source: mainline/kernel/generic/src/synch/rcu.c@ d99fac9

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d99fac9 was 4ec9ea41, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

rcu: Added rcu_barrier() that waits for all outstanding rcu_calls to complete.

  • Property mode set to 100644
File size: 43.5 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29
30/** @addtogroup sync
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Preemptible read-copy update. Usable from interrupt handlers.
37 */
38
39#include <synch/rcu.h>
40#include <synch/condvar.h>
41#include <synch/semaphore.h>
42#include <synch/spinlock.h>
43#include <synch/mutex.h>
44#include <proc/thread.h>
45#include <cpu/cpu_mask.h>
46#include <cpu.h>
47#include <smp/smp_call.h>
48#include <compiler/barrier.h>
49#include <atomic.h>
50#include <arch.h>
51#include <macros.h>
52
53/*
54 * Number of milliseconds to give to preexisting readers to finish
55 * when non-expedited grace period detection is in progress.
56 */
57#define DETECT_SLEEP_MS 10
58/*
59 * Max number of pending callbacks in the local cpu's queue before
60 * aggressively expediting the current grace period
61 */
62#define EXPEDITE_THRESHOLD 2000
63/*
64 * Max number of callbacks to execute in one go with preemption
65 * enabled. If there are more callbacks to be executed they will
66 * be run with preemption disabled in order to prolong reclaimer's
67 * time slice and give it a chance to catch up with callback producers.
68 */
69#define CRITICAL_THRESHOLD 30000
70/* Half the number of values a uint32 can hold. */
71#define UINT32_MAX_HALF 2147483648U
72
73
74/** Global RCU data. */
75typedef struct rcu_data {
76 /** Detector uses so signal reclaimers that a grace period ended. */
77 condvar_t gp_ended;
78 /** Reclaimers notify the detector when they request more grace periods.*/
79 condvar_t req_gp_changed;
80 /** Reclaimers use to notify the detector to accelerate GP detection. */
81 condvar_t expedite_now;
82 /**
83 * The detector waits on this semaphore for any readers delaying the GP.
84 *
85 * Each of the cpus with readers that are delaying the current GP
86 * must up() this sema once they reach a quiescent state. If there
87 * are any readers in cur_preempted (ie preempted preexisting) and
88 * they are already delaying GP detection, the last to unlock its
89 * reader section must up() this sema once.
90 */
91 semaphore_t remaining_readers;
92
93 /** Protects the 4 fields below. */
94 SPINLOCK_DECLARE(gp_lock);
95 /** Number of grace period ends the detector was requested to announce. */
96 size_t req_gp_end_cnt;
97 /** Number of consecutive grace periods to detect quickly and aggressively.*/
98 size_t req_expedited_cnt;
99 /**
100 * The current grace period number. Increases monotonically.
101 * Lock gp_lock or preempt_lock to get a current value.
102 */
103 rcu_gp_t cur_gp;
104 /**
105 * The number of the most recently completed grace period.
106 * At most one behind cur_gp. If equal to cur_gp, a grace
107 * period detection is not in progress and the detector
108 * is idle.
109 */
110 rcu_gp_t completed_gp;
111
112 /** Protects the following 3 fields. */
113 IRQ_SPINLOCK_DECLARE(preempt_lock);
114 /** Preexisting readers that have been preempted. */
115 list_t cur_preempted;
116 /** Reader that have been preempted and might delay the next grace period.*/
117 list_t next_preempted;
118 /**
119 * The detector is waiting for the last preempted reader
120 * in cur_preempted to announce that it exited its reader
121 * section by up()ing remaining_readers.
122 */
123 bool preempt_blocking_det;
124
125 /**
126 * Number of cpus with readers that are delaying the current GP.
127 * They will up() remaining_readers.
128 */
129 atomic_t delaying_cpu_cnt;
130
131 /** Excludes simultaneous rcu_barrier() calls. */
132 mutex_t barrier_mtx;
133 /** Number of cpus that we are waiting for to complete rcu_barrier(). */
134 atomic_t barrier_wait_cnt;
135 /** rcu_barrier() waits for the completion of barrier callbacks on this wq.*/
136 waitq_t barrier_wq;
137
138 /** Interruptible attached detector thread pointer. */
139 thread_t *detector_thr;
140
141 /* Some statistics. */
142 size_t stat_expedited_cnt;
143 size_t stat_delayed_cnt;
144 size_t stat_preempt_blocking_cnt;
145 /* Does not contain self/local calls. */
146 size_t stat_smp_call_cnt;
147} rcu_data_t;
148
149
150static rcu_data_t rcu;
151
152static void start_detector(void);
153static void start_reclaimers(void);
154static void rcu_read_unlock_impl(size_t *pnesting_cnt);
155static void synch_complete(rcu_item_t *rcu_item);
156static void add_barrier_cb(void *arg);
157static void barrier_complete(rcu_item_t *barrier_item);
158static void check_qs(void);
159static void record_qs(void);
160static void signal_read_unlock(void);
161static bool arriving_cbs_empty(void);
162static bool next_cbs_empty(void);
163static bool cur_cbs_empty(void);
164static bool all_cbs_empty(void);
165static void reclaimer(void *arg);
166static bool wait_for_pending_cbs(void);
167static bool advance_cbs(void);
168static void exec_completed_cbs(rcu_gp_t last_completed_gp);
169static void exec_cbs(rcu_item_t **phead);
170static void req_detection(size_t req_cnt);
171static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *last_completed_gp);
172static void upd_missed_gp_in_wait(rcu_gp_t completed_gp);
173static bool cv_wait_for_gp(rcu_gp_t wait_on_gp);
174static void detector(void *);
175static bool wait_for_detect_req(void);
176static void start_new_gp(void);
177static void end_cur_gp(void);
178static bool wait_for_readers(void);
179static void rm_quiescent_cpus(cpu_mask_t *cpu_mask);
180static bool gp_sleep(void);
181static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask);
182static void sample_local_cpu(void *);
183static bool wait_for_delaying_cpus(void);
184static bool wait_for_preempt_reader(void);
