1 | /*
|
---|
2 | * Copyright (c) 2012 Adam Hraska
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 |
|
---|
30 | /** @addtogroup sync
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 |
|
---|
34 | /**
|
---|
35 | * @file
|
---|
36 | * @brief Preemptible read-copy update. Usable from interrupt handlers.
|
---|
37 | *
|
---|
38 | * @par Podzimek-preempt-RCU (RCU_PREEMPT_PODZIMEK)
|
---|
39 | *
|
---|
40 | * Podzimek-preempt-RCU is a preemptible variant of Podzimek's non-preemptible
|
---|
41 | * RCU algorithm [1, 2]. Grace period (GP) detection is centralized into a
|
---|
42 | * single detector thread. The detector requests that each cpu announces
|
---|
43 | * that it passed a quiescent state (QS), ie a state when the cpu is
|
---|
44 | * outside of an rcu reader section (CS). Cpus check for QSs during context
|
---|
45 | * switches and when entering and exiting rcu reader sections. Once all
|
---|
46 | * cpus announce a QS and if there were no threads preempted in a CS, the
|
---|
47 | * GP ends.
|
---|
48 | *
|
---|
49 | * The detector increments the global GP counter, _rcu_cur_gp, in order
|
---|
50 | * to start a new GP. Readers notice the new GP by comparing the changed
|
---|
51 | * _rcu_cur_gp to a locally stored value last_seen_gp which denotes the
|
---|
52 | * the last GP number for which the cpu noted an explicit QS (and issued
|
---|
53 | * a memory barrier). Readers check for the change in the outer-most
|
---|
54 | * (ie not nested) rcu_read_lock()/unlock() as these functions represent
|
---|
55 | * a QS. The reader first executes a memory barrier (MB) in order to contain
|
---|
56 | * memory references within a CS (and to make changes made by writers
|
---|
57 | * visible in the CS following rcu_read_lock()). Next, the reader notes
|
---|
58 | * that it reached a QS by updating the cpu local last_seen_gp to the
|
---|
59 | * global GP counter, _rcu_cur_gp. Cache coherency eventually makes
|
---|
60 | * the updated last_seen_gp visible to the detector cpu, much like it
|
---|
61 | * delivered the changed _rcu_cur_gp to all cpus.
|
---|
62 | *
|
---|
63 | * The detector waits a while after starting a GP and then reads each
|
---|
64 | * cpu's last_seen_gp to see if it reached a QS. If a cpu did not record
|
---|
65 | * a QS (might be a long running thread without an RCU reader CS; or cache
|
---|
66 | * coherency has yet to make the most current last_seen_gp visible to
|
---|
67 | * the detector; or the cpu is still in a CS) the cpu is interrupted
|
---|
68 | * via an IPI. If the IPI handler finds the cpu still in a CS, it instructs
|
---|
69 | * the cpu to notify the detector that it had exited the CS via a semaphore
|
---|
70 | * (CPU->rcu.is_delaying_gp).
|
---|
71 | * The detector then waits on the semaphore for any cpus to exit their
|
---|
72 | * CSs. Lastly, it waits for the last reader preempted in a CS to
|
---|
73 | * exit its CS if there were any and signals the end of the GP to
|
---|
74 | * separate reclaimer threads wired to each cpu. Reclaimers then
|
---|
75 | * execute the callbacks queued on each of the cpus.
|
---|
76 | *
|
---|
77 | *
|
---|
78 | * @par A-RCU algorithm (RCU_PREEMPT_A)
|
---|
79 | *
|
---|
80 | * A-RCU is based on the user space rcu algorithm in [3] utilizing signals
|
---|
81 | * (urcu) and Podzimek's rcu [1]. Like in Podzimek's rcu, callbacks are
|
---|
82 | * executed by cpu-bound reclaimer threads. There is however no dedicated
|
---|
83 | * detector thread and the reclaimers take on the responsibilities of the
|
---|
84 | * detector when they need to start a new GP. A new GP is again announced
|
---|
85 | * and acknowledged with _rcu_cur_gp and the cpu local last_seen_gp. Unlike
|
---|
86 | * Podzimek's rcu, cpus check explicitly for QS only during context switches.
|
---|
87 | * Like in urcu, rcu_read_lock()/unlock() only maintain the nesting count
|
---|
88 | * and never issue any memory barriers. This makes rcu_read_lock()/unlock()
|
---|
89 | * simple and fast.
