source: mainline/libc/malloc/malloc.c@ 07d7870

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 07d7870 was e209fc96, checked in by Josef Cejka <malyzelenyhnus@…>, 20 years ago

Another doxygen comments.

  • Property mode set to 100644
File size: 153.2 KB
Line 
1/*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
6
7* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
8
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
12
13* Quickstart
14
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
20
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
34
35* Vital statistics:
36
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
43
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
48
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
54
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
57
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
66
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
79
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
90
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
100
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
106
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using ptmalloc, which is derived from
115 a version of this malloc. (See http://www.malloc.de).
116
117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
118 This malloc can use unix sbrk or any emulation (invoked using
119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
121 memory. On most unix systems, it tends to work best if both
122 MORECORE and MMAP are enabled. On Win32, it uses emulations
123 based on VirtualAlloc. It also uses common C library functions
124 like memset.
125
126 Compliance: I believe it is compliant with the Single Unix Specification
127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
128 others as well.
129
130* Overview of algorithms
131
132 This is not the fastest, most space-conserving, most portable, or
133 most tunable malloc ever written. However it is among the fastest
134 while also being among the most space-conserving, portable and
135 tunable. Consistent balance across these factors results in a good
136 general-purpose allocator for malloc-intensive programs.
137
138 In most ways, this malloc is a best-fit allocator. Generally, it
139 chooses the best-fitting existing chunk for a request, with ties
140 broken in approximately least-recently-used order. (This strategy
141 normally maintains low fragmentation.) However, for requests less
142 than 256bytes, it deviates from best-fit when there is not an
143 exactly fitting available chunk by preferring to use space adjacent
144 to that used for the previous small request, as well as by breaking
145 ties in approximately most-recently-used order. (These enhance
146 locality of series of small allocations.) And for very large requests
147 (>= 256Kb by default), it relies on system memory mapping
148 facilities, if supported. (This helps avoid carrying around and
149 possibly fragmenting memory used only for large chunks.)
150
151 All operations (except malloc_stats and mallinfo) have execution
152 times that are bounded by a constant factor of the number of bits in
153 a size_t, not counting any clearing in calloc or copying in realloc,
154 or actions surrounding MORECORE and MMAP that have times
155 proportional to the number of non-contiguous regions returned by
156 system allocation routines, which is often just 1.
157
158 The implementation is not very modular and seriously overuses
159 macros. Perhaps someday all C compilers will do as good a job
160 inlining modular code as can now be done by brute-force expansion,
161 but now, enough of them seem not to.
162
163 Some compilers issue a lot of warnings about code that is
164 dead/unreachable only on some platforms, and also about intentional
165 uses of negation on unsigned types. All known cases of each can be
166 ignored.
167
168 For a longer but out of date high-level description, see
169 http://gee.cs.oswego.edu/dl/html/malloc.html
170
171* MSPACES
172 If MSPACES is defined, then in addition to malloc, free, etc.,
173 this file also defines mspace_malloc, mspace_free, etc. These
174 are versions of malloc routines that take an "mspace" argument
175 obtained using create_mspace, to control all internal bookkeeping.
176 If ONLY_MSPACES is defined, only these versions are compiled.
177 So if you would like to use this allocator for only some allocations,
178 and your system malloc for others, you can compile with
179 ONLY_MSPACES and then do something like...
180 static mspace mymspace = create_mspace(0,0); // for example
181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
182
183 (Note: If you only need one instance of an mspace, you can instead
184 use "USE_DL_PREFIX" to relabel the global malloc.)
185
186 You can similarly create thread-local allocators by storing
187 mspaces as thread-locals. For example:
188 static __thread mspace tlms = 0;
189 void* tlmalloc(size_t bytes) {
190 if (tlms == 0) tlms = create_mspace(0, 0);
191 return mspace_malloc(tlms, bytes);
192 }
193 void tlfree(void* mem) { mspace_free(tlms, mem); }
194
195 Unless FOOTERS is defined, each mspace is completely independent.
196 You cannot allocate from one and free to another (although
197 conformance is only weakly checked, so usage errors are not always
198 caught). If FOOTERS is defined, then each chunk carries around a tag
199 indicating its originating mspace, and frees are directed to their
200 originating spaces.
201
202 ------------------------- Compile-time options ---------------------------
203
204Be careful in setting #define values for numerical constants of type
205size_t. On some systems, literal values are not automatically extended
206to size_t precision unless they are explicitly casted.
207
208WIN32 default: defined if _WIN32 defined
209 Defining WIN32 sets up defaults for MS environment and compilers.
210 Otherwise defaults are for unix.
211
212MALLOC_ALIGNMENT default: (size_t)8
213 Controls the minimum alignment for malloc'ed chunks. It must be a
214 power of two and at least 8, even on machines for which smaller
215 alignments would suffice. It may be defined as larger than this
216 though. Note however that code and data structures are optimized for
217 the case of 8-byte alignment.
218
219MSPACES default: 0 (false)
220 If true, compile in support for independent allocation spaces.
221 This is only supported if HAVE_MMAP is true.
222
223ONLY_MSPACES default: 0 (false)
224 If true, only compile in mspace versions, not regular versions.
225
226USE_LOCKS default: 0 (false)
227 Causes each call to each public routine to be surrounded with
228 pthread or WIN32 mutex lock/unlock. (If set true, this can be
229 overridden on a per-mspace basis for mspace versions.)
230
231FOOTERS default: 0
232 If true, provide extra checking and dispatching by placing
233 information in the footers of allocated chunks. This adds
234 space and time overhead.
235
236INSECURE default: 0
237 If true, omit checks for usage errors and heap space overwrites.
238
239USE_DL_PREFIX default: NOT defined
240 Causes compiler to prefix all public routines with the string 'dl'.
241 This can be useful when you only want to use this malloc in one part
242 of a program, using your regular system malloc elsewhere.
243
244ABORT default: defined as abort()
245 Defines how to abort on failed checks. On most systems, a failed
246 check cannot die with an "assert" or even print an informative
247 message, because the underlying print routines in turn call malloc,
248 which will fail again. Generally, the best policy is to simply call
249 abort(). It's not very useful to do more than this because many
250 errors due to overwriting will show up as address faults (null, odd
251 addresses etc) rather than malloc-triggered checks, so will also
252 abort. Also, most compilers know that abort() does not return, so
253 can better optimize code conditionally calling it.
254
255PROCEED_ON_ERROR default: defined as 0 (false)
256 Controls whether detected bad addresses cause them to bypassed
257 rather than aborting. If set, detected bad arguments to free and
258 realloc are ignored. And all bookkeeping information is zeroed out
259 upon a detected overwrite of freed heap space, thus losing the
260 ability to ever return it from malloc again, but enabling the
261 application to proceed. If PROCEED_ON_ERROR is defined, the
262 static variable malloc_corruption_error_count is compiled in
263 and can be examined to see if errors have occurred. This option
264 generates slower code than the default abort policy.
265
266DEBUG default: NOT defined
267 The DEBUG setting is mainly intended for people trying to modify
268 this code or diagnose problems when porting to new platforms.
269 However, it may also be able to better isolate user errors than just
270 using runtime checks. The assertions in the check routines spell
271 out in more detail the assumptions and invariants underlying the
272 algorithms. The checking is fairly extensive, and will slow down
273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
274 set will attempt to check every non-mmapped allocated and free chunk
275 in the course of computing the summaries.
276
277ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
278 Debugging assertion failures can be nearly impossible if your
279 version of the assert macro causes malloc to be called, which will
280 lead to a cascade of further failures, blowing the runtime stack.
281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
282 which will usually make debugging easier.
283
284MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
285 The action to take before "return 0" when malloc fails to be able to
286 return memory because there is none available.
287
288HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
289 True if this system supports sbrk or an emulation of it.
290
291MORECORE default: sbrk
292 The name of the sbrk-style system routine to call to obtain more
293 memory. See below for guidance on writing custom MORECORE
294 functions. The type of the argument to sbrk/MORECORE varies across
295 systems. It cannot be size_t, because it supports negative
296 arguments, so it is normally the signed type of the same width as
297 size_t (sometimes declared as "intptr_t"). It doesn't much matter
298 though. Internally, we only call it with arguments less than half
299 the max value of a size_t, which should work across all reasonable
300 possibilities, although sometimes generating compiler warnings. See
301 near the end of this file for guidelines for creating a custom
302 version of MORECORE.
303
304MORECORE_CONTIGUOUS default: 1 (true)
305 If true, take advantage of fact that consecutive calls to MORECORE
306 with positive arguments always return contiguous increasing
307 addresses. This is true of unix sbrk. It does not hurt too much to
308 set it true anyway, since malloc copes with non-contiguities.
309 Setting it false when definitely non-contiguous saves time
310 and possibly wasted space it would take to discover this though.
311
312MORECORE_CANNOT_TRIM default: NOT defined
313 True if MORECORE cannot release space back to the system when given
314 negative arguments. This is generally necessary only if you are
315 using a hand-crafted MORECORE function that cannot handle negative
316 arguments.
317
318HAVE_MMAP default: 1 (true)
319 True if this system supports mmap or an emulation of it. If so, and
320 HAVE_MORECORE is not true, MMAP is used for all system
321 allocation. If set and HAVE_MORECORE is true as well, MMAP is
322 primarily used to directly allocate very large blocks. It is also
323 used as a backup strategy in cases where MORECORE fails to provide
324 space from system. Note: A single call to MUNMAP is assumed to be
325 able to unmap memory that may have be allocated using multiple calls
326 to MMAP, so long as they are adjacent.
327
328HAVE_MREMAP default: 1 on linux, else 0
329 If true realloc() uses mremap() to re-allocate large blocks and
330 extend or shrink allocation spaces.
331
332MMAP_CLEARS default: 1 on unix
333 True if mmap clears memory so calloc doesn't need to. This is true
334 for standard unix mmap using /dev/zero.
335
336USE_BUILTIN_FFS default: 0 (i.e., not used)
337 Causes malloc to use the builtin ffs() function to compute indices.
338 Some compilers may recognize and intrinsify ffs to be faster than the
339 supplied C version. Also, the case of x86 using gcc is special-cased
340 to an asm instruction, so is already as fast as it can be, and so
341 this setting has no effect. (On most x86s, the asm version is only
342 slightly faster than the C version.)
343
344malloc_getpagesize default: derive from system includes, or 4096.
345 The system page size. To the extent possible, this malloc manages
346 memory from the system in page-size units. This may be (and
347 usually is) a function rather than a constant. This is ignored
348 if WIN32, where page size is determined using getSystemInfo during
349 initialization.
350
351USE_DEV_RANDOM default: 0 (i.e., not used)
352 Causes malloc to use /dev/random to initialize secure magic seed for
353 stamping footers. Otherwise, the current time is used.
354
355NO_MALLINFO default: 0
356 If defined, don't compile "mallinfo". This can be a simple way
357 of dealing with mismatches between system declarations and
358 those in this file.
359
360MALLINFO_FIELD_TYPE default: size_t
361 The type of the fields in the mallinfo struct. This was originally
362 defined as "int" in SVID etc, but is more usefully defined as
363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
364
365REALLOC_ZERO_BYTES_FREES default: not defined
366 This should be set if a call to realloc with zero bytes should
367 be the same as a call to free. Some people think it should. Otherwise,
368 since this malloc returns a unique pointer for malloc(0), so does
369 realloc(p, 0).
370
371LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
372LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
373LACKS_STDLIB_H default: NOT defined unless on WIN32
374 Define these if your system does not have these header files.
375 You might need to manually insert some of the declarations they provide.
376
377DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
378 system_info.dwAllocationGranularity in WIN32,
379 otherwise 64K.
380 Also settable using mallopt(M_GRANULARITY, x)
381 The unit for allocating and deallocating memory from the system. On
382 most systems with contiguous MORECORE, there is no reason to
383 make this more than a page. However, systems with MMAP tend to
384 either require or encourage larger granularities. You can increase
385 this value to prevent system allocation functions to be called so
386 often, especially if they are slow. The value must be at least one
387 page and must be a power of two. Setting to 0 causes initialization
388 to either page size or win32 region size. (Note: In previous
389 versions of malloc, the equivalent of this option was called
390 "TOP_PAD")
391
392DEFAULT_TRIM_THRESHOLD default: 2MB
393 Also settable using mallopt(M_TRIM_THRESHOLD, x)
394 The maximum amount of unused top-most memory to keep before
395 releasing via malloc_trim in free(). Automatic trimming is mainly
396 useful in long-lived programs using contiguous MORECORE. Because
397 trimming via sbrk can be slow on some systems, and can sometimes be
398 wasteful (in cases where programs immediately afterward allocate
399 more large chunks) the value should be high enough so that your
400 overall system performance would improve by releasing this much
401 memory. As a rough guide, you might set to a value close to the
402 average size of a process (program) running on your system.
403 Releasing this much memory would allow such a process to run in
404 memory. Generally, it is worth tuning trim thresholds when a
405 program undergoes phases where several large chunks are allocated
406 and released in ways that can reuse each other's storage, perhaps
407 mixed with phases where there are no such chunks at all. The trim
408 value must be greater than page size to have any useful effect. To
409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
410 some people use of mallocing a huge space and then freeing it at
411 program startup, in an attempt to reserve system memory, doesn't
412 have the intended effect under automatic trimming, since that memory
413 will immediately be returned to the system.
414
415DEFAULT_MMAP_THRESHOLD default: 256K
416 Also settable using mallopt(M_MMAP_THRESHOLD, x)
417 The request size threshold for using MMAP to directly service a
418 request. Requests of at least this size that cannot be allocated
419 using already-existing space will be serviced via mmap. (If enough
420 normal freed space already exists it is used instead.) Using mmap
421 segregates relatively large chunks of memory so that they can be
422 individually obtained and released from the host system. A request
423 serviced through mmap is never reused by any other request (at least
424 not directly; the system may just so happen to remap successive
425 requests to the same locations). Segregating space in this way has
426 the benefits that: Mmapped space can always be individually released
427 back to the system, which helps keep the system level memory demands
428 of a long-lived program low. Also, mapped memory doesn't become
429 `locked' between other chunks, as can happen with normally allocated
430 chunks, which means that even trimming via malloc_trim would not
431 release them. However, it has the disadvantage that the space
432 cannot be reclaimed, consolidated, and then used to service later
433 requests, as happens with normal chunks. The advantages of mmap
434 nearly always outweigh disadvantages for "large" chunks, but the
435 value of "large" may vary across systems. The default is an
436 empirically derived value that works well in most systems. You can
437 disable mmap by setting to MAX_SIZE_T.
438
439*/
440
441/** @addtogroup libcmalloc malloc
442 * @brief Malloc originally written by Doug Lea and ported to HelenOS.
443 * @ingroup libc
444 * @{
445 */
446/** @file
447 */
448
449
450#include <sys/types.h> /* For size_t */
451
452/** Non-default helenos customizations */
453#define LACKS_FCNTL_H
454#define LACKS_SYS_MMAN_H
455#define LACKS_SYS_PARAM_H
456#undef HAVE_MMAP
457#define HAVE_MMAP 0
458#define LACKS_ERRNO_H
459/* Set errno? */
460#undef MALLOC_FAILURE_ACTION
461#define MALLOC_FAILURE_ACTION
462
463/* The maximum possible size_t value has all bits set */
464#define MAX_SIZE_T (~(size_t)0)
465
466#define ONLY_MSPACES 0
467#define MSPACES 0
468#define MALLOC_ALIGNMENT ((size_t)8U)
469#define FOOTERS 0
470#define ABORT abort()
471#define ABORT_ON_ASSERT_FAILURE 1
472#define PROCEED_ON_ERROR 0
473#define USE_LOCKS 1
474#define INSECURE 0
475#define HAVE_MMAP 0
476
477#define MMAP_CLEARS 1
478
479#define HAVE_MORECORE 1
480#define MORECORE_CONTIGUOUS 1
481#define MORECORE sbrk
482#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
483
484#ifndef DEFAULT_TRIM_THRESHOLD
485#ifndef MORECORE_CANNOT_TRIM
486#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
487#else /* MORECORE_CANNOT_TRIM */
488#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
489#endif /* MORECORE_CANNOT_TRIM */
490#endif /* DEFAULT_TRIM_THRESHOLD */
491#ifndef DEFAULT_MMAP_THRESHOLD
492#if HAVE_MMAP
493#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
494#else /* HAVE_MMAP */
495#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
496#endif /* HAVE_MMAP */
497#endif /* DEFAULT_MMAP_THRESHOLD */
498#ifndef USE_BUILTIN_FFS
499#define USE_BUILTIN_FFS 0
500#endif /* USE_BUILTIN_FFS */
501#ifndef USE_DEV_RANDOM
502#define USE_DEV_RANDOM 0
503#endif /* USE_DEV_RANDOM */
504#ifndef NO_MALLINFO
505#define NO_MALLINFO 0
506#endif /* NO_MALLINFO */
507#ifndef MALLINFO_FIELD_TYPE
508#define MALLINFO_FIELD_TYPE size_t
509#endif /* MALLINFO_FIELD_TYPE */
510
511/*
512 mallopt tuning options. SVID/XPG defines four standard parameter
513 numbers for mallopt, normally defined in malloc.h. None of these
514 are used in this malloc, so setting them has no effect. But this
515 malloc does support the following options.
516*/
517
518#define M_TRIM_THRESHOLD (-1)
519#define M_GRANULARITY (-2)
520#define M_MMAP_THRESHOLD (-3)
521
522/*
523 ========================================================================
524 To make a fully customizable malloc.h header file, cut everything
525 above this line, put into file malloc.h, edit to suit, and #include it
526 on the next line, as well as in programs that use this malloc.