185static void upd_max_cbs_in_slice(void);
186
187
188
189/** Initializes global RCU structures. */
190void rcu_init(void)
191{
192 condvar_initialize(&rcu.gp_ended);
193 condvar_initialize(&rcu.req_gp_changed);
194 condvar_initialize(&rcu.expedite_now);
195 semaphore_initialize(&rcu.remaining_readers, 0);
196
197 spinlock_initialize(&rcu.gp_lock, "rcu.gp_lock");
198 rcu.req_gp_end_cnt = 0;
199 rcu.req_expedited_cnt = 0;
200 rcu.cur_gp = 0;
201 rcu.completed_gp = 0;
202
203 irq_spinlock_initialize(&rcu.preempt_lock, "rcu.preempt_lock");
204 list_initialize(&rcu.cur_preempted);
205 list_initialize(&rcu.next_preempted);
206 rcu.preempt_blocking_det = false;
207
208 mutex_initialize(&rcu.barrier_mtx, MUTEX_PASSIVE);
209 atomic_set(&rcu.barrier_wait_cnt, 0);
210 waitq_initialize(&rcu.barrier_wq);
211
212 atomic_set(&rcu.delaying_cpu_cnt, 0);
213
214 rcu.detector_thr = 0;
215
216 rcu.stat_expedited_cnt = 0;
217 rcu.stat_delayed_cnt = 0;
218 rcu.stat_preempt_blocking_cnt = 0;
219 rcu.stat_smp_call_cnt = 0;
220}
221
222/** Initializes per-CPU RCU data. If on the boot cpu inits global data too.*/
223void rcu_cpu_init(void)
224{
225 if (config.cpu_active == 1) {
226 rcu_init();
227 }
228
229 CPU->rcu.last_seen_gp = 0;
230
231 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
232 CPU->rcu.tmp_nesting_cnt = 0;
233
234 CPU->rcu.cur_cbs = 0;
235 CPU->rcu.cur_cbs_cnt = 0;
236 CPU->rcu.next_cbs = 0;
237 CPU->rcu.next_cbs_cnt = 0;
238 CPU->rcu.arriving_cbs = 0;
239 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
240 CPU->rcu.arriving_cbs_cnt = 0;
241
242 CPU->rcu.cur_cbs_gp = 0;
243 CPU->rcu.next_cbs_gp = 0;
244
245 CPU->rcu.is_delaying_gp = false;
246
247 semaphore_initialize(&CPU->rcu.arrived_flag, 0);
248
249 /* BSP creates reclaimer threads before AP's rcu_cpu_init() runs. */
250 if (config.cpu_active == 1)
251 CPU->rcu.reclaimer_thr = 0;
252
253 CPU->rcu.stat_max_cbs = 0;
254 CPU->rcu.stat_avg_cbs = 0;
255 CPU->rcu.stat_missed_gps = 0;
256 CPU->rcu.stat_missed_gp_in_wait = 0;
257 CPU->rcu.stat_max_slice_cbs = 0;
258 CPU->rcu.last_arriving_cnt = 0;
259}
260
261/** Completes RCU init. Creates and runs the detector and reclaimer threads.*/
262void rcu_kinit_init(void)
263{
264 start_detector();
265 start_reclaimers();
266}
267
268/** Initializes any per-thread RCU structures. */
269void rcu_thread_init(thread_t *thread)
270{
271 thread->rcu.nesting_cnt = 0;
272 thread->rcu.was_preempted = false;
273 link_initialize(&thread->rcu.preempt_link);
274}
275
276/** Called from scheduler() when exiting the current thread.
277 *
278 * Preemption or interrupts are disabled and the scheduler() already
279 * switched away from the current thread, calling rcu_after_thread_ran().
280 */
281void rcu_thread_exiting(void)
282{
283 ASSERT(THREAD != 0);
284 ASSERT(THREAD->state == Exiting);
285 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
286 /*
287 * The scheduler() must have already switched to a temporary
288 * nesting counter for interrupt handlers (we could be idle)
289 * so that interrupt handlers do not modify the exiting thread's
290 * reader section nesting count while we examine/process it.
291 */
292 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
293
294 /*
295 * The thread forgot to exit its reader critical secion.
296 * It is a bug, but rather than letting the entire system lock up
297 * forcefully leave the reader section. The thread is not holding
298 * any references anyway since it is exiting so it is safe.
299 */
300 if (0 < THREAD->rcu.nesting_cnt) {
301 THREAD->rcu.nesting_cnt = 1;
302 rcu_read_unlock_impl(&THREAD->rcu.nesting_cnt);
303 }
304}
305
306/** Cleans up global RCU resources and stops dispatching callbacks.
307 *
308 * Call when shutting down the kernel. Outstanding callbacks will
309 * not be processed. Instead they will linger forever.
310 */
311void rcu_stop(void)
312{
313 /* Stop and wait for reclaimers. */
314 for (unsigned int cpu_id = 0; cpu_id < config.cpu_active; ++cpu_id) {
315 ASSERT(cpus[cpu_id].rcu.reclaimer_thr != 0);
316
317 if (cpus[cpu_id].rcu.reclaimer_thr) {
318 thread_interrupt(cpus[cpu_id].rcu.reclaimer_thr);
319 thread_join(cpus[cpu_id].rcu.reclaimer_thr);
320 thread_detach(cpus[cpu_id].rcu.reclaimer_thr);
321 cpus[cpu_id].rcu.reclaimer_thr = 0;
322 }
323 }
324
325 /* Stop the detector and wait. */
326 if (rcu.detector_thr) {
327 thread_interrupt(rcu.detector_thr);
328 thread_join(rcu.detector_thr);
329 thread_detach(rcu.detector_thr);
330 rcu.detector_thr = 0;
331 }
332}
333
334/** Starts the detector thread. */
335static void start_detector(void)
336{
337 rcu.detector_thr =
338 thread_create(detector, 0, TASK, THREAD_FLAG_NONE, "rcu-det");
339
340 if (!rcu.detector_thr)
341 panic("Failed to create RCU detector thread.");
342
343 thread_ready(rcu.detector_thr);
344}
345
346/** Creates and runs cpu-bound reclaimer threads. */
347static void start_reclaimers(void)
348{
349 for (unsigned int cpu_id = 0; cpu_id < config.cpu_count; ++cpu_id) {
350 char name[THREAD_NAME_BUFLEN] = {0};
351
352 snprintf(name, THREAD_NAME_BUFLEN - 1, "rcu-rec/%u", cpu_id);
353
354 cpus[cpu_id].rcu.reclaimer_thr =
355 thread_create(reclaimer, 0, TASK, THREAD_FLAG_NONE, name);
356
357 if (!cpus[cpu_id].rcu.reclaimer_thr)
358 panic("Failed to create RCU reclaimer thread on cpu%u.", cpu_id);
359
360 thread_wire(cpus[cpu_id].rcu.reclaimer_thr, &cpus[cpu_id]);
361 thread_ready(cpus[cpu_id].rcu.reclaimer_thr);
362 }
363}
364
365/** Returns the number of elapsed grace periods since boot. */
366uint64_t rcu_completed_gps(void)
367{
368 spinlock_lock(&rcu.gp_lock);
369 uint64_t completed = rcu.completed_gp;
370 spinlock_unlock(&rcu.gp_lock);
371
372 return completed;
373}
374
375/** Delimits the start of an RCU reader critical section.
376 *
377 * Reader sections may be nested and are preemptable. You must not
378 * however block/sleep within reader sections.
