
1346#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1347#define TREEBIN_SHIFT (8U)
1348#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1349#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1350#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1351
1352struct malloc_state {
1353 binmap_t smallmap;
1354 binmap_t treemap;
1355 size_t dvsize;
1356 size_t topsize;
1357 char* least_addr;
1358 mchunkptr dv;
1359 mchunkptr top;
1360 size_t trim_check;
1361 size_t magic;
1362 mchunkptr smallbins[(NSMALLBINS+1)*2];
1363 tbinptr treebins[NTREEBINS];
1364 size_t footprint;
1365 size_t max_footprint;
1366 flag_t mflags;
1367#if USE_LOCKS
1368 MLOCK_T mutex; /* locate lock among fields that rarely change */
1369#endif /* USE_LOCKS */
1370 msegment seg;
1371};
1372
1373typedef struct malloc_state* mstate;
1374
1375/* ------------- Global malloc_state and malloc_params ------------------- */
1376
1377/*
1378 malloc_params holds global properties, including those that can be
1379 dynamically set using mallopt. There is a single instance, mparams,
1380 initialized in init_mparams.
1381*/
1382
1383struct malloc_params {
1384 size_t magic;
1385 size_t page_size;
1386 size_t granularity;
1387 size_t mmap_threshold;
1388 size_t trim_threshold;
1389 flag_t default_mflags;
1390};
1391
1392static struct malloc_params mparams;
1393
1394/* The global malloc_state used for all non-"mspace" calls */
1395static struct malloc_state _gm_;
1396#define gm (&_gm_)
1397#define is_global(M) ((M) == &_gm_)
1398#define is_initialized(M) ((M)->top != 0)
1399
1400/* -------------------------- system alloc setup ------------------------- */
1401
1402/* Operations on mflags */
1403
1404#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
1405#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
1406#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
1407
1408#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
1409#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
1410#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
1411
1412#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
1413#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
1414
1415#define set_lock(M,L)\
1416 ((M)->mflags = (L)?\
1417 ((M)->mflags | USE_LOCK_BIT) :\
1418 ((M)->mflags & ~USE_LOCK_BIT))
1419
1420/* page-align a size */
1421#define page_align(S)\
1422 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
1423
1424/* granularity-align a size */
1425#define granularity_align(S)\
1426 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
1427
1428#define is_page_aligned(S)\
1429 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
1430#define is_granularity_aligned(S)\
1431 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
1432
1433/* True if segment S holds address A */
1434#define segment_holds(S, A)\
1435 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
1436
1437/* Return segment holding given address */
1438static msegmentptr segment_holding(mstate m, char* addr) {
1439 msegmentptr sp = &m->seg;
1440 for (;;) {
1441 if (addr >= sp->base && addr < sp->base + sp->size)
1442 return sp;
1443 if ((sp = sp->next) == 0)
1444 return 0;
1445 }
1446}
1447
1448/* Return true if segment contains a segment link */
1449static int has_segment_link(mstate m, msegmentptr ss) {
1450 msegmentptr sp = &m->seg;
1451 for (;;) {
1452 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
1453 return 1;
1454 if ((sp = sp->next) == 0)
1455 return 0;
1456 }
1457}
1458
1459#ifndef MORECORE_CANNOT_TRIM
1460#define should_trim(M,s) ((s) > (M)->trim_check)
1461#else /* MORECORE_CANNOT_TRIM */
1462#define should_trim(M,s) (0)
1463#endif /* MORECORE_CANNOT_TRIM */
1464
1465/*
1466 TOP_FOOT_SIZE is padding at the end of a segment, including space
1467 that may be needed to place segment records and fenceposts when new
1468 noncontiguous segments are added.
1469*/
1470#define TOP_FOOT_SIZE\
1471 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
1472
1473
1474/* ------------------------------- Hooks -------------------------------- */
1475
1476/*
1477 PREACTION should be defined to return 0 on success, and nonzero on
1478 failure. If you are not using locking, you can redefine these to do
1479 anything you like.
1480*/
1481
1482#if USE_LOCKS
1483
1484/* Ensure locks are initialized */
1485#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
1486
1487#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
1488#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
1489#else /* USE_LOCKS */
1490
1491#ifndef PREACTION
1492#define PREACTION(M) (0)
1493#endif /* PREACTION */
1494
1495#ifndef POSTACTION
1496#define POSTACTION(M)
1497#endif /* POSTACTION */
1498
1499#endif /* USE_LOCKS */
1500
1501/*
1502 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
1503 USAGE_ERROR_ACTION is triggered on detected bad frees and
1504 reallocs. The argument p is an address that might have triggered the
1505 fault. It is ignored by the two predefined actions, but might be
1506 useful in custom actions that try to help diagnose errors.
1507*/
1508
1509#if PROCEED_ON_ERROR
1510
1511/* A count of the number of corruption errors causing resets */
1512int malloc_corruption_error_count;
1513
1514/* default corruption action */
1515static void reset_on_error(mstate m);
1516
1517#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
1518#define USAGE_ERROR_ACTION(m, p)
1519
1520#else /* PROCEED_ON_ERROR */
1521
1522#ifndef CORRUPTION_ERROR_ACTION
1523#define CORRUPTION_ERROR_ACTION(m) ABORT
1524#endif /* CORRUPTION_ERROR_ACTION */
1525
1526#ifndef USAGE_ERROR_ACTION
1527#define USAGE_ERROR_ACTION(m,p) ABORT
1528#endif /* USAGE_ERROR_ACTION */
1529
1530#endif /* PROCEED_ON_ERROR */
1531
1532/* -------------------------- Debugging setup ---------------------------- */
1533
1534#if ! DEBUG
1535
1536#define check_free_chunk(M,P)
1537#define check_inuse_chunk(M,P)
1538#define check_malloced_chunk(M,P,N)
1539#define check_mmapped_chunk(M,P)
1540#define check_malloc_state(M)
1541#define check_top_chunk(M,P)
1542
1543#else /* DEBUG */
1544#define check_free_chunk(M,P) do_check_free_chunk(M,P)
1545#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
1546#define check_top_chunk(M,P) do_check_top_chunk(M,P)
1547#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
1548#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
1549#define check_malloc_state(M) do_check_malloc_state(M)
1550
1551static void do_check_any_chunk(mstate m, mchunkptr p);
1552static void do_check_top_chunk(mstate m, mchunkptr p);
1553static void do_check_mmapped_chunk(mstate m, mchunkptr p);
1554static void do_check_inuse_chunk(mstate m, mchunkptr p);
1555static void do_check_free_chunk(mstate m, mchunkptr p);
1556static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
1557static void do_check_tree(mstate m, tchunkptr t);
1558static void do_check_treebin(mstate m, bindex_t i);
1559static void do_check_smallbin(mstate m, bindex_t i);
1560static void do_check_malloc_state(mstate m);
1561static int bin_find(mstate m, mchunkptr x);
1562static size_t traverse_and_check(mstate m);
1563#endif /* DEBUG */
1564
1565/* ---------------------------- Indexing Bins ---------------------------- */
1566
1567#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
1568#define small_index(s) ((s) >> SMALLBIN_SHIFT)
1569#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
1570#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
1571
1572/* addressing by index. See above about smallbin repositioning */
1573#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
1574#define treebin_at(M,i) (&((M)->treebins[i]))
1575
1576/* assign tree index for size S to variable I */
1577#if defined(__GNUC__) && defined(i386)
1578#define compute_tree_index(S, I)\
1579{\
1580 size_t X = S >> TREEBIN_SHIFT;\
1581 if (X == 0)\
1582 I = 0;\
1583 else if (X > 0xFFFF)\
1584 I = NTREEBINS-1;\
1585 else {\
1586 unsigned int K;\
1587 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
1588 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
1589 }\
1590}
1591#else /* GNUC */
1592#define compute_tree_index(S, I)\
1593{\
1594 size_t X = S >> TREEBIN_SHIFT;\
1595 if (X == 0)\
1596 I = 0;\
1597 else if (X > 0xFFFF)\
1598 I = NTREEBINS-1;\
1599 else {\
1600 unsigned int Y = (unsigned int)X;\
1601 unsigned int N = ((Y - 0x100) >> 16) & 8;\
1602 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
1603 N += K;\
1604 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
1605 K = 14 - N + ((Y <<= K) >> 15);\
1606 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
1607 }\
1608}
1609#endif /* GNUC */
1610
1611/* Bit representing maximum resolved size in a treebin at i */
1612#define bit_for_tree_index(i) \
1613 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
1614
1615/* Shift placing maximum resolved bit in a treebin at i as sign bit */
1616#define leftshift_for_tree_index(i) \
1617 ((i == NTREEBINS-1)? 0 : \
1618 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
1619
1620/* The size of the smallest chunk held in bin with index i */
1621#define minsize_for_tree_index(i) \
1622 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
1623 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
1624
1625
1626/* ------------------------ Operations on bin maps ----------------------- */
1627
1628/* bit corresponding to given index */
1629#define idx2bit(i) ((binmap_t)(1) << (i))
1630
1631/* Mark/Clear bits with given index */
1632#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
1633#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
1634#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
1635
1636#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
1637#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
1638#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
1639
1640/* index corresponding to given bit */
1641
1642#if defined(__GNUC__) && defined(i386)
1643#define compute_bit2idx(X, I)\
1644{\
1645 unsigned int J;\
1646 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
1647 I = (bindex_t)J;\
1648}
1649
1650#else /* GNUC */
1651#if USE_BUILTIN_FFS
1652#define compute_bit2idx(X, I) I = ffs(X)-1
1653
1654#else /* USE_BUILTIN_FFS */
1655#define compute_bit2idx(X, I)\
1656{\
1657 unsigned int Y = X - 1;\
1658 unsigned int K = Y >> (16-4) & 16;\
1659 unsigned int N = K; Y >>= K;\
1660 N += K = Y >> (8-3) & 8; Y >>= K;\
1661 N += K = Y >> (4-2) & 4; Y >>= K;\
1662 N += K = Y >> (2-1) & 2; Y >>= K;\
1663 N += K = Y >> (1-0) & 1; Y >>= K;\
1664 I = (bindex_t)(N + Y);\
1665}
1666#endif /* USE_BUILTIN_FFS */
1667#endif /* GNUC */
1668
1669/* isolate the least set bit of a bitmap */
1670#define least_bit(x) ((x) & -(x))
1671
1672/* mask with all bits to left of least bit of x on */
1673#define left_bits(x) ((x<<1) | -(x<<1))
1674
1675/* mask with all bits to left of or equal to least bit of x on */
1676#define same_or_left_bits(x) ((x) | -(x))
1677
1678
1679/* ----------------------- Runtime Check Support ------------------------- */
1680
1681/*
1682 For security, the main invariant is that malloc/free/etc never
1683 writes to a static address other than malloc_state, unless static
1684 malloc_state itself has been corrupted, which cannot occur via
1685 malloc (because of these checks). In essence this means that we
1686 believe all pointers, sizes, maps etc held in malloc_state, but
1687 check all of those linked or offsetted from other embedded data
1688 structures. These checks are interspersed with main code in a way
1689 that tends to minimize their run-time cost.
1690
1691 When FOOTERS is defined, in addition to range checking, we also
1692 verify footer fields of inuse chunks, which can be used guarantee
1693 that the mstate controlling malloc/free is intact. This is a
1694 streamlined version of the approach described by William Robertson
1695 et al in "Run-time Detection of Heap-based Overflows" LISA'03
1696 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
1697 of an inuse chunk holds the xor of its mstate and a random seed,
1698 that is checked upon calls to free() and realloc(). This is
1699 (probablistically) unguessable from outside the program, but can be
1700 computed by any code successfully malloc'ing any chunk, so does not
1701 itself provide protection against code that has already broken
1702 security through some other means. Unlike Robertson et al, we
1703 always dynamically check addresses of all offset chunks (previous,
1704 next, etc). This turns out to be cheaper than relying on hashes.