|
---|
90 | *
|
---|
91 | * If a new callback is queued for a reclaimer and no GP is in progress,
|
---|
92 | * the reclaimer takes on the role of a detector. The detector increments
|
---|
93 | * _rcu_cur_gp in order to start a new GP. It waits a while to give cpus
|
---|
94 | * a chance to switch a context (a natural QS). Then, it examines each
|
---|
95 | * non-idle cpu that has yet to pass a QS via an IPI. The IPI handler
|
---|
96 | * sees the most current _rcu_cur_gp and last_seen_gp and notes a QS
|
---|
97 | * with a memory barrier and an update to last_seen_gp. If the handler
|
---|
98 | * finds the cpu in a CS it does nothing and let the detector poll/interrupt
|
---|
99 | * the cpu again after a short sleep.
|
---|
100 | *
|
---|
101 | * @par Caveats
|
---|
102 | *
|
---|
103 | * last_seen_gp and _rcu_cur_gp are always 64bit variables and they
|
---|
104 | * are read non-atomically on 32bit machines. Reading a clobbered
|
---|
105 | * value of last_seen_gp or _rcu_cur_gp or writing a clobbered value
|
---|
106 | * of _rcu_cur_gp to last_seen_gp will at worst force the detector
|
---|
107 | * to unnecessarily interrupt a cpu. Interrupting a cpu makes the
|
---|
108 | * correct value of _rcu_cur_gp visible to the cpu and correctly
|
---|
109 | * resets last_seen_gp in both algorithms.
|
---|
110 | *
|
---|
111 | *
|
---|
112 | *
|
---|
113 | * [1] Read-copy-update for opensolaris,
|
---|
114 | * 2010, Podzimek
|
---|
115 | * https://andrej.podzimek.org/thesis.pdf
|
---|
116 | *
|
---|
117 | * [2] (podzimek-rcu) implementation file "rcu.patch"
|
---|
118 | * http://d3s.mff.cuni.cz/projects/operating_systems/rcu/rcu.patch
|
---|
119 | *
|
---|
120 | * [3] User-level implementations of read-copy update,
|
---|
121 | * 2012, appendix
|
---|
122 | * http://www.rdrop.com/users/paulmck/RCU/urcu-supp-accepted.2011.08.30a.pdf
|
---|
123 | *
|
---|
124 | */
|
---|
125 |
|
---|
126 | #include <synch/rcu.h>
|
---|
127 | #include <synch/condvar.h>
|
---|
128 | #include <synch/semaphore.h>
|
---|
129 | #include <synch/spinlock.h>
|
---|
130 | #include <synch/mutex.h>
|
---|
131 | #include <proc/thread.h>
|
---|
132 | #include <cpu/cpu_mask.h>
|
---|
133 | #include <cpu.h>
|
---|
134 | #include <smp/smp_call.h>
|
---|
135 | #include <compiler/barrier.h>
|
---|
136 | #include <atomic.h>
|
---|
137 | #include <arch.h>
|
---|
138 | #include <macros.h>
|
---|
139 |
|
---|
140 | /*
|
---|
141 | * Number of milliseconds to give to preexisting readers to finish
|
---|
142 | * when non-expedited grace period detection is in progress.
|
---|
143 | */
|
---|
144 | #define DETECT_SLEEP_MS 10
|
---|
145 | /*
|
---|
146 | * Max number of pending callbacks in the local cpu's queue before
|
---|
147 | * aggressively expediting the current grace period
|
---|
148 | */
|
---|
149 | #define EXPEDITE_THRESHOLD 2000
|
---|
150 | /*
|
---|
151 | * Max number of callbacks to execute in one go with preemption
|
---|
152 | * enabled. If there are more callbacks to be executed they will
|
---|
153 | * be run with preemption disabled in order to prolong reclaimer's
|
---|
154 | * time slice and give it a chance to catch up with callback producers.
|
---|
155 | */
|
---|
156 | #define CRITICAL_THRESHOLD 30000
|
---|
157 | /* Half the number of values a uint32 can hold. */
|
---|
158 | #define UINT32_MAX_HALF 2147483648U
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * The current grace period number. Increases monotonically.
|
---|
162 | * Lock rcu.gp_lock or rcu.preempt_lock to get a current value.
|
---|
163 | */
|
---|
164 | rcu_gp_t _rcu_cur_gp;
|
---|
165 |
|
---|
166 | /** Global RCU data. */
|
---|
167 | typedef struct rcu_data {
|
---|
168 | /** Detector uses so signal reclaimers that a grace period ended. */
|
---|
169 | condvar_t gp_ended;
|
---|
170 | /** Reclaimers use to notify the detector to accelerate GP detection. */
|
---|
171 | condvar_t expedite_now;
|
---|
172 | /**
|
---|
173 | * Protects: req_gp_end_cnt, req_expedited_cnt, completed_gp, _rcu_cur_gp;
|
---|
174 | * or: completed_gp, _rcu_cur_gp
|
---|
175 | */
|
---|
176 | SPINLOCK_DECLARE(gp_lock);
|
---|
177 | /**
|
---|
178 | * The number of the most recently completed grace period. At most
|
---|
179 | * one behind _rcu_cur_gp. If equal to _rcu_cur_gp, a grace period
|
---|
180 | * detection is not in progress and the detector is idle.