379 */
380void rcu_read_lock(void)
381{
382 ASSERT(CPU);
383 preemption_disable();
384
385 check_qs();
386 ++(*CPU->rcu.pnesting_cnt);
387
388 preemption_enable();
389}
390
391/** Delimits the end of an RCU reader critical section. */
392void rcu_read_unlock(void)
393{
394 ASSERT(CPU);
395 preemption_disable();
396
397 rcu_read_unlock_impl(CPU->rcu.pnesting_cnt);
398
399 preemption_enable();
400}
401
402/** Returns true if in an rcu reader section. */
403bool rcu_read_locked(void)
404{
405 preemption_disable();
406 bool locked = 0 < *CPU->rcu.pnesting_cnt;
407 preemption_enable();
408
409 return locked;
410}
411
412/** Unlocks the local reader section using the given nesting count.
413 *
414 * Preemption or interrupts must be disabled.
415 *
416 * @param pnesting_cnt Either &CPU->rcu.tmp_nesting_cnt or
417 * THREAD->rcu.nesting_cnt.
418 */
419static void rcu_read_unlock_impl(size_t *pnesting_cnt)
420{
421 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
422
423 if (0 == --(*pnesting_cnt)) {
424 record_qs();
425
426 /*
427 * The thread was preempted while in a critical section or
428 * the detector is eagerly waiting for this cpu's reader
429 * to finish.
430 *
431 * Note that THREAD may be 0 in scheduler() and not just during boot.
432 */
433 if ((THREAD && THREAD->rcu.was_preempted) || CPU->rcu.is_delaying_gp) {
434 /* Rechecks with disabled interrupts. */
435 signal_read_unlock();
436 }
437 }
438}
439
440/** Records a QS if not in a reader critical section. */
441static void check_qs(void)
442{
443 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
444
445 if (0 == *CPU->rcu.pnesting_cnt)
446 record_qs();
447}
448
449/** Unconditionally records a quiescent state for the local cpu. */
450static void record_qs(void)
451{
452 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
453
454 /*
455 * A new GP was started since the last time we passed a QS.
456 * Notify the detector we have reached a new QS.
457 */
458 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
459 rcu_gp_t cur_gp = ACCESS_ONCE(rcu.cur_gp);
460 /*
461 * Contain memory accesses within a reader critical section.
462 * If we are in rcu_lock() it also makes changes prior to the
463 * start of the GP visible in the reader section.
464 */
465 memory_barrier();
466 /*
467 * Acknowledge we passed a QS since the beginning of rcu.cur_gp.
468 * Cache coherency will lazily transport the value to the
469 * detector while it sleeps in gp_sleep().
470 *
471 * Note that there is a theoretical possibility that we
472 * overwrite a more recent/greater last_seen_gp here with
473 * an older/smaller value. If this cpu is interrupted here
474 * while in rcu_lock() reader sections in the interrupt handler
475 * will update last_seen_gp to the same value as is currently
476 * in local cur_gp. However, if the cpu continues processing
477 * interrupts and the detector starts a new GP immediately,
478 * local interrupt handlers may update last_seen_gp again (ie
479 * properly ack the new GP) with a value greater than local cur_gp.
480 * Resetting last_seen_gp to a previous value here is however
481 * benign and we only have to remember that this reader may end up
482 * in cur_preempted even after the GP ends. That is why we
483 * append next_preempted to cur_preempted rather than overwriting
484 * it as if cur_preempted were empty.
485 */
486 CPU->rcu.last_seen_gp = cur_gp;
487 }
488}
489
490/** If necessary, signals the detector that we exited a reader section. */
491static void signal_read_unlock(void)
492{
493 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
494
495 /*
496 * We have to disable interrupts in order to make checking
497 * and resetting was_preempted and is_delaying_gp atomic
498 * with respect to local interrupt handlers. Otherwise
499 * an interrupt could beat us to calling semaphore_up()
500 * before we reset the appropriate flag.
501 */
502 ipl_t ipl = interrupts_disable();
503
504 /*
505 * If the detector is eagerly waiting for this cpu's reader to unlock,
506 * notify it that the reader did so.
507 */
508 if (CPU->rcu.is_delaying_gp) {
509 CPU->rcu.is_delaying_gp = false;
510 semaphore_up(&rcu.remaining_readers);
511 }
512
513 /*
514 * This reader was preempted while in a reader section.
515 * We might be holding up the current GP. Notify the
516 * detector if so.
517 */
518 if (THREAD && THREAD->rcu.was_preempted) {
519 ASSERT(link_used(&THREAD->rcu.preempt_link));
520 THREAD->rcu.was_preempted = false;
521
522 irq_spinlock_lock(&rcu.preempt_lock, false);
523
524 bool prev_empty = list_empty(&rcu.cur_preempted);
525 list_remove(&THREAD->rcu.preempt_link);
526 bool now_empty = list_empty(&rcu.cur_preempted);
527
528 /* This was the last reader in cur_preempted. */
529 bool last_removed = now_empty && !prev_empty;
530
531 /*
532 * Preempted readers are blocking the detector and
533 * this was the last reader blocking the current GP.
534 */
535 if (last_removed && rcu.preempt_blocking_det) {
536 rcu.preempt_blocking_det = false;
537 semaphore_up(&rcu.remaining_readers);
538 }
539
540 irq_spinlock_unlock(&rcu.preempt_lock, false);
541 }
542 interrupts_restore(ipl);
543}
544
545typedef struct synch_item {
546 waitq_t wq;
547 rcu_item_t rcu_item;
548} synch_item_t;
549
550/** Blocks until all preexisting readers exit their critical sections. */
551void rcu_synchronize(void)
552{
553 _rcu_synchronize(false);
554}
555
556/** Blocks until all preexisting readers exit their critical sections. */
557void rcu_synchronize_expedite(void)
558{
559 _rcu_synchronize(true);
560}
561
562/** Blocks until all preexisting readers exit their critical sections. */
563void _rcu_synchronize(bool expedite)
564{
565 /* Calling from a reader section will deadlock. */
566 ASSERT(THREAD == 0 || 0 == THREAD->rcu.nesting_cnt);
567
568 synch_item_t completion;
569
570 waitq_initialize(&completion.wq);
571 _rcu_call(expedite, &completion.rcu_item, synch_complete);
572 waitq_sleep(&completion.wq);
573 waitq_complete_wakeup(&completion.wq);
574}
575
576/** rcu_synchronize's callback. */
577static void synch_complete(rcu_item_t *rcu_item)
578{
579 synch_item_t *completion = member_to_inst(rcu_item, synch_item_t, rcu_item);
580 ASSERT(completion);
581 waitq_wakeup(&completion->wq, WAKEUP_FIRST);
582}
583
584/** Waits for all outstanding rcu calls to complete. */
585void rcu_barrier(void)
586{
587 /*
588 * Serialize rcu_barrier() calls so we don't overwrite cpu.barrier_item
589 * currently in use by rcu_barrier().