1705*/
1706
1707#if !INSECURE
1708/* Check if address a is at least as high as any from MORECORE or MMAP */
1709#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
1710/* Check if address of next chunk n is higher than base chunk p */
1711#define ok_next(p, n) ((char*)(p) < (char*)(n))
1712/* Check if p has its cinuse bit on */
1713#define ok_cinuse(p) cinuse(p)
1714/* Check if p has its pinuse bit on */
1715#define ok_pinuse(p) pinuse(p)
1716
1717#else /* !INSECURE */
1718#define ok_address(M, a) (1)
1719#define ok_next(b, n) (1)
1720#define ok_cinuse(p) (1)
1721#define ok_pinuse(p) (1)
1722#endif /* !INSECURE */
1723
1724#if (FOOTERS && !INSECURE)
1725/* Check if (alleged) mstate m has expected magic field */
1726#define ok_magic(M) ((M)->magic == mparams.magic)
1727#else /* (FOOTERS && !INSECURE) */
1728#define ok_magic(M) (1)
1729#endif /* (FOOTERS && !INSECURE) */
1730
1731
1732/* In gcc, use __builtin_expect to minimize impact of checks */
1733#if !INSECURE
1734#if defined(__GNUC__) && __GNUC__ >= 3
1735#define RTCHECK(e) __builtin_expect(e, 1)
1736#else /* GNUC */
1737#define RTCHECK(e) (e)
1738#endif /* GNUC */
1739#else /* !INSECURE */
1740#define RTCHECK(e) (1)
1741#endif /* !INSECURE */
1742
1743/* macros to set up inuse chunks with or without footers */
1744
1745#if !FOOTERS
1746
1747#define mark_inuse_foot(M,p,s)
1748
1749/* Set cinuse bit and pinuse bit of next chunk */
1750#define set_inuse(M,p,s)\
1751 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1752 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1753
1754/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
1755#define set_inuse_and_pinuse(M,p,s)\
1756 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1757 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1758
1759/* Set size, cinuse and pinuse bit of this chunk */
1760#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1761 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
1762
1763#else /* FOOTERS */
1764
1765/* Set foot of inuse chunk to be xor of mstate and seed */
1766#define mark_inuse_foot(M,p,s)\
1767 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
1768
1769#define get_mstate_for(p)\
1770 ((mstate)(((mchunkptr)((char*)(p) +\
1771 (chunksize(p))))->prev_foot ^ mparams.magic))
1772
1773#define set_inuse(M,p,s)\
1774 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1775 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
1776 mark_inuse_foot(M,p,s))
1777
1778#define set_inuse_and_pinuse(M,p,s)\
1779 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1780 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
1781 mark_inuse_foot(M,p,s))
1782
1783#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1784 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1785 mark_inuse_foot(M, p, s))
1786
1787#endif /* !FOOTERS */
1788
1789/* ---------------------------- setting mparams -------------------------- */
1790
1791/* Initialize mparams */
1792static int init_mparams(void) {
1793 if (mparams.page_size == 0) {
1794 size_t s;
1795
1796 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1797 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
1798#if MORECORE_CONTIGUOUS
1799 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
1800#else /* MORECORE_CONTIGUOUS */
1801 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
1802#endif /* MORECORE_CONTIGUOUS */
1803
1804#if (FOOTERS && !INSECURE)
1805 {
1806#if USE_DEV_RANDOM
1807 int fd;
1808 unsigned char buf[sizeof(size_t)];
1809 /* Try to use /dev/urandom, else fall back on using time */
1810 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
1811 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
1812 s = *((size_t *) buf);
1813 close(fd);
1814 }
1815 else
1816#endif /* USE_DEV_RANDOM */
1817 s = (size_t)(time(0) ^ (size_t)0x55555555U);
1818
1819 s |= (size_t)8U; /* ensure nonzero */
1820 s &= ~(size_t)7U; /* improve chances of fault for bad values */
1821
1822 }
1823#else /* (FOOTERS && !INSECURE) */
1824 s = (size_t)0x58585858U;
1825#endif /* (FOOTERS && !INSECURE) */
1826 ACQUIRE_MAGIC_INIT_LOCK();
1827 if (mparams.magic == 0) {
1828 mparams.magic = s;
1829 /* Set up lock for main malloc area */
1830 INITIAL_LOCK(&gm->mutex);
1831 gm->mflags = mparams.default_mflags;
1832 }
1833 RELEASE_MAGIC_INIT_LOCK();
1834
1835#ifndef WIN32
1836 mparams.page_size = malloc_getpagesize;
1837 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
1838 DEFAULT_GRANULARITY : mparams.page_size);
1839#else /* WIN32 */
1840 {
1841 SYSTEM_INFO system_info;
1842 GetSystemInfo(&system_info);
1843 mparams.page_size = system_info.dwPageSize;
1844 mparams.granularity = system_info.dwAllocationGranularity;
1845 }
1846#endif /* WIN32 */
1847
1848 /* Sanity-check configuration:
1849 size_t must be unsigned and as wide as pointer type.
1850 ints must be at least 4 bytes.
1851 alignment must be at least 8.
1852 Alignment, min chunk size, and page size must all be powers of 2.
1853 */
1854 if ((sizeof(size_t) != sizeof(char*)) ||
1855 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
1856 (sizeof(int) < 4) ||
1857 (MALLOC_ALIGNMENT < (size_t)8U) ||
1858 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
1859 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
1860 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
1861 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
1862 ABORT;
1863 }
1864 return 0;
1865}
1866
1867/* support for mallopt */
1868static int change_mparam(int param_number, int value) {
1869 size_t val = (size_t)value;
1870 init_mparams();
1871 switch(param_number) {
1872 case M_TRIM_THRESHOLD:
1873 mparams.trim_threshold = val;
1874 return 1;
1875 case M_GRANULARITY:
1876 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
1877 mparams.granularity = val;
1878 return 1;
1879 }
1880 else
1881 return 0;
1882 case M_MMAP_THRESHOLD:
1883 mparams.mmap_threshold = val;
1884 return 1;
1885 default:
1886 return 0;
1887 }
1888}
1889
1890#if DEBUG
1891/* ------------------------- Debugging Support --------------------------- */
1892
1893/* Check properties of any chunk, whether free, inuse, mmapped etc */
1894static void do_check_any_chunk(mstate m, mchunkptr p) {
1895 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1896 assert(ok_address(m, p));
1897}
1898
1899/* Check properties of top chunk */
1900static void do_check_top_chunk(mstate m, mchunkptr p) {
1901 msegmentptr sp = segment_holding(m, (char*)p);
1902 size_t sz = chunksize(p);
1903 assert(sp != 0);
1904 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1905 assert(ok_address(m, p));
1906 assert(sz == m->topsize);
1907 assert(sz > 0);
1908 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
1909 assert(pinuse(p));
1910 assert(!next_pinuse(p));
1911}
1912
1913/* Check properties of (inuse) mmapped chunks */
1914static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
1915 size_t sz = chunksize(p);
1916 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
1917 assert(is_mmapped(p));
1918 assert(use_mmap(m));
1919 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1920 assert(ok_address(m, p));
1921 assert(!is_small(sz));
1922 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
1923 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
1924 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
1925}
1926
1927/* Check properties of inuse chunks */
1928static void do_check_inuse_chunk(mstate m, mchunkptr p) {
1929 do_check_any_chunk(m, p);
1930 assert(cinuse(p));
1931 assert(next_pinuse(p));
1932 /* If not pinuse and not mmapped, previous chunk has OK offset */
1933 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
1934 if (is_mmapped(p))
1935 do_check_mmapped_chunk(m, p);
1936}
1937
1938/* Check properties of free chunks */
1939static void do_check_free_chunk(mstate m, mchunkptr p) {
1940 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1941 mchunkptr next = chunk_plus_offset(p, sz);
1942 do_check_any_chunk(m, p);
1943 assert(!cinuse(p));
1944 assert(!next_pinuse(p));
1945 assert (!is_mmapped(p));
1946 if (p != m->dv && p != m->top) {
1947 if (sz >= MIN_CHUNK_SIZE) {
1948 assert((sz & CHUNK_ALIGN_MASK) == 0);
1949 assert(is_aligned(chunk2mem(p)));
1950 assert(next->prev_foot == sz);
1951 assert(pinuse(p));
1952 assert (next == m->top || cinuse(next));
1953 assert(p->fd->bk == p);
1954 assert(p->bk->fd == p);
1955 }
1956 else /* markers are always of size SIZE_T_SIZE */
1957 assert(sz == SIZE_T_SIZE);
1958 }
1959}
1960
1961/* Check properties of malloced chunks at the point they are malloced */
1962static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
1963 if (mem != 0) {
1964 mchunkptr p = mem2chunk(mem);
1965 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1966 do_check_inuse_chunk(m, p);
1967 assert((sz & CHUNK_ALIGN_MASK) == 0);
1968 assert(sz >= MIN_CHUNK_SIZE);
1969 assert(sz >= s);
1970 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
1971 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
1972 }
1973}
1974
1975/* Check a tree and its subtrees. */
1976static void do_check_tree(mstate m, tchunkptr t) {
1977 tchunkptr head = 0;
1978 tchunkptr u = t;
1979 bindex_t tindex = t->index;
1980 size_t tsize = chunksize(t);
1981 bindex_t idx;
1982 compute_tree_index(tsize, idx);
1983 assert(tindex == idx);
1984 assert(tsize >= MIN_LARGE_SIZE);
1985 assert(tsize >= minsize_for_tree_index(idx));
1986 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
1987
1988 do { /* traverse through chain of same-sized nodes */
1989 do_check_any_chunk(m, ((mchunkptr)u));
1990 assert(u->index == tindex);
1991 assert(chunksize(u) == tsize);
1992 assert(!cinuse(u));
1993 assert(!next_pinuse(u));
1994 assert(u->fd->bk == u);
1995 assert(u->bk->fd == u);
1996 if (u->parent == 0) {
1997 assert(u->child[0] == 0);
1998 assert(u->child[1] == 0);
1999 }
2000 else {
2001 assert(head == 0); /* only one node on chain has parent */
2002 head = u;
2003 assert(u->parent != u);
2004 assert (u->parent->child[0] == u ||
2005 u->parent->child[1] == u ||
2006 *((tbinptr*)(u->parent)) == u);
2007 if (u->child[0] != 0) {
2008 assert(u->child[0]->parent == u);
2009 assert(u->child[0] != u);
2010 do_check_tree(m, u->child[0]);
2011 }
2012 if (u->child[1] != 0) {
2013 assert(u->child[1]->parent == u);
2014 assert(u->child[1] != u);
2015 do_check_tree(m, u->child[1]);
2016 }
2017 if (u->child[0] != 0 && u->child[1] != 0) {
2018 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
2019 }
2020 }
2021 u = u->fd;
2022 } while (u != t);
2023 assert(head != 0);
2024}
2025
2026/* Check all the chunks in a treebin. */
2027static void do_check_treebin(mstate m, bindex_t i) {
2028 tbinptr* tb = treebin_at(m, i);
2029 tchunkptr t = *tb;
2030 int empty = (m->treemap & (1U << i)) == 0;
2031 if (t == 0)
2032 assert(empty);
2033 if (!empty)
2034 do_check_tree(m, t);
2035}
2036
2037/* Check all the chunks in a smallbin. */
2038static void do_check_smallbin(mstate m, bindex_t i) {
2039 sbinptr b = smallbin_at(m, i);
2040 mchunkptr p = b->bk;
2041 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2042 if (p == b)
2043 assert(empty);
2044 if (!empty) {
2045 for (; p != b; p = p->bk) {
2046 size_t size = chunksize(p);
2047 mchunkptr q;
2048 /* each chunk claims to be free */
2049 do_check_free_chunk(m, p);
2050 /* chunk belongs in bin */
2051 assert(small_index(size) == i);
2052 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2053 /* chunk is followed by an inuse chunk */
2054 q = next_chunk(p);
2055 if (q->head != FENCEPOST_HEAD)
2056 do_check_inuse_chunk(m, q);
2057 }
2058 }
2059}
2060
2061/* Find x in a bin. Used in other check functions. */
2062static int bin_find(mstate m, mchunkptr x) {