527 ========================================================================
528*/
529
530#include "malloc.h"
531
532/*------------------------------ internal #includes ---------------------- */
533
534#include <stdio.h> /* for printing in malloc_stats */
535#include <string.h>
536
537#ifndef LACKS_ERRNO_H
538#include <errno.h> /* for MALLOC_FAILURE_ACTION */
539#endif /* LACKS_ERRNO_H */
540#if FOOTERS
541#include <time.h> /* for magic initialization */
542#endif /* FOOTERS */
543#ifndef LACKS_STDLIB_H
544#include <stdlib.h> /* for abort() */
545#endif /* LACKS_STDLIB_H */
546#ifdef DEBUG
547#if ABORT_ON_ASSERT_FAILURE
548#define assert(x) {if(!(x)) {printf(#x);ABORT;}}
549#else /* ABORT_ON_ASSERT_FAILURE */
550#include <assert.h>
551#endif /* ABORT_ON_ASSERT_FAILURE */
552#else /* DEBUG */
553#define assert(x)
554#endif /* DEBUG */
555#if USE_BUILTIN_FFS
556#ifndef LACKS_STRINGS_H
557#include <strings.h> /* for ffs */
558#endif /* LACKS_STRINGS_H */
559#endif /* USE_BUILTIN_FFS */
560#if HAVE_MMAP
561#ifndef LACKS_SYS_MMAN_H
562#include <sys/mman.h> /* for mmap */
563#endif /* LACKS_SYS_MMAN_H */
564#ifndef LACKS_FCNTL_H
565#include <fcntl.h>
566#endif /* LACKS_FCNTL_H */
567#endif /* HAVE_MMAP */
568#if HAVE_MORECORE
569#ifndef LACKS_UNISTD_H
570#include <unistd.h> /* for sbrk */
571#else /* LACKS_UNISTD_H */
572#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
573extern void* sbrk(ptrdiff_t);
574#endif /* FreeBSD etc */
575#endif /* LACKS_UNISTD_H */
576#endif /* HAVE_MMAP */
577
578#ifndef WIN32
579#ifndef malloc_getpagesize
580# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
581# ifndef _SC_PAGE_SIZE
582# define _SC_PAGE_SIZE _SC_PAGESIZE
583# endif
584# endif
585# ifdef _SC_PAGE_SIZE
586# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
587# else
588# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
589 extern size_t getpagesize();
590# define malloc_getpagesize getpagesize()
591# else
592# ifdef WIN32 /* use supplied emulation of getpagesize */
593# define malloc_getpagesize getpagesize()
594# else
595# ifndef LACKS_SYS_PARAM_H
596# include <sys/param.h>
597# endif
598# ifdef EXEC_PAGESIZE
599# define malloc_getpagesize EXEC_PAGESIZE
600# else
601# ifdef NBPG
602# ifndef CLSIZE
603# define malloc_getpagesize NBPG
604# else
605# define malloc_getpagesize (NBPG * CLSIZE)
606# endif
607# else
608# ifdef NBPC
609# define malloc_getpagesize NBPC
610# else
611# ifdef PAGESIZE
612# define malloc_getpagesize PAGESIZE
613# else /* just guess */
614# define malloc_getpagesize ((size_t)4096U)
615# endif
616# endif
617# endif
618# endif
619# endif
620# endif
621# endif
622#endif
623#endif
624
625/* ------------------- size_t and alignment properties -------------------- */
626
627/* The byte and bit size of a size_t */
628#define SIZE_T_SIZE (sizeof(size_t))
629#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
630
631/* Some constants coerced to size_t */
632/* Annoying but necessary to avoid errors on some plaftorms */
633#define SIZE_T_ZERO ((size_t)0)
634#define SIZE_T_ONE ((size_t)1)
635#define SIZE_T_TWO ((size_t)2)
636#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
637#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
638#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
639#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
640
641/* The bit mask value corresponding to MALLOC_ALIGNMENT */
642#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
643
644/* True if address a has acceptable alignment */
645#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
646
647/* the number of bytes to offset an address to align it */
648#define align_offset(A)\
649 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
650 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
651
652/* -------------------------- MMAP preliminaries ------------------------- */
653
654/*
655 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
656 checks to fail so compiler optimizer can delete code rather than
657 using so many "#if"s.
658*/
659
660
661/* MORECORE and MMAP must return MFAIL on failure */
662#define MFAIL ((void*)(MAX_SIZE_T))
663#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
664
665#if !HAVE_MMAP
666#define IS_MMAPPED_BIT (SIZE_T_ZERO)
667#define USE_MMAP_BIT (SIZE_T_ZERO)
668#define CALL_MMAP(s) MFAIL
669#define CALL_MUNMAP(a, s) (-1)
670#define DIRECT_MMAP(s) MFAIL
671
672#else /* HAVE_MMAP */
673#define IS_MMAPPED_BIT (SIZE_T_ONE)
674#define USE_MMAP_BIT (SIZE_T_ONE)
675
676#ifndef WIN32
677#define CALL_MUNMAP(a, s) munmap((a), (s))
678#define MMAP_PROT (PROT_READ|PROT_WRITE)
679#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
680#define MAP_ANONYMOUS MAP_ANON
681#endif /* MAP_ANON */
682#ifdef MAP_ANONYMOUS
683#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
684#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
685#else /* MAP_ANONYMOUS */
686/*
687 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
688 is unlikely to be needed, but is supplied just in case.
689*/
690#define MMAP_FLAGS (MAP_PRIVATE)
691static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
692#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \
693 (dev_zero_fd = open("/dev/zero", O_RDWR), \
694 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
695 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
696#endif /* MAP_ANONYMOUS */
697
698#define DIRECT_MMAP(s) CALL_MMAP(s)
699#else /* WIN32 */
700
701/* Win32 MMAP via VirtualAlloc */
702static void* win32mmap(size_t size) {
703 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
704 return (ptr != 0)? ptr: MFAIL;
705}
706
707/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
708static void* win32direct_mmap(size_t size) {
709 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
710 PAGE_READWRITE);
711 return (ptr != 0)? ptr: MFAIL;
712}
713
714/* This function supports releasing coalesed segments */
715static int win32munmap(void* ptr, size_t size) {
716 MEMORY_BASIC_INFORMATION minfo;
717 char* cptr = ptr;
718 while (size) {
719 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
720 return -1;
721 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
722 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
723 return -1;
724 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
725 return -1;
726 cptr += minfo.RegionSize;
727 size -= minfo.RegionSize;
728 }
729 return 0;
730}
731
732#define CALL_MMAP(s) win32mmap(s)
733#define CALL_MUNMAP(a, s) win32munmap((a), (s))
734#define DIRECT_MMAP(s) win32direct_mmap(s)
735#endif /* WIN32 */
736#endif /* HAVE_MMAP */
737
738#if HAVE_MMAP && HAVE_MREMAP
739#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
740#else /* HAVE_MMAP && HAVE_MREMAP */
741#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
742#endif /* HAVE_MMAP && HAVE_MREMAP */
743
744#if HAVE_MORECORE
745#define CALL_MORECORE(S) MORECORE(S)
746#else /* HAVE_MORECORE */
747#define CALL_MORECORE(S) MFAIL
748#endif /* HAVE_MORECORE */
749
750/* mstate bit set if continguous morecore disabled or failed */
751#define USE_NONCONTIGUOUS_BIT (4U)
752
753/* segment bit set in create_mspace_with_base */
754#define EXTERN_BIT (8U)
755
756
757/* --------------------------- Lock preliminaries ------------------------ */
758
759#if USE_LOCKS
760
761/*
762 When locks are defined, there are up to two global locks:
763
764 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to
765 MORECORE. In many cases sys_alloc requires two calls, that should
766 not be interleaved with calls by other threads. This does not
767 protect against direct calls to MORECORE by other threads not
768 using this lock, so there is still code to cope the best we can on
769 interference.
770
771 * magic_init_mutex ensures that mparams.magic and other
772 unique mparams values are initialized only once.
773*/
774
775/* By default use posix locks */
776#include <futex.h>
777#define MLOCK_T atomic_t
778#define INITIAL_LOCK(l) futex_initialize(l, 1)
779/* futex_down cannot fail, but can return different
780 * retvals for OK
781 */
782#define ACQUIRE_LOCK(l) ({futex_down(l);0;})
783#define RELEASE_LOCK(l) futex_up(l)
784
785#if HAVE_MORECORE
786static MLOCK_T morecore_mutex = FUTEX_INITIALIZER;
787#endif /* HAVE_MORECORE */
788
789static MLOCK_T magic_init_mutex = FUTEX_INITIALIZER;
790
791
792#define USE_LOCK_BIT (2U)
793#else /* USE_LOCKS */
794#define USE_LOCK_BIT (0U)
795#define INITIAL_LOCK(l)
796#endif /* USE_LOCKS */
797
798#if USE_LOCKS && HAVE_MORECORE
799#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
800#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
801#else /* USE_LOCKS && HAVE_MORECORE */
802#define ACQUIRE_MORECORE_LOCK()
803#define RELEASE_MORECORE_LOCK()
804#endif /* USE_LOCKS && HAVE_MORECORE */
805
806#if USE_LOCKS
807#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
808#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
809#else /* USE_LOCKS */
810#define ACQUIRE_MAGIC_INIT_LOCK()
811#define RELEASE_MAGIC_INIT_LOCK()
812#endif /* USE_LOCKS */
813
814
815/* ----------------------- Chunk representations ------------------------ */
816
817/*
818 (The following includes lightly edited explanations by Colin Plumb.)
819
820 The malloc_chunk declaration below is misleading (but accurate and
821 necessary). It declares a "view" into memory allowing access to
822 necessary fields at known offsets from a given base.
823
824 Chunks of memory are maintained using a `boundary tag' method as
825 originally described by Knuth. (See the paper by Paul Wilson
826 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
827 techniques.) Sizes of free chunks are stored both in the front of
828 each chunk and at the end. This makes consolidating fragmented
829 chunks into bigger chunks fast. The head fields also hold bits
830 representing whether chunks are free or in use.
831
832 Here are some pictures to make it clearer. They are "exploded" to
833 show that the state of a chunk can be thought of as extending from
834 the high 31 bits of the head field of its header through the
835 prev_foot and PINUSE_BIT bit of the following chunk header.
836
837 A chunk that's in use looks like:
838
839 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
840 | Size of previous chunk (if P = 1) |
841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
843 | Size of this chunk 1| +-+
844 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
845 | |
846 +- -+
847 | |
848 +- -+
849 | :
850 +- size - sizeof(size_t) available payload bytes -+
851 : |
852 chunk-> +- -+
853 | |
854 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
856 | Size of next chunk (may or may not be in use) | +-+
857 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
858
859 And if it's free, it looks like this:
860
861 chunk-> +- -+
862 | User payload (must be in use, or we would have merged!) |
863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
865 | Size of this chunk 0| +-+
866 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
867 | Next pointer |
868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
869 | Prev pointer |
870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
871 | :
872 +- size - sizeof(struct chunk) unused bytes -+
873 : |
874 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
875 | Size of this chunk |
876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
878 | Size of next chunk (must be in use, or we would have merged)| +-+
879 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
880 | :
881 +- User payload -+
882 : |
883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
884 |0|
885 +-+
886 Note that since we always merge adjacent free chunks, the chunks
887 adjacent to a free chunk must be in use.
888
889 Given a pointer to a chunk (which can be derived trivially from the
890 payload pointer) we can, in O(1) time, find out whether the adjacent
891 chunks are free, and if so, unlink them from the lists that they
892 are on and merge them with the current chunk.
893
894 Chunks always begin on even word boundaries, so the mem portion
895 (which is returned to the user) is also on an even word boundary, and
896 thus at least double-word aligned.
897
898 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
899 chunk size (which is always a multiple of two words), is an in-use
900 bit for the *previous* chunk. If that bit is *clear*, then the
901 word before the current chunk size contains the previous chunk
902 size, and can be used to find the front of the previous chunk.
903 The very first chunk allocated always has this bit set, preventing
904 access to non-existent (or non-owned) memory. If pinuse is set for
905 any given chunk, then you CANNOT determine the size of the
906 previous chunk, and might even get a memory addressing fault when
907 trying to do so.
908
909 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
910 the chunk size redundantly records whether the current chunk is
911 inuse. This redundancy enables usage checks within free and realloc,
912 and reduces indirection when freeing and consolidating chunks.
913
914 Each freshly allocated chunk must have both cinuse and pinuse set.
915 That is, each allocated chunk borders either a previously allocated
916 and still in-use chunk, or the base of its memory arena. This is
917 ensured by making all allocations from the the `lowest' part of any
918 found chunk. Further, no free chunk physically borders another one,
919 so each free chunk is known to be preceded and followed by either
920 inuse chunks or the ends of memory.
921
922 Note that the `foot' of the current chunk is actually represented
923 as the prev_foot of the NEXT chunk. This makes it easier to
924 deal with alignments etc but can be very confusing when trying
925 to extend or adapt this code.
926
927 The exceptions to all this are
928
929 1. The special chunk `top' is the top-most available chunk (i.e.,
930 the one bordering the end of available memory). It is treated
931 specially. Top is never included in any bin, is used only if
932 no other chunk is available, and is released back to the
933 system if it is very large (see M_TRIM_THRESHOLD). In effect,
934 the top chunk is treated as larger (and thus less well
935 fitting) than any other available chunk. The top chunk
936 doesn't update its trailing size field since there is no next
937 contiguous chunk that would have to index off it. However,
938 space is still allocated for it (TOP_FOOT_SIZE) to enable
939 separation or merging when space is extended.
940
941 3. Chunks allocated via mmap, which have the lowest-order bit
942 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
943 PINUSE_BIT in their head fields. Because they are allocated
944 one-by-one, each must carry its own prev_foot field, which is
945 also used to hold the offset this chunk has within its mmapped
946 region, which is needed to preserve alignment. Each mmapped
947 chunk is trailed by the first two fields of a fake next-chunk
948 for sake of usage checks.
949
950*/
951
952struct malloc_chunk {
953 size_t prev_foot; /* Size of previous chunk (if free). */
954 size_t head; /* Size and inuse bits. */
955 struct malloc_chunk* fd; /* double links -- used only if free. */
956 struct malloc_chunk* bk;
957};
958
959typedef struct malloc_chunk mchunk;
960typedef struct malloc_chunk* mchunkptr;
961typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
962typedef unsigned int bindex_t; /* Described below */
963typedef unsigned int binmap_t; /* Described below */
964typedef unsigned int flag_t; /* The type of various bit flag sets */
965
966/* ------------------- Chunks sizes and alignments ----------------------- */
967
968#define MCHUNK_SIZE (sizeof(mchunk))
969
970#if FOOTERS
971#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
972#else /* FOOTERS */
973#define CHUNK_OVERHEAD (SIZE_T_SIZE)
974#endif /* FOOTERS */
975
976/* MMapped chunks need a second word of overhead ... */
977#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
978/* ... and additional padding for fake next-chunk at foot */
979#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
980
981/* The smallest size we can malloc is an aligned minimal chunk */
982#define MIN_CHUNK_SIZE\
983 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
984
985/* conversion from malloc headers to user pointers, and back */
986#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
987#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
988/* chunk associated with aligned address A */
989#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
990
991/* Bounds on request (not chunk) sizes. */
992#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
993#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
994
995/* pad request bytes into a usable size */
996#define pad_request(req) \
997 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
998
999/* pad request, checking for minimum (but not maximum) */
1000#define request2size(req) \
1001 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
1002
1003
1004/* ------------------ Operations on head and foot fields ----------------- */
1005
1006/*
1007 The head field of a chunk is or'ed with PINUSE_BIT when previous
1008 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
1009 use. If the chunk was obtained with mmap, the prev_foot field has
1010 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
1011 mmapped region to the base of the chunk.
1012*/
1013
1014#define PINUSE_BIT (SIZE_T_ONE)
1015#define CINUSE_BIT (SIZE_T_TWO)
1016#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
1017
1018/* Head value for fenceposts */
1019#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
1020
1021/* extraction of fields from head words */
1022#define cinuse(p) ((p)->head & CINUSE_BIT)
1023#define pinuse(p) ((p)->head & PINUSE_BIT)
1024#define chunksize(p) ((p)->head & ~(INUSE_BITS))
1025
1026#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
1027#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
1028
1029/* Treat space at ptr +/- offset as a chunk */
1030#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1031#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
1032
1033/* Ptr to next or previous physical malloc_chunk. */
1034#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
1035#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
1036
1037/* extract next chunk's pinuse bit */
1038#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
1039
1040/* Get/set size at footer */
1041#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
1042#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
1043
1044/* Set size, pinuse bit, and foot */
1045#define set_size_and_pinuse_of_free_chunk(p, s)\
1046 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
1047
1048/* Set size, pinuse bit, foot, and clear next pinuse */
1049#define set_free_with_pinuse(p, s, n)\
1050 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
1051
1052#define is_mmapped(p)\
1053 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
1054
1055/* Get the internal overhead associated with chunk p */
1056#define overhead_for(p)\
1057 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
1058
1059/* Return true if malloced space is not necessarily cleared */
1060#if MMAP_CLEARS
1061#define calloc_must_clear(p) (!is_mmapped(p))
1062#else /* MMAP_CLEARS */
1063#define calloc_must_clear(p) (1)
1064#endif /* MMAP_CLEARS */
1065
1066/* ---------------------- Overlaid data structures ----------------------- */
1067
1068/*
1069 When chunks are not in use, they are treated as nodes of either
1070 lists or trees.
1071
1072 "Small" chunks are stored in circular doubly-linked lists, and look
1073 like this:
1074
1075 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1076 | Size of previous chunk |
1077 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1078 `head:' | Size of chunk, in bytes |P|
1079 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1080 | Forward pointer to next chunk in list |
1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1082 | Back pointer to previous chunk in list |
1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1084 | Unused space (may be 0 bytes long) .
1085 . .
1086 . |
1087nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1088 `foot:' | Size of chunk, in bytes |
1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1090
1091 Larger chunks are kept in a form of bitwise digital trees (aka
1092 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
1093 free chunks greater than 256 bytes, their size doesn't impose any
1094 constraints on user chunk sizes. Each node looks like:
1095
1096 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1097 | Size of previous chunk |
1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1099 `head:' | Size of chunk, in bytes |P|
1100 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1101 | Forward pointer to next chunk of same size |
1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 | Back pointer to previous chunk of same size |
1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1105 | Pointer to left child (child[0]) |
1106 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1107 | Pointer to right child (child[1]) |
1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1109 | Pointer to parent |
1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1111 | bin index of this chunk |
1112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1113 | Unused space .
1114 . |
1115nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1116 `foot:' | Size of chunk, in bytes |
1117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1118
1119 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
1120 of the same size are arranged in a circularly-linked list, with only
1121 the oldest chunk (the next to be used, in our FIFO ordering)
1122 actually in the tree. (Tree members are distinguished by a non-null
1123 parent pointer.) If a chunk with the same size an an existing node
1124 is inserted, it is linked off the existing node using pointers that
1125 work in the same way as fd/bk pointers of small chunks.
1126
1127 Each tree contains a power of 2 sized range of chunk sizes (the
1128 smallest is 0x100 <= x < 0x180), which is is divided in half at each
1129 tree level, with the chunks in the smaller half of the range (0x100
1130 <= x < 0x140 for the top nose) in the left subtree and the larger
1131 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
1132 done by inspecting individual bits.
1133
1134 Using these rules, each node's left subtree contains all smaller
1135 sizes than its right subtree. However, the node at the root of each
1136 subtree has no particular ordering relationship to either. (The
1137 dividing line between the subtree sizes is based on trie relation.)