590 */
591 mutex_lock(&rcu.barrier_mtx);
592
593 /*
594 * Ensure we queue a barrier callback on all cpus before the already
595 * enqueued barrier callbacks start signaling completion.
596 */
597 atomic_set(&rcu.barrier_wait_cnt, 1);
598
599 DEFINE_CPU_MASK(cpu_mask);
600 cpu_mask_active(cpu_mask);
601
602 cpu_mask_for_each(*cpu_mask, cpu_id) {
603 smp_call(cpu_id, add_barrier_cb, 0);
604 }
605
606 if (0 < atomic_predec(&rcu.barrier_wait_cnt)) {
607 waitq_sleep(&rcu.barrier_wq);
608 }
609
610 mutex_unlock(&rcu.barrier_mtx);
611}
612
613/** Issues a rcu_barrier() callback on the local cpu.
614 *
615 * Executed with interrupts disabled.
616 */
617static void add_barrier_cb(void *arg)
618{
619 ASSERT(interrupts_disabled() || PREEMPTION_DISABLED);
620 atomic_inc(&rcu.barrier_wait_cnt);
621 rcu_call(&CPU->rcu.barrier_item, barrier_complete);
622}
623
624/** Local cpu's rcu_barrier() completion callback. */
625static void barrier_complete(rcu_item_t *barrier_item)
626{
627 /* Is this the last barrier callback completed? */
628 if (0 == atomic_predec(&rcu.barrier_wait_cnt)) {
629 /* Notify rcu_barrier() that we're done. */
630 waitq_wakeup(&rcu.barrier_wq, WAKEUP_FIRST);
631 }
632}
633
634/** Adds a callback to invoke after all preexisting readers finish.
635 *
636 * May be called from within interrupt handlers or RCU reader sections.
637 *
638 * @param rcu_item Used by RCU to track the call. Must remain
639 * until the user callback function is entered.
640 * @param func User callback function that will be invoked once a full
641 * grace period elapsed, ie at a time when all preexisting
642 * readers have finished. The callback should be short and must
643 * not block. If you must sleep, enqueue your work in the system
644 * work queue from the callback (ie workq_global_enqueue()).
645 */
646void rcu_call(rcu_item_t *rcu_item, rcu_func_t func)
647{
648 _rcu_call(false, rcu_item, func);
649}
650
651/** rcu_call() implementation. See rcu_call() for comments. */
652void _rcu_call(bool expedite, rcu_item_t *rcu_item, rcu_func_t func)
653{
654 ASSERT(rcu_item);
655
656 rcu_item->func = func;
657 rcu_item->next = 0;
658
659 preemption_disable();
660
661 ipl_t ipl = interrupts_disable();
662
663 *CPU->rcu.parriving_cbs_tail = rcu_item;
664 CPU->rcu.parriving_cbs_tail = &rcu_item->next;
665
666 size_t cnt = ++CPU->rcu.arriving_cbs_cnt;
667 interrupts_restore(ipl);
668
669 if (expedite) {
670 CPU->rcu.expedite_arriving = true;
671 }
672
673 /* Added first callback - notify the reclaimer. */
674 if (cnt == 1 && !semaphore_count_get(&CPU->rcu.arrived_flag)) {
675 semaphore_up(&CPU->rcu.arrived_flag);
676 }
677
678 preemption_enable();
679}
680
681static bool cur_cbs_empty(void)
682{
683 ASSERT(THREAD && THREAD->wired);
684 return 0 == CPU->rcu.cur_cbs;
685}
686
687static bool next_cbs_empty(void)
688{
689 ASSERT(THREAD && THREAD->wired);
690 return 0 == CPU->rcu.next_cbs;
691}
692
693/** Disable interrupts to get an up-to-date result. */
694static bool arriving_cbs_empty(void)
695{
696 ASSERT(THREAD && THREAD->wired);
697 /*
698 * Accessing with interrupts enabled may at worst lead to
699 * a false negative if we race with a local interrupt handler.
700 */
701 return 0 == CPU->rcu.arriving_cbs;
702}
703
704static bool all_cbs_empty(void)
705{
706 return cur_cbs_empty() && next_cbs_empty() && arriving_cbs_empty();
707}
708
709/** Reclaimer thread dispatches locally queued callbacks once a GP ends. */
710static void reclaimer(void *arg)
711{
712 ASSERT(THREAD && THREAD->wired);
713 ASSERT(THREAD == CPU->rcu.reclaimer_thr);
714
715 rcu_gp_t last_compl_gp = 0;
716 bool ok = true;
717
718 while (ok && wait_for_pending_cbs()) {
719 ASSERT(CPU->rcu.reclaimer_thr == THREAD);
720
721 exec_completed_cbs(last_compl_gp);
722
723 bool expedite = advance_cbs();
724
725 ok = wait_for_cur_cbs_gp_end(expedite, &last_compl_gp);
726 }
727}
728
729/** Waits until there are callbacks waiting to be dispatched. */
730static bool wait_for_pending_cbs(void)
731{
732 if (!all_cbs_empty())
733 return true;
734
735 bool ok = true;
736
737 while (arriving_cbs_empty() && ok) {
738 ok = semaphore_down_interruptable(&CPU->rcu.arrived_flag);
739 }
740
741 return ok;
742}
743
744static void upd_stat_missed_gp(rcu_gp_t compl)
745{
746 if (CPU->rcu.cur_cbs_gp < compl) {
747 CPU->rcu.stat_missed_gps += (size_t)(compl - CPU->rcu.cur_cbs_gp);
748 }
749}
750
751/** Executes all callbacks for the given completed grace period. */
752static void exec_completed_cbs(rcu_gp_t last_completed_gp)
753{
754 upd_stat_missed_gp(last_completed_gp);
755
756 /* Both next_cbs and cur_cbs GP elapsed. */
757 if (CPU->rcu.next_cbs_gp <= last_completed_gp) {
758 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
759
760 size_t exec_cnt = CPU->rcu.cur_cbs_cnt + CPU->rcu.next_cbs_cnt;
761
762 if (exec_cnt < CRITICAL_THRESHOLD) {
763 exec_cbs(&CPU->rcu.cur_cbs);
764 exec_cbs(&CPU->rcu.next_cbs);
765 } else {
766 /*
767 * Getting overwhelmed with too many callbacks to run.
768 * Disable preemption in order to prolong our time slice
769 * and catch up with updaters posting new callbacks.
770 */
771 preemption_disable();
772 exec_cbs(&CPU->rcu.cur_cbs);
773 exec_cbs(&CPU->rcu.next_cbs);
774 preemption_enable();
775 }
776
777 CPU->rcu.cur_cbs_cnt = 0;
778 CPU->rcu.next_cbs_cnt = 0;
779 } else if (CPU->rcu.cur_cbs_gp <= last_completed_gp) {
780
781 if (CPU->rcu.cur_cbs_cnt < CRITICAL_THRESHOLD) {
782 exec_cbs(&CPU->rcu.cur_cbs);
783 } else {
784 /*
785 * Getting overwhelmed with too many callbacks to run.