2063 size_t size = chunksize(x);
2064 if (is_small(size)) {
2065 bindex_t sidx = small_index(size);
2066 sbinptr b = smallbin_at(m, sidx);
2067 if (smallmap_is_marked(m, sidx)) {
2068 mchunkptr p = b;
2069 do {
2070 if (p == x)
2071 return 1;
2072 } while ((p = p->fd) != b);
2073 }
2074 }
2075 else {
2076 bindex_t tidx;
2077 compute_tree_index(size, tidx);
2078 if (treemap_is_marked(m, tidx)) {
2079 tchunkptr t = *treebin_at(m, tidx);
2080 size_t sizebits = size << leftshift_for_tree_index(tidx);
2081 while (t != 0 && chunksize(t) != size) {
2082 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2083 sizebits <<= 1;
2084 }
2085 if (t != 0) {
2086 tchunkptr u = t;
2087 do {
2088 if (u == (tchunkptr)x)
2089 return 1;
2090 } while ((u = u->fd) != t);
2091 }
2092 }
2093 }
2094 return 0;
2095}
2096
2097/* Traverse each chunk and check it; return total */
2098static size_t traverse_and_check(mstate m) {
2099 size_t sum = 0;
2100 if (is_initialized(m)) {
2101 msegmentptr s = &m->seg;
2102 sum += m->topsize + TOP_FOOT_SIZE;
2103 while (s != 0) {
2104 mchunkptr q = align_as_chunk(s->base);
2105 mchunkptr lastq = 0;
2106 assert(pinuse(q));
2107 while (segment_holds(s, q) &&
2108 q != m->top && q->head != FENCEPOST_HEAD) {
2109 sum += chunksize(q);
2110 if (cinuse(q)) {
2111 assert(!bin_find(m, q));
2112 do_check_inuse_chunk(m, q);
2113 }
2114 else {
2115 assert(q == m->dv || bin_find(m, q));
2116 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2117 do_check_free_chunk(m, q);
2118 }
2119 lastq = q;
2120 q = next_chunk(q);
2121 }
2122 s = s->next;
2123 }
2124 }
2125 return sum;
2126}
2127
2128/* Check all properties of malloc_state. */
2129static void do_check_malloc_state(mstate m) {
2130 bindex_t i;
2131 size_t total;
2132 /* check bins */
2133 for (i = 0; i < NSMALLBINS; ++i)
2134 do_check_smallbin(m, i);
2135 for (i = 0; i < NTREEBINS; ++i)
2136 do_check_treebin(m, i);
2137
2138 if (m->dvsize != 0) { /* check dv chunk */
2139 do_check_any_chunk(m, m->dv);
2140 assert(m->dvsize == chunksize(m->dv));
2141 assert(m->dvsize >= MIN_CHUNK_SIZE);
2142 assert(bin_find(m, m->dv) == 0);
2143 }
2144
2145 if (m->top != 0) { /* check top chunk */
2146 do_check_top_chunk(m, m->top);
2147 assert(m->topsize == chunksize(m->top));
2148 assert(m->topsize > 0);
2149 assert(bin_find(m, m->top) == 0);
2150 }
2151
2152 total = traverse_and_check(m);
2153 assert(total <= m->footprint);
2154 assert(m->footprint <= m->max_footprint);
2155}
2156#endif /* DEBUG */
2157
2158/* ----------------------------- statistics ------------------------------ */
2159
2160#if !NO_MALLINFO
2161static struct mallinfo internal_mallinfo(mstate m) {
2162 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2163 if (!PREACTION(m)) {
2164 check_malloc_state(m);
2165 if (is_initialized(m)) {
2166 size_t nfree = SIZE_T_ONE; /* top always free */
2167 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2168 size_t sum = mfree;
2169 msegmentptr s = &m->seg;
2170 while (s != 0) {
2171 mchunkptr q = align_as_chunk(s->base);
2172 while (segment_holds(s, q) &&
2173 q != m->top && q->head != FENCEPOST_HEAD) {
2174 size_t sz = chunksize(q);
2175 sum += sz;
2176 if (!cinuse(q)) {
2177 mfree += sz;
2178 ++nfree;
2179 }
2180 q = next_chunk(q);
2181 }
2182 s = s->next;
2183 }
2184
2185 nm.arena = sum;
2186 nm.ordblks = nfree;
2187 nm.hblkhd = m->footprint - sum;
2188 nm.usmblks = m->max_footprint;
2189 nm.uordblks = m->footprint - mfree;
2190 nm.fordblks = mfree;
2191 nm.keepcost = m->topsize;
2192 }
2193
2194 POSTACTION(m);
2195 }
2196 return nm;
2197}
2198#endif /* !NO_MALLINFO */
2199
2200static void internal_malloc_stats(mstate m) {
2201 if (!PREACTION(m)) {
2202 size_t maxfp = 0;
2203 size_t fp = 0;
2204 size_t used = 0;
2205 check_malloc_state(m);
2206 if (is_initialized(m)) {
2207 msegmentptr s = &m->seg;
2208 maxfp = m->max_footprint;
2209 fp = m->footprint;
2210 used = fp - (m->topsize + TOP_FOOT_SIZE);
2211
2212 while (s != 0) {
2213 mchunkptr q = align_as_chunk(s->base);
2214 while (segment_holds(s, q) &&
2215 q != m->top && q->head != FENCEPOST_HEAD) {
2216 if (!cinuse(q))
2217 used -= chunksize(q);
2218 q = next_chunk(q);
2219 }
2220 s = s->next;
2221 }
2222 }
2223
2224 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2225 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2226 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2227
2228 POSTACTION(m);
2229 }
2230}
2231
2232/* ----------------------- Operations on smallbins ----------------------- */
2233
2234/*
2235 Various forms of linking and unlinking are defined as macros. Even
2236 the ones for trees, which are very long but have very short typical
2237 paths. This is ugly but reduces reliance on inlining support of
2238 compilers.
2239*/
2240
2241/* Link a free chunk into a smallbin */
2242#define insert_small_chunk(M, P, S) {\
2243 bindex_t I = small_index(S);\
2244 mchunkptr B = smallbin_at(M, I);\
2245 mchunkptr F = B;\
2246 assert(S >= MIN_CHUNK_SIZE);\
2247 if (!smallmap_is_marked(M, I))\
2248 mark_smallmap(M, I);\
2249 else if (RTCHECK(ok_address(M, B->fd)))\
2250 F = B->fd;\
2251 else {\
2252 CORRUPTION_ERROR_ACTION(M);\
2253 }\
2254 B->fd = P;\
2255 F->bk = P;\
2256 P->fd = F;\
2257 P->bk = B;\
2258}
2259
2260/* Unlink a chunk from a smallbin */
2261#define unlink_small_chunk(M, P, S) {\
2262 mchunkptr F = P->fd;\
2263 mchunkptr B = P->bk;\
2264 bindex_t I = small_index(S);\
2265 assert(P != B);\
2266 assert(P != F);\
2267 assert(chunksize(P) == small_index2size(I));\
2268 if (F == B)\
2269 clear_smallmap(M, I);\
2270 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2271 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2272 F->bk = B;\
2273 B->fd = F;\
2274 }\
2275 else {\
2276 CORRUPTION_ERROR_ACTION(M);\
2277 }\
2278}
2279
2280/* Unlink the first chunk from a smallbin */
2281#define unlink_first_small_chunk(M, B, P, I) {\
2282 mchunkptr F = P->fd;\
2283 assert(P != B);\
2284 assert(P != F);\
2285 assert(chunksize(P) == small_index2size(I));\
2286 if (B == F)\
2287 clear_smallmap(M, I);\
2288 else if (RTCHECK(ok_address(M, F))) {\
2289 B->fd = F;\
2290 F->bk = B;\
2291 }\
2292 else {\
2293 CORRUPTION_ERROR_ACTION(M);\
2294 }\
2295}
2296
2297/* Replace dv node, binning the old one */
2298/* Used only when dvsize known to be small */
2299#define replace_dv(M, P, S) {\
2300 size_t DVS = M->dvsize;\
2301 if (DVS != 0) {\
2302 mchunkptr DV = M->dv;\
2303 assert(is_small(DVS));\
2304 insert_small_chunk(M, DV, DVS);\
2305 }\
2306 M->dvsize = S;\
2307 M->dv = P;\
2308}
2309
2310/* ------------------------- Operations on trees ------------------------- */
2311
2312/* Insert chunk into tree */
2313#define insert_large_chunk(M, X, S) {\
2314 tbinptr* H;\
2315 bindex_t I;\
2316 compute_tree_index(S, I);\
2317 H = treebin_at(M, I);\
2318 X->index = I;\
2319 X->child[0] = X->child[1] = 0;\
2320 if (!treemap_is_marked(M, I)) {\
2321 mark_treemap(M, I);\
2322 *H = X;\
2323 X->parent = (tchunkptr)H;\
2324 X->fd = X->bk = X;\
2325 }\
2326 else {\
2327 tchunkptr T = *H;\
2328 size_t K = S << leftshift_for_tree_index(I);\
2329 for (;;) {\
2330 if (chunksize(T) != S) {\
2331 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2332 K <<= 1;\
2333 if (*C != 0)\
2334 T = *C;\
2335 else if (RTCHECK(ok_address(M, C))) {\
2336 *C = X;\
2337 X->parent = T;\
2338 X->fd = X->bk = X;\
2339 break;\
2340 }\
2341 else {\
2342 CORRUPTION_ERROR_ACTION(M);\
2343 break;\
2344 }\
2345 }\
2346 else {\
2347 tchunkptr F = T->fd;\
2348 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2349 T->fd = F->bk = X;\
2350 X->fd = F;\
2351 X->bk = T;\
2352 X->parent = 0;\
2353 break;\
2354 }\
2355 else {\
2356 CORRUPTION_ERROR_ACTION(M);\
2357 break;\
2358 }\
2359 }\
2360 }\
2361 }\
2362}
2363
2364/*
2365 Unlink steps:
2366
2367 1. If x is a chained node, unlink it from its same-sized fd/bk links
2368 and choose its bk node as its replacement.
2369 2. If x was the last node of its size, but not a leaf node, it must
2370 be replaced with a leaf node (not merely one with an open left or
2371 right), to make sure that lefts and rights of descendents
2372 correspond properly to bit masks. We use the rightmost descendent
2373 of x. We could use any other leaf, but this is easy to locate and
2374 tends to counteract removal of leftmosts elsewhere, and so keeps
2375 paths shorter than minimally guaranteed. This doesn't loop much
2376 because on average a node in a tree is near the bottom.
2377 3. If x is the base of a chain (i.e., has parent links) relink
2378 x's parent and children to x's replacement (or null if none).
2379*/
2380
2381#define unlink_large_chunk(M, X) {\
2382 tchunkptr XP = X->parent;\
2383 tchunkptr R;\
2384 if (X->bk != X) {\
2385 tchunkptr F = X->fd;\
2386 R = X->bk;\
2387 if (RTCHECK(ok_address(M, F))) {\
2388 F->bk = R;\
2389 R->fd = F;\
2390 }\
2391 else {\
2392 CORRUPTION_ERROR_ACTION(M);\
2393 }\
2394 }\
2395 else {\
2396 tchunkptr* RP;\
2397 if (((R = *(RP = &(X->child[1]))) != 0) ||\
2398 ((R = *(RP = &(X->child[0]))) != 0)) {\
2399 tchunkptr* CP;\
2400 while ((*(CP = &(R->child[1])) != 0) ||\
2401 (*(CP = &(R->child[0])) != 0)) {\
2402 R = *(RP = CP);\
2403 }\
2404 if (RTCHECK(ok_address(M, RP)))\
2405 *RP = 0;\
2406 else {\
2407 CORRUPTION_ERROR_ACTION(M);\
2408 }\
2409 }\
2410 }\
2411 if (XP != 0) {\
2412 tbinptr* H = treebin_at(M, X->index);\
2413 if (X == *H) {\
2414 if ((*H = R) == 0) \
2415 clear_treemap(M, X->index);\
2416 }\
2417 else if (RTCHECK(ok_address(M, XP))) {\
2418 if (XP->child[0] == X) \
2419 XP->child[0] = R;\
2420 else \
2421 XP->child[1] = R;\
2422 }\
2423 else\
2424 CORRUPTION_ERROR_ACTION(M);\
2425 if (R != 0) {\
2426 if (RTCHECK(ok_address(M, R))) {\
2427 tchunkptr C0, C1;\
2428 R->parent = XP;\
2429 if ((C0 = X->child[0]) != 0) {\
2430 if (RTCHECK(ok_address(M, C0))) {\
2431 R->child[0] = C0;\
2432 C0->parent = R;\
2433 }\
2434 else\
2435 CORRUPTION_ERROR_ACTION(M);\
2436 }\
2437 if ((C1 = X->child[1]) != 0) {\
2438 if (RTCHECK(ok_address(M, C1))) {\
2439 R->child[1] = C1;\
2440 C1->parent = R;\
2441 }\
2442 else\
2443 CORRUPTION_ERROR_ACTION(M);\
2444 }\
2445 }\
2446 else\
2447 CORRUPTION_ERROR_ACTION(M);\
2448 }\
2449 }\
2450}
2451
2452/* Relays to large vs small bin operations */
2453
2454#define insert_chunk(M, P, S)\
2455 if (is_small(S)) insert_small_chunk(M, P, S)\
2456 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
2457
2458#define unlink_chunk(M, P, S)\
2459 if (is_small(S)) unlink_small_chunk(M, P, S)\
2460 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
2461
2462
2463/* Relays to internal calls to malloc/free from realloc, memalign etc */
2464
2465#if ONLY_MSPACES
2466#define internal_malloc(m, b) mspace_malloc(m, b)
2467#define internal_free(m, mem) mspace_free(m,mem);
2468#else /* ONLY_MSPACES */
2469#if MSPACES
2470#define internal_malloc(m, b)\
2471 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
2472#define internal_free(m, mem)\
2473 if (m == gm) dlfree(mem); else mspace_free(m,mem);
2474#else /* MSPACES */
2475#define internal_malloc(m, b) dlmalloc(b)
2476#define internal_free(m, mem) dlfree(mem)
2477#endif /* MSPACES */
2478#endif /* ONLY_MSPACES */
2479
2480/* ----------------------- Direct-mmapping chunks ----------------------- */
2481
2482/*
2483 Directly mmapped chunks are set up with an offset to the start of
2484 the mmapped region stored in the prev_foot field of the chunk. This
2485 allows reconstruction of the required argument to MUNMAP when freed,
2486 and also allows adjustment of the returned chunk to meet alignment
2487 requirements (especially in memalign). There is also enough space
2488 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
2489 the PINUSE bit so frees can be checked.