1138 If we remove the last chunk of a given size from the interior of the
1139 tree, we need to replace it with a leaf node. The tree ordering
1140 rules permit a node to be replaced by any leaf below it.
1141
1142 The smallest chunk in a tree (a common operation in a best-fit
1143 allocator) can be found by walking a path to the leftmost leaf in
1144 the tree. Unlike a usual binary tree, where we follow left child
1145 pointers until we reach a null, here we follow the right child
1146 pointer any time the left one is null, until we reach a leaf with
1147 both child pointers null. The smallest chunk in the tree will be
1148 somewhere along that path.
1149
1150 The worst case number of steps to add, find, or remove a node is
1151 bounded by the number of bits differentiating chunks within
1152 bins. Under current bin calculations, this ranges from 6 up to 21
1153 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
1154 is of course much better.
1155*/
1156
1157struct malloc_tree_chunk {
1158 /* The first four fields must be compatible with malloc_chunk */
1159 size_t prev_foot;
1160 size_t head;
1161 struct malloc_tree_chunk* fd;
1162 struct malloc_tree_chunk* bk;
1163
1164 struct malloc_tree_chunk* child[2];
1165 struct malloc_tree_chunk* parent;
1166 bindex_t index;
1167};
1168
1169typedef struct malloc_tree_chunk tchunk;
1170typedef struct malloc_tree_chunk* tchunkptr;
1171typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
1172
1173/* A little helper macro for trees */
1174#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
1175
1176/* ----------------------------- Segments -------------------------------- */
1177
1178/*
1179 Each malloc space may include non-contiguous segments, held in a
1180 list headed by an embedded malloc_segment record representing the
1181 top-most space. Segments also include flags holding properties of
1182 the space. Large chunks that are directly allocated by mmap are not
1183 included in this list. They are instead independently created and
1184 destroyed without otherwise keeping track of them.
1185
1186 Segment management mainly comes into play for spaces allocated by
1187 MMAP. Any call to MMAP might or might not return memory that is
1188 adjacent to an existing segment. MORECORE normally contiguously
1189 extends the current space, so this space is almost always adjacent,
1190 which is simpler and faster to deal with. (This is why MORECORE is
1191 used preferentially to MMAP when both are available -- see
1192 sys_alloc.) When allocating using MMAP, we don't use any of the
1193 hinting mechanisms (inconsistently) supported in various
1194 implementations of unix mmap, or distinguish reserving from
1195 committing memory. Instead, we just ask for space, and exploit
1196 contiguity when we get it. It is probably possible to do
1197 better than this on some systems, but no general scheme seems
1198 to be significantly better.
1199
1200 Management entails a simpler variant of the consolidation scheme
1201 used for chunks to reduce fragmentation -- new adjacent memory is
1202 normally prepended or appended to an existing segment. However,
1203 there are limitations compared to chunk consolidation that mostly
1204 reflect the fact that segment processing is relatively infrequent
1205 (occurring only when getting memory from system) and that we
1206 don't expect to have huge numbers of segments:
1207
1208 * Segments are not indexed, so traversal requires linear scans. (It
1209 would be possible to index these, but is not worth the extra
1210 overhead and complexity for most programs on most platforms.)
1211 * New segments are only appended to old ones when holding top-most
1212 memory; if they cannot be prepended to others, they are held in
1213 different segments.
1214
1215 Except for the top-most segment of an mstate, each segment record
1216 is kept at the tail of its segment. Segments are added by pushing
1217 segment records onto the list headed by &mstate.seg for the
1218 containing mstate.
1219
1220 Segment flags control allocation/merge/deallocation policies:
1221 * If EXTERN_BIT set, then we did not allocate this segment,
1222 and so should not try to deallocate or merge with others.
1223 (This currently holds only for the initial segment passed
1224 into create_mspace_with_base.)
1225 * If IS_MMAPPED_BIT set, the segment may be merged with
1226 other surrounding mmapped segments and trimmed/de-allocated
1227 using munmap.
1228 * If neither bit is set, then the segment was obtained using
1229 MORECORE so can be merged with surrounding MORECORE'd segments
1230 and deallocated/trimmed using MORECORE with negative arguments.
1231*/
1232
1233struct malloc_segment {
1234 char* base; /* base address */
1235 size_t size; /* allocated size */
1236 struct malloc_segment* next; /* ptr to next segment */
1237 flag_t sflags; /* mmap and extern flag */
1238};
1239
1240#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
1241#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
1242
1243typedef struct malloc_segment msegment;
1244typedef struct malloc_segment* msegmentptr;
1245
1246/* ---------------------------- malloc_state ----------------------------- */
1247
1248/*
1249 A malloc_state holds all of the bookkeeping for a space.
1250 The main fields are:
1251
1252 Top
1253 The topmost chunk of the currently active segment. Its size is
1254 cached in topsize. The actual size of topmost space is
1255 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
1256 fenceposts and segment records if necessary when getting more
1257 space from the system. The size at which to autotrim top is
1258 cached from mparams in trim_check, except that it is disabled if
1259 an autotrim fails.
1260
1261 Designated victim (dv)
1262 This is the preferred chunk for servicing small requests that
1263 don't have exact fits. It is normally the chunk split off most
1264 recently to service another small request. Its size is cached in
1265 dvsize. The link fields of this chunk are not maintained since it
1266 is not kept in a bin.
1267
1268 SmallBins
1269 An array of bin headers for free chunks. These bins hold chunks
1270 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
1271 chunks of all the same size, spaced 8 bytes apart. To simplify
1272 use in double-linked lists, each bin header acts as a malloc_chunk
1273 pointing to the real first node, if it exists (else pointing to
1274 itself). This avoids special-casing for headers. But to avoid
1275 waste, we allocate only the fd/bk pointers of bins, and then use
1276 repositioning tricks to treat these as the fields of a chunk.
1277
1278 TreeBins
1279 Treebins are pointers to the roots of trees holding a range of
1280 sizes. There are 2 equally spaced treebins for each power of two
1281 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
1282 larger.
1283
1284 Bin maps
1285 There is one bit map for small bins ("smallmap") and one for
1286 treebins ("treemap). Each bin sets its bit when non-empty, and
1287 clears the bit when empty. Bit operations are then used to avoid
1288 bin-by-bin searching -- nearly all "search" is done without ever
1289 looking at bins that won't be selected. The bit maps
1290 conservatively use 32 bits per map word, even if on 64bit system.
1291 For a good description of some of the bit-based techniques used
1292 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
1293 supplement at http://hackersdelight.org/). Many of these are
1294 intended to reduce the branchiness of paths through malloc etc, as
1295 well as to reduce the number of memory locations read or written.
1296
1297 Segments
1298 A list of segments headed by an embedded malloc_segment record
1299 representing the initial space.
1300
1301 Address check support
1302 The least_addr field is the least address ever obtained from
1303 MORECORE or MMAP. Attempted frees and reallocs of any address less
1304 than this are trapped (unless INSECURE is defined).
1305
1306 Magic tag
1307 A cross-check field that should always hold same value as mparams.magic.
1308
1309 Flags
1310 Bits recording whether to use MMAP, locks, or contiguous MORECORE
1311
1312 Statistics
1313 Each space keeps track of current and maximum system memory
1314 obtained via MORECORE or MMAP.
1315
1316 Locking
1317 If USE_LOCKS is defined, the "mutex" lock is acquired and released
1318 around every public call using this mspace.
1319*/
1320
1321/* Bin types, widths and sizes */
1322#define NSMALLBINS (32U)
1323#define NTREEBINS (32U)
1324#define SMALLBIN_SHIFT (3U)
1325#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
1326#define TREEBIN_SHIFT (8U)
1327#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
1328#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
1329#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
1330
1331struct malloc_state {
1332 binmap_t smallmap;
1333 binmap_t treemap;
1334 size_t dvsize;
1335 size_t topsize;
1336 char* least_addr;
1337 mchunkptr dv;
1338 mchunkptr top;
1339 size_t trim_check;
1340 size_t magic;
1341 mchunkptr smallbins[(NSMALLBINS+1)*2];
1342 tbinptr treebins[NTREEBINS];
1343 size_t footprint;
1344 size_t max_footprint;
1345 flag_t mflags;
1346#if USE_LOCKS
1347 MLOCK_T mutex; /* locate lock among fields that rarely change */
1348#endif /* USE_LOCKS */
1349 msegment seg;
1350};
1351
1352typedef struct malloc_state* mstate;
1353
1354/* ------------- Global malloc_state and malloc_params ------------------- */
1355
1356/*
1357 malloc_params holds global properties, including those that can be
1358 dynamically set using mallopt. There is a single instance, mparams,
1359 initialized in init_mparams.
1360*/
1361
1362struct malloc_params {
1363 size_t magic;
1364 size_t page_size;
1365 size_t granularity;
1366 size_t mmap_threshold;
1367 size_t trim_threshold;
1368 flag_t default_mflags;
1369};
1370
1371static struct malloc_params mparams;
1372
1373/* The global malloc_state used for all non-"mspace" calls */
1374static struct malloc_state _gm_;
1375#define gm (&_gm_)
1376#define is_global(M) ((M) == &_gm_)
1377#define is_initialized(M) ((M)->top != 0)
1378
1379/* -------------------------- system alloc setup ------------------------- */
1380
1381/* Operations on mflags */
1382
1383#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
1384#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
1385#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
1386
1387#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
1388#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
1389#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
1390
1391#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
1392#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
1393
1394#define set_lock(M,L)\
1395 ((M)->mflags = (L)?\
1396 ((M)->mflags | USE_LOCK_BIT) :\
1397 ((M)->mflags & ~USE_LOCK_BIT))
1398
1399/* page-align a size */
1400#define page_align(S)\
1401 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
1402
1403/* granularity-align a size */
1404#define granularity_align(S)\
1405 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
1406
1407#define is_page_aligned(S)\
1408 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
1409#define is_granularity_aligned(S)\
1410 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
1411
1412/* True if segment S holds address A */
1413#define segment_holds(S, A)\
1414 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
1415
1416/* Return segment holding given address */
1417static msegmentptr segment_holding(mstate m, char* addr) {
1418 msegmentptr sp = &m->seg;
1419 for (;;) {
1420 if (addr >= sp->base && addr < sp->base + sp->size)
1421 return sp;
1422 if ((sp = sp->next) == 0)
1423 return 0;
1424 }
1425}
1426
1427/* Return true if segment contains a segment link */
1428static int has_segment_link(mstate m, msegmentptr ss) {
1429 msegmentptr sp = &m->seg;
1430 for (;;) {
1431 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
1432 return 1;
1433 if ((sp = sp->next) == 0)
1434 return 0;
1435 }
1436}
1437
1438#ifndef MORECORE_CANNOT_TRIM
1439#define should_trim(M,s) ((s) > (M)->trim_check)
1440#else /* MORECORE_CANNOT_TRIM */
1441#define should_trim(M,s) (0)
1442#endif /* MORECORE_CANNOT_TRIM */
1443
1444/*
1445 TOP_FOOT_SIZE is padding at the end of a segment, including space
1446 that may be needed to place segment records and fenceposts when new
1447 noncontiguous segments are added.
1448*/
1449#define TOP_FOOT_SIZE\
1450 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
1451
1452
1453/* ------------------------------- Hooks -------------------------------- */
1454
1455/*
1456 PREACTION should be defined to return 0 on success, and nonzero on
1457 failure. If you are not using locking, you can redefine these to do
1458 anything you like.
1459*/
1460
1461#if USE_LOCKS
1462
1463/* Ensure locks are initialized */
1464#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
1465
1466#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
1467#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
1468#else /* USE_LOCKS */
1469
1470#ifndef PREACTION
1471#define PREACTION(M) (0)
1472#endif /* PREACTION */
1473
1474#ifndef POSTACTION
1475#define POSTACTION(M)
1476#endif /* POSTACTION */
1477
1478#endif /* USE_LOCKS */
1479
1480/*
1481 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
1482 USAGE_ERROR_ACTION is triggered on detected bad frees and
1483 reallocs. The argument p is an address that might have triggered the
1484 fault. It is ignored by the two predefined actions, but might be
1485 useful in custom actions that try to help diagnose errors.
1486*/
1487
1488#if PROCEED_ON_ERROR
1489
1490/* A count of the number of corruption errors causing resets */
1491int malloc_corruption_error_count;
1492
1493/* default corruption action */
1494static void reset_on_error(mstate m);
1495
1496#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
1497#define USAGE_ERROR_ACTION(m, p)
1498
1499#else /* PROCEED_ON_ERROR */
1500
1501#ifndef CORRUPTION_ERROR_ACTION
1502#define CORRUPTION_ERROR_ACTION(m) ABORT
1503#endif /* CORRUPTION_ERROR_ACTION */
1504
1505#ifndef USAGE_ERROR_ACTION
1506#define USAGE_ERROR_ACTION(m,p) ABORT
1507#endif /* USAGE_ERROR_ACTION */
1508
1509#endif /* PROCEED_ON_ERROR */
1510
1511/* -------------------------- Debugging setup ---------------------------- */
1512
1513#if ! DEBUG
1514
1515#define check_free_chunk(M,P)
1516#define check_inuse_chunk(M,P)
1517#define check_malloced_chunk(M,P,N)
1518#define check_mmapped_chunk(M,P)
1519#define check_malloc_state(M)
1520#define check_top_chunk(M,P)
1521
1522#else /* DEBUG */
1523#define check_free_chunk(M,P) do_check_free_chunk(M,P)
1524#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
1525#define check_top_chunk(M,P) do_check_top_chunk(M,P)
1526#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
1527#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
1528#define check_malloc_state(M) do_check_malloc_state(M)
1529
1530static void do_check_any_chunk(mstate m, mchunkptr p);
1531static void do_check_top_chunk(mstate m, mchunkptr p);
1532static void do_check_mmapped_chunk(mstate m, mchunkptr p);
1533static void do_check_inuse_chunk(mstate m, mchunkptr p);
1534static void do_check_free_chunk(mstate m, mchunkptr p);
1535static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
1536static void do_check_tree(mstate m, tchunkptr t);
1537static void do_check_treebin(mstate m, bindex_t i);
1538static void do_check_smallbin(mstate m, bindex_t i);
1539static void do_check_malloc_state(mstate m);
1540static int bin_find(mstate m, mchunkptr x);
1541static size_t traverse_and_check(mstate m);
1542#endif /* DEBUG */
1543
1544/* ---------------------------- Indexing Bins ---------------------------- */
1545
1546#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
1547#define small_index(s) ((s) >> SMALLBIN_SHIFT)
1548#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
1549#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
1550
1551/* addressing by index. See above about smallbin repositioning */
1552#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
1553#define treebin_at(M,i) (&((M)->treebins[i]))
1554
1555/* assign tree index for size S to variable I */
1556#if defined(__GNUC__) && defined(i386)
1557#define compute_tree_index(S, I)\
1558{\
1559 size_t X = S >> TREEBIN_SHIFT;\
1560 if (X == 0)\
1561 I = 0;\
1562 else if (X > 0xFFFF)\
1563 I = NTREEBINS-1;\
1564 else {\
1565 unsigned int K;\
1566 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
1567 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
1568 }\
1569}
1570#else /* GNUC */
1571#define compute_tree_index(S, I)\
1572{\
1573 size_t X = S >> TREEBIN_SHIFT;\
1574 if (X == 0)\
1575 I = 0;\
1576 else if (X > 0xFFFF)\
1577 I = NTREEBINS-1;\
1578 else {\
1579 unsigned int Y = (unsigned int)X;\
1580 unsigned int N = ((Y - 0x100) >> 16) & 8;\
1581 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
1582 N += K;\
1583 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
1584 K = 14 - N + ((Y <<= K) >> 15);\
1585 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
1586 }\
1587}
1588#endif /* GNUC */
1589
1590/* Bit representing maximum resolved size in a treebin at i */
1591#define bit_for_tree_index(i) \
1592 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
1593
1594/* Shift placing maximum resolved bit in a treebin at i as sign bit */
1595#define leftshift_for_tree_index(i) \
1596 ((i == NTREEBINS-1)? 0 : \
1597 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
1598
1599/* The size of the smallest chunk held in bin with index i */
1600#define minsize_for_tree_index(i) \
1601 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
1602 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
1603
1604
1605/* ------------------------ Operations on bin maps ----------------------- */
1606
1607/* bit corresponding to given index */
1608#define idx2bit(i) ((binmap_t)(1) << (i))
1609
1610/* Mark/Clear bits with given index */
1611#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
1612#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
1613#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
1614
1615#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
1616#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
1617#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
1618
1619/* index corresponding to given bit */
1620
1621#if defined(__GNUC__) && defined(i386)
1622#define compute_bit2idx(X, I)\
1623{\
1624 unsigned int J;\
1625 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
1626 I = (bindex_t)J;\
1627}
1628
1629#else /* GNUC */
1630#if USE_BUILTIN_FFS
1631#define compute_bit2idx(X, I) I = ffs(X)-1
1632
1633#else /* USE_BUILTIN_FFS */
1634#define compute_bit2idx(X, I)\
1635{\
1636 unsigned int Y = X - 1;\
1637 unsigned int K = Y >> (16-4) & 16;\
1638 unsigned int N = K; Y >>= K;\
1639 N += K = Y >> (8-3) & 8; Y >>= K;\
1640 N += K = Y >> (4-2) & 4; Y >>= K;\
1641 N += K = Y >> (2-1) & 2; Y >>= K;\
1642 N += K = Y >> (1-0) & 1; Y >>= K;\
1643 I = (bindex_t)(N + Y);\
1644}
1645#endif /* USE_BUILTIN_FFS */
1646#endif /* GNUC */
1647
1648/* isolate the least set bit of a bitmap */
1649#define least_bit(x) ((x) & -(x))
1650
1651/* mask with all bits to left of least bit of x on */
1652#define left_bits(x) ((x<<1) | -(x<<1))
1653
1654/* mask with all bits to left of or equal to least bit of x on */
1655#define same_or_left_bits(x) ((x) | -(x))
1656
1657
1658/* ----------------------- Runtime Check Support ------------------------- */
1659
1660/*
1661 For security, the main invariant is that malloc/free/etc never
1662 writes to a static address other than malloc_state, unless static
1663 malloc_state itself has been corrupted, which cannot occur via
1664 malloc (because of these checks). In essence this means that we
1665 believe all pointers, sizes, maps etc held in malloc_state, but
1666 check all of those linked or offsetted from other embedded data
1667 structures. These checks are interspersed with main code in a way
1668 that tends to minimize their run-time cost.