786 * Disable preemption in order to prolong our time slice
787 * and catch up with updaters posting new callbacks.
788 */
789 preemption_disable();
790 exec_cbs(&CPU->rcu.cur_cbs);
791 preemption_enable();
792 }
793
794 CPU->rcu.cur_cbs_cnt = 0;
795 }
796}
797
798/** Executes callbacks in the single-linked list. The list is left empty. */
799static void exec_cbs(rcu_item_t **phead)
800{
801 rcu_item_t *rcu_item = *phead;
802
803 while (rcu_item) {
804 /* func() may free rcu_item. Get a local copy. */
805 rcu_item_t *next = rcu_item->next;
806 rcu_func_t func = rcu_item->func;
807
808 func(rcu_item);
809
810 rcu_item = next;
811 }
812
813 *phead = 0;
814}
815
816static void upd_stat_cb_cnts(size_t arriving_cnt)
817{
818 CPU->rcu.stat_max_cbs = max(arriving_cnt, CPU->rcu.stat_max_cbs);
819 if (0 < arriving_cnt) {
820 CPU->rcu.stat_avg_cbs =
821 (99 * CPU->rcu.stat_avg_cbs + 1 * arriving_cnt) / 100;
822 }
823}
824
825
826/** Prepares another batch of callbacks to dispatch at the nest grace period.
827 *
828 * @return True if the next batch of callbacks must be expedited quickly.
829 */
830static bool advance_cbs(void)
831{
832 /* Move next_cbs to cur_cbs. */
833 CPU->rcu.cur_cbs = CPU->rcu.next_cbs;
834 CPU->rcu.cur_cbs_cnt = CPU->rcu.next_cbs_cnt;
835 CPU->rcu.cur_cbs_gp = CPU->rcu.next_cbs_gp;
836
837 /* Move arriving_cbs to next_cbs. Empties arriving_cbs. */
838 ipl_t ipl = interrupts_disable();
839
840 /*
841 * Too many callbacks queued. Better speed up the detection
842 * or risk exhausting all system memory.
843 */
844 bool expedite = (EXPEDITE_THRESHOLD < CPU->rcu.arriving_cbs_cnt)
845 || CPU->rcu.expedite_arriving;
846
847 CPU->rcu.expedite_arriving = false;
848
849 CPU->rcu.next_cbs = CPU->rcu.arriving_cbs;
850 CPU->rcu.next_cbs_cnt = CPU->rcu.arriving_cbs_cnt;
851
852 CPU->rcu.arriving_cbs = 0;
853 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
854 CPU->rcu.arriving_cbs_cnt = 0;
855
856 interrupts_restore(ipl);
857
858 /* Update statistics of arrived callbacks. */
859 upd_stat_cb_cnts(CPU->rcu.next_cbs_cnt);
860
861 /*
862 * Make changes prior to queuing next_cbs visible to readers.
863 * See comment in wait_for_readers().
864 */
865 memory_barrier(); /* MB A, B */
866
867 /* At the end of next_cbs_gp, exec next_cbs. Determine what GP that is. */
868
869 if (!next_cbs_empty()) {
870 spinlock_lock(&rcu.gp_lock);
871
872 /* Exec next_cbs at the end of the next GP. */
873 CPU->rcu.next_cbs_gp = rcu.cur_gp + 1;
874
875 /*
876 * There are no callbacks to invoke before next_cbs. Instruct
877 * wait_for_cur_cbs_gp() to notify us of the nearest GP end.
878 * That could be sooner than next_cbs_gp (if the current GP
879 * had not yet completed), so we'll create a shorter batch
880 * of callbacks next time around.
881 */
882 if (cur_cbs_empty()) {
883 CPU->rcu.cur_cbs_gp = rcu.completed_gp + 1;
884 }
885
886 spinlock_unlock(&rcu.gp_lock);
887 } else {
888 CPU->rcu.next_cbs_gp = CPU->rcu.cur_cbs_gp;
889 }
890
891 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
892
893 return expedite;
894}
895
896/** Waits for the grace period associated with callbacks cub_cbs to elapse.
897 *
898 * @param expedite Instructs the detector to aggressively speed up grace
899 * period detection without any delay.
900 * @param completed_gp Returns the most recent completed grace period
901 * number.
902 * @return false if the thread was interrupted and should stop.
903 */
904static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *completed_gp)
905{
906 /*
907 * Use a possibly outdated version of completed_gp to bypass checking
908 * with the lock.
909 *
910 * Note that loading and storing rcu.completed_gp is not atomic
911 * (it is 64bit wide). Reading a clobbered value that is less than
912 * rcu.completed_gp is harmless - we'll recheck with a lock. The
913 * only way to read a clobbered value that is greater than the actual
914 * value is if the detector increases the higher-order word first and
915 * then decreases the lower-order word (or we see stores in that order),
916 * eg when incrementing from 2^32 - 1 to 2^32. The loaded value
917 * suddenly jumps by 2^32. It would take hours for such an increase
918 * to occur so it is safe to discard the value. We allow increases
919 * of up to half the maximum to generously accommodate for loading an
920 * outdated lower word.
921 */
922 rcu_gp_t compl_gp = ACCESS_ONCE(rcu.completed_gp);
923 if (CPU->rcu.cur_cbs_gp <= compl_gp
924 && compl_gp <= CPU->rcu.cur_cbs_gp + UINT32_MAX_HALF) {
925 *completed_gp = compl_gp;
926 return true;
927 }
928
929 spinlock_lock(&rcu.gp_lock);
930
931 if (CPU->rcu.cur_cbs_gp <= rcu.completed_gp) {
932 *completed_gp = rcu.completed_gp;
933 spinlock_unlock(&rcu.gp_lock);
934 return true;
935 }
936
937 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
938 ASSERT(rcu.cur_gp <= CPU->rcu.cur_cbs_gp);
939
940 /*
941 * Notify the detector of how many GP ends we intend to wait for, so
942 * it can avoid going to sleep unnecessarily. Optimistically assume
943 * new callbacks will arrive while we're waiting; hence +1.
944 */
945 size_t remaining_gp_ends = (size_t) (CPU->rcu.next_cbs_gp - rcu.cur_gp);
946 req_detection(remaining_gp_ends + (arriving_cbs_empty() ? 0 : 1));
947
948 /*
949 * Ask the detector to speed up GP detection if there are too many
950 * pending callbacks and other reclaimers have not already done so.