2490*/
2491
2492/* Malloc using mmap */
2493static void* mmap_alloc(mstate m, size_t nb) {
2494 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2495 if (mmsize > nb) { /* Check for wrap around 0 */
2496 char* mm = (char*)(DIRECT_MMAP(mmsize));
2497 if (mm != CMFAIL) {
2498 size_t offset = align_offset(chunk2mem(mm));
2499 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
2500 mchunkptr p = (mchunkptr)(mm + offset);
2501 p->prev_foot = offset | IS_MMAPPED_BIT;
2502 (p)->head = (psize|CINUSE_BIT);
2503 mark_inuse_foot(m, p, psize);
2504 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
2505 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
2506
2507 if (mm < m->least_addr)
2508 m->least_addr = mm;
2509 if ((m->footprint += mmsize) > m->max_footprint)
2510 m->max_footprint = m->footprint;
2511 assert(is_aligned(chunk2mem(p)));
2512 check_mmapped_chunk(m, p);
2513 return chunk2mem(p);
2514 }
2515 }
2516 return 0;
2517}
2518
2519/* Realloc using mmap */
2520static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
2521 size_t oldsize = chunksize(oldp);
2522 if (is_small(nb)) /* Can't shrink mmap regions below small size */
2523 return 0;
2524 /* Keep old chunk if big enough but not too big */
2525 if (oldsize >= nb + SIZE_T_SIZE &&
2526 (oldsize - nb) <= (mparams.granularity << 1))
2527 return oldp;
2528 else {
2529 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
2530 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
2531 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
2532 CHUNK_ALIGN_MASK);
2533 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
2534 oldmmsize, newmmsize, 1);
2535 if (cp != CMFAIL) {
2536 mchunkptr newp = (mchunkptr)(cp + offset);
2537 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
2538 newp->head = (psize|CINUSE_BIT);
2539 mark_inuse_foot(m, newp, psize);
2540 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
2541 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
2542
2543 if (cp < m->least_addr)
2544 m->least_addr = cp;
2545 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
2546 m->max_footprint = m->footprint;
2547 check_mmapped_chunk(m, newp);
2548 return newp;
2549 }
2550 }
2551 return 0;
2552}
2553
2554/* -------------------------- mspace management -------------------------- */
2555
2556/* Initialize top chunk and its size */
2557static void init_top(mstate m, mchunkptr p, size_t psize) {
2558 /* Ensure alignment */
2559 size_t offset = align_offset(chunk2mem(p));
2560 p = (mchunkptr)((char*)p + offset);
2561 psize -= offset;
2562
2563 m->top = p;
2564 m->topsize = psize;
2565 p->head = psize | PINUSE_BIT;
2566 /* set size of fake trailing chunk holding overhead space only once */
2567 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
2568 m->trim_check = mparams.trim_threshold; /* reset on each update */
2569}
2570
2571/* Initialize bins for a new mstate that is otherwise zeroed out */
2572static void init_bins(mstate m) {
2573 /* Establish circular links for smallbins */
2574 bindex_t i;
2575 for (i = 0; i < NSMALLBINS; ++i) {
2576 sbinptr bin = smallbin_at(m,i);
2577 bin->fd = bin->bk = bin;
2578 }
2579}
2580
2581#if PROCEED_ON_ERROR
2582
2583/* default corruption action */
2584static void reset_on_error(mstate m) {
2585 int i;
2586 ++malloc_corruption_error_count;
2587 /* Reinitialize fields to forget about all memory */
2588 m->smallbins = m->treebins = 0;
2589 m->dvsize = m->topsize = 0;
2590 m->seg.base = 0;
2591 m->seg.size = 0;
2592 m->seg.next = 0;
2593 m->top = m->dv = 0;
2594 for (i = 0; i < NTREEBINS; ++i)
2595 *treebin_at(m, i) = 0;
2596 init_bins(m);
2597}
2598#endif /* PROCEED_ON_ERROR */
2599
2600/* Allocate chunk and prepend remainder with chunk in successor base. */
2601static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
2602 size_t nb) {
2603 mchunkptr p = align_as_chunk(newbase);
2604 mchunkptr oldfirst = align_as_chunk(oldbase);
2605 size_t psize = (char*)oldfirst - (char*)p;
2606 mchunkptr q = chunk_plus_offset(p, nb);
2607 size_t qsize = psize - nb;
2608 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2609
2610 assert((char*)oldfirst > (char*)q);
2611 assert(pinuse(oldfirst));
2612 assert(qsize >= MIN_CHUNK_SIZE);
2613
2614 /* consolidate remainder with first chunk of old base */
2615 if (oldfirst == m->top) {
2616 size_t tsize = m->topsize += qsize;
2617 m->top = q;
2618 q->head = tsize | PINUSE_BIT;
2619 check_top_chunk(m, q);
2620 }
2621 else if (oldfirst == m->dv) {
2622 size_t dsize = m->dvsize += qsize;
2623 m->dv = q;
2624 set_size_and_pinuse_of_free_chunk(q, dsize);
2625 }
2626 else {
2627 if (!cinuse(oldfirst)) {
2628 size_t nsize = chunksize(oldfirst);
2629 unlink_chunk(m, oldfirst, nsize);
2630 oldfirst = chunk_plus_offset(oldfirst, nsize);
2631 qsize += nsize;
2632 }
2633 set_free_with_pinuse(q, qsize, oldfirst);
2634 insert_chunk(m, q, qsize);
2635 check_free_chunk(m, q);
2636 }
2637
2638 check_malloced_chunk(m, chunk2mem(p), nb);
2639 return chunk2mem(p);
2640}
2641
2642
2643/* Add a segment to hold a new noncontiguous region */
2644static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
2645 /* Determine locations and sizes of segment, fenceposts, old top */
2646 char* old_top = (char*)m->top;
2647 msegmentptr oldsp = segment_holding(m, old_top);
2648 char* old_end = oldsp->base + oldsp->size;
2649 size_t ssize = pad_request(sizeof(struct malloc_segment));
2650 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2651 size_t offset = align_offset(chunk2mem(rawsp));
2652 char* asp = rawsp + offset;
2653 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
2654 mchunkptr sp = (mchunkptr)csp;
2655 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
2656 mchunkptr tnext = chunk_plus_offset(sp, ssize);
2657 mchunkptr p = tnext;
2658 int nfences = 0;
2659
2660 /* reset top to new space */
2661 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2662
2663 /* Set up segment record */
2664 assert(is_aligned(ss));
2665 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
2666 *ss = m->seg; /* Push current record */
2667 m->seg.base = tbase;
2668 m->seg.size = tsize;
2669 m->seg.sflags = mmapped;
2670 m->seg.next = ss;
2671
2672 /* Insert trailing fenceposts */
2673 for (;;) {
2674 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
2675 p->head = FENCEPOST_HEAD;
2676 ++nfences;
2677 if ((char*)(&(nextp->head)) < old_end)
2678 p = nextp;
2679 else
2680 break;
2681 }
2682 assert(nfences >= 2);
2683
2684 /* Insert the rest of old top into a bin as an ordinary free chunk */
2685 if (csp != old_top) {
2686 mchunkptr q = (mchunkptr)old_top;
2687 size_t psize = csp - old_top;
2688 mchunkptr tn = chunk_plus_offset(q, psize);
2689 set_free_with_pinuse(q, psize, tn);
2690 insert_chunk(m, q, psize);
2691 }
2692
2693 check_top_chunk(m, m->top);
2694}
2695
2696/* -------------------------- System allocation -------------------------- */
2697
2698/* Get memory from system using MORECORE or MMAP */
2699static void* sys_alloc(mstate m, size_t nb) {
2700 char* tbase = CMFAIL;
2701 size_t tsize = 0;
2702 flag_t mmap_flag = 0;
2703
2704 init_mparams();
2705
2706 /* Directly map large chunks */
2707 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
2708 void* mem = mmap_alloc(m, nb);
2709 if (mem != 0)
2710 return mem;
2711 }
2712
2713 /*
2714 Try getting memory in any of three ways (in most-preferred to
2715 least-preferred order):
2716 1. A call to MORECORE that can normally contiguously extend memory.
2717 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
2718 or main space is mmapped or a previous contiguous call failed)
2719 2. A call to MMAP new space (disabled if not HAVE_MMAP).
2720 Note that under the default settings, if MORECORE is unable to
2721 fulfill a request, and HAVE_MMAP is true, then mmap is
2722 used as a noncontiguous system allocator. This is a useful backup
2723 strategy for systems with holes in address spaces -- in this case
2724 sbrk cannot contiguously expand the heap, but mmap may be able to
2725 find space.
2726 3. A call to MORECORE that cannot usually contiguously extend memory.
2727 (disabled if not HAVE_MORECORE)
2728 */
2729
2730 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
2731 char* br = CMFAIL;
2732 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
2733 size_t asize = 0;
2734 ACQUIRE_MORECORE_LOCK();
2735
2736 if (ss == 0) { /* First time through or recovery */
2737 char* base = (char*)CALL_MORECORE(0);
2738 if (base != CMFAIL) {
2739 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2740 /* Adjust to end on a page boundary */
2741 if (!is_page_aligned(base))
2742 asize += (page_align((size_t)base) - (size_t)base);
2743 /* Can't call MORECORE if size is negative when treated as signed */
2744 if (asize < HALF_MAX_SIZE_T &&
2745 (br = (char*)(CALL_MORECORE(asize))) == base) {
2746 tbase = base;
2747 tsize = asize;
2748 }
2749 }
2750 }
2751 else {
2752 /* Subtract out existing available top space from MORECORE request. */
2753 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
2754 /* Use mem here only if it did continuously extend old space */
2755 if (asize < HALF_MAX_SIZE_T &&
2756 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
2757 tbase = br;
2758 tsize = asize;
2759 }
2760 }
2761
2762 if (tbase == CMFAIL) { /* Cope with partial failure */
2763 if (br != CMFAIL) { /* Try to use/extend the space we did get */
2764 if (asize < HALF_MAX_SIZE_T &&
2765 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
2766 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
2767 if (esize < HALF_MAX_SIZE_T) {
2768 char* end = (char*)CALL_MORECORE(esize);
2769 if (end != CMFAIL)
2770 asize += esize;
2771 else { /* Can't use; try to release */
2772 CALL_MORECORE(-asize);
2773 br = CMFAIL;
2774 }
2775 }
2776 }
2777 }
2778 if (br != CMFAIL) { /* Use the space we did get */
2779 tbase = br;
2780 tsize = asize;
2781 }
2782 else
2783 disable_contiguous(m); /* Don't try contiguous path in the future */
2784 }
2785
2786 RELEASE_MORECORE_LOCK();
2787 }
2788
2789 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
2790 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
2791 size_t rsize = granularity_align(req);
2792 if (rsize > nb) { /* Fail if wraps around zero */
2793 char* mp = (char*)(CALL_MMAP(rsize));
2794 if (mp != CMFAIL) {
2795 tbase = mp;
2796 tsize = rsize;
2797 mmap_flag = IS_MMAPPED_BIT;
2798 }
2799 }
2800 }
2801
2802 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
2803 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2804 if (asize < HALF_MAX_SIZE_T) {
2805 char* br = CMFAIL;
2806 char* end = CMFAIL;
2807 ACQUIRE_MORECORE_LOCK();
2808 br = (char*)(CALL_MORECORE(asize));
2809 end = (char*)(CALL_MORECORE(0));
2810 RELEASE_MORECORE_LOCK();
2811 if (br != CMFAIL && end != CMFAIL && br < end) {
2812 size_t ssize = end - br;
2813 if (ssize > nb + TOP_FOOT_SIZE) {
2814 tbase = br;
2815 tsize = ssize;
2816 }
2817 }
2818 }
2819 }
2820
2821 if (tbase != CMFAIL) {
2822
2823 if ((m->footprint += tsize) > m->max_footprint)
2824 m->max_footprint = m->footprint;
2825
2826 if (!is_initialized(m)) { /* first-time initialization */
2827 m->seg.base = m->least_addr = tbase;
2828 m->seg.size = tsize;
2829 m->seg.sflags = mmap_flag;
2830 m->magic = mparams.magic;
2831 init_bins(m);
2832 if (is_global(m))
2833 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2834 else {
2835 /* Offset top by embedded malloc_state */
2836 mchunkptr mn = next_chunk(mem2chunk(m));
2837 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
2838 }
2839 }
2840
2841 else {
2842 /* Try to merge with an existing segment */
2843 msegmentptr sp = &m->seg;
2844 while (sp != 0 && tbase != sp->base + sp->size)
2845 sp = sp->next;
2846 if (sp != 0 &&
2847 !is_extern_segment(sp) &&
2848 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
2849 segment_holds(sp, m->top)) { /* append */
2850 sp->size += tsize;
2851 init_top(m, m->top, m->topsize + tsize);
2852 }
2853 else {
2854 if (tbase < m->least_addr)
2855 m->least_addr = tbase;
2856 sp = &m->seg;
2857 while (sp != 0 && sp->base != tbase + tsize)
2858 sp = sp->next;
2859 if (sp != 0 &&
2860 !is_extern_segment(sp) &&