1669
1670 When FOOTERS is defined, in addition to range checking, we also
1671 verify footer fields of inuse chunks, which can be used guarantee
1672 that the mstate controlling malloc/free is intact. This is a
1673 streamlined version of the approach described by William Robertson
1674 et al in "Run-time Detection of Heap-based Overflows" LISA'03
1675 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
1676 of an inuse chunk holds the xor of its mstate and a random seed,
1677 that is checked upon calls to free() and realloc(). This is
1678 (probablistically) unguessable from outside the program, but can be
1679 computed by any code successfully malloc'ing any chunk, so does not
1680 itself provide protection against code that has already broken
1681 security through some other means. Unlike Robertson et al, we
1682 always dynamically check addresses of all offset chunks (previous,
1683 next, etc). This turns out to be cheaper than relying on hashes.
1684*/
1685
1686#if !INSECURE
1687/* Check if address a is at least as high as any from MORECORE or MMAP */
1688#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
1689/* Check if address of next chunk n is higher than base chunk p */
1690#define ok_next(p, n) ((char*)(p) < (char*)(n))
1691/* Check if p has its cinuse bit on */
1692#define ok_cinuse(p) cinuse(p)
1693/* Check if p has its pinuse bit on */
1694#define ok_pinuse(p) pinuse(p)
1695
1696#else /* !INSECURE */
1697#define ok_address(M, a) (1)
1698#define ok_next(b, n) (1)
1699#define ok_cinuse(p) (1)
1700#define ok_pinuse(p) (1)
1701#endif /* !INSECURE */
1702
1703#if (FOOTERS && !INSECURE)
1704/* Check if (alleged) mstate m has expected magic field */
1705#define ok_magic(M) ((M)->magic == mparams.magic)
1706#else /* (FOOTERS && !INSECURE) */
1707#define ok_magic(M) (1)
1708#endif /* (FOOTERS && !INSECURE) */
1709
1710
1711/* In gcc, use __builtin_expect to minimize impact of checks */
1712#if !INSECURE
1713#if defined(__GNUC__) && __GNUC__ >= 3
1714#define RTCHECK(e) __builtin_expect(e, 1)
1715#else /* GNUC */
1716#define RTCHECK(e) (e)
1717#endif /* GNUC */
1718#else /* !INSECURE */
1719#define RTCHECK(e) (1)
1720#endif /* !INSECURE */
1721
1722/* macros to set up inuse chunks with or without footers */
1723
1724#if !FOOTERS
1725
1726#define mark_inuse_foot(M,p,s)
1727
1728/* Set cinuse bit and pinuse bit of next chunk */
1729#define set_inuse(M,p,s)\
1730 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1731 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1732
1733/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
1734#define set_inuse_and_pinuse(M,p,s)\
1735 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1736 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
1737
1738/* Set size, cinuse and pinuse bit of this chunk */
1739#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1740 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
1741
1742#else /* FOOTERS */
1743
1744/* Set foot of inuse chunk to be xor of mstate and seed */
1745#define mark_inuse_foot(M,p,s)\
1746 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
1747
1748#define get_mstate_for(p)\
1749 ((mstate)(((mchunkptr)((char*)(p) +\
1750 (chunksize(p))))->prev_foot ^ mparams.magic))
1751
1752#define set_inuse(M,p,s)\
1753 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
1754 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
1755 mark_inuse_foot(M,p,s))
1756
1757#define set_inuse_and_pinuse(M,p,s)\
1758 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1759 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
1760 mark_inuse_foot(M,p,s))
1761
1762#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
1763 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
1764 mark_inuse_foot(M, p, s))
1765
1766#endif /* !FOOTERS */
1767
1768/* ---------------------------- setting mparams -------------------------- */
1769
1770/* Initialize mparams */
1771static int init_mparams(void) {
1772 if (mparams.page_size == 0) {
1773 size_t s;
1774
1775 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1776 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
1777#if MORECORE_CONTIGUOUS
1778 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
1779#else /* MORECORE_CONTIGUOUS */
1780 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
1781#endif /* MORECORE_CONTIGUOUS */
1782
1783#if (FOOTERS && !INSECURE)
1784 {
1785#if USE_DEV_RANDOM
1786 int fd;
1787 unsigned char buf[sizeof(size_t)];
1788 /* Try to use /dev/urandom, else fall back on using time */
1789 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
1790 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
1791 s = *((size_t *) buf);
1792 close(fd);
1793 }
1794 else
1795#endif /* USE_DEV_RANDOM */
1796 s = (size_t)(time(0) ^ (size_t)0x55555555U);
1797
1798 s |= (size_t)8U; /* ensure nonzero */
1799 s &= ~(size_t)7U; /* improve chances of fault for bad values */
1800
1801 }
1802#else /* (FOOTERS && !INSECURE) */
1803 s = (size_t)0x58585858U;
1804#endif /* (FOOTERS && !INSECURE) */
1805 ACQUIRE_MAGIC_INIT_LOCK();
1806 if (mparams.magic == 0) {
1807 mparams.magic = s;
1808 /* Set up lock for main malloc area */
1809 INITIAL_LOCK(&gm->mutex);
1810 gm->mflags = mparams.default_mflags;
1811 }
1812 RELEASE_MAGIC_INIT_LOCK();
1813
1814#ifndef WIN32
1815 mparams.page_size = malloc_getpagesize;
1816 mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
1817 DEFAULT_GRANULARITY : mparams.page_size);
1818#else /* WIN32 */
1819 {
1820 SYSTEM_INFO system_info;
1821 GetSystemInfo(&system_info);
1822 mparams.page_size = system_info.dwPageSize;
1823 mparams.granularity = system_info.dwAllocationGranularity;
1824 }
1825#endif /* WIN32 */
1826
1827 /* Sanity-check configuration:
1828 size_t must be unsigned and as wide as pointer type.
1829 ints must be at least 4 bytes.
1830 alignment must be at least 8.
1831 Alignment, min chunk size, and page size must all be powers of 2.
1832 */
1833 if ((sizeof(size_t) != sizeof(char*)) ||
1834 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
1835 (sizeof(int) < 4) ||
1836 (MALLOC_ALIGNMENT < (size_t)8U) ||
1837 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
1838 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
1839 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
1840 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
1841 ABORT;
1842 }
1843 return 0;
1844}
1845
1846/* support for mallopt */
1847static int change_mparam(int param_number, int value) {
1848 size_t val = (size_t)value;
1849 init_mparams();
1850 switch(param_number) {
1851 case M_TRIM_THRESHOLD:
1852 mparams.trim_threshold = val;
1853 return 1;
1854 case M_GRANULARITY:
1855 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
1856 mparams.granularity = val;
1857 return 1;
1858 }
1859 else
1860 return 0;
1861 case M_MMAP_THRESHOLD:
1862 mparams.mmap_threshold = val;
1863 return 1;
1864 default:
1865 return 0;
1866 }
1867}
1868
1869#if DEBUG
1870/* ------------------------- Debugging Support --------------------------- */
1871
1872/* Check properties of any chunk, whether free, inuse, mmapped etc */
1873static void do_check_any_chunk(mstate m, mchunkptr p) {
1874 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1875 assert(ok_address(m, p));
1876}
1877
1878/* Check properties of top chunk */
1879static void do_check_top_chunk(mstate m, mchunkptr p) {
1880 msegmentptr sp = segment_holding(m, (char*)p);
1881 size_t sz = chunksize(p);
1882 assert(sp != 0);
1883 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1884 assert(ok_address(m, p));
1885 assert(sz == m->topsize);
1886 assert(sz > 0);
1887 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
1888 assert(pinuse(p));
1889 assert(!next_pinuse(p));
1890}
1891
1892/* Check properties of (inuse) mmapped chunks */
1893static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
1894 size_t sz = chunksize(p);
1895 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
1896 assert(is_mmapped(p));
1897 assert(use_mmap(m));
1898 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
1899 assert(ok_address(m, p));
1900 assert(!is_small(sz));
1901 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
1902 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
1903 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
1904}
1905
1906/* Check properties of inuse chunks */
1907static void do_check_inuse_chunk(mstate m, mchunkptr p) {
1908 do_check_any_chunk(m, p);
1909 assert(cinuse(p));
1910 assert(next_pinuse(p));
1911 /* If not pinuse and not mmapped, previous chunk has OK offset */
1912 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
1913 if (is_mmapped(p))
1914 do_check_mmapped_chunk(m, p);
1915}
1916
1917/* Check properties of free chunks */
1918static void do_check_free_chunk(mstate m, mchunkptr p) {
1919 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1920 mchunkptr next = chunk_plus_offset(p, sz);
1921 do_check_any_chunk(m, p);
1922 assert(!cinuse(p));
1923 assert(!next_pinuse(p));
1924 assert (!is_mmapped(p));
1925 if (p != m->dv && p != m->top) {
1926 if (sz >= MIN_CHUNK_SIZE) {
1927 assert((sz & CHUNK_ALIGN_MASK) == 0);
1928 assert(is_aligned(chunk2mem(p)));
1929 assert(next->prev_foot == sz);
1930 assert(pinuse(p));
1931 assert (next == m->top || cinuse(next));
1932 assert(p->fd->bk == p);
1933 assert(p->bk->fd == p);
1934 }
1935 else /* markers are always of size SIZE_T_SIZE */
1936 assert(sz == SIZE_T_SIZE);
1937 }
1938}
1939
1940/* Check properties of malloced chunks at the point they are malloced */
1941static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
1942 if (mem != 0) {
1943 mchunkptr p = mem2chunk(mem);
1944 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
1945 do_check_inuse_chunk(m, p);
1946 assert((sz & CHUNK_ALIGN_MASK) == 0);
1947 assert(sz >= MIN_CHUNK_SIZE);
1948 assert(sz >= s);
1949 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
1950 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
1951 }
1952}
1953
1954/* Check a tree and its subtrees. */
1955static void do_check_tree(mstate m, tchunkptr t) {
1956 tchunkptr head = 0;
1957 tchunkptr u = t;
1958 bindex_t tindex = t->index;
1959 size_t tsize = chunksize(t);
1960 bindex_t idx;
1961 compute_tree_index(tsize, idx);
1962 assert(tindex == idx);
1963 assert(tsize >= MIN_LARGE_SIZE);
1964 assert(tsize >= minsize_for_tree_index(idx));
1965 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
1966
1967 do { /* traverse through chain of same-sized nodes */
1968 do_check_any_chunk(m, ((mchunkptr)u));
1969 assert(u->index == tindex);
1970 assert(chunksize(u) == tsize);
1971 assert(!cinuse(u));
1972 assert(!next_pinuse(u));
1973 assert(u->fd->bk == u);
1974 assert(u->bk->fd == u);
1975 if (u->parent == 0) {
1976 assert(u->child[0] == 0);
1977 assert(u->child[1] == 0);
1978 }
1979 else {
1980 assert(head == 0); /* only one node on chain has parent */
1981 head = u;
1982 assert(u->parent != u);
1983 assert (u->parent->child[0] == u ||
1984 u->parent->child[1] == u ||
1985 *((tbinptr*)(u->parent)) == u);
1986 if (u->child[0] != 0) {
1987 assert(u->child[0]->parent == u);
1988 assert(u->child[0] != u);
1989 do_check_tree(m, u->child[0]);
1990 }
1991 if (u->child[1] != 0) {
1992 assert(u->child[1]->parent == u);
1993 assert(u->child[1] != u);
1994 do_check_tree(m, u->child[1]);
1995 }
1996 if (u->child[0] != 0 && u->child[1] != 0) {
1997 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
1998 }
1999 }
2000 u = u->fd;
2001 } while (u != t);
2002 assert(head != 0);
2003}
2004
2005/* Check all the chunks in a treebin. */
2006static void do_check_treebin(mstate m, bindex_t i) {
2007 tbinptr* tb = treebin_at(m, i);
2008 tchunkptr t = *tb;
2009 int empty = (m->treemap & (1U << i)) == 0;
2010 if (t == 0)
2011 assert(empty);
2012 if (!empty)
2013 do_check_tree(m, t);
2014}
2015
2016/* Check all the chunks in a smallbin. */
2017static void do_check_smallbin(mstate m, bindex_t i) {
2018 sbinptr b = smallbin_at(m, i);
2019 mchunkptr p = b->bk;
2020 unsigned int empty = (m->smallmap & (1U << i)) == 0;
2021 if (p == b)
2022 assert(empty);
2023 if (!empty) {
2024 for (; p != b; p = p->bk) {
2025 size_t size = chunksize(p);
2026 mchunkptr q;
2027 /* each chunk claims to be free */
2028 do_check_free_chunk(m, p);
2029 /* chunk belongs in bin */
2030 assert(small_index(size) == i);
2031 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
2032 /* chunk is followed by an inuse chunk */
2033 q = next_chunk(p);
2034 if (q->head != FENCEPOST_HEAD)
2035 do_check_inuse_chunk(m, q);
2036 }
2037 }
2038}
2039
2040/* Find x in a bin. Used in other check functions. */
2041static int bin_find(mstate m, mchunkptr x) {
2042 size_t size = chunksize(x);
2043 if (is_small(size)) {
2044 bindex_t sidx = small_index(size);
2045 sbinptr b = smallbin_at(m, sidx);
2046 if (smallmap_is_marked(m, sidx)) {
2047 mchunkptr p = b;
2048 do {
2049 if (p == x)
2050 return 1;
2051 } while ((p = p->fd) != b);
2052 }
2053 }
2054 else {
2055 bindex_t tidx;
2056 compute_tree_index(size, tidx);
2057 if (treemap_is_marked(m, tidx)) {
2058 tchunkptr t = *treebin_at(m, tidx);
2059 size_t sizebits = size << leftshift_for_tree_index(tidx);
2060 while (t != 0 && chunksize(t) != size) {
2061 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2062 sizebits <<= 1;
2063 }
2064 if (t != 0) {
2065 tchunkptr u = t;
2066 do {
2067 if (u == (tchunkptr)x)
2068 return 1;
2069 } while ((u = u->fd) != t);
2070 }
2071 }
2072 }
2073 return 0;
2074}
2075
2076/* Traverse each chunk and check it; return total */
2077static size_t traverse_and_check(mstate m) {
2078 size_t sum = 0;
2079 if (is_initialized(m)) {
2080 msegmentptr s = &m->seg;
2081 sum += m->topsize + TOP_FOOT_SIZE;
2082 while (s != 0) {
2083 mchunkptr q = align_as_chunk(s->base);
2084 mchunkptr lastq = 0;
2085 assert(pinuse(q));
2086 while (segment_holds(s, q) &&
2087 q != m->top && q->head != FENCEPOST_HEAD) {
2088 sum += chunksize(q);
2089 if (cinuse(q)) {
2090 assert(!bin_find(m, q));
2091 do_check_inuse_chunk(m, q);
2092 }
2093 else {
2094 assert(q == m->dv || bin_find(m, q));
2095 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
2096 do_check_free_chunk(m, q);
2097 }
2098 lastq = q;
2099 q = next_chunk(q);
2100 }
2101 s = s->next;
2102 }
2103 }
2104 return sum;
2105}
2106
2107/* Check all properties of malloc_state. */
2108static void do_check_malloc_state(mstate m) {
2109 bindex_t i;
2110 size_t total;
2111 /* check bins */
2112 for (i = 0; i < NSMALLBINS; ++i)
2113 do_check_smallbin(m, i);
2114 for (i = 0; i < NTREEBINS; ++i)
2115 do_check_treebin(m, i);
2116
2117 if (m->dvsize != 0) { /* check dv chunk */
2118 do_check_any_chunk(m, m->dv);
2119 assert(m->dvsize == chunksize(m->dv));
2120 assert(m->dvsize >= MIN_CHUNK_SIZE);
2121 assert(bin_find(m, m->dv) == 0);
2122 }
2123
2124 if (m->top != 0) { /* check top chunk */
2125 do_check_top_chunk(m, m->top);
2126 assert(m->topsize == chunksize(m->top));
2127 assert(m->topsize > 0);
2128 assert(bin_find(m, m->top) == 0);
2129 }
2130
2131 total = traverse_and_check(m);
2132 assert(total <= m->footprint);
2133 assert(m->footprint <= m->max_footprint);
2134}
2135#endif /* DEBUG */
2136
2137/* ----------------------------- statistics ------------------------------ */
2138
2139#if !NO_MALLINFO
2140static struct mallinfo internal_mallinfo(mstate m) {
2141 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
2142 if (!PREACTION(m)) {
2143 check_malloc_state(m);
2144 if (is_initialized(m)) {
2145 size_t nfree = SIZE_T_ONE; /* top always free */
2146 size_t mfree = m->topsize + TOP_FOOT_SIZE;
2147 size_t sum = mfree;
2148 msegmentptr s = &m->seg;
2149 while (s != 0) {
2150 mchunkptr q = align_as_chunk(s->base);
2151 while (segment_holds(s, q) &&
2152 q != m->top && q->head != FENCEPOST_HEAD) {
2153 size_t sz = chunksize(q);
2154 sum += sz;
2155 if (!cinuse(q)) {
2156 mfree += sz;
2157 ++nfree;
2158 }
2159 q = next_chunk(q);
2160 }
2161 s = s->next;
2162 }
2163
2164 nm.arena = sum;
2165 nm.ordblks = nfree;
2166 nm.hblkhd = m->footprint - sum;
2167 nm.usmblks = m->max_footprint;
2168 nm.uordblks = m->footprint - mfree;
2169 nm.fordblks = mfree;
2170 nm.keepcost = m->topsize;
2171 }
2172
2173 POSTACTION(m);
2174 }
2175 return nm;
2176}
2177#endif /* !NO_MALLINFO */
2178
2179static void internal_malloc_stats(mstate m) {
2180 if (!PREACTION(m)) {
2181 size_t maxfp = 0;
2182 size_t fp = 0;
2183 size_t used = 0;
2184 check_malloc_state(m);
2185 if (is_initialized(m)) {
2186 msegmentptr s = &m->seg;
2187 maxfp = m->max_footprint;
2188 fp = m->footprint;
2189 used = fp - (m->topsize + TOP_FOOT_SIZE);
2190
2191 while (s != 0) {
2192 mchunkptr q = align_as_chunk(s->base);
2193 while (segment_holds(s, q) &&
2194 q != m->top && q->head != FENCEPOST_HEAD) {
2195 if (!cinuse(q))
2196 used -= chunksize(q);
2197 q = next_chunk(q);
2198 }
2199 s = s->next;
2200 }
2201 }
2202
2203 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
2204 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
2205 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
2206
2207 POSTACTION(m);
2208 }
2209}
2210
2211/* ----------------------- Operations on smallbins ----------------------- */
2212
2213/*
2214 Various forms of linking and unlinking are defined as macros. Even
2215 the ones for trees, which are very long but have very short typical
2216 paths. This is ugly but reduces reliance on inlining support of
2217 compilers.