951 */
952 if (expedite) {
953 if(0 == rcu.req_expedited_cnt)
954 condvar_signal(&rcu.expedite_now);
955
956 /*
957 * Expedite only cub_cbs. If there really is a surge of callbacks
958 * the arriving batch will expedite the GP for the huge number
959 * of callbacks currently in next_cbs
960 */
961 rcu.req_expedited_cnt = 1;
962 }
963
964 /* Wait for cur_cbs_gp to end. */
965 bool interrupted = cv_wait_for_gp(CPU->rcu.cur_cbs_gp);
966
967 *completed_gp = rcu.completed_gp;
968 spinlock_unlock(&rcu.gp_lock);
969
970 upd_missed_gp_in_wait(*completed_gp);
971
972 return !interrupted;
973}
974
975static void upd_missed_gp_in_wait(rcu_gp_t completed_gp)
976{
977 ASSERT(CPU->rcu.cur_cbs_gp <= completed_gp);
978
979 size_t delta = (size_t)(completed_gp - CPU->rcu.cur_cbs_gp);
980 CPU->rcu.stat_missed_gp_in_wait += delta;
981}
982
983
984/** Requests the detector to detect at least req_cnt consecutive grace periods.*/
985static void req_detection(size_t req_cnt)
986{
987 if (rcu.req_gp_end_cnt < req_cnt) {
988 bool detector_idle = (0 == rcu.req_gp_end_cnt);
989 rcu.req_gp_end_cnt = req_cnt;
990
991 if (detector_idle) {
992 ASSERT(rcu.cur_gp == rcu.completed_gp);
993 condvar_signal(&rcu.req_gp_changed);
994 }
995 }
996}
997
998/** Waits for an announcement of the end of the grace period wait_on_gp. */
999static bool cv_wait_for_gp(rcu_gp_t wait_on_gp)
1000{
1001 ASSERT(spinlock_locked(&rcu.gp_lock));
1002
1003 bool interrupted = false;
1004
1005 /* Wait until wait_on_gp ends. */
1006 while (rcu.completed_gp < wait_on_gp && !interrupted) {
1007 int ret = _condvar_wait_timeout_spinlock(&rcu.gp_ended, &rcu.gp_lock,
1008 SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
1009 interrupted = (ret == ESYNCH_INTERRUPTED);
1010 }
1011
1012 ASSERT(wait_on_gp <= rcu.completed_gp);
1013
1014 return interrupted;
1015}
1016
1017/** The detector thread detects and notifies reclaimers of grace period ends. */
1018static void detector(void *arg)
1019{
1020 spinlock_lock(&rcu.gp_lock);
1021
1022 while (wait_for_detect_req()) {
1023 /*
1024 * Announce new GP started. Readers start lazily acknowledging that
1025 * they passed a QS.
1026 */
1027 start_new_gp();
1028
1029 spinlock_unlock(&rcu.gp_lock);
1030
1031 if (!wait_for_readers())
1032 goto unlocked_out;
1033
1034 spinlock_lock(&rcu.gp_lock);
1035
1036 /* Notify reclaimers that they may now invoke queued callbacks. */
1037 end_cur_gp();
1038 }
1039
1040 spinlock_unlock(&rcu.gp_lock);
1041
1042unlocked_out:
1043 return;
1044}
1045
1046/** Waits for a request from a reclaimer thread to detect a grace period. */
1047static bool wait_for_detect_req(void)
1048{
1049 ASSERT(spinlock_locked(&rcu.gp_lock));
1050
1051 bool interrupted = false;
1052
1053 while (0 == rcu.req_gp_end_cnt && !interrupted) {
1054 int ret = _condvar_wait_timeout_spinlock(&rcu.req_gp_changed,
1055 &rcu.gp_lock, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
1056
1057 interrupted = (ret == ESYNCH_INTERRUPTED);
1058 }
1059
1060 return !interrupted;
1061}
1062
1063/** Announces the start of a new grace period for preexisting readers to ack. */
1064static void start_new_gp(void)
1065{
1066 ASSERT(spinlock_locked(&rcu.gp_lock));
1067
1068 irq_spinlock_lock(&rcu.preempt_lock, true);
1069
1070 /* Start a new GP. Announce to readers that a quiescent state is needed. */
1071 ++rcu.cur_gp;
1072
1073 /*
1074 * Readers preempted before the start of this GP (next_preempted)
1075 * are preexisting readers now that a GP started and will hold up
1076 * the current GP until they exit their reader sections.
1077 *
1078 * Preempted readers from the previous GP have finished so
1079 * cur_preempted is empty, but see comment in record_qs().
1080 */
1081 list_concat(&rcu.cur_preempted, &rcu.next_preempted);
1082
1083 irq_spinlock_unlock(&rcu.preempt_lock, true);
1084}
1085
1086static void end_cur_gp(void)
1087{
1088 ASSERT(spinlock_locked(&rcu.gp_lock));
1089
1090 rcu.completed_gp = rcu.cur_gp;
1091 --rcu.req_gp_end_cnt;
1092
1093 condvar_broadcast(&rcu.gp_ended);
1094}
1095
1096/** Waits for readers that started before the current GP started to finish. */
1097static bool wait_for_readers(void)
1098{
1099 DEFINE_CPU_MASK(reading_cpus);
1100
1101 /* All running cpus have potential readers. */
1102 cpu_mask_active(reading_cpus);
1103
1104 /*
1105 * Ensure the announcement of the start of a new GP (ie up-to-date
1106 * cur_gp) propagates to cpus that are just coming out of idle
1107 * mode before we sample their idle state flag.
1108 *
1109 * Cpus guarantee that after they set CPU->idle = true they will not
1110 * execute any RCU reader sections without first setting idle to
1111 * false and issuing a memory barrier. Therefore, if rm_quiescent_cpus()
1112 * later on sees an idle cpu, but the cpu is just exiting its idle mode,
1113 * the cpu must not have yet executed its memory barrier (otherwise
1114 * it would pair up with this mem barrier and we would see idle == false).
1115 * That memory barrier will pair up with the one below and ensure
1116 * that a reader on the now-non-idle cpu will see the most current
1117 * cur_gp. As a result, such a reader will never attempt to semaphore_up(
1118 * pending_readers) during this GP, which allows the detector to
1119 * ignore that cpu (the detector thinks it is idle). Moreover, any
1120 * changes made by RCU updaters will have propagated to readers
1121 * on the previously idle cpu -- again thanks to issuing a memory
1122 * barrier after returning from idle mode.
1123 *
1124 * idle -> non-idle cpu | detector | reclaimer
1125 * ------------------------------------------------------
1126 * rcu reader 1 | | rcu_call()
1127 * MB X | |
1128 * idle = true | | rcu_call()
1129 * (no rcu readers allowed ) | | MB A in advance_cbs()
1130 * MB Y | (...) | (...)
1131 * (no rcu readers allowed) | | MB B in advance_cbs()
1132 * idle = false | ++cur_gp |
1133 * (no rcu readers allowed) | MB C |
1134 * MB Z | signal gp_end |
1135 * rcu reader 2 | | exec_cur_cbs()
1136 *
1137 *
1138 * MB Y orders visibility of changes to idle for detector's sake.