2861 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
2862 char* oldbase = sp->base;
2863 sp->base = tbase;
2864 sp->size += tsize;
2865 return prepend_alloc(m, tbase, oldbase, nb);
2866 }
2867 else
2868 add_segment(m, tbase, tsize, mmap_flag);
2869 }
2870 }
2871
2872 if (nb < m->topsize) { /* Allocate from new or extended top space */
2873 size_t rsize = m->topsize -= nb;
2874 mchunkptr p = m->top;
2875 mchunkptr r = m->top = chunk_plus_offset(p, nb);
2876 r->head = rsize | PINUSE_BIT;
2877 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2878 check_top_chunk(m, m->top);
2879 check_malloced_chunk(m, chunk2mem(p), nb);
2880 return chunk2mem(p);
2881 }
2882 }
2883
2884 MALLOC_FAILURE_ACTION;
2885 return 0;
2886}
2887
2888/* ----------------------- system deallocation -------------------------- */
2889
2890/* Unmap and unlink any mmapped segments that don't contain used chunks */
2891static size_t release_unused_segments(mstate m) {
2892 size_t released = 0;
2893 msegmentptr pred = &m->seg;
2894 msegmentptr sp = pred->next;
2895 while (sp != 0) {
2896 char* base = sp->base;
2897 size_t size = sp->size;
2898 msegmentptr next = sp->next;
2899 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
2900 mchunkptr p = align_as_chunk(base);
2901 size_t psize = chunksize(p);
2902 /* Can unmap if first chunk holds entire segment and not pinned */
2903 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
2904 tchunkptr tp = (tchunkptr)p;
2905 assert(segment_holds(sp, (char*)sp));
2906 if (p == m->dv) {
2907 m->dv = 0;
2908 m->dvsize = 0;
2909 }
2910 else {
2911 unlink_large_chunk(m, tp);
2912 }
2913 if (CALL_MUNMAP(base, size) == 0) {
2914 released += size;
2915 m->footprint -= size;
2916 /* unlink obsoleted record */
2917 sp = pred;
2918 sp->next = next;
2919 }
2920 else { /* back out if cannot unmap */
2921 insert_large_chunk(m, tp, psize);
2922 }
2923 }
2924 }
2925 pred = sp;
2926 sp = next;
2927 }
2928 return released;
2929}
2930
2931static int sys_trim(mstate m, size_t pad) {
2932 size_t released = 0;
2933 if (pad < MAX_REQUEST && is_initialized(m)) {
2934 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
2935
2936 if (m->topsize > pad) {
2937 /* Shrink top space in granularity-size units, keeping at least one */
2938 size_t unit = mparams.granularity;
2939 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
2940 SIZE_T_ONE) * unit;
2941 msegmentptr sp = segment_holding(m, (char*)m->top);
2942
2943 if (!is_extern_segment(sp)) {
2944 if (is_mmapped_segment(sp)) {
2945 if (HAVE_MMAP &&
2946 sp->size >= extra &&
2947 !has_segment_link(m, sp)) { /* can't shrink if pinned */
2948 size_t newsize = sp->size - extra;
2949 /* Prefer mremap, fall back to munmap */
2950 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
2951 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
2952 released = extra;
2953 }
2954 }
2955 }
2956 else if (HAVE_MORECORE) {
2957 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
2958 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
2959 ACQUIRE_MORECORE_LOCK();
2960 {
2961 /* Make sure end of memory is where we last set it. */
2962 char* old_br = (char*)(CALL_MORECORE(0));
2963 if (old_br == sp->base + sp->size) {
2964 char* rel_br = (char*)(CALL_MORECORE(-extra));
2965 char* new_br = (char*)(CALL_MORECORE(0));
2966 if (rel_br != CMFAIL && new_br < old_br)
2967 released = old_br - new_br;
2968 }
2969 }
2970 RELEASE_MORECORE_LOCK();
2971 }
2972 }
2973
2974 if (released != 0) {
2975 sp->size -= released;
2976 m->footprint -= released;
2977 init_top(m, m->top, m->topsize - released);
2978 check_top_chunk(m, m->top);
2979 }
2980 }
2981
2982 /* Unmap any unused mmapped segments */
2983 if (HAVE_MMAP)
2984 released += release_unused_segments(m);
2985
2986 /* On failure, disable autotrim to avoid repeated failed future calls */
2987 if (released == 0)
2988 m->trim_check = MAX_SIZE_T;
2989 }
2990
2991 return (released != 0)? 1 : 0;
2992}
2993
2994/* ---------------------------- malloc support --------------------------- */
2995
2996/* allocate a large request from the best fitting chunk in a treebin */
2997static void* tmalloc_large(mstate m, size_t nb) {
2998 tchunkptr v = 0;
2999 size_t rsize = -nb; /* Unsigned negation */
3000 tchunkptr t;
3001 bindex_t idx;
3002 compute_tree_index(nb, idx);
3003
3004 if ((t = *treebin_at(m, idx)) != 0) {
3005 /* Traverse tree for this bin looking for node with size == nb */
3006 size_t sizebits = nb << leftshift_for_tree_index(idx);
3007 tchunkptr rst = 0; /* The deepest untaken right subtree */
3008 for (;;) {
3009 tchunkptr rt;
3010 size_t trem = chunksize(t) - nb;
3011 if (trem < rsize) {
3012 v = t;
3013 if ((rsize = trem) == 0)
3014 break;
3015 }
3016 rt = t->child[1];
3017 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3018 if (rt != 0 && rt != t)
3019 rst = rt;
3020 if (t == 0) {
3021 t = rst; /* set t to least subtree holding sizes > nb */
3022 break;
3023 }
3024 sizebits <<= 1;
3025 }
3026 }
3027
3028 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3029 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3030 if (leftbits != 0) {
3031 bindex_t i;
3032 binmap_t leastbit = least_bit(leftbits);
3033 compute_bit2idx(leastbit, i);
3034 t = *treebin_at(m, i);
3035 }
3036 }
3037
3038 while (t != 0) { /* find smallest of tree or subtree */
3039 size_t trem = chunksize(t) - nb;
3040 if (trem < rsize) {
3041 rsize = trem;
3042 v = t;
3043 }
3044 t = leftmost_child(t);
3045 }
3046
3047 /* If dv is a better fit, return 0 so malloc will use it */
3048 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3049 if (RTCHECK(ok_address(m, v))) { /* split */
3050 mchunkptr r = chunk_plus_offset(v, nb);
3051 assert(chunksize(v) == rsize + nb);
3052 if (RTCHECK(ok_next(v, r))) {
3053 unlink_large_chunk(m, v);
3054 if (rsize < MIN_CHUNK_SIZE)
3055 set_inuse_and_pinuse(m, v, (rsize + nb));
3056 else {
3057 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3058 set_size_and_pinuse_of_free_chunk(r, rsize);
3059 insert_chunk(m, r, rsize);
3060 }
3061 return chunk2mem(v);
3062 }
3063 }
3064 CORRUPTION_ERROR_ACTION(m);
3065 }
3066 return 0;
3067}
3068
3069/* allocate a small request from the best fitting chunk in a treebin */
3070static void* tmalloc_small(mstate m, size_t nb) {
3071 tchunkptr t, v;
3072 size_t rsize;
3073 bindex_t i;
3074 binmap_t leastbit = least_bit(m->treemap);
3075 compute_bit2idx(leastbit, i);
3076
3077 v = t = *treebin_at(m, i);
3078 rsize = chunksize(t) - nb;
3079
3080 while ((t = leftmost_child(t)) != 0) {
3081 size_t trem = chunksize(t) - nb;
3082 if (trem < rsize) {
3083 rsize = trem;
3084 v = t;
3085 }
3086 }
3087
3088 if (RTCHECK(ok_address(m, v))) {
3089 mchunkptr r = chunk_plus_offset(v, nb);
3090 assert(chunksize(v) == rsize + nb);
3091 if (RTCHECK(ok_next(v, r))) {
3092 unlink_large_chunk(m, v);
3093 if (rsize < MIN_CHUNK_SIZE)
3094 set_inuse_and_pinuse(m, v, (rsize + nb));
3095 else {
3096 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3097 set_size_and_pinuse_of_free_chunk(r, rsize);
3098 replace_dv(m, r, rsize);
3099 }
3100 return chunk2mem(v);
3101 }
3102 }
3103
3104 CORRUPTION_ERROR_ACTION(m);
3105 return 0;
3106}
3107
3108/* --------------------------- realloc support --------------------------- */
3109
3110static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3111 if (bytes >= MAX_REQUEST) {
3112 MALLOC_FAILURE_ACTION;
3113 return 0;
3114 }
3115 if (!PREACTION(m)) {
3116 mchunkptr oldp = mem2chunk(oldmem);
3117 size_t oldsize = chunksize(oldp);
3118 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3119 mchunkptr newp = 0;
3120 void* extra = 0;
3121
3122 /* Try to either shrink or extend into top. Else malloc-copy-free */
3123
3124 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3125 ok_next(oldp, next) && ok_pinuse(next))) {
3126 size_t nb = request2size(bytes);
3127 if (is_mmapped(oldp))
3128 newp = mmap_resize(m, oldp, nb);
3129 else if (oldsize >= nb) { /* already big enough */
3130 size_t rsize = oldsize - nb;
3131 newp = oldp;
3132 if (rsize >= MIN_CHUNK_SIZE) {
3133 mchunkptr remainder = chunk_plus_offset(newp, nb);
3134 set_inuse(m, newp, nb);
3135 set_inuse(m, remainder, rsize);
3136 extra = chunk2mem(remainder);
3137 }
3138 }
3139 else if (next == m->top && oldsize + m->topsize > nb) {
3140 /* Expand into top */
3141 size_t newsize = oldsize + m->topsize;
3142 size_t newtopsize = newsize - nb;
3143 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3144 set_inuse(m, oldp, nb);
3145 newtop->head = newtopsize |PINUSE_BIT;
3146 m->top = newtop;
3147 m->topsize = newtopsize;
3148 newp = oldp;
3149 }
3150 }
3151 else {
3152 USAGE_ERROR_ACTION(m, oldmem);
3153 POSTACTION(m);
3154 return 0;
3155 }
3156
3157 POSTACTION(m);
3158
3159 if (newp != 0) {
3160 if (extra != 0) {
3161 internal_free(m, extra);
3162 }
3163 check_inuse_chunk(m, newp);
3164 return chunk2mem(newp);
3165 }
3166 else {
3167 void* newmem = internal_malloc(m, bytes);
3168 if (newmem != 0) {
3169 size_t oc = oldsize - overhead_for(oldp);
3170 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3171 internal_free(m, oldmem);
3172 }
3173 return newmem;
3174 }
3175 }
3176 return 0;
3177}
3178
3179/* --------------------------- memalign support -------------------------- */
3180
3181static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3182 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3183 return internal_malloc(m, bytes);
3184 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3185 alignment = MIN_CHUNK_SIZE;
3186 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3187 size_t a = MALLOC_ALIGNMENT << 1;
3188 while (a < alignment) a <<= 1;
3189 alignment = a;
3190 }
3191
3192 if (bytes >= MAX_REQUEST - alignment) {
3193 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3194 MALLOC_FAILURE_ACTION;
3195 }
3196 }
3197 else {
3198 size_t nb = request2size(bytes);
3199 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3200 char* mem = (char*)internal_malloc(m, req);
3201 if (mem != 0) {
3202 void* leader = 0;
3203 void* trailer = 0;
3204 mchunkptr p = mem2chunk(mem);
3205
3206 if (PREACTION(m)) return 0;
3207 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3208 /*
3209 Find an aligned spot inside chunk. Since we need to give
3210 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3211 the first calculation places us at a spot with less than
3212 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3213 We've allocated enough total room so that this is always
3214 possible.
3215 */
3216 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3217 alignment -
3218 SIZE_T_ONE)) &
3219 -alignment));
3220 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3221 br : br+alignment;
3222 mchunkptr newp = (mchunkptr)pos;
3223 size_t leadsize = pos - (char*)(p);
3224 size_t newsize = chunksize(p) - leadsize;
3225
3226 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3227 newp->prev_foot = p->prev_foot + leadsize;
3228 newp->head = (newsize|CINUSE_BIT);
3229 }
3230 else { /* Otherwise, give back leader, use the rest */
3231 set_inuse(m, newp, newsize);
3232 set_inuse(m, p, leadsize);
3233 leader = chunk2mem(p);
3234 }
3235 p = newp;
3236 }
3237
3238 /* Give back spare room at the end */
3239 if (!is_mmapped(p)) {
3240 size_t size = chunksize(p);
3241 if (size > nb + MIN_CHUNK_SIZE) {
3242 size_t remainder_size = size - nb;
3243 mchunkptr remainder = chunk_plus_offset(p, nb);
3244 set_inuse(m, p, nb);
3245 set_inuse(m, remainder, remainder_size);
3246 trailer = chunk2mem(remainder);
3247 }
3248 }
3249
3250 assert (chunksize(p) >= nb);
3251 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3252 check_inuse_chunk(m, p);
3253 POSTACTION(m);
3254 if (leader != 0) {
3255 internal_free(m, leader);
3256 }
3257 if (trailer != 0) {
3258 internal_free(m, trailer);
3259 }
3260 return chunk2mem(p);
3261 }
3262 }
3263 return 0;
3264}
3265
3266/* ------------------------ comalloc/coalloc support --------------------- */
3267
3268static void** ialloc(mstate m,
3269 size_t n_elements,
3270 size_t* sizes,
3271 int opts,
3272 void* chunks[]) {
3273 /*
3274 This provides common support for independent_X routines, handling
3275 all of the combinations that can result.