2218*/
2219
2220/* Link a free chunk into a smallbin */
2221#define insert_small_chunk(M, P, S) {\
2222 bindex_t I = small_index(S);\
2223 mchunkptr B = smallbin_at(M, I);\
2224 mchunkptr F = B;\
2225 assert(S >= MIN_CHUNK_SIZE);\
2226 if (!smallmap_is_marked(M, I))\
2227 mark_smallmap(M, I);\
2228 else if (RTCHECK(ok_address(M, B->fd)))\
2229 F = B->fd;\
2230 else {\
2231 CORRUPTION_ERROR_ACTION(M);\
2232 }\
2233 B->fd = P;\
2234 F->bk = P;\
2235 P->fd = F;\
2236 P->bk = B;\
2237}
2238
2239/* Unlink a chunk from a smallbin */
2240#define unlink_small_chunk(M, P, S) {\
2241 mchunkptr F = P->fd;\
2242 mchunkptr B = P->bk;\
2243 bindex_t I = small_index(S);\
2244 assert(P != B);\
2245 assert(P != F);\
2246 assert(chunksize(P) == small_index2size(I));\
2247 if (F == B)\
2248 clear_smallmap(M, I);\
2249 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
2250 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
2251 F->bk = B;\
2252 B->fd = F;\
2253 }\
2254 else {\
2255 CORRUPTION_ERROR_ACTION(M);\
2256 }\
2257}
2258
2259/* Unlink the first chunk from a smallbin */
2260#define unlink_first_small_chunk(M, B, P, I) {\
2261 mchunkptr F = P->fd;\
2262 assert(P != B);\
2263 assert(P != F);\
2264 assert(chunksize(P) == small_index2size(I));\
2265 if (B == F)\
2266 clear_smallmap(M, I);\
2267 else if (RTCHECK(ok_address(M, F))) {\
2268 B->fd = F;\
2269 F->bk = B;\
2270 }\
2271 else {\
2272 CORRUPTION_ERROR_ACTION(M);\
2273 }\
2274}
2275
2276/* Replace dv node, binning the old one */
2277/* Used only when dvsize known to be small */
2278#define replace_dv(M, P, S) {\
2279 size_t DVS = M->dvsize;\
2280 if (DVS != 0) {\
2281 mchunkptr DV = M->dv;\
2282 assert(is_small(DVS));\
2283 insert_small_chunk(M, DV, DVS);\
2284 }\
2285 M->dvsize = S;\
2286 M->dv = P;\
2287}
2288
2289/* ------------------------- Operations on trees ------------------------- */
2290
2291/* Insert chunk into tree */
2292#define insert_large_chunk(M, X, S) {\
2293 tbinptr* H;\
2294 bindex_t I;\
2295 compute_tree_index(S, I);\
2296 H = treebin_at(M, I);\
2297 X->index = I;\
2298 X->child[0] = X->child[1] = 0;\
2299 if (!treemap_is_marked(M, I)) {\
2300 mark_treemap(M, I);\
2301 *H = X;\
2302 X->parent = (tchunkptr)H;\
2303 X->fd = X->bk = X;\
2304 }\
2305 else {\
2306 tchunkptr T = *H;\
2307 size_t K = S << leftshift_for_tree_index(I);\
2308 for (;;) {\
2309 if (chunksize(T) != S) {\
2310 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
2311 K <<= 1;\
2312 if (*C != 0)\
2313 T = *C;\
2314 else if (RTCHECK(ok_address(M, C))) {\
2315 *C = X;\
2316 X->parent = T;\
2317 X->fd = X->bk = X;\
2318 break;\
2319 }\
2320 else {\
2321 CORRUPTION_ERROR_ACTION(M);\
2322 break;\
2323 }\
2324 }\
2325 else {\
2326 tchunkptr F = T->fd;\
2327 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
2328 T->fd = F->bk = X;\
2329 X->fd = F;\
2330 X->bk = T;\
2331 X->parent = 0;\
2332 break;\
2333 }\
2334 else {\
2335 CORRUPTION_ERROR_ACTION(M);\
2336 break;\
2337 }\
2338 }\
2339 }\
2340 }\
2341}
2342
2343/*
2344 Unlink steps:
2345
2346 1. If x is a chained node, unlink it from its same-sized fd/bk links
2347 and choose its bk node as its replacement.
2348 2. If x was the last node of its size, but not a leaf node, it must
2349 be replaced with a leaf node (not merely one with an open left or
2350 right), to make sure that lefts and rights of descendents
2351 correspond properly to bit masks. We use the rightmost descendent
2352 of x. We could use any other leaf, but this is easy to locate and
2353 tends to counteract removal of leftmosts elsewhere, and so keeps
2354 paths shorter than minimally guaranteed. This doesn't loop much
2355 because on average a node in a tree is near the bottom.
2356 3. If x is the base of a chain (i.e., has parent links) relink
2357 x's parent and children to x's replacement (or null if none).
2358*/
2359
2360#define unlink_large_chunk(M, X) {\
2361 tchunkptr XP = X->parent;\
2362 tchunkptr R;\
2363 if (X->bk != X) {\
2364 tchunkptr F = X->fd;\
2365 R = X->bk;\
2366 if (RTCHECK(ok_address(M, F))) {\
2367 F->bk = R;\
2368 R->fd = F;\
2369 }\
2370 else {\
2371 CORRUPTION_ERROR_ACTION(M);\
2372 }\
2373 }\
2374 else {\
2375 tchunkptr* RP;\
2376 if (((R = *(RP = &(X->child[1]))) != 0) ||\
2377 ((R = *(RP = &(X->child[0]))) != 0)) {\
2378 tchunkptr* CP;\
2379 while ((*(CP = &(R->child[1])) != 0) ||\
2380 (*(CP = &(R->child[0])) != 0)) {\
2381 R = *(RP = CP);\
2382 }\
2383 if (RTCHECK(ok_address(M, RP)))\
2384 *RP = 0;\
2385 else {\
2386 CORRUPTION_ERROR_ACTION(M);\
2387 }\
2388 }\
2389 }\
2390 if (XP != 0) {\
2391 tbinptr* H = treebin_at(M, X->index);\
2392 if (X == *H) {\
2393 if ((*H = R) == 0) \
2394 clear_treemap(M, X->index);\
2395 }\
2396 else if (RTCHECK(ok_address(M, XP))) {\
2397 if (XP->child[0] == X) \
2398 XP->child[0] = R;\
2399 else \
2400 XP->child[1] = R;\
2401 }\
2402 else\
2403 CORRUPTION_ERROR_ACTION(M);\
2404 if (R != 0) {\
2405 if (RTCHECK(ok_address(M, R))) {\
2406 tchunkptr C0, C1;\
2407 R->parent = XP;\
2408 if ((C0 = X->child[0]) != 0) {\
2409 if (RTCHECK(ok_address(M, C0))) {\
2410 R->child[0] = C0;\
2411 C0->parent = R;\
2412 }\
2413 else\
2414 CORRUPTION_ERROR_ACTION(M);\
2415 }\
2416 if ((C1 = X->child[1]) != 0) {\
2417 if (RTCHECK(ok_address(M, C1))) {\
2418 R->child[1] = C1;\
2419 C1->parent = R;\
2420 }\
2421 else\
2422 CORRUPTION_ERROR_ACTION(M);\
2423 }\
2424 }\
2425 else\
2426 CORRUPTION_ERROR_ACTION(M);\
2427 }\
2428 }\
2429}
2430
2431/* Relays to large vs small bin operations */
2432
2433#define insert_chunk(M, P, S)\
2434 if (is_small(S)) insert_small_chunk(M, P, S)\
2435 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
2436
2437#define unlink_chunk(M, P, S)\
2438 if (is_small(S)) unlink_small_chunk(M, P, S)\
2439 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
2440
2441
2442/* Relays to internal calls to malloc/free from realloc, memalign etc */
2443
2444#if ONLY_MSPACES
2445#define internal_malloc(m, b) mspace_malloc(m, b)
2446#define internal_free(m, mem) mspace_free(m,mem);
2447#else /* ONLY_MSPACES */
2448#if MSPACES
2449#define internal_malloc(m, b)\
2450 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
2451#define internal_free(m, mem)\
2452 if (m == gm) dlfree(mem); else mspace_free(m,mem);
2453#else /* MSPACES */
2454#define internal_malloc(m, b) dlmalloc(b)
2455#define internal_free(m, mem) dlfree(mem)
2456#endif /* MSPACES */
2457#endif /* ONLY_MSPACES */
2458
2459/* ----------------------- Direct-mmapping chunks ----------------------- */
2460
2461/*
2462 Directly mmapped chunks are set up with an offset to the start of
2463 the mmapped region stored in the prev_foot field of the chunk. This
2464 allows reconstruction of the required argument to MUNMAP when freed,
2465 and also allows adjustment of the returned chunk to meet alignment
2466 requirements (especially in memalign). There is also enough space
2467 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
2468 the PINUSE bit so frees can be checked.
2469*/
2470
2471/* Malloc using mmap */
2472static void* mmap_alloc(mstate m, size_t nb) {
2473 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2474 if (mmsize > nb) { /* Check for wrap around 0 */
2475 char* mm = (char*)(DIRECT_MMAP(mmsize));
2476 if (mm != CMFAIL) {
2477 size_t offset = align_offset(chunk2mem(mm));
2478 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
2479 mchunkptr p = (mchunkptr)(mm + offset);
2480 p->prev_foot = offset | IS_MMAPPED_BIT;
2481 (p)->head = (psize|CINUSE_BIT);
2482 mark_inuse_foot(m, p, psize);
2483 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
2484 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
2485
2486 if (mm < m->least_addr)
2487 m->least_addr = mm;
2488 if ((m->footprint += mmsize) > m->max_footprint)
2489 m->max_footprint = m->footprint;
2490 assert(is_aligned(chunk2mem(p)));
2491 check_mmapped_chunk(m, p);
2492 return chunk2mem(p);
2493 }
2494 }
2495 return 0;
2496}
2497
2498/* Realloc using mmap */
2499static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
2500 size_t oldsize = chunksize(oldp);
2501 if (is_small(nb)) /* Can't shrink mmap regions below small size */
2502 return 0;
2503 /* Keep old chunk if big enough but not too big */
2504 if (oldsize >= nb + SIZE_T_SIZE &&
2505 (oldsize - nb) <= (mparams.granularity << 1))
2506 return oldp;
2507 else {
2508 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
2509 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
2510 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
2511 CHUNK_ALIGN_MASK);
2512 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
2513 oldmmsize, newmmsize, 1);
2514 if (cp != CMFAIL) {
2515 mchunkptr newp = (mchunkptr)(cp + offset);
2516 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
2517 newp->head = (psize|CINUSE_BIT);
2518 mark_inuse_foot(m, newp, psize);
2519 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
2520 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
2521
2522 if (cp < m->least_addr)
2523 m->least_addr = cp;
2524 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
2525 m->max_footprint = m->footprint;
2526 check_mmapped_chunk(m, newp);
2527 return newp;
2528 }
2529 }
2530 return 0;
2531}
2532
2533/* -------------------------- mspace management -------------------------- */
2534
2535/* Initialize top chunk and its size */
2536static void init_top(mstate m, mchunkptr p, size_t psize) {
2537 /* Ensure alignment */
2538 size_t offset = align_offset(chunk2mem(p));
2539 p = (mchunkptr)((char*)p + offset);
2540 psize -= offset;
2541
2542 m->top = p;
2543 m->topsize = psize;
2544 p->head = psize | PINUSE_BIT;
2545 /* set size of fake trailing chunk holding overhead space only once */
2546 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
2547 m->trim_check = mparams.trim_threshold; /* reset on each update */
2548}
2549
2550/* Initialize bins for a new mstate that is otherwise zeroed out */
2551static void init_bins(mstate m) {
2552 /* Establish circular links for smallbins */
2553 bindex_t i;
2554 for (i = 0; i < NSMALLBINS; ++i) {
2555 sbinptr bin = smallbin_at(m,i);
2556 bin->fd = bin->bk = bin;
2557 }
2558}
2559
2560#if PROCEED_ON_ERROR
2561
2562/* default corruption action */
2563static void reset_on_error(mstate m) {
2564 int i;
2565 ++malloc_corruption_error_count;
2566 /* Reinitialize fields to forget about all memory */
2567 m->smallbins = m->treebins = 0;
2568 m->dvsize = m->topsize = 0;
2569 m->seg.base = 0;
2570 m->seg.size = 0;
2571 m->seg.next = 0;
2572 m->top = m->dv = 0;
2573 for (i = 0; i < NTREEBINS; ++i)
2574 *treebin_at(m, i) = 0;
2575 init_bins(m);
2576}
2577#endif /* PROCEED_ON_ERROR */
2578
2579/* Allocate chunk and prepend remainder with chunk in successor base. */
2580static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
2581 size_t nb) {
2582 mchunkptr p = align_as_chunk(newbase);
2583 mchunkptr oldfirst = align_as_chunk(oldbase);
2584 size_t psize = (char*)oldfirst - (char*)p;
2585 mchunkptr q = chunk_plus_offset(p, nb);
2586 size_t qsize = psize - nb;
2587 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2588
2589 assert((char*)oldfirst > (char*)q);
2590 assert(pinuse(oldfirst));
2591 assert(qsize >= MIN_CHUNK_SIZE);
2592
2593 /* consolidate remainder with first chunk of old base */
2594 if (oldfirst == m->top) {
2595 size_t tsize = m->topsize += qsize;
2596 m->top = q;
2597 q->head = tsize | PINUSE_BIT;
2598 check_top_chunk(m, q);
2599 }
2600 else if (oldfirst == m->dv) {
2601 size_t dsize = m->dvsize += qsize;
2602 m->dv = q;
2603 set_size_and_pinuse_of_free_chunk(q, dsize);
2604 }
2605 else {
2606 if (!cinuse(oldfirst)) {
2607 size_t nsize = chunksize(oldfirst);
2608 unlink_chunk(m, oldfirst, nsize);
2609 oldfirst = chunk_plus_offset(oldfirst, nsize);
2610 qsize += nsize;
2611 }
2612 set_free_with_pinuse(q, qsize, oldfirst);
2613 insert_chunk(m, q, qsize);
2614 check_free_chunk(m, q);
2615 }
2616
2617 check_malloced_chunk(m, chunk2mem(p), nb);
2618 return chunk2mem(p);
2619}
2620
2621
2622/* Add a segment to hold a new noncontiguous region */
2623static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
2624 /* Determine locations and sizes of segment, fenceposts, old top */
2625 char* old_top = (char*)m->top;
2626 msegmentptr oldsp = segment_holding(m, old_top);
2627 char* old_end = oldsp->base + oldsp->size;
2628 size_t ssize = pad_request(sizeof(struct malloc_segment));
2629 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
2630 size_t offset = align_offset(chunk2mem(rawsp));
2631 char* asp = rawsp + offset;
2632 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
2633 mchunkptr sp = (mchunkptr)csp;
2634 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
2635 mchunkptr tnext = chunk_plus_offset(sp, ssize);
2636 mchunkptr p = tnext;
2637 int nfences = 0;
2638
2639 /* reset top to new space */
2640 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2641
2642 /* Set up segment record */
2643 assert(is_aligned(ss));
2644 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
2645 *ss = m->seg; /* Push current record */
2646 m->seg.base = tbase;
2647 m->seg.size = tsize;
2648 m->seg.sflags = mmapped;
2649 m->seg.next = ss;
2650
2651 /* Insert trailing fenceposts */
2652 for (;;) {
2653 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
2654 p->head = FENCEPOST_HEAD;
2655 ++nfences;
2656 if ((char*)(&(nextp->head)) < old_end)
2657 p = nextp;
2658 else
2659 break;
2660 }
2661 assert(nfences >= 2);
2662
2663 /* Insert the rest of old top into a bin as an ordinary free chunk */
2664 if (csp != old_top) {
2665 mchunkptr q = (mchunkptr)old_top;
2666 size_t psize = csp - old_top;
2667 mchunkptr tn = chunk_plus_offset(q, psize);
2668 set_free_with_pinuse(q, psize, tn);
2669 insert_chunk(m, q, psize);
2670 }
2671
2672 check_top_chunk(m, m->top);
2673}
2674
2675/* -------------------------- System allocation -------------------------- */
2676
2677/* Get memory from system using MORECORE or MMAP */
2678static void* sys_alloc(mstate m, size_t nb) {
2679 char* tbase = CMFAIL;
2680 size_t tsize = 0;
2681 flag_t mmap_flag = 0;
2682
2683 init_mparams();
2684
2685 /* Directly map large chunks */
2686 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
2687 void* mem = mmap_alloc(m, nb);
2688 if (mem != 0)
2689 return mem;
2690 }
2691
2692 /*
2693 Try getting memory in any of three ways (in most-preferred to
2694 least-preferred order):
2695 1. A call to MORECORE that can normally contiguously extend memory.
2696 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
2697 or main space is mmapped or a previous contiguous call failed)
2698 2. A call to MMAP new space (disabled if not HAVE_MMAP).
2699 Note that under the default settings, if MORECORE is unable to
2700 fulfill a request, and HAVE_MMAP is true, then mmap is
2701 used as a noncontiguous system allocator. This is a useful backup
2702 strategy for systems with holes in address spaces -- in this case
2703 sbrk cannot contiguously expand the heap, but mmap may be able to
2704 find space.
2705 3. A call to MORECORE that cannot usually contiguously extend memory.