1139 *
1140 * MB Z pairs up with MB C. The cpu making a transition from idle
1141 * will see the most current value of cur_gp and will not attempt
1142 * to notify the detector even if preempted during this GP.
1143 *
1144 * MB Z pairs up with MB A from the previous batch. Updaters' changes
1145 * are visible to reader 2 even when the detector thinks the cpu is idle
1146 * but it is not anymore.
1147 *
1148 * MB X pairs up with MB B. Late mem accesses of reader 1 are contained
1149 * and visible before idling and before any callbacks are executed
1150 * by reclaimers.
1151 *
1152 * In summary, the detector does not know of or wait for reader 2, but
1153 * it does not have to since it is a new reader that will not access
1154 * data from previous GPs and will see any changes.
1155 */
1156 memory_barrier(); /* MB C */
1157
1158 /*
1159 * Give readers time to pass through a QS. Also, batch arriving
1160 * callbacks in order to amortize detection overhead.
1161 */
1162 if (!gp_sleep())
1163 return false;
1164
1165 /* Non-intrusively determine which cpus have yet to pass a QS. */
1166 rm_quiescent_cpus(reading_cpus);
1167
1168 /* Actively interrupt cpus delaying the current GP and demand a QS. */
1169 interrupt_delaying_cpus(reading_cpus);
1170
1171 /* Wait for the interrupted cpus to notify us that they reached a QS. */
1172 if (!wait_for_delaying_cpus())
1173 return false;
1174 /*
1175 * All cpus recorded a QS or are still idle. Any new readers will be added
1176 * to next_preempt if preempted, ie the number of readers in cur_preempted
1177 * monotonically descreases.
1178 */
1179
1180 /* Wait for the last reader in cur_preempted to notify us it is done. */
1181 if (!wait_for_preempt_reader())
1182 return false;
1183
1184 return true;
1185}
1186
1187/** Remove those cpus from the mask that have already passed a quiescent
1188 * state since the start of the current grace period.
1189 */
1190static void rm_quiescent_cpus(cpu_mask_t *cpu_mask)
1191{
1192 cpu_mask_for_each(*cpu_mask, cpu_id) {
1193 /*
1194 * The cpu already checked for and passed through a quiescent
1195 * state since the beginning of this GP.
1196 *
1197 * rcu.cur_gp is modified by local detector thread only.
1198 * Therefore, it is up-to-date even without a lock.
1199 */
1200 bool cpu_acked_gp = (cpus[cpu_id].rcu.last_seen_gp == rcu.cur_gp);
1201
1202 /*
1203 * Either the cpu is idle or it is exiting away from idle mode
1204 * and already sees the most current rcu.cur_gp. See comment
1205 * in wait_for_readers().
1206 */
1207 bool cpu_idle = cpus[cpu_id].idle;
1208
1209 if (cpu_acked_gp || cpu_idle) {
1210 cpu_mask_reset(cpu_mask, cpu_id);
1211 }
1212 }
1213}
1214
1215/** Sleeps a while if the current grace period is not to be expedited. */
1216static bool gp_sleep(void)
1217{
1218 spinlock_lock(&rcu.gp_lock);
1219
1220 int ret = 0;
1221 while (0 == rcu.req_expedited_cnt && 0 == ret) {
1222 /* minor bug: sleeps for the same duration if woken up spuriously. */
1223 ret = _condvar_wait_timeout_spinlock(&rcu.expedite_now, &rcu.gp_lock,
1224 DETECT_SLEEP_MS * 1000, SYNCH_FLAGS_INTERRUPTIBLE);
1225 }
1226
1227 if (0 < rcu.req_expedited_cnt) {
1228 --rcu.req_expedited_cnt;
1229 /* Update statistic. */
1230 ++rcu.stat_expedited_cnt;
1231 }
1232
1233 spinlock_unlock(&rcu.gp_lock);
1234
1235 return (ret != ESYNCH_INTERRUPTED);
1236}
1237
1238/** Actively interrupts and checks the offending cpus for quiescent states. */
1239static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask)
1240{
1241 const size_t max_conconcurrent_calls = 16;
1242 smp_call_t call[max_conconcurrent_calls];
1243 size_t outstanding_calls = 0;
1244
1245 atomic_set(&rcu.delaying_cpu_cnt, 0);
1246
1247 cpu_mask_for_each(*cpu_mask, cpu_id) {
1248 smp_call_async(cpu_id, sample_local_cpu, 0, &call[outstanding_calls]);
1249 ++outstanding_calls;
1250
1251 /* Update statistic. */
1252 if (CPU->id != cpu_id)
1253 ++rcu.stat_smp_call_cnt;
1254
1255 if (outstanding_calls == max_conconcurrent_calls) {
1256 for (size_t k = 0; k < outstanding_calls; ++k) {
1257 smp_call_wait(&call[k]);
1258 }
1259
1260 outstanding_calls = 0;
1261 }
1262 }
1263
1264 for (size_t k = 0; k < outstanding_calls; ++k) {
1265 smp_call_wait(&call[k]);
1266 }
1267}
1268
1269/** Invoked on a cpu delaying grace period detection.
1270 *
1271 * Induces a quiescent state for the cpu or it instructs remaining
1272 * readers to notify the detector once they finish.
1273 */
1274static void sample_local_cpu(void *arg)
1275{
1276 ASSERT(interrupts_disabled());
1277 ASSERT(!CPU->rcu.is_delaying_gp);
1278
1279 /* Cpu did not pass a quiescent state yet. */
1280 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1281 /* Interrupted a reader in a reader critical section. */
1282 if (0 < (*CPU->rcu.pnesting_cnt)) {
1283 ASSERT(!CPU->idle);
1284 /* Note to notify the detector from rcu_read_unlock(). */
1285 CPU->rcu.is_delaying_gp = true;
1286 atomic_inc(&rcu.delaying_cpu_cnt);
1287 } else {
1288 /*
1289 * The cpu did not enter any rcu reader sections since
1290 * the start of the current GP. Record a quiescent state.
1291 *
1292 * Or, we interrupted rcu_read_unlock_impl() right before
1293 * it recorded a QS. Record a QS for it. The memory barrier
1294 * contains the reader section's mem accesses before
1295 * updating last_seen_gp.
1296 *
1297 * Or, we interrupted rcu_read_lock() right after it recorded
1298 * a QS for the previous GP but before it got a chance to
1299 * increment its nesting count. The memory barrier again
1300 * stops the CS code from spilling out of the CS.
1301 */
1302 memory_barrier();
1303 CPU->rcu.last_seen_gp = rcu.cur_gp;
1304 }
1305 } else {
1306 /*
1307 * This cpu already acknowledged that it had passed through
1308 * a quiescent state since the start of cur_gp.
1309 */
1310 }
1311
1312 /*
1313 * smp_call() makes sure any changes propagate back to the caller.