3276
3277 The opts arg has:
3278 bit 0 set if all elements are same size (using sizes[0])
3279 bit 1 set if elements should be zeroed
3280 */
3281
3282 size_t element_size; /* chunksize of each element, if all same */
3283 size_t contents_size; /* total size of elements */
3284 size_t array_size; /* request size of pointer array */
3285 void* mem; /* malloced aggregate space */
3286 mchunkptr p; /* corresponding chunk */
3287 size_t remainder_size; /* remaining bytes while splitting */
3288 void** marray; /* either "chunks" or malloced ptr array */
3289 mchunkptr array_chunk; /* chunk for malloced ptr array */
3290 flag_t was_enabled; /* to disable mmap */
3291 size_t size;
3292 size_t i;
3293
3294 /* compute array length, if needed */
3295 if (chunks != 0) {
3296 if (n_elements == 0)
3297 return chunks; /* nothing to do */
3298 marray = chunks;
3299 array_size = 0;
3300 }
3301 else {
3302 /* if empty req, must still return chunk representing empty array */
3303 if (n_elements == 0)
3304 return (void**)internal_malloc(m, 0);
3305 marray = 0;
3306 array_size = request2size(n_elements * (sizeof(void*)));
3307 }
3308
3309 /* compute total element size */
3310 if (opts & 0x1) { /* all-same-size */
3311 element_size = request2size(*sizes);
3312 contents_size = n_elements * element_size;
3313 }
3314 else { /* add up all the sizes */
3315 element_size = 0;
3316 contents_size = 0;
3317 for (i = 0; i != n_elements; ++i)
3318 contents_size += request2size(sizes[i]);
3319 }
3320
3321 size = contents_size + array_size;
3322
3323 /*
3324 Allocate the aggregate chunk. First disable direct-mmapping so
3325 malloc won't use it, since we would not be able to later
3326 free/realloc space internal to a segregated mmap region.
3327 */
3328 was_enabled = use_mmap(m);
3329 disable_mmap(m);
3330 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3331 if (was_enabled)
3332 enable_mmap(m);
3333 if (mem == 0)
3334 return 0;
3335
3336 if (PREACTION(m)) return 0;
3337 p = mem2chunk(mem);
3338 remainder_size = chunksize(p);
3339
3340 assert(!is_mmapped(p));
3341
3342 if (opts & 0x2) { /* optionally clear the elements */
3343 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3344 }
3345
3346 /* If not provided, allocate the pointer array as final part of chunk */
3347 if (marray == 0) {
3348 size_t array_chunk_size;
3349 array_chunk = chunk_plus_offset(p, contents_size);
3350 array_chunk_size = remainder_size - contents_size;
3351 marray = (void**) (chunk2mem(array_chunk));
3352 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3353 remainder_size = contents_size;
3354 }
3355
3356 /* split out elements */
3357 for (i = 0; ; ++i) {
3358 marray[i] = chunk2mem(p);
3359 if (i != n_elements-1) {
3360 if (element_size != 0)
3361 size = element_size;
3362 else
3363 size = request2size(sizes[i]);
3364 remainder_size -= size;
3365 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3366 p = chunk_plus_offset(p, size);
3367 }
3368 else { /* the final element absorbs any overallocation slop */
3369 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3370 break;
3371 }
3372 }
3373
3374#if DEBUG
3375 if (marray != chunks) {
3376 /* final element must have exactly exhausted chunk */
3377 if (element_size != 0) {
3378 assert(remainder_size == element_size);
3379 }
3380 else {
3381 assert(remainder_size == request2size(sizes[i]));
3382 }
3383 check_inuse_chunk(m, mem2chunk(marray));
3384 }
3385 for (i = 0; i != n_elements; ++i)
3386 check_inuse_chunk(m, mem2chunk(marray[i]));
3387
3388#endif /* DEBUG */
3389
3390 POSTACTION(m);
3391 return marray;
3392}
3393
3394
3395/* -------------------------- public routines ---------------------------- */
3396
3397#if !ONLY_MSPACES
3398
3399void* dlmalloc(size_t bytes) {
3400 /*
3401 Basic algorithm:
3402 If a small request (< 256 bytes minus per-chunk overhead):
3403 1. If one exists, use a remainderless chunk in associated smallbin.
3404 (Remainderless means that there are too few excess bytes to
3405 represent as a chunk.)
3406 2. If it is big enough, use the dv chunk, which is normally the
3407 chunk adjacent to the one used for the most recent small request.
3408 3. If one exists, split the smallest available chunk in a bin,
3409 saving remainder in dv.
3410 4. If it is big enough, use the top chunk.
3411 5. If available, get memory from system and use it
3412 Otherwise, for a large request:
3413 1. Find the smallest available binned chunk that fits, and use it
3414 if it is better fitting than dv chunk, splitting if necessary.
3415 2. If better fitting than any binned chunk, use the dv chunk.
3416 3. If it is big enough, use the top chunk.
3417 4. If request size >= mmap threshold, try to directly mmap this chunk.
3418 5. If available, get memory from system and use it
3419
3420 The ugly goto's here ensure that postaction occurs along all paths.
3421 */
3422
3423 if (!PREACTION(gm)) {
3424 void* mem;
3425 size_t nb;
3426 if (bytes <= MAX_SMALL_REQUEST) {
3427 bindex_t idx;
3428 binmap_t smallbits;
3429 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3430 idx = small_index(nb);
3431 smallbits = gm->smallmap >> idx;
3432
3433 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3434 mchunkptr b, p;
3435 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3436 b = smallbin_at(gm, idx);
3437 p = b->fd;
3438 assert(chunksize(p) == small_index2size(idx));
3439 unlink_first_small_chunk(gm, b, p, idx);
3440 set_inuse_and_pinuse(gm, p, small_index2size(idx));
3441 mem = chunk2mem(p);
3442 check_malloced_chunk(gm, mem, nb);
3443 goto postaction;
3444 }
3445
3446 else if (nb > gm->dvsize) {
3447 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3448 mchunkptr b, p, r;
3449 size_t rsize;
3450 bindex_t i;
3451 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3452 binmap_t leastbit = least_bit(leftbits);
3453 compute_bit2idx(leastbit, i);
3454 b = smallbin_at(gm, i);
3455 p = b->fd;
3456 assert(chunksize(p) == small_index2size(i));
3457 unlink_first_small_chunk(gm, b, p, i);
3458 rsize = small_index2size(i) - nb;
3459 /* Fit here cannot be remainderless if 4byte sizes */
3460 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3461 set_inuse_and_pinuse(gm, p, small_index2size(i));
3462 else {
3463 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3464 r = chunk_plus_offset(p, nb);
3465 set_size_and_pinuse_of_free_chunk(r, rsize);
3466 replace_dv(gm, r, rsize);
3467 }
3468 mem = chunk2mem(p);
3469 check_malloced_chunk(gm, mem, nb);
3470 goto postaction;
3471 }
3472
3473 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
3474 check_malloced_chunk(gm, mem, nb);
3475 goto postaction;
3476 }
3477 }
3478 }
3479 else if (bytes >= MAX_REQUEST)
3480 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3481 else {
3482 nb = pad_request(bytes);
3483 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
3484 check_malloced_chunk(gm, mem, nb);
3485 goto postaction;
3486 }
3487 }
3488
3489 if (nb <= gm->dvsize) {
3490 size_t rsize = gm->dvsize - nb;
3491 mchunkptr p = gm->dv;
3492 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3493 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
3494 gm->dvsize = rsize;
3495 set_size_and_pinuse_of_free_chunk(r, rsize);
3496 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3497 }
3498 else { /* exhaust dv */
3499 size_t dvs = gm->dvsize;
3500 gm->dvsize = 0;
3501 gm->dv = 0;
3502 set_inuse_and_pinuse(gm, p, dvs);
3503 }
3504 mem = chunk2mem(p);
3505 check_malloced_chunk(gm, mem, nb);
3506 goto postaction;
3507 }
3508
3509 else if (nb < gm->topsize) { /* Split top */
3510 size_t rsize = gm->topsize -= nb;
3511 mchunkptr p = gm->top;
3512 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
3513 r->head = rsize | PINUSE_BIT;
3514 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3515 mem = chunk2mem(p);
3516 check_top_chunk(gm, gm->top);
3517 check_malloced_chunk(gm, mem, nb);
3518 goto postaction;
3519 }
3520
3521 mem = sys_alloc(gm, nb);
3522
3523 postaction:
3524 POSTACTION(gm);
3525 return mem;
3526 }
3527
3528 return 0;
3529}
3530
3531void dlfree(void* mem) {
3532 /*
3533 Consolidate freed chunks with preceeding or succeeding bordering
3534 free chunks, if they exist, and then place in a bin. Intermixed
3535 with special cases for top, dv, mmapped chunks, and usage errors.