2706 (disabled if not HAVE_MORECORE)
2707 */
2708
2709 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
2710 char* br = CMFAIL;
2711 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
2712 size_t asize = 0;
2713 ACQUIRE_MORECORE_LOCK();
2714
2715 if (ss == 0) { /* First time through or recovery */
2716 char* base = (char*)CALL_MORECORE(0);
2717 if (base != CMFAIL) {
2718 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2719 /* Adjust to end on a page boundary */
2720 if (!is_page_aligned(base))
2721 asize += (page_align((size_t)base) - (size_t)base);
2722 /* Can't call MORECORE if size is negative when treated as signed */
2723 if (asize < HALF_MAX_SIZE_T &&
2724 (br = (char*)(CALL_MORECORE(asize))) == base) {
2725 tbase = base;
2726 tsize = asize;
2727 }
2728 }
2729 }
2730 else {
2731 /* Subtract out existing available top space from MORECORE request. */
2732 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
2733 /* Use mem here only if it did continuously extend old space */
2734 if (asize < HALF_MAX_SIZE_T &&
2735 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
2736 tbase = br;
2737 tsize = asize;
2738 }
2739 }
2740
2741 if (tbase == CMFAIL) { /* Cope with partial failure */
2742 if (br != CMFAIL) { /* Try to use/extend the space we did get */
2743 if (asize < HALF_MAX_SIZE_T &&
2744 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
2745 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
2746 if (esize < HALF_MAX_SIZE_T) {
2747 char* end = (char*)CALL_MORECORE(esize);
2748 if (end != CMFAIL)
2749 asize += esize;
2750 else { /* Can't use; try to release */
2751 CALL_MORECORE(-asize);
2752 br = CMFAIL;
2753 }
2754 }
2755 }
2756 }
2757 if (br != CMFAIL) { /* Use the space we did get */
2758 tbase = br;
2759 tsize = asize;
2760 }
2761 else
2762 disable_contiguous(m); /* Don't try contiguous path in the future */
2763 }
2764
2765 RELEASE_MORECORE_LOCK();
2766 }
2767
2768 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
2769 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
2770 size_t rsize = granularity_align(req);
2771 if (rsize > nb) { /* Fail if wraps around zero */
2772 char* mp = (char*)(CALL_MMAP(rsize));
2773 if (mp != CMFAIL) {
2774 tbase = mp;
2775 tsize = rsize;
2776 mmap_flag = IS_MMAPPED_BIT;
2777 }
2778 }
2779 }
2780
2781 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
2782 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
2783 if (asize < HALF_MAX_SIZE_T) {
2784 char* br = CMFAIL;
2785 char* end = CMFAIL;
2786 ACQUIRE_MORECORE_LOCK();
2787 br = (char*)(CALL_MORECORE(asize));
2788 end = (char*)(CALL_MORECORE(0));
2789 RELEASE_MORECORE_LOCK();
2790 if (br != CMFAIL && end != CMFAIL && br < end) {
2791 size_t ssize = end - br;
2792 if (ssize > nb + TOP_FOOT_SIZE) {
2793 tbase = br;
2794 tsize = ssize;
2795 }
2796 }
2797 }
2798 }
2799
2800 if (tbase != CMFAIL) {
2801
2802 if ((m->footprint += tsize) > m->max_footprint)
2803 m->max_footprint = m->footprint;
2804
2805 if (!is_initialized(m)) { /* first-time initialization */
2806 m->seg.base = m->least_addr = tbase;
2807 m->seg.size = tsize;
2808 m->seg.sflags = mmap_flag;
2809 m->magic = mparams.magic;
2810 init_bins(m);
2811 if (is_global(m))
2812 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
2813 else {
2814 /* Offset top by embedded malloc_state */
2815 mchunkptr mn = next_chunk(mem2chunk(m));
2816 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
2817 }
2818 }
2819
2820 else {
2821 /* Try to merge with an existing segment */
2822 msegmentptr sp = &m->seg;
2823 while (sp != 0 && tbase != sp->base + sp->size)
2824 sp = sp->next;
2825 if (sp != 0 &&
2826 !is_extern_segment(sp) &&
2827 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
2828 segment_holds(sp, m->top)) { /* append */
2829 sp->size += tsize;
2830 init_top(m, m->top, m->topsize + tsize);
2831 }
2832 else {
2833 if (tbase < m->least_addr)
2834 m->least_addr = tbase;
2835 sp = &m->seg;
2836 while (sp != 0 && sp->base != tbase + tsize)
2837 sp = sp->next;
2838 if (sp != 0 &&
2839 !is_extern_segment(sp) &&
2840 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
2841 char* oldbase = sp->base;
2842 sp->base = tbase;
2843 sp->size += tsize;
2844 return prepend_alloc(m, tbase, oldbase, nb);
2845 }
2846 else
2847 add_segment(m, tbase, tsize, mmap_flag);
2848 }
2849 }
2850
2851 if (nb < m->topsize) { /* Allocate from new or extended top space */
2852 size_t rsize = m->topsize -= nb;
2853 mchunkptr p = m->top;
2854 mchunkptr r = m->top = chunk_plus_offset(p, nb);
2855 r->head = rsize | PINUSE_BIT;
2856 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
2857 check_top_chunk(m, m->top);
2858 check_malloced_chunk(m, chunk2mem(p), nb);
2859 return chunk2mem(p);
2860 }
2861 }
2862
2863 MALLOC_FAILURE_ACTION;
2864 return 0;
2865}
2866
2867/* ----------------------- system deallocation -------------------------- */
2868
2869/* Unmap and unlink any mmapped segments that don't contain used chunks */
2870static size_t release_unused_segments(mstate m) {
2871 size_t released = 0;
2872 msegmentptr pred = &m->seg;
2873 msegmentptr sp = pred->next;
2874 while (sp != 0) {
2875 char* base = sp->base;
2876 size_t size = sp->size;
2877 msegmentptr next = sp->next;
2878 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
2879 mchunkptr p = align_as_chunk(base);
2880 size_t psize = chunksize(p);
2881 /* Can unmap if first chunk holds entire segment and not pinned */
2882 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
2883 tchunkptr tp = (tchunkptr)p;
2884 assert(segment_holds(sp, (char*)sp));
2885 if (p == m->dv) {
2886 m->dv = 0;
2887 m->dvsize = 0;
2888 }
2889 else {
2890 unlink_large_chunk(m, tp);
2891 }
2892 if (CALL_MUNMAP(base, size) == 0) {
2893 released += size;
2894 m->footprint -= size;
2895 /* unlink obsoleted record */
2896 sp = pred;
2897 sp->next = next;
2898 }
2899 else { /* back out if cannot unmap */
2900 insert_large_chunk(m, tp, psize);
2901 }
2902 }
2903 }
2904 pred = sp;
2905 sp = next;
2906 }
2907 return released;
2908}
2909
2910static int sys_trim(mstate m, size_t pad) {
2911 size_t released = 0;
2912 if (pad < MAX_REQUEST && is_initialized(m)) {
2913 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
2914
2915 if (m->topsize > pad) {
2916 /* Shrink top space in granularity-size units, keeping at least one */
2917 size_t unit = mparams.granularity;
2918 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
2919 SIZE_T_ONE) * unit;
2920 msegmentptr sp = segment_holding(m, (char*)m->top);
2921
2922 if (!is_extern_segment(sp)) {
2923 if (is_mmapped_segment(sp)) {
2924 if (HAVE_MMAP &&
2925 sp->size >= extra &&
2926 !has_segment_link(m, sp)) { /* can't shrink if pinned */
2927 size_t newsize = sp->size - extra;
2928 /* Prefer mremap, fall back to munmap */
2929 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
2930 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
2931 released = extra;
2932 }
2933 }
2934 }
2935 else if (HAVE_MORECORE) {
2936 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
2937 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
2938 ACQUIRE_MORECORE_LOCK();
2939 {
2940 /* Make sure end of memory is where we last set it. */
2941 char* old_br = (char*)(CALL_MORECORE(0));
2942 if (old_br == sp->base + sp->size) {
2943 char* rel_br = (char*)(CALL_MORECORE(-extra));
2944 char* new_br = (char*)(CALL_MORECORE(0));
2945 if (rel_br != CMFAIL && new_br < old_br)
2946 released = old_br - new_br;
2947 }
2948 }
2949 RELEASE_MORECORE_LOCK();
2950 }
2951 }
2952
2953 if (released != 0) {
2954 sp->size -= released;
2955 m->footprint -= released;
2956 init_top(m, m->top, m->topsize - released);
2957 check_top_chunk(m, m->top);
2958 }
2959 }
2960
2961 /* Unmap any unused mmapped segments */
2962 if (HAVE_MMAP)
2963 released += release_unused_segments(m);
2964
2965 /* On failure, disable autotrim to avoid repeated failed future calls */
2966 if (released == 0)
2967 m->trim_check = MAX_SIZE_T;
2968 }
2969
2970 return (released != 0)? 1 : 0;
2971}
2972
2973/* ---------------------------- malloc support --------------------------- */
2974
2975/* allocate a large request from the best fitting chunk in a treebin */
2976static void* tmalloc_large(mstate m, size_t nb) {
2977 tchunkptr v = 0;
2978 size_t rsize = -nb; /* Unsigned negation */
2979 tchunkptr t;
2980 bindex_t idx;
2981 compute_tree_index(nb, idx);
2982
2983 if ((t = *treebin_at(m, idx)) != 0) {
2984 /* Traverse tree for this bin looking for node with size == nb */
2985 size_t sizebits = nb << leftshift_for_tree_index(idx);
2986 tchunkptr rst = 0; /* The deepest untaken right subtree */
2987 for (;;) {
2988 tchunkptr rt;
2989 size_t trem = chunksize(t) - nb;
2990 if (trem < rsize) {
2991 v = t;
2992 if ((rsize = trem) == 0)
2993 break;
2994 }
2995 rt = t->child[1];
2996 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
2997 if (rt != 0 && rt != t)
2998 rst = rt;
2999 if (t == 0) {
3000 t = rst; /* set t to least subtree holding sizes > nb */
3001 break;
3002 }
3003 sizebits <<= 1;
3004 }
3005 }
3006
3007 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
3008 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
3009 if (leftbits != 0) {
3010 bindex_t i;
3011 binmap_t leastbit = least_bit(leftbits);
3012 compute_bit2idx(leastbit, i);
3013 t = *treebin_at(m, i);
3014 }
3015 }
3016
3017 while (t != 0) { /* find smallest of tree or subtree */
3018 size_t trem = chunksize(t) - nb;
3019 if (trem < rsize) {
3020 rsize = trem;
3021 v = t;
3022 }
3023 t = leftmost_child(t);
3024 }
3025
3026 /* If dv is a better fit, return 0 so malloc will use it */
3027 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
3028 if (RTCHECK(ok_address(m, v))) { /* split */
3029 mchunkptr r = chunk_plus_offset(v, nb);
3030 assert(chunksize(v) == rsize + nb);
3031 if (RTCHECK(ok_next(v, r))) {
3032 unlink_large_chunk(m, v);
3033 if (rsize < MIN_CHUNK_SIZE)
3034 set_inuse_and_pinuse(m, v, (rsize + nb));
3035 else {
3036 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3037 set_size_and_pinuse_of_free_chunk(r, rsize);
3038 insert_chunk(m, r, rsize);
3039 }
3040 return chunk2mem(v);
3041 }
3042 }
3043 CORRUPTION_ERROR_ACTION(m);
3044 }
3045 return 0;
3046}
3047
3048/* allocate a small request from the best fitting chunk in a treebin */
3049static void* tmalloc_small(mstate m, size_t nb) {
3050 tchunkptr t, v;
3051 size_t rsize;
3052 bindex_t i;
3053 binmap_t leastbit = least_bit(m->treemap);
3054 compute_bit2idx(leastbit, i);
3055
3056 v = t = *treebin_at(m, i);
3057 rsize = chunksize(t) - nb;
3058
3059 while ((t = leftmost_child(t)) != 0) {
3060 size_t trem = chunksize(t) - nb;
3061 if (trem < rsize) {
3062 rsize = trem;
3063 v = t;
3064 }
3065 }
3066
3067 if (RTCHECK(ok_address(m, v))) {
3068 mchunkptr r = chunk_plus_offset(v, nb);
3069 assert(chunksize(v) == rsize + nb);
3070 if (RTCHECK(ok_next(v, r))) {
3071 unlink_large_chunk(m, v);
3072 if (rsize < MIN_CHUNK_SIZE)
3073 set_inuse_and_pinuse(m, v, (rsize + nb));
3074 else {
3075 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
3076 set_size_and_pinuse_of_free_chunk(r, rsize);
3077 replace_dv(m, r, rsize);
3078 }
3079 return chunk2mem(v);
3080 }
3081 }
3082
3083 CORRUPTION_ERROR_ACTION(m);
3084 return 0;
3085}
3086
3087/* --------------------------- realloc support --------------------------- */
3088
3089static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
3090 if (bytes >= MAX_REQUEST) {
3091 MALLOC_FAILURE_ACTION;
3092 return 0;
3093 }
3094 if (!PREACTION(m)) {
3095 mchunkptr oldp = mem2chunk(oldmem);
3096 size_t oldsize = chunksize(oldp);
3097 mchunkptr next = chunk_plus_offset(oldp, oldsize);
3098 mchunkptr newp = 0;
3099 void* extra = 0;
3100
3101 /* Try to either shrink or extend into top. Else malloc-copy-free */
3102
3103 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
3104 ok_next(oldp, next) && ok_pinuse(next))) {
3105 size_t nb = request2size(bytes);
3106 if (is_mmapped(oldp))
3107 newp = mmap_resize(m, oldp, nb);
3108 else if (oldsize >= nb) { /* already big enough */
3109 size_t rsize = oldsize - nb;
3110 newp = oldp;
3111 if (rsize >= MIN_CHUNK_SIZE) {
3112 mchunkptr remainder = chunk_plus_offset(newp, nb);
3113 set_inuse(m, newp, nb);
3114 set_inuse(m, remainder, rsize);
3115 extra = chunk2mem(remainder);
3116 }
3117 }
3118 else if (next == m->top && oldsize + m->topsize > nb) {
3119 /* Expand into top */
3120 size_t newsize = oldsize + m->topsize;
3121 size_t newtopsize = newsize - nb;
3122 mchunkptr newtop = chunk_plus_offset(oldp, nb);
3123 set_inuse(m, oldp, nb);
3124 newtop->head = newtopsize |PINUSE_BIT;
3125 m->top = newtop;
3126 m->topsize = newtopsize;
3127 newp = oldp;
3128 }
3129 }
3130 else {
3131 USAGE_ERROR_ACTION(m, oldmem);
3132 POSTACTION(m);
3133 return 0;
3134 }
3135
3136 POSTACTION(m);
3137
3138 if (newp != 0) {
3139 if (extra != 0) {
3140 internal_free(m, extra);
3141 }
3142 check_inuse_chunk(m, newp);
3143 return chunk2mem(newp);
3144 }
3145 else {
3146 void* newmem = internal_malloc(m, bytes);
3147 if (newmem != 0) {
3148 size_t oc = oldsize - overhead_for(oldp);
3149 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
3150 internal_free(m, oldmem);
3151 }
3152 return newmem;
3153 }
3154 }
3155 return 0;
3156}
3157
3158/* --------------------------- memalign support -------------------------- */
3159
3160static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
3161 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
3162 return internal_malloc(m, bytes);
3163 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
3164 alignment = MIN_CHUNK_SIZE;
3165 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
3166 size_t a = MALLOC_ALIGNMENT << 1;
3167 while (a < alignment) a <<= 1;
3168 alignment = a;
3169 }
3170
3171 if (bytes >= MAX_REQUEST - alignment) {
3172 if (m != 0) { /* Test isn't needed but avoids compiler warning */
3173 MALLOC_FAILURE_ACTION;
3174 }
3175 }
3176 else {
3177 size_t nb = request2size(bytes);
3178 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
3179 char* mem = (char*)internal_malloc(m, req);
3180 if (mem != 0) {
3181 void* leader = 0;
3182 void* trailer = 0;
3183 mchunkptr p = mem2chunk(mem);
3184
3185 if (PREACTION(m)) return 0;
3186 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
3187 /*
3188 Find an aligned spot inside chunk. Since we need to give
3189 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
3190 the first calculation places us at a spot with less than
3191 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
3192 We've allocated enough total room so that this is always
3193 possible.
3194 */
3195 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
3196 alignment -
3197 SIZE_T_ONE)) &
3198 -alignment));
3199 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
3200 br : br+alignment;
3201 mchunkptr newp = (mchunkptr)pos;
3202 size_t leadsize = pos - (char*)(p);
3203 size_t newsize = chunksize(p) - leadsize;
3204
3205 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
3206 newp->prev_foot = p->prev_foot + leadsize;
3207 newp->head = (newsize|CINUSE_BIT);
3208 }
3209 else { /* Otherwise, give back leader, use the rest */
3210 set_inuse(m, newp, newsize);
3211 set_inuse(m, p, leadsize);
3212 leader = chunk2mem(p);
3213 }
3214 p = newp;
3215 }
3216
3217 /* Give back spare room at the end */
3218 if (!is_mmapped(p)) {
3219 size_t size = chunksize(p);
3220 if (size > nb + MIN_CHUNK_SIZE) {
3221 size_t remainder_size = size - nb;
3222 mchunkptr remainder = chunk_plus_offset(p, nb);
3223 set_inuse(m, p, nb);
3224 set_inuse(m, remainder, remainder_size);
3225 trailer = chunk2mem(remainder);
3226 }
3227 }
3228
3229 assert (chunksize(p) >= nb);
3230 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
3231 check_inuse_chunk(m, p);
3232 POSTACTION(m);
3233 if (leader != 0) {
3234 internal_free(m, leader);
3235 }
3236 if (trailer != 0) {
3237 internal_free(m, trailer);
3238 }
3239 return chunk2mem(p);
3240 }
3241 }
3242 return 0;
3243}
3244
3245/* ------------------------ comalloc/coalloc support --------------------- */
3246
3247static void** ialloc(mstate m,
3248 size_t n_elements,
3249 size_t* sizes,
3250 int opts,
3251 void* chunks[]) {
3252 /*
3253 This provides common support for independent_X routines, handling
3254 all of the combinations that can result.
3255
3256 The opts arg has:
3257 bit 0 set if all elements are same size (using sizes[0])
3258 bit 1 set if elements should be zeroed
3259 */
3260
3261 size_t element_size; /* chunksize of each element, if all same */
3262 size_t contents_size; /* total size of elements */
3263 size_t array_size; /* request size of pointer array */
3264 void* mem; /* malloced aggregate space */
3265 mchunkptr p; /* corresponding chunk */
3266 size_t remainder_size; /* remaining bytes while splitting */
3267 void** marray; /* either "chunks" or malloced ptr array */
3268 mchunkptr array_chunk; /* chunk for malloced ptr array */
3269 flag_t was_enabled; /* to disable mmap */
3270 size_t size;
3271 size_t i;
3272
3273 /* compute array length, if needed */
3274 if (chunks != 0) {
3275 if (n_elements == 0)
3276 return chunks; /* nothing to do */
3277 marray = chunks;
3278 array_size = 0;
3279 }
3280 else {
3281 /* if empty req, must still return chunk representing empty array */
3282 if (n_elements == 0)
3283 return (void**)internal_malloc(m, 0);
3284 marray = 0;
3285 array_size = request2size(n_elements * (sizeof(void*)));
3286 }
3287
3288 /* compute total element size */
3289 if (opts & 0x1) { /* all-same-size */
3290 element_size = request2size(*sizes);
3291 contents_size = n_elements * element_size;
3292 }
3293 else { /* add up all the sizes */
3294 element_size = 0;
3295 contents_size = 0;
3296 for (i = 0; i != n_elements; ++i)
3297 contents_size += request2size(sizes[i]);
3298 }
3299
3300 size = contents_size + array_size;
3301
3302 /*
3303 Allocate the aggregate chunk. First disable direct-mmapping so
3304 malloc won't use it, since we would not be able to later
3305 free/realloc space internal to a segregated mmap region.