1314 * In particular, it makes the most current last_seen_gp visible
1315 * to the detector.
1316 */
1317}
1318
1319/** Waits for cpus delaying the current grace period if there are any. */
1320static bool wait_for_delaying_cpus(void)
1321{
1322 int delaying_cpu_cnt = atomic_get(&rcu.delaying_cpu_cnt);
1323
1324 for (int i = 0; i < delaying_cpu_cnt; ++i){
1325 if (!semaphore_down_interruptable(&rcu.remaining_readers))
1326 return false;
1327 }
1328
1329 /* Update statistic. */
1330 rcu.stat_delayed_cnt += delaying_cpu_cnt;
1331
1332 return true;
1333}
1334
1335/** Waits for any preempted readers blocking this grace period to finish.*/
1336static bool wait_for_preempt_reader(void)
1337{
1338 irq_spinlock_lock(&rcu.preempt_lock, true);
1339
1340 bool reader_exists = !list_empty(&rcu.cur_preempted);
1341 rcu.preempt_blocking_det = reader_exists;
1342
1343 irq_spinlock_unlock(&rcu.preempt_lock, true);
1344
1345 if (reader_exists) {
1346 /* Update statistic. */
1347 ++rcu.stat_preempt_blocking_cnt;
1348
1349 return semaphore_down_interruptable(&rcu.remaining_readers);
1350 }
1351
1352 return true;
1353}
1354
1355/** Called by the scheduler() when switching away from the current thread. */
1356void rcu_after_thread_ran(void)
1357{
1358 ASSERT(interrupts_disabled());
1359 ASSERT(CPU->rcu.pnesting_cnt == &THREAD->rcu.nesting_cnt);
1360
1361 /* Preempted a reader critical section for the first time. */
1362 if (0 < THREAD->rcu.nesting_cnt && !THREAD->rcu.was_preempted) {
1363 THREAD->rcu.was_preempted = true;
1364
1365 irq_spinlock_lock(&rcu.preempt_lock, false);
1366
1367 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1368 /* The reader started before the GP started - we must wait for it.*/
1369 list_append(&THREAD->rcu.preempt_link, &rcu.cur_preempted);
1370 } else {
1371 /*
1372 * The reader started after the GP started and this cpu
1373 * already noted a quiescent state. We might block the next GP.
1374 */
1375 list_append(&THREAD->rcu.preempt_link, &rcu.next_preempted);
1376 }
1377
1378 irq_spinlock_unlock(&rcu.preempt_lock, false);
1379 }
1380
1381 /*
1382 * The preempted reader has been noted globally. There are therefore
1383 * no readers running on this cpu so this is a quiescent state.
1384 */
1385 record_qs();
1386
1387 /*
1388 * This cpu is holding up the current GP. Let the detector know
1389 * it has just passed a quiescent state.
1390 *
1391 * The detector waits separately for preempted readers, so we have
1392 * to notify the detector even if we have just preempted a reader.
1393 */
1394 if (CPU->rcu.is_delaying_gp) {
1395 CPU->rcu.is_delaying_gp = false;
1396 semaphore_up(&rcu.remaining_readers);
1397 }
1398
1399 /*
1400 * After this point THREAD is 0 and stays 0 until the scheduler()
1401 * switches to a new thread. Use a temporary nesting counter for readers
1402 * in handlers of interrupts that are raised while idle in the scheduler.
1403 */
1404 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
1405
1406 /*
1407 * Forcefully associate the detector with the highest priority
1408 * even if preempted due to its time slice running out.
1409 *
1410 * todo: Replace with strict scheduler priority classes.
1411 */
1412 if (THREAD == rcu.detector_thr) {
1413 THREAD->priority = -1;
1414 }
1415 else if (THREAD == CPU->rcu.reclaimer_thr) {
1416 THREAD->priority = -1;
1417 }
1418
1419 upd_max_cbs_in_slice();
1420}
1421
1422static void upd_max_cbs_in_slice(void)
1423{
1424 rcu_cpu_data_t *cr = &CPU->rcu;
1425
1426 if (cr->arriving_cbs_cnt > cr->last_arriving_cnt) {
1427 size_t arrived_cnt = cr->arriving_cbs_cnt - cr->last_arriving_cnt;
1428 cr->stat_max_slice_cbs = max(arrived_cnt, cr->stat_max_slice_cbs);
1429 }
1430
1431 cr->last_arriving_cnt = cr->arriving_cbs_cnt;
1432}
1433
1434/** Called by the scheduler() when switching to a newly scheduled thread. */
1435void rcu_before_thread_runs(void)
1436{
1437 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
1438 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
1439
1440 CPU->rcu.pnesting_cnt = &THREAD->rcu.nesting_cnt;
1441}
1442
1443
1444/** Prints RCU run-time statistics. */
1445void rcu_print_stat(void)
1446{
1447 /*
1448 * Don't take locks. Worst case is we get out-dated values.
1449 * CPU local values are updated without any locks, so there
1450 * are no locks to lock in order to get up-to-date values.
1451 */
1452
1453 printf("Configuration: expedite_threshold=%d, critical_threshold=%d,"
1454 " detect_sleep=%dms\n",
1455 EXPEDITE_THRESHOLD, CRITICAL_THRESHOLD, DETECT_SLEEP_MS);
1456 printf("Completed GPs: %" PRIu64 "\n", rcu.completed_gp);
1457 printf("Expedited GPs: %zu\n", rcu.stat_expedited_cnt);
1458 printf("Delayed GPs: %zu (cpus w/ still running readers after gp sleep)\n",
1459 rcu.stat_delayed_cnt);
1460 printf("Preempt blocked GPs: %zu (waited for preempted readers; "
1461 "running or not)\n", rcu.stat_preempt_blocking_cnt);
1462 printf("Smp calls: %zu\n", rcu.stat_smp_call_cnt);
1463
1464 printf("Max arrived callbacks per GP and CPU:\n");
1465 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1466 printf(" %zu", cpus[i].rcu.stat_max_cbs);
1467 }
1468
1469 printf("\nAvg arrived callbacks per GP and CPU (nonempty batches only):\n");
1470 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1471 printf(" %zu", cpus[i].rcu.stat_avg_cbs);
1472 }
1473
1474 printf("\nMax arrived callbacks per time slice and CPU:\n");
1475 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1476 printf(" %zu", cpus[i].rcu.stat_max_slice_cbs);
1477 }
1478
1479 printf("\nMissed GP notifications per CPU:\n");
1480 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1481 printf(" %zu", cpus[i].rcu.stat_missed_gps);
1482 }
1483
1484 printf("\nMissed GP notifications per CPU while waking up:\n");
1485 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1486 printf(" %zu", cpus[i].rcu.stat_missed_gp_in_wait);
1487 }
1488 printf("\n");
1489}
1490
1491/** @}
1492 */
Note: See TracBrowser for help on using the repository browser.