3536 */
3537
3538 if (mem != 0) {
3539 mchunkptr p = mem2chunk(mem);
3540#if FOOTERS
3541 mstate fm = get_mstate_for(p);
3542 if (!ok_magic(fm)) {
3543 USAGE_ERROR_ACTION(fm, p);
3544 return;
3545 }
3546#else /* FOOTERS */
3547#define fm gm
3548#endif /* FOOTERS */
3549 if (!PREACTION(fm)) {
3550 check_inuse_chunk(fm, p);
3551 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3552 size_t psize = chunksize(p);
3553 mchunkptr next = chunk_plus_offset(p, psize);
3554 if (!pinuse(p)) {
3555 size_t prevsize = p->prev_foot;
3556 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3557 prevsize &= ~IS_MMAPPED_BIT;
3558 psize += prevsize + MMAP_FOOT_PAD;
3559 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3560 fm->footprint -= psize;
3561 goto postaction;
3562 }
3563 else {
3564 mchunkptr prev = chunk_minus_offset(p, prevsize);
3565 psize += prevsize;
3566 p = prev;
3567 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3568 if (p != fm->dv) {
3569 unlink_chunk(fm, p, prevsize);
3570 }
3571 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3572 fm->dvsize = psize;
3573 set_free_with_pinuse(p, psize, next);
3574 goto postaction;
3575 }
3576 }
3577 else
3578 goto erroraction;
3579 }
3580 }
3581
3582 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3583 if (!cinuse(next)) { /* consolidate forward */
3584 if (next == fm->top) {
3585 size_t tsize = fm->topsize += psize;
3586 fm->top = p;
3587 p->head = tsize | PINUSE_BIT;
3588 if (p == fm->dv) {
3589 fm->dv = 0;
3590 fm->dvsize = 0;
3591 }
3592 if (should_trim(fm, tsize))
3593 sys_trim(fm, 0);
3594 goto postaction;
3595 }
3596 else if (next == fm->dv) {
3597 size_t dsize = fm->dvsize += psize;
3598 fm->dv = p;
3599 set_size_and_pinuse_of_free_chunk(p, dsize);
3600 goto postaction;
3601 }
3602 else {
3603 size_t nsize = chunksize(next);
3604 psize += nsize;
3605 unlink_chunk(fm, next, nsize);
3606 set_size_and_pinuse_of_free_chunk(p, psize);
3607 if (p == fm->dv) {
3608 fm->dvsize = psize;
3609 goto postaction;
3610 }
3611 }
3612 }
3613 else
3614 set_free_with_pinuse(p, psize, next);
3615 insert_chunk(fm, p, psize);
3616 check_free_chunk(fm, p);
3617 goto postaction;
3618 }
3619 }
3620 erroraction:
3621 USAGE_ERROR_ACTION(fm, p);
3622 postaction:
3623 POSTACTION(fm);
3624 }
3625 }
3626#if !FOOTERS
3627#undef fm
3628#endif /* FOOTERS */
3629}
3630
3631void* dlcalloc(size_t n_elements, size_t elem_size) {
3632 void* mem;
3633 size_t req = 0;
3634 if (n_elements != 0) {
3635 req = n_elements * elem_size;
3636 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
3637 (req / n_elements != elem_size))
3638 req = MAX_SIZE_T; /* force downstream failure on overflow */
3639 }
3640 mem = dlmalloc(req);
3641 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
3642 memset(mem, 0, req);
3643 return mem;
3644}
3645
3646void* dlrealloc(void* oldmem, size_t bytes) {
3647 if (oldmem == 0)
3648 return dlmalloc(bytes);
3649#ifdef REALLOC_ZERO_BYTES_FREES
3650 if (bytes == 0) {
3651 dlfree(oldmem);
3652 return 0;
3653 }
3654#endif /* REALLOC_ZERO_BYTES_FREES */
3655 else {
3656#if ! FOOTERS
3657 mstate m = gm;
3658#else /* FOOTERS */
3659 mstate m = get_mstate_for(mem2chunk(oldmem));
3660 if (!ok_magic(m)) {
3661 USAGE_ERROR_ACTION(m, oldmem);
3662 return 0;
3663 }
3664#endif /* FOOTERS */
3665 return internal_realloc(m, oldmem, bytes);
3666 }
3667}
3668
3669void* dlmemalign(size_t alignment, size_t bytes) {
3670 return internal_memalign(gm, alignment, bytes);
3671}
3672
3673void** dlindependent_calloc(size_t n_elements, size_t elem_size,
3674 void* chunks[]) {
3675 size_t sz = elem_size; /* serves as 1-element array */
3676 return ialloc(gm, n_elements, &sz, 3, chunks);
3677}
3678
3679void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
3680 void* chunks[]) {
3681 return ialloc(gm, n_elements, sizes, 0, chunks);
3682}
3683
3684void* dlvalloc(size_t bytes) {
3685 size_t pagesz;
3686 init_mparams();
3687 pagesz = mparams.page_size;
3688 return dlmemalign(pagesz, bytes);
3689}
3690
3691void* dlpvalloc(size_t bytes) {
3692 size_t pagesz;
3693 init_mparams();
3694 pagesz = mparams.page_size;
3695 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
3696}
3697
3698int dlmalloc_trim(size_t pad) {
3699 int result = 0;
3700 if (!PREACTION(gm)) {
3701 result = sys_trim(gm, pad);
3702 POSTACTION(gm);
3703 }
3704 return result;
3705}
3706
3707size_t dlmalloc_footprint(void) {
3708 return gm->footprint;
3709}
3710
3711size_t dlmalloc_max_footprint(void) {
3712 return gm->max_footprint;
3713}
3714
3715#if !NO_MALLINFO
3716struct mallinfo dlmallinfo(void) {
3717 return internal_mallinfo(gm);
3718}
3719#endif /* NO_MALLINFO */
3720
3721void dlmalloc_stats() {
3722 internal_malloc_stats(gm);
3723}
3724
3725size_t dlmalloc_usable_size(void* mem) {
3726 if (mem != 0) {
3727 mchunkptr p = mem2chunk(mem);
3728 if (cinuse(p))
3729 return chunksize(p) - overhead_for(p);
3730 }
3731 return 0;
3732}
3733
3734int dlmallopt(int param_number, int value) {
3735 return change_mparam(param_number, value);
3736}
3737
3738#endif /* !ONLY_MSPACES */
3739
3740/* ----------------------------- user mspaces ---------------------------- */
3741
3742#if MSPACES
3743
3744static mstate init_user_mstate(char* tbase, size_t tsize) {
3745 size_t msize = pad_request(sizeof(struct malloc_state));
3746 mchunkptr mn;
3747 mchunkptr msp = align_as_chunk(tbase);
3748 mstate m = (mstate)(chunk2mem(msp));
3749 memset(m, 0, msize);
3750 INITIAL_LOCK(&m->mutex);
3751 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
3752 m->seg.base = m->least_addr = tbase;
3753 m->seg.size = m->footprint = m->max_footprint = tsize;
3754 m->magic = mparams.magic;
3755 m->mflags = mparams.default_mflags;
3756 disable_contiguous(m);
3757 init_bins(m);
3758 mn = next_chunk(mem2chunk(m));
3759 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
3760 check_top_chunk(m, m->top);
3761 return m;
3762}
3763
3764mspace create_mspace(size_t capacity, int locked) {
3765 mstate m = 0;
3766 size_t msize = pad_request(sizeof(struct malloc_state));
3767 init_mparams(); /* Ensure pagesize etc initialized */
3768
3769 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3770 size_t rs = ((capacity == 0)? mparams.granularity :
3771 (capacity + TOP_FOOT_SIZE + msize));
3772 size_t tsize = granularity_align(rs);
3773 char* tbase = (char*)(CALL_MMAP(tsize));
3774 if (tbase != CMFAIL) {
3775 m = init_user_mstate(tbase, tsize);
3776 m->seg.sflags = IS_MMAPPED_BIT;
3777 set_lock(m, locked);
3778 }
3779 }
3780 return (mspace)m;
3781}
3782
3783mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
3784 mstate m = 0;
3785 size_t msize = pad_request(sizeof(struct malloc_state));
3786 init_mparams(); /* Ensure pagesize etc initialized */
3787
3788 if (capacity > msize + TOP_FOOT_SIZE &&
3789 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3790 m = init_user_mstate((char*)base, capacity);
3791 m->seg.sflags = EXTERN_BIT;
3792 set_lock(m, locked);
3793 }
3794 return (mspace)m;
3795}
3796
3797size_t destroy_mspace(mspace msp) {
3798 size_t freed = 0;
3799 mstate ms = (mstate)msp;
3800 if (ok_magic(ms)) {
3801 msegmentptr sp = &ms->seg;
3802 while (sp != 0) {
3803 char* base = sp->base;
3804 size_t size = sp->size;
3805 flag_t flag = sp->sflags;
3806 sp = sp->next;
3807 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
3808 CALL_MUNMAP(base, size) == 0)
3809 freed += size;
3810 }
3811 }
3812 else {
3813 USAGE_ERROR_ACTION(ms,ms);
3814 }
3815 return freed;
3816}
3817
3818/*
3819 mspace versions of routines are near-clones of the global
3820 versions. This is not so nice but better than the alternatives.
3821*/
3822
3823
3824void* mspace_malloc(mspace msp, size_t bytes) {
3825 mstate ms = (mstate)msp;
3826 if (!ok_magic(ms)) {
3827 USAGE_ERROR_ACTION(ms,ms);
3828 return 0;
3829 }
3830 if (!PREACTION(ms)) {
3831 void* mem;
3832 size_t nb;
3833 if (bytes <= MAX_SMALL_REQUEST) {
3834 bindex_t idx;
3835 binmap_t smallbits;
3836 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3837 idx = small_index(nb);
3838 smallbits = ms->smallmap >> idx;
3839
3840 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3841 mchunkptr b, p;
3842 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3843 b = smallbin_at(ms, idx);
3844 p = b->fd;
3845 assert(chunksize(p) == small_index2size(idx));
3846 unlink_first_small_chunk(ms, b, p, idx);
3847 set_inuse_and_pinuse(ms, p, small_index2size(idx));
3848 mem = chunk2mem(p);
3849 check_malloced_chunk(ms, mem, nb);
3850 goto postaction;
3851 }
3852
3853 else if (nb > ms->dvsize) {
3854 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3855 mchunkptr b, p, r;
3856 size_t rsize;
3857 bindex_t i;
3858 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3859 binmap_t leastbit = least_bit(leftbits);
3860 compute_bit2idx(leastbit, i);
3861 b = smallbin_at(ms, i);
3862 p = b->fd;
3863 assert(chunksize(p) == small_index2size(i));
3864 unlink_first_small_chunk(ms, b, p, i);
3865 rsize = small_index2size(i) - nb;
3866 /* Fit here cannot be remainderless if 4byte sizes */
3867 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3868 set_inuse_and_pinuse(ms, p, small_index2size(i));
3869 else {
3870 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3871 r = chunk_plus_offset(p, nb);
3872 set_size_and_pinuse_of_free_chunk(r, rsize);
3873 replace_dv(ms, r, rsize);
3874 }
3875 mem = chunk2mem(p);
3876 check_malloced_chunk(ms, mem, nb);
3877 goto postaction;
3878 }
3879
3880 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
3881 check_malloced_chunk(ms, mem, nb);
3882 goto postaction;
3883 }
3884 }
3885 }
3886 else if (bytes >= MAX_REQUEST)
3887 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3888 else {
3889 nb = pad_request(bytes);
3890 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
3891 check_malloced_chunk(ms, mem, nb);
3892 goto postaction;
3893 }
3894 }
3895
3896 if (nb <= ms->dvsize) {
3897 size_t rsize = ms->dvsize - nb;
3898 mchunkptr p = ms->dv;
3899 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3900 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
3901 ms->dvsize = rsize;
3902 set_size_and_pinuse_of_free_chunk(r, rsize);
3903 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3904 }
3905 else { /* exhaust dv */
3906 size_t dvs = ms->dvsize;
3907 ms->dvsize = 0;
3908 ms->dv = 0;
3909 set_inuse_and_pinuse(ms, p, dvs);
3910 }
3911 mem = chunk2mem(p);
3912 check_malloced_chunk(ms, mem, nb);
3913 goto postaction;
3914 }
3915
3916 else if (nb < ms->topsize) { /* Split top */
3917 size_t rsize = ms->topsize -= nb;
3918 mchunkptr p = ms->top;
3919 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
3920 r->head = rsize | PINUSE_BIT;
3921 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3922 mem = chunk2mem(p);
3923 check_top_chunk(ms, ms->top);
3924 check_malloced_chunk(ms, mem, nb);
3925 goto postaction;
3926 }
3927
3928 mem = sys_alloc(ms, nb);
3929
3930 postaction:
3931 POSTACTION(ms);
3932 return mem;
3933 }
3934
3935 return 0;
3936}
3937
3938void mspace_free(mspace msp, void* mem) {
3939 if (mem != 0) {
3940 mchunkptr p = mem2chunk(mem);
3941#if FOOTERS
3942 mstate fm = get_mstate_for(p);
3943#else /* FOOTERS */
3944 mstate fm = (mstate)msp;
3945#endif /* FOOTERS */
3946 if (!ok_magic(fm)) {
3947 USAGE_ERROR_ACTION(fm, p);
3948 return;
3949 }
3950 if (!PREACTION(fm)) {
3951 check_inuse_chunk(fm, p);
3952 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3953 size_t psize = chunksize(p);
3954 mchunkptr next = chunk_plus_offset(p, psize);
3955 if (!pinuse(p)) {
3956 size_t prevsize = p->prev_foot;
3957 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3958 prevsize &= ~IS_MMAPPED_BIT;
3959 psize += prevsize + MMAP_FOOT_PAD;
3960 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3961 fm->footprint -= psize;
3962 goto postaction;
3963 }
3964 else {
3965 mchunkptr prev = chunk_minus_offset(p, prevsize);
3966 psize += prevsize;
3967 p = prev;
3968 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3969 if (p != fm->dv) {
3970 unlink_chunk(fm, p, prevsize);
3971 }
3972 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3973 fm->dvsize = psize;
3974 set_free_with_pinuse(p, psize, next);
3975 goto postaction;
3976 }
3977 }
3978 else
3979 goto erroraction;
3980 }
3981 }
3982
3983 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3984 if (!cinuse(next)) { /* consolidate forward */
3985 if (next == fm->top) {
3986 size_t tsize = fm->topsize += psize;
3987 fm->top = p;
3988 p->head = tsize | PINUSE_BIT;
3989 if (p == fm->dv) {
3990 fm->dv = 0;
3991 fm->dvsize = 0;
3992 }
3993 if (should_trim(fm, tsize))
3994 sys_trim(fm, 0);
3995 goto postaction;
3996 }
3997 else if (next == fm->dv) {
3998 size_t dsize = fm->dvsize += psize;
3999 fm->dv = p;
4000 set_size_and_pinuse_of_free_chunk(p, dsize);
4001 goto postaction;
4002 }
4003 else {
4004 size_t nsize = chunksize(next);
4005 psize += nsize;
4006 unlink_chunk(fm, next, nsize);
4007 set_size_and_pinuse_of_free_chunk(p, psize);
4008 if (p == fm->dv) {
4009 fm->dvsize = psize;
4010 goto postaction;
4011 }
4012 }
4013 }
4014 else
4015 set_free_with_pinuse(p, psize, next);
4016 insert_chunk(fm, p, psize);
4017 check_free_chunk(fm, p);
4018 goto postaction;
4019 }
4020 }
4021 erroraction:
4022 USAGE_ERROR_ACTION(fm, p);
4023 postaction:
4024 POSTACTION(fm);
4025 }
4026 }
4027}
4028
4029void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4030 void* mem;
4031 size_t req = 0;
4032 mstate ms = (mstate)msp;
4033 if (!ok_magic(ms)) {
4034 USAGE_ERROR_ACTION(ms,ms);
4035 return 0;
4036 }
4037 if (n_elements != 0) {
4038 req = n_elements * elem_size;
4039 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4040 (req / n_elements != elem_size))
4041 req = MAX_SIZE_T; /* force downstream failure on overflow */
4042 }
4043 mem = internal_malloc(ms, req);
4044 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4045 memset(mem, 0, req);
4046 return mem;
4047}
4048
4049void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4050 if (oldmem == 0)
4051 return mspace_malloc(msp, bytes);
4052#ifdef REALLOC_ZERO_BYTES_FREES
4053 if (bytes == 0) {
4054 mspace_free(msp, oldmem);
4055 return 0;
4056 }
4057#endif /* REALLOC_ZERO_BYTES_FREES */
4058 else {
4059#if FOOTERS
4060 mchunkptr p = mem2chunk(oldmem);
4061 mstate ms = get_mstate_for(p);
4062#else /* FOOTERS */
4063 mstate ms = (mstate)msp;
4064#endif /* FOOTERS */
4065 if (!ok_magic(ms)) {
4066 USAGE_ERROR_ACTION(ms,ms);
4067 return 0;
4068 }
4069 return internal_realloc(ms, oldmem, bytes);
4070 }
4071}
4072
4073void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4074 mstate ms = (mstate)msp;
4075 if (!ok_magic(ms)) {
4076 USAGE_ERROR_ACTION(ms,ms);
4077 return 0;
4078 }
4079 return internal_memalign(ms, alignment, bytes);
4080}
4081
4082void** mspace_independent_calloc(mspace msp, size_t n_elements,
4083 size_t elem_size, void* chunks[]) {
4084 size_t sz = elem_size; /* serves as 1-element array */
4085 mstate ms = (mstate)msp;
4086 if (!ok_magic(ms)) {
4087 USAGE_ERROR_ACTION(ms,ms);
4088 return 0;
4089 }
4090 return ialloc(ms, n_elements, &sz, 3, chunks);
4091}
4092
4093void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4094 size_t sizes[], void* chunks[]) {
4095 mstate ms = (mstate)msp;
4096 if (!ok_magic(ms)) {
4097 USAGE_ERROR_ACTION(ms,ms);
4098 return 0;
4099 }
4100 return ialloc(ms, n_elements, sizes, 0, chunks);
4101}
4102
4103int mspace_trim(mspace msp, size_t pad) {
4104 int result = 0;
4105 mstate ms = (mstate)msp;
4106 if (ok_magic(ms)) {
4107 if (!PREACTION(ms)) {
4108 result = sys_trim(ms, pad);
4109 POSTACTION(ms);
4110 }
4111 }
4112 else {
4113 USAGE_ERROR_ACTION(ms,ms);
4114 }
4115 return result;
4116}
4117
4118void mspace_malloc_stats(mspace msp) {
4119 mstate ms = (mstate)msp;
4120 if (ok_magic(ms)) {
4121 internal_malloc_stats(ms);
4122 }
4123 else {
4124 USAGE_ERROR_ACTION(ms,ms);
4125 }
4126}
4127
4128size_t mspace_footprint(mspace msp) {
4129 size_t result;
4130 mstate ms = (mstate)msp;
4131 if (ok_magic(ms)) {
4132 result = ms->footprint;
4133 }
4134 USAGE_ERROR_ACTION(ms,ms);
4135 return result;
4136}
4137
4138
4139size_t mspace_max_footprint(mspace msp) {
4140 size_t result;
4141 mstate ms = (mstate)msp;
4142 if (ok_magic(ms)) {
4143 result = ms->max_footprint;
4144 }
4145 USAGE_ERROR_ACTION(ms,ms);
4146 return result;
4147}
4148
4149
4150#if !NO_MALLINFO
4151struct mallinfo mspace_mallinfo(mspace msp) {
4152 mstate ms = (mstate)msp;
4153 if (!ok_magic(ms)) {
4154 USAGE_ERROR_ACTION(ms,ms);
4155 }
4156 return internal_mallinfo(ms);
4157}
4158#endif /* NO_MALLINFO */
4159
4160int mspace_mallopt(int param_number, int value) {
4161 return change_mparam(param_number, value);
4162}
4163
4164#endif /* MSPACES */
4165
4166/* -------------------- Alternative MORECORE functions ------------------- */
4167
4168/*
4169 Guidelines for creating a custom version of MORECORE:
4170
4171 * For best performance, MORECORE should allocate in multiples of pagesize.