3306 */
3307 was_enabled = use_mmap(m);
3308 disable_mmap(m);
3309 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
3310 if (was_enabled)
3311 enable_mmap(m);
3312 if (mem == 0)
3313 return 0;
3314
3315 if (PREACTION(m)) return 0;
3316 p = mem2chunk(mem);
3317 remainder_size = chunksize(p);
3318
3319 assert(!is_mmapped(p));
3320
3321 if (opts & 0x2) { /* optionally clear the elements */
3322 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
3323 }
3324
3325 /* If not provided, allocate the pointer array as final part of chunk */
3326 if (marray == 0) {
3327 size_t array_chunk_size;
3328 array_chunk = chunk_plus_offset(p, contents_size);
3329 array_chunk_size = remainder_size - contents_size;
3330 marray = (void**) (chunk2mem(array_chunk));
3331 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
3332 remainder_size = contents_size;
3333 }
3334
3335 /* split out elements */
3336 for (i = 0; ; ++i) {
3337 marray[i] = chunk2mem(p);
3338 if (i != n_elements-1) {
3339 if (element_size != 0)
3340 size = element_size;
3341 else
3342 size = request2size(sizes[i]);
3343 remainder_size -= size;
3344 set_size_and_pinuse_of_inuse_chunk(m, p, size);
3345 p = chunk_plus_offset(p, size);
3346 }
3347 else { /* the final element absorbs any overallocation slop */
3348 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
3349 break;
3350 }
3351 }
3352
3353#if DEBUG
3354 if (marray != chunks) {
3355 /* final element must have exactly exhausted chunk */
3356 if (element_size != 0) {
3357 assert(remainder_size == element_size);
3358 }
3359 else {
3360 assert(remainder_size == request2size(sizes[i]));
3361 }
3362 check_inuse_chunk(m, mem2chunk(marray));
3363 }
3364 for (i = 0; i != n_elements; ++i)
3365 check_inuse_chunk(m, mem2chunk(marray[i]));
3366
3367#endif /* DEBUG */
3368
3369 POSTACTION(m);
3370 return marray;
3371}
3372
3373
3374/* -------------------------- public routines ---------------------------- */
3375
3376#if !ONLY_MSPACES
3377
3378void* dlmalloc(size_t bytes) {
3379 /*
3380 Basic algorithm:
3381 If a small request (< 256 bytes minus per-chunk overhead):
3382 1. If one exists, use a remainderless chunk in associated smallbin.
3383 (Remainderless means that there are too few excess bytes to
3384 represent as a chunk.)
3385 2. If it is big enough, use the dv chunk, which is normally the
3386 chunk adjacent to the one used for the most recent small request.
3387 3. If one exists, split the smallest available chunk in a bin,
3388 saving remainder in dv.
3389 4. If it is big enough, use the top chunk.
3390 5. If available, get memory from system and use it
3391 Otherwise, for a large request:
3392 1. Find the smallest available binned chunk that fits, and use it
3393 if it is better fitting than dv chunk, splitting if necessary.
3394 2. If better fitting than any binned chunk, use the dv chunk.
3395 3. If it is big enough, use the top chunk.
3396 4. If request size >= mmap threshold, try to directly mmap this chunk.
3397 5. If available, get memory from system and use it
3398
3399 The ugly goto's here ensure that postaction occurs along all paths.
3400 */
3401
3402 if (!PREACTION(gm)) {
3403 void* mem;
3404 size_t nb;
3405 if (bytes <= MAX_SMALL_REQUEST) {
3406 bindex_t idx;
3407 binmap_t smallbits;
3408 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3409 idx = small_index(nb);
3410 smallbits = gm->smallmap >> idx;
3411
3412 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3413 mchunkptr b, p;
3414 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3415 b = smallbin_at(gm, idx);
3416 p = b->fd;
3417 assert(chunksize(p) == small_index2size(idx));
3418 unlink_first_small_chunk(gm, b, p, idx);
3419 set_inuse_and_pinuse(gm, p, small_index2size(idx));
3420 mem = chunk2mem(p);
3421 check_malloced_chunk(gm, mem, nb);
3422 goto postaction;
3423 }
3424
3425 else if (nb > gm->dvsize) {
3426 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3427 mchunkptr b, p, r;
3428 size_t rsize;
3429 bindex_t i;
3430 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3431 binmap_t leastbit = least_bit(leftbits);
3432 compute_bit2idx(leastbit, i);
3433 b = smallbin_at(gm, i);
3434 p = b->fd;
3435 assert(chunksize(p) == small_index2size(i));
3436 unlink_first_small_chunk(gm, b, p, i);
3437 rsize = small_index2size(i) - nb;
3438 /* Fit here cannot be remainderless if 4byte sizes */
3439 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3440 set_inuse_and_pinuse(gm, p, small_index2size(i));
3441 else {
3442 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3443 r = chunk_plus_offset(p, nb);
3444 set_size_and_pinuse_of_free_chunk(r, rsize);
3445 replace_dv(gm, r, rsize);
3446 }
3447 mem = chunk2mem(p);
3448 check_malloced_chunk(gm, mem, nb);
3449 goto postaction;
3450 }
3451
3452 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
3453 check_malloced_chunk(gm, mem, nb);
3454 goto postaction;
3455 }
3456 }
3457 }
3458 else if (bytes >= MAX_REQUEST)
3459 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3460 else {
3461 nb = pad_request(bytes);
3462 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
3463 check_malloced_chunk(gm, mem, nb);
3464 goto postaction;
3465 }
3466 }
3467
3468 if (nb <= gm->dvsize) {
3469 size_t rsize = gm->dvsize - nb;
3470 mchunkptr p = gm->dv;
3471 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3472 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
3473 gm->dvsize = rsize;
3474 set_size_and_pinuse_of_free_chunk(r, rsize);
3475 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3476 }
3477 else { /* exhaust dv */
3478 size_t dvs = gm->dvsize;
3479 gm->dvsize = 0;
3480 gm->dv = 0;
3481 set_inuse_and_pinuse(gm, p, dvs);
3482 }
3483 mem = chunk2mem(p);
3484 check_malloced_chunk(gm, mem, nb);
3485 goto postaction;
3486 }
3487
3488 else if (nb < gm->topsize) { /* Split top */
3489 size_t rsize = gm->topsize -= nb;
3490 mchunkptr p = gm->top;
3491 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
3492 r->head = rsize | PINUSE_BIT;
3493 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
3494 mem = chunk2mem(p);
3495 check_top_chunk(gm, gm->top);
3496 check_malloced_chunk(gm, mem, nb);
3497 goto postaction;
3498 }
3499
3500 mem = sys_alloc(gm, nb);
3501
3502 postaction:
3503 POSTACTION(gm);
3504 return mem;
3505 }
3506
3507 return 0;
3508}
3509
3510void dlfree(void* mem) {
3511 /*
3512 Consolidate freed chunks with preceeding or succeeding bordering
3513 free chunks, if they exist, and then place in a bin. Intermixed
3514 with special cases for top, dv, mmapped chunks, and usage errors.
3515 */
3516
3517 if (mem != 0) {
3518 mchunkptr p = mem2chunk(mem);
3519#if FOOTERS
3520 mstate fm = get_mstate_for(p);
3521 if (!ok_magic(fm)) {
3522 USAGE_ERROR_ACTION(fm, p);
3523 return;
3524 }
3525#else /* FOOTERS */
3526#define fm gm
3527#endif /* FOOTERS */
3528 if (!PREACTION(fm)) {
3529 check_inuse_chunk(fm, p);
3530 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3531 size_t psize = chunksize(p);
3532 mchunkptr next = chunk_plus_offset(p, psize);
3533 if (!pinuse(p)) {
3534 size_t prevsize = p->prev_foot;
3535 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3536 prevsize &= ~IS_MMAPPED_BIT;
3537 psize += prevsize + MMAP_FOOT_PAD;
3538 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3539 fm->footprint -= psize;
3540 goto postaction;
3541 }
3542 else {
3543 mchunkptr prev = chunk_minus_offset(p, prevsize);
3544 psize += prevsize;
3545 p = prev;
3546 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3547 if (p != fm->dv) {
3548 unlink_chunk(fm, p, prevsize);
3549 }
3550 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3551 fm->dvsize = psize;
3552 set_free_with_pinuse(p, psize, next);
3553 goto postaction;
3554 }
3555 }
3556 else
3557 goto erroraction;
3558 }
3559 }
3560
3561 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3562 if (!cinuse(next)) { /* consolidate forward */
3563 if (next == fm->top) {
3564 size_t tsize = fm->topsize += psize;
3565 fm->top = p;
3566 p->head = tsize | PINUSE_BIT;
3567 if (p == fm->dv) {
3568 fm->dv = 0;
3569 fm->dvsize = 0;
3570 }
3571 if (should_trim(fm, tsize))
3572 sys_trim(fm, 0);
3573 goto postaction;
3574 }
3575 else if (next == fm->dv) {
3576 size_t dsize = fm->dvsize += psize;
3577 fm->dv = p;
3578 set_size_and_pinuse_of_free_chunk(p, dsize);
3579 goto postaction;
3580 }
3581 else {
3582 size_t nsize = chunksize(next);
3583 psize += nsize;
3584 unlink_chunk(fm, next, nsize);
3585 set_size_and_pinuse_of_free_chunk(p, psize);
3586 if (p == fm->dv) {
3587 fm->dvsize = psize;
3588 goto postaction;
3589 }
3590 }
3591 }
3592 else
3593 set_free_with_pinuse(p, psize, next);
3594 insert_chunk(fm, p, psize);
3595 check_free_chunk(fm, p);
3596 goto postaction;
3597 }
3598 }
3599 erroraction:
3600 USAGE_ERROR_ACTION(fm, p);
3601 postaction:
3602 POSTACTION(fm);
3603 }
3604 }
3605#if !FOOTERS
3606#undef fm
3607#endif /* FOOTERS */
3608}
3609
3610void* dlcalloc(size_t n_elements, size_t elem_size) {
3611 void* mem;
3612 size_t req = 0;
3613 if (n_elements != 0) {
3614 req = n_elements * elem_size;
3615 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
3616 (req / n_elements != elem_size))
3617 req = MAX_SIZE_T; /* force downstream failure on overflow */
3618 }
3619 mem = dlmalloc(req);
3620 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
3621 memset(mem, 0, req);
3622 return mem;
3623}
3624
3625void* dlrealloc(void* oldmem, size_t bytes) {
3626 if (oldmem == 0)
3627 return dlmalloc(bytes);
3628#ifdef REALLOC_ZERO_BYTES_FREES
3629 if (bytes == 0) {
3630 dlfree(oldmem);
3631 return 0;
3632 }
3633#endif /* REALLOC_ZERO_BYTES_FREES */
3634 else {
3635#if ! FOOTERS
3636 mstate m = gm;
3637#else /* FOOTERS */
3638 mstate m = get_mstate_for(mem2chunk(oldmem));
3639 if (!ok_magic(m)) {
3640 USAGE_ERROR_ACTION(m, oldmem);
3641 return 0;
3642 }
3643#endif /* FOOTERS */
3644 return internal_realloc(m, oldmem, bytes);
3645 }
3646}
3647
3648void* dlmemalign(size_t alignment, size_t bytes) {
3649 return internal_memalign(gm, alignment, bytes);
3650}
3651
3652void** dlindependent_calloc(size_t n_elements, size_t elem_size,
3653 void* chunks[]) {
3654 size_t sz = elem_size; /* serves as 1-element array */
3655 return ialloc(gm, n_elements, &sz, 3, chunks);
3656}
3657
3658void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
3659 void* chunks[]) {
3660 return ialloc(gm, n_elements, sizes, 0, chunks);
3661}
3662
3663void* dlvalloc(size_t bytes) {
3664 size_t pagesz;
3665 init_mparams();
3666 pagesz = mparams.page_size;
3667 return dlmemalign(pagesz, bytes);
3668}
3669
3670void* dlpvalloc(size_t bytes) {
3671 size_t pagesz;
3672 init_mparams();
3673 pagesz = mparams.page_size;
3674 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
3675}
3676
3677int dlmalloc_trim(size_t pad) {
3678 int result = 0;
3679 if (!PREACTION(gm)) {
3680 result = sys_trim(gm, pad);
3681 POSTACTION(gm);
3682 }
3683 return result;
3684}
3685
3686size_t dlmalloc_footprint(void) {
3687 return gm->footprint;
3688}
3689
3690size_t dlmalloc_max_footprint(void) {
3691 return gm->max_footprint;
3692}
3693
3694#if !NO_MALLINFO
3695struct mallinfo dlmallinfo(void) {
3696 return internal_mallinfo(gm);
3697}
3698#endif /* NO_MALLINFO */
3699
3700void dlmalloc_stats() {
3701 internal_malloc_stats(gm);
3702}
3703
3704size_t dlmalloc_usable_size(void* mem) {
3705 if (mem != 0) {
3706 mchunkptr p = mem2chunk(mem);
3707 if (cinuse(p))
3708 return chunksize(p) - overhead_for(p);
3709 }
3710 return 0;
3711}
3712
3713int dlmallopt(int param_number, int value) {
3714 return change_mparam(param_number, value);
3715}
3716
3717#endif /* !ONLY_MSPACES */
3718
3719/* ----------------------------- user mspaces ---------------------------- */
3720
3721#if MSPACES
3722
3723static mstate init_user_mstate(char* tbase, size_t tsize) {
3724 size_t msize = pad_request(sizeof(struct malloc_state));
3725 mchunkptr mn;
3726 mchunkptr msp = align_as_chunk(tbase);
3727 mstate m = (mstate)(chunk2mem(msp));
3728 memset(m, 0, msize);
3729 INITIAL_LOCK(&m->mutex);
3730 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
3731 m->seg.base = m->least_addr = tbase;
3732 m->seg.size = m->footprint = m->max_footprint = tsize;
3733 m->magic = mparams.magic;
3734 m->mflags = mparams.default_mflags;
3735 disable_contiguous(m);
3736 init_bins(m);
3737 mn = next_chunk(mem2chunk(m));
3738 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
3739 check_top_chunk(m, m->top);
3740 return m;
3741}
3742
3743mspace create_mspace(size_t capacity, int locked) {
3744 mstate m = 0;
3745 size_t msize = pad_request(sizeof(struct malloc_state));
3746 init_mparams(); /* Ensure pagesize etc initialized */
3747
3748 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3749 size_t rs = ((capacity == 0)? mparams.granularity :
3750 (capacity + TOP_FOOT_SIZE + msize));
3751 size_t tsize = granularity_align(rs);
3752 char* tbase = (char*)(CALL_MMAP(tsize));
3753 if (tbase != CMFAIL) {
3754 m = init_user_mstate(tbase, tsize);
3755 m->seg.sflags = IS_MMAPPED_BIT;
3756 set_lock(m, locked);
3757 }
3758 }
3759 return (mspace)m;
3760}
3761
3762mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
3763 mstate m = 0;
3764 size_t msize = pad_request(sizeof(struct malloc_state));
3765 init_mparams(); /* Ensure pagesize etc initialized */
3766
3767 if (capacity > msize + TOP_FOOT_SIZE &&
3768 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
3769 m = init_user_mstate((char*)base, capacity);
3770 m->seg.sflags = EXTERN_BIT;
3771 set_lock(m, locked);
3772 }
3773 return (mspace)m;
3774}
3775
3776size_t destroy_mspace(mspace msp) {
3777 size_t freed = 0;
3778 mstate ms = (mstate)msp;
3779 if (ok_magic(ms)) {
3780 msegmentptr sp = &ms->seg;
3781 while (sp != 0) {
3782 char* base = sp->base;
3783 size_t size = sp->size;
3784 flag_t flag = sp->sflags;
3785 sp = sp->next;
3786 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
3787 CALL_MUNMAP(base, size) == 0)
3788 freed += size;
3789 }
3790 }
3791 else {
3792 USAGE_ERROR_ACTION(ms,ms);
3793 }
3794 return freed;
3795}
3796
3797/*
3798 mspace versions of routines are near-clones of the global
3799 versions. This is not so nice but better than the alternatives.