4172 * MORECORE may allocate more memory than requested. (Or even less,
4173 but this will usually result in a malloc failure.)
4174 * MORECORE must not allocate memory when given argument zero, but
4175 instead return one past the end address of memory from previous
4176 nonzero call.
4177 * For best performance, consecutive calls to MORECORE with positive
4178 arguments should return increasing addresses, indicating that
4179 space has been contiguously extended.
4180 * Even though consecutive calls to MORECORE need not return contiguous
4181 addresses, it must be OK for malloc'ed chunks to span multiple
4182 regions in those cases where they do happen to be contiguous.
4183 * MORECORE need not handle negative arguments -- it may instead
4184 just return MFAIL when given negative arguments.
4185 Negative arguments are always multiples of pagesize. MORECORE
4186 must not misinterpret negative args as large positive unsigned
4187 args. You can suppress all such calls from even occurring by defining
4188 MORECORE_CANNOT_TRIM,
4189
4190 As an example alternative MORECORE, here is a custom allocator
4191 kindly contributed for pre-OSX macOS. It uses virtually but not
4192 necessarily physically contiguous non-paged memory (locked in,
4193 present and won't get swapped out). You can use it by uncommenting
4194 this section, adding some #includes, and setting up the appropriate
4195 defines above:
4196
4197 #define MORECORE osMoreCore
4198
4199 There is also a shutdown routine that should somehow be called for
4200 cleanup upon program exit.
4201
4202 #define MAX_POOL_ENTRIES 100
4203 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4204 static int next_os_pool;
4205 void *our_os_pools[MAX_POOL_ENTRIES];
4206
4207 void *osMoreCore(int size)
4208 {
4209 void *ptr = 0;
4210 static void *sbrk_top = 0;
4211
4212 if (size > 0)
4213 {
4214 if (size < MINIMUM_MORECORE_SIZE)
4215 size = MINIMUM_MORECORE_SIZE;
4216 if (CurrentExecutionLevel() == kTaskLevel)
4217 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4218 if (ptr == 0)
4219 {
4220 return (void *) MFAIL;
4221 }
4222 // save ptrs so they can be freed during cleanup
4223 our_os_pools[next_os_pool] = ptr;
4224 next_os_pool++;
4225 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4226 sbrk_top = (char *) ptr + size;
4227 return ptr;
4228 }
4229 else if (size < 0)
4230 {
4231 // we don't currently support shrink behavior
4232 return (void *) MFAIL;
4233 }
4234 else
4235 {
4236 return sbrk_top;
4237 }
4238 }
4239
4240 // cleanup any allocated memory pools
4241 // called as last thing before shutting down driver
4242
4243 void osCleanupMem(void)
4244 {
4245 void **ptr;
4246
4247 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4248 if (*ptr)
4249 {
4250 PoolDeallocate(*ptr);
4251 *ptr = 0;
4252 }
4253 }
4254
4255*/
4256
4257
4258/* -----------------------------------------------------------------------
4259History:
4260 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4261 * Add max_footprint functions
4262 * Ensure all appropriate literals are size_t
4263 * Fix conditional compilation problem for some #define settings
4264 * Avoid concatenating segments with the one provided
4265 in create_mspace_with_base
4266 * Rename some variables to avoid compiler shadowing warnings
4267 * Use explicit lock initialization.
4268 * Better handling of sbrk interference.
4269 * Simplify and fix segment insertion, trimming and mspace_destroy
4270 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4271 * Thanks especially to Dennis Flanagan for help on these.
4272
4273 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4274 * Fix memalign brace error.
4275
4276 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4277 * Fix improper #endif nesting in C++
4278 * Add explicit casts needed for C++
4279
4280 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4281 * Use trees for large bins
4282 * Support mspaces
4283 * Use segments to unify sbrk-based and mmap-based system allocation,
4284 removing need for emulation on most platforms without sbrk.
4285 * Default safety checks
4286 * Optional footer checks. Thanks to William Robertson for the idea.
4287 * Internal code refactoring
4288 * Incorporate suggestions and platform-specific changes.
4289 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4290 Aaron Bachmann, Emery Berger, and others.
4291 * Speed up non-fastbin processing enough to remove fastbins.
4292 * Remove useless cfree() to avoid conflicts with other apps.
4293 * Remove internal memcpy, memset. Compilers handle builtins better.
4294 * Remove some options that no one ever used and rename others.
4295
4296 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4297 * Fix malloc_state bitmap array misdeclaration
4298
4299 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4300 * Allow tuning of FIRST_SORTED_BIN_SIZE
4301 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4302 * Better detection and support for non-contiguousness of MORECORE.
4303 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4304 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4305 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4306 * Raised default trim and map thresholds to 256K.
4307 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4308 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4309 * Branch-free bin calculation
4310 * Default trim and mmap thresholds now 256K.
4311
4312 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4313 * Introduce independent_comalloc and independent_calloc.
4314 Thanks to Michael Pachos for motivation and help.
4315 * Make optional .h file available
4316 * Allow > 2GB requests on 32bit systems.
4317 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4318 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4319 and Anonymous.
4320 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4321 helping test this.)
4322 * memalign: check alignment arg
4323 * realloc: don't try to shift chunks backwards, since this
4324 leads to more fragmentation in some programs and doesn't
4325 seem to help in any others.
4326 * Collect all cases in malloc requiring system memory into sysmalloc
4327 * Use mmap as backup to sbrk
4328 * Place all internal state in malloc_state
4329 * Introduce fastbins (although similar to 2.5.1)
4330 * Many minor tunings and cosmetic improvements
4331 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4332 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4333 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4334 * Include errno.h to support default failure action.
4335
4336 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4337 * return null for negative arguments
4338 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4339 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4340 (e.g. WIN32 platforms)
4341 * Cleanup header file inclusion for WIN32 platforms
4342 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4343 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4344 memory allocation routines
4345 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4346 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4347 usage of 'assert' in non-WIN32 code
4348 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4349 avoid infinite loop
4350 * Always call 'fREe()' rather than 'free()'
4351
4352 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4353 * Fixed ordering problem with boundary-stamping
4354
4355 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4356 * Added pvalloc, as recommended by H.J. Liu
4357 * Added 64bit pointer support mainly from Wolfram Gloger
4358 * Added anonymously donated WIN32 sbrk emulation
4359 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4360 * malloc_extend_top: fix mask error that caused wastage after
4361 foreign sbrks
4362 * Add linux mremap support code from HJ Liu
4363
4364 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4365 * Integrated most documentation with the code.
4366 * Add support for mmap, with help from
4367 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4368 * Use last_remainder in more cases.
4369 * Pack bins using idea from colin@nyx10.cs.du.edu
4370 * Use ordered bins instead of best-fit threshhold
4371 * Eliminate block-local decls to simplify tracing and debugging.
4372 * Support another case of realloc via move into top
4373 * Fix error occuring when initial sbrk_base not word-aligned.
4374 * Rely on page size for units instead of SBRK_UNIT to
4375 avoid surprises about sbrk alignment conventions.
4376 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4377 (raymond@es.ele.tue.nl) for the suggestion.
4378 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4379 * More precautions for cases where other routines call sbrk,
4380 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4381 * Added macros etc., allowing use in linux libc from
4382 H.J. Lu (hjl@gnu.ai.mit.edu)
4383 * Inverted this history list
4384
4385 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4386 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4387 * Removed all preallocation code since under current scheme
4388 the work required to undo bad preallocations exceeds
4389 the work saved in good cases for most test programs.
4390 * No longer use return list or unconsolidated bins since
4391 no scheme using them consistently outperforms those that don't
4392 given above changes.
4393 * Use best fit for very large chunks to prevent some worst-cases.
4394 * Added some support for debugging
4395
4396 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4397 * Removed footers when chunks are in use. Thanks to
4398 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4399
4400 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4401 * Added malloc_trim, with help from Wolfram Gloger
4402 (wmglo@Dent.MED.Uni-Muenchen.DE).
4403
4404 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4405
4406 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4407 * realloc: try to expand in both directions
4408 * malloc: swap order of clean-bin strategy;
4409 * realloc: only conditionally expand backwards
4410 * Try not to scavenge used bins
4411 * Use bin counts as a guide to preallocation
4412 * Occasionally bin return list chunks in first scan
4413 * Add a few optimizations from colin@nyx10.cs.du.edu
4414
4415 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4416 * faster bin computation & slightly different binning
4417 * merged all consolidations to one part of malloc proper
4418 (eliminating old malloc_find_space & malloc_clean_bin)
4419 * Scan 2 returns chunks (not just 1)
4420 * Propagate failure in realloc if malloc returns 0
4421 * Add stuff to allow compilation on non-ANSI compilers
4422 from kpv@research.att.com
4423
4424 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4425 * removed potential for odd address access in prev_chunk
4426 * removed dependency on getpagesize.h
4427 * misc cosmetics and a bit more internal documentation
4428 * anticosmetics: mangled names in macros to evade debugger strangeness
4429 * tested on sparc, hp-700, dec-mips, rs6000
4430 with gcc & native cc (hp, dec only) allowing
4431 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4432
4433 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4434 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4435 structure of old version, but most details differ.)
4436
4437*/
Note: See TracBrowser for help on using the repository browser.