3800*/
3801
3802
3803void* mspace_malloc(mspace msp, size_t bytes) {
3804 mstate ms = (mstate)msp;
3805 if (!ok_magic(ms)) {
3806 USAGE_ERROR_ACTION(ms,ms);
3807 return 0;
3808 }
3809 if (!PREACTION(ms)) {
3810 void* mem;
3811 size_t nb;
3812 if (bytes <= MAX_SMALL_REQUEST) {
3813 bindex_t idx;
3814 binmap_t smallbits;
3815 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
3816 idx = small_index(nb);
3817 smallbits = ms->smallmap >> idx;
3818
3819 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
3820 mchunkptr b, p;
3821 idx += ~smallbits & 1; /* Uses next bin if idx empty */
3822 b = smallbin_at(ms, idx);
3823 p = b->fd;
3824 assert(chunksize(p) == small_index2size(idx));
3825 unlink_first_small_chunk(ms, b, p, idx);
3826 set_inuse_and_pinuse(ms, p, small_index2size(idx));
3827 mem = chunk2mem(p);
3828 check_malloced_chunk(ms, mem, nb);
3829 goto postaction;
3830 }
3831
3832 else if (nb > ms->dvsize) {
3833 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
3834 mchunkptr b, p, r;
3835 size_t rsize;
3836 bindex_t i;
3837 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
3838 binmap_t leastbit = least_bit(leftbits);
3839 compute_bit2idx(leastbit, i);
3840 b = smallbin_at(ms, i);
3841 p = b->fd;
3842 assert(chunksize(p) == small_index2size(i));
3843 unlink_first_small_chunk(ms, b, p, i);
3844 rsize = small_index2size(i) - nb;
3845 /* Fit here cannot be remainderless if 4byte sizes */
3846 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
3847 set_inuse_and_pinuse(ms, p, small_index2size(i));
3848 else {
3849 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3850 r = chunk_plus_offset(p, nb);
3851 set_size_and_pinuse_of_free_chunk(r, rsize);
3852 replace_dv(ms, r, rsize);
3853 }
3854 mem = chunk2mem(p);
3855 check_malloced_chunk(ms, mem, nb);
3856 goto postaction;
3857 }
3858
3859 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
3860 check_malloced_chunk(ms, mem, nb);
3861 goto postaction;
3862 }
3863 }
3864 }
3865 else if (bytes >= MAX_REQUEST)
3866 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
3867 else {
3868 nb = pad_request(bytes);
3869 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
3870 check_malloced_chunk(ms, mem, nb);
3871 goto postaction;
3872 }
3873 }
3874
3875 if (nb <= ms->dvsize) {
3876 size_t rsize = ms->dvsize - nb;
3877 mchunkptr p = ms->dv;
3878 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
3879 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
3880 ms->dvsize = rsize;
3881 set_size_and_pinuse_of_free_chunk(r, rsize);
3882 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3883 }
3884 else { /* exhaust dv */
3885 size_t dvs = ms->dvsize;
3886 ms->dvsize = 0;
3887 ms->dv = 0;
3888 set_inuse_and_pinuse(ms, p, dvs);
3889 }
3890 mem = chunk2mem(p);
3891 check_malloced_chunk(ms, mem, nb);
3892 goto postaction;
3893 }
3894
3895 else if (nb < ms->topsize) { /* Split top */
3896 size_t rsize = ms->topsize -= nb;
3897 mchunkptr p = ms->top;
3898 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
3899 r->head = rsize | PINUSE_BIT;
3900 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
3901 mem = chunk2mem(p);
3902 check_top_chunk(ms, ms->top);
3903 check_malloced_chunk(ms, mem, nb);
3904 goto postaction;
3905 }
3906
3907 mem = sys_alloc(ms, nb);
3908
3909 postaction:
3910 POSTACTION(ms);
3911 return mem;
3912 }
3913
3914 return 0;
3915}
3916
3917void mspace_free(mspace msp, void* mem) {
3918 if (mem != 0) {
3919 mchunkptr p = mem2chunk(mem);
3920#if FOOTERS
3921 mstate fm = get_mstate_for(p);
3922#else /* FOOTERS */
3923 mstate fm = (mstate)msp;
3924#endif /* FOOTERS */
3925 if (!ok_magic(fm)) {
3926 USAGE_ERROR_ACTION(fm, p);
3927 return;
3928 }
3929 if (!PREACTION(fm)) {
3930 check_inuse_chunk(fm, p);
3931 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
3932 size_t psize = chunksize(p);
3933 mchunkptr next = chunk_plus_offset(p, psize);
3934 if (!pinuse(p)) {
3935 size_t prevsize = p->prev_foot;
3936 if ((prevsize & IS_MMAPPED_BIT) != 0) {
3937 prevsize &= ~IS_MMAPPED_BIT;
3938 psize += prevsize + MMAP_FOOT_PAD;
3939 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
3940 fm->footprint -= psize;
3941 goto postaction;
3942 }
3943 else {
3944 mchunkptr prev = chunk_minus_offset(p, prevsize);
3945 psize += prevsize;
3946 p = prev;
3947 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
3948 if (p != fm->dv) {
3949 unlink_chunk(fm, p, prevsize);
3950 }
3951 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
3952 fm->dvsize = psize;
3953 set_free_with_pinuse(p, psize, next);
3954 goto postaction;
3955 }
3956 }
3957 else
3958 goto erroraction;
3959 }
3960 }
3961
3962 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
3963 if (!cinuse(next)) { /* consolidate forward */
3964 if (next == fm->top) {
3965 size_t tsize = fm->topsize += psize;
3966 fm->top = p;
3967 p->head = tsize | PINUSE_BIT;
3968 if (p == fm->dv) {
3969 fm->dv = 0;
3970 fm->dvsize = 0;
3971 }
3972 if (should_trim(fm, tsize))
3973 sys_trim(fm, 0);
3974 goto postaction;
3975 }
3976 else if (next == fm->dv) {
3977 size_t dsize = fm->dvsize += psize;
3978 fm->dv = p;
3979 set_size_and_pinuse_of_free_chunk(p, dsize);
3980 goto postaction;
3981 }
3982 else {
3983 size_t nsize = chunksize(next);
3984 psize += nsize;
3985 unlink_chunk(fm, next, nsize);
3986 set_size_and_pinuse_of_free_chunk(p, psize);
3987 if (p == fm->dv) {
3988 fm->dvsize = psize;
3989 goto postaction;
3990 }
3991 }
3992 }
3993 else
3994 set_free_with_pinuse(p, psize, next);
3995 insert_chunk(fm, p, psize);
3996 check_free_chunk(fm, p);
3997 goto postaction;
3998 }
3999 }
4000 erroraction:
4001 USAGE_ERROR_ACTION(fm, p);
4002 postaction:
4003 POSTACTION(fm);
4004 }
4005 }
4006}
4007
4008void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
4009 void* mem;
4010 size_t req = 0;
4011 mstate ms = (mstate)msp;
4012 if (!ok_magic(ms)) {
4013 USAGE_ERROR_ACTION(ms,ms);
4014 return 0;
4015 }
4016 if (n_elements != 0) {
4017 req = n_elements * elem_size;
4018 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4019 (req / n_elements != elem_size))
4020 req = MAX_SIZE_T; /* force downstream failure on overflow */
4021 }
4022 mem = internal_malloc(ms, req);
4023 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4024 memset(mem, 0, req);
4025 return mem;
4026}
4027
4028void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
4029 if (oldmem == 0)
4030 return mspace_malloc(msp, bytes);
4031#ifdef REALLOC_ZERO_BYTES_FREES
4032 if (bytes == 0) {
4033 mspace_free(msp, oldmem);
4034 return 0;
4035 }
4036#endif /* REALLOC_ZERO_BYTES_FREES */
4037 else {
4038#if FOOTERS
4039 mchunkptr p = mem2chunk(oldmem);
4040 mstate ms = get_mstate_for(p);
4041#else /* FOOTERS */
4042 mstate ms = (mstate)msp;
4043#endif /* FOOTERS */
4044 if (!ok_magic(ms)) {
4045 USAGE_ERROR_ACTION(ms,ms);
4046 return 0;
4047 }
4048 return internal_realloc(ms, oldmem, bytes);
4049 }
4050}
4051
4052void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
4053 mstate ms = (mstate)msp;
4054 if (!ok_magic(ms)) {
4055 USAGE_ERROR_ACTION(ms,ms);
4056 return 0;
4057 }
4058 return internal_memalign(ms, alignment, bytes);
4059}
4060
4061void** mspace_independent_calloc(mspace msp, size_t n_elements,
4062 size_t elem_size, void* chunks[]) {
4063 size_t sz = elem_size; /* serves as 1-element array */
4064 mstate ms = (mstate)msp;
4065 if (!ok_magic(ms)) {
4066 USAGE_ERROR_ACTION(ms,ms);
4067 return 0;
4068 }
4069 return ialloc(ms, n_elements, &sz, 3, chunks);
4070}
4071
4072void** mspace_independent_comalloc(mspace msp, size_t n_elements,
4073 size_t sizes[], void* chunks[]) {
4074 mstate ms = (mstate)msp;
4075 if (!ok_magic(ms)) {
4076 USAGE_ERROR_ACTION(ms,ms);
4077 return 0;
4078 }
4079 return ialloc(ms, n_elements, sizes, 0, chunks);
4080}
4081
4082int mspace_trim(mspace msp, size_t pad) {
4083 int result = 0;
4084 mstate ms = (mstate)msp;
4085 if (ok_magic(ms)) {
4086 if (!PREACTION(ms)) {
4087 result = sys_trim(ms, pad);
4088 POSTACTION(ms);
4089 }
4090 }
4091 else {
4092 USAGE_ERROR_ACTION(ms,ms);
4093 }
4094 return result;
4095}
4096
4097void mspace_malloc_stats(mspace msp) {
4098 mstate ms = (mstate)msp;
4099 if (ok_magic(ms)) {
4100 internal_malloc_stats(ms);
4101 }
4102 else {
4103 USAGE_ERROR_ACTION(ms,ms);
4104 }
4105}
4106
4107size_t mspace_footprint(mspace msp) {
4108 size_t result;
4109 mstate ms = (mstate)msp;
4110 if (ok_magic(ms)) {
4111 result = ms->footprint;
4112 }
4113 USAGE_ERROR_ACTION(ms,ms);
4114 return result;
4115}
4116
4117
4118size_t mspace_max_footprint(mspace msp) {
4119 size_t result;
4120 mstate ms = (mstate)msp;
4121 if (ok_magic(ms)) {
4122 result = ms->max_footprint;
4123 }
4124 USAGE_ERROR_ACTION(ms,ms);
4125 return result;
4126}
4127
4128
4129#if !NO_MALLINFO
4130struct mallinfo mspace_mallinfo(mspace msp) {
4131 mstate ms = (mstate)msp;
4132 if (!ok_magic(ms)) {
4133 USAGE_ERROR_ACTION(ms,ms);
4134 }
4135 return internal_mallinfo(ms);
4136}
4137#endif /* NO_MALLINFO */
4138
4139int mspace_mallopt(int param_number, int value) {
4140 return change_mparam(param_number, value);
4141}
4142
4143#endif /* MSPACES */
4144
4145/* -------------------- Alternative MORECORE functions ------------------- */
4146
4147/*
4148 Guidelines for creating a custom version of MORECORE:
4149
4150 * For best performance, MORECORE should allocate in multiples of pagesize.
4151 * MORECORE may allocate more memory than requested. (Or even less,
4152 but this will usually result in a malloc failure.)
4153 * MORECORE must not allocate memory when given argument zero, but
4154 instead return one past the end address of memory from previous
4155 nonzero call.
4156 * For best performance, consecutive calls to MORECORE with positive
4157 arguments should return increasing addresses, indicating that
4158 space has been contiguously extended.
4159 * Even though consecutive calls to MORECORE need not return contiguous
4160 addresses, it must be OK for malloc'ed chunks to span multiple
4161 regions in those cases where they do happen to be contiguous.
4162 * MORECORE need not handle negative arguments -- it may instead
4163 just return MFAIL when given negative arguments.
4164 Negative arguments are always multiples of pagesize. MORECORE
4165 must not misinterpret negative args as large positive unsigned
4166 args. You can suppress all such calls from even occurring by defining
4167 MORECORE_CANNOT_TRIM,
4168
4169 As an example alternative MORECORE, here is a custom allocator
4170 kindly contributed for pre-OSX macOS. It uses virtually but not
4171 necessarily physically contiguous non-paged memory (locked in,
4172 present and won't get swapped out). You can use it by uncommenting
4173 this section, adding some #includes, and setting up the appropriate
4174 defines above:
4175
4176 #define MORECORE osMoreCore
4177
4178 There is also a shutdown routine that should somehow be called for
4179 cleanup upon program exit.
4180
4181 #define MAX_POOL_ENTRIES 100
4182 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
4183 static int next_os_pool;
4184 void *our_os_pools[MAX_POOL_ENTRIES];
4185
4186 void *osMoreCore(int size)
4187 {
4188 void *ptr = 0;
4189 static void *sbrk_top = 0;
4190
4191 if (size > 0)
4192 {
4193 if (size < MINIMUM_MORECORE_SIZE)
4194 size = MINIMUM_MORECORE_SIZE;
4195 if (CurrentExecutionLevel() == kTaskLevel)
4196 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
4197 if (ptr == 0)
4198 {
4199 return (void *) MFAIL;
4200 }
4201 // save ptrs so they can be freed during cleanup
4202 our_os_pools[next_os_pool] = ptr;
4203 next_os_pool++;
4204 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
4205 sbrk_top = (char *) ptr + size;
4206 return ptr;
4207 }
4208 else if (size < 0)
4209 {
4210 // we don't currently support shrink behavior
4211 return (void *) MFAIL;
4212 }
4213 else
4214 {
4215 return sbrk_top;
4216 }
4217 }
4218
4219 // cleanup any allocated memory pools
4220 // called as last thing before shutting down driver
4221
4222 void osCleanupMem(void)
4223 {
4224 void **ptr;
4225
4226 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
4227 if (*ptr)
4228 {
4229 PoolDeallocate(*ptr);
4230 *ptr = 0;
4231 }
4232 }
4233
4234*/
4235
4236
4237/* -----------------------------------------------------------------------
4238History:
4239 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
4240 * Add max_footprint functions
4241 * Ensure all appropriate literals are size_t
4242 * Fix conditional compilation problem for some #define settings
4243 * Avoid concatenating segments with the one provided
4244 in create_mspace_with_base
4245 * Rename some variables to avoid compiler shadowing warnings
4246 * Use explicit lock initialization.
4247 * Better handling of sbrk interference.
4248 * Simplify and fix segment insertion, trimming and mspace_destroy
4249 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
4250 * Thanks especially to Dennis Flanagan for help on these.
4251
4252 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
4253 * Fix memalign brace error.
4254
4255 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
4256 * Fix improper #endif nesting in C++
4257 * Add explicit casts needed for C++
4258
4259 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
4260 * Use trees for large bins
4261 * Support mspaces
4262 * Use segments to unify sbrk-based and mmap-based system allocation,
4263 removing need for emulation on most platforms without sbrk.
4264 * Default safety checks
4265 * Optional footer checks. Thanks to William Robertson for the idea.
4266 * Internal code refactoring
4267 * Incorporate suggestions and platform-specific changes.
4268 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
4269 Aaron Bachmann, Emery Berger, and others.
4270 * Speed up non-fastbin processing enough to remove fastbins.
4271 * Remove useless cfree() to avoid conflicts with other apps.
4272 * Remove internal memcpy, memset. Compilers handle builtins better.
4273 * Remove some options that no one ever used and rename others.
4274
4275 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
4276 * Fix malloc_state bitmap array misdeclaration
4277
4278 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
4279 * Allow tuning of FIRST_SORTED_BIN_SIZE
4280 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
4281 * Better detection and support for non-contiguousness of MORECORE.
4282 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
4283 * Bypass most of malloc if no frees. Thanks To Emery Berger.
4284 * Fix freeing of old top non-contiguous chunk im sysmalloc.
4285 * Raised default trim and map thresholds to 256K.
4286 * Fix mmap-related #defines. Thanks to Lubos Lunak.
4287 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
4288 * Branch-free bin calculation
4289 * Default trim and mmap thresholds now 256K.
4290
4291 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
4292 * Introduce independent_comalloc and independent_calloc.
4293 Thanks to Michael Pachos for motivation and help.
4294 * Make optional .h file available
4295 * Allow > 2GB requests on 32bit systems.
4296 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
4297 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
4298 and Anonymous.
4299 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
4300 helping test this.)
4301 * memalign: check alignment arg
4302 * realloc: don't try to shift chunks backwards, since this
4303 leads to more fragmentation in some programs and doesn't
4304 seem to help in any others.
4305 * Collect all cases in malloc requiring system memory into sysmalloc
4306 * Use mmap as backup to sbrk
4307 * Place all internal state in malloc_state
4308 * Introduce fastbins (although similar to 2.5.1)
4309 * Many minor tunings and cosmetic improvements
4310 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
4311 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
4312 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
4313 * Include errno.h to support default failure action.
4314
4315 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
4316 * return null for negative arguments
4317 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
4318 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
4319 (e.g. WIN32 platforms)
4320 * Cleanup header file inclusion for WIN32 platforms
4321 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
4322 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
4323 memory allocation routines
4324 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
4325 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
4326 usage of 'assert' in non-WIN32 code
4327 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
4328 avoid infinite loop
4329 * Always call 'fREe()' rather than 'free()'
4330
4331 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
4332 * Fixed ordering problem with boundary-stamping
4333
4334 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4335 * Added pvalloc, as recommended by H.J. Liu
4336 * Added 64bit pointer support mainly from Wolfram Gloger
4337 * Added anonymously donated WIN32 sbrk emulation
4338 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4339 * malloc_extend_top: fix mask error that caused wastage after
4340 foreign sbrks
4341 * Add linux mremap support code from HJ Liu
4342
4343 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4344 * Integrated most documentation with the code.
4345 * Add support for mmap, with help from
4346 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4347 * Use last_remainder in more cases.
4348 * Pack bins using idea from colin@nyx10.cs.du.edu
4349 * Use ordered bins instead of best-fit threshhold
4350 * Eliminate block-local decls to simplify tracing and debugging.
4351 * Support another case of realloc via move into top
4352 * Fix error occuring when initial sbrk_base not word-aligned.
4353 * Rely on page size for units instead of SBRK_UNIT to
4354 avoid surprises about sbrk alignment conventions.
4355 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4356 (raymond@es.ele.tue.nl) for the suggestion.
4357 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4358 * More precautions for cases where other routines call sbrk,
4359 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4360 * Added macros etc., allowing use in linux libc from
4361 H.J. Lu (hjl@gnu.ai.mit.edu)
4362 * Inverted this history list
4363
4364 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4365 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4366 * Removed all preallocation code since under current scheme
4367 the work required to undo bad preallocations exceeds
4368 the work saved in good cases for most test programs.
4369 * No longer use return list or unconsolidated bins since
4370 no scheme using them consistently outperforms those that don't
4371 given above changes.
4372 * Use best fit for very large chunks to prevent some worst-cases.
4373 * Added some support for debugging
4374
4375 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4376 * Removed footers when chunks are in use. Thanks to
4377 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4378
4379 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4380 * Added malloc_trim, with help from Wolfram Gloger
4381 (wmglo@Dent.MED.Uni-Muenchen.DE).
4382
4383 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4384
4385 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4386 * realloc: try to expand in both directions
4387 * malloc: swap order of clean-bin strategy;
4388 * realloc: only conditionally expand backwards
4389 * Try not to scavenge used bins
4390 * Use bin counts as a guide to preallocation
4391 * Occasionally bin return list chunks in first scan
4392 * Add a few optimizations from colin@nyx10.cs.du.edu
4393
4394 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4395 * faster bin computation & slightly different binning
4396 * merged all consolidations to one part of malloc proper
4397 (eliminating old malloc_find_space & malloc_clean_bin)
4398 * Scan 2 returns chunks (not just 1)
4399 * Propagate failure in realloc if malloc returns 0
4400 * Add stuff to allow compilation on non-ANSI compilers
4401 from kpv@research.att.com
4402
4403 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4404 * removed potential for odd address access in prev_chunk
4405 * removed dependency on getpagesize.h
4406 * misc cosmetics and a bit more internal documentation
4407 * anticosmetics: mangled names in macros to evade debugger strangeness
4408 * tested on sparc, hp-700, dec-mips, rs6000
4409 with gcc & native cc (hp, dec only) allowing
4410 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4411
4412 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4413 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4414 structure of old version, but most details differ.)
4415
4416*/
4417
4418/** @}
4419 */
4420
Note: See TracBrowser for help on using the repository browser.