|
---|
181 | */
|
---|
182 | rcu_gp_t completed_gp;
|
---|
183 |
|
---|
184 | /** Protects the following 3 fields. */
|
---|
185 | IRQ_SPINLOCK_DECLARE(preempt_lock);
|
---|
186 | /** Preexisting readers that have been preempted. */
|
---|
187 | list_t cur_preempted;
|
---|
188 | /** Reader that have been preempted and might delay the next grace period.*/
|
---|
189 | list_t next_preempted;
|
---|
190 | /**
|
---|
191 | * The detector is waiting for the last preempted reader
|
---|
192 | * in cur_preempted to announce that it exited its reader
|
---|
193 | * section by up()ing remaining_readers.
|
---|
194 | */
|
---|
195 | bool preempt_blocking_det;
|
---|
196 |
|
---|
197 | #ifdef RCU_PREEMPT_A
|
---|
198 |
|
---|
199 | /**
|
---|
200 | * The detector waits on this semaphore for any preempted readers
|
---|
201 | * delaying the grace period once all cpus pass a quiescent state.
|
---|
202 | */
|
---|
203 | semaphore_t remaining_readers;
|
---|
204 |
|
---|
205 | #elif defined(RCU_PREEMPT_PODZIMEK)
|
---|
206 |
|
---|
207 | /** Reclaimers notify the detector when they request more grace periods.*/
|
---|
208 | condvar_t req_gp_changed;
|
---|
209 | /** Number of grace period ends the detector was requested to announce. */
|
---|
210 | size_t req_gp_end_cnt;
|
---|
211 | /** Number of consecutive grace periods to detect quickly and aggressively.*/
|
---|
212 | size_t req_expedited_cnt;
|
---|
213 | /**
|
---|
214 | * Number of cpus with readers that are delaying the current GP.
|
---|
215 | * They will up() remaining_readers.
|
---|
216 | */
|
---|
217 | atomic_t delaying_cpu_cnt;
|
---|
218 | /**
|
---|
219 | * The detector waits on this semaphore for any readers delaying the GP.
|
---|
220 | *
|
---|
221 | * Each of the cpus with readers that are delaying the current GP
|
---|
222 | * must up() this sema once they reach a quiescent state. If there
|
---|
223 | * are any readers in cur_preempted (ie preempted preexisting) and
|
---|
224 | * they are already delaying GP detection, the last to unlock its
|
---|
225 | * reader section must up() this sema once.
|
---|
226 | */
|
---|
227 | semaphore_t remaining_readers;
|
---|
228 | #endif
|
---|
229 |
|
---|
230 | /** Excludes simultaneous rcu_barrier() calls. */
|
---|
231 | mutex_t barrier_mtx;
|
---|
232 | /** Number of cpus that we are waiting for to complete rcu_barrier(). */
|
---|
233 | atomic_t barrier_wait_cnt;
|
---|
234 | /** rcu_barrier() waits for the completion of barrier callbacks on this wq.*/
|
---|
235 | waitq_t barrier_wq;
|
---|
236 |
|
---|
237 | /** Interruptible attached detector thread pointer. */
|
---|
238 | thread_t *detector_thr;
|
---|
239 |
|
---|
240 | /* Some statistics. */
|
---|
241 | size_t stat_expedited_cnt;
|
---|
242 | size_t stat_delayed_cnt;
|
---|
243 | size_t stat_preempt_blocking_cnt;
|
---|
244 | /* Does not contain self/local calls. */
|
---|
245 | size_t stat_smp_call_cnt;
|
---|
246 | } rcu_data_t;
|
---|
247 |
|
---|
248 |
|
---|
249 | static rcu_data_t rcu;
|
---|
250 |
|
---|
251 | static void start_reclaimers(void);
|
---|
252 | static void synch_complete(rcu_item_t *rcu_item);
|
---|
253 | static inline void rcu_call_impl(bool expedite, rcu_item_t *rcu_item,
|
---|
254 | rcu_func_t func);
|
---|
255 | static void add_barrier_cb(void *arg);
|
---|
256 | static void barrier_complete(rcu_item_t *barrier_item);
|
---|
257 | static bool arriving_cbs_empty(void);
|
---|
258 | static bool next_cbs_empty(void);
|
---|
259 | static bool cur_cbs_empty(void);
|
---|
260 | static bool all_cbs_empty(void);
|
---|
261 | static void reclaimer(void *arg);
|
---|
262 | static bool wait_for_pending_cbs(void);
|
---|
263 | static bool advance_cbs(void);
|
---|
264 | static void exec_completed_cbs(rcu_gp_t last_completed_gp);
|
---|
265 | static void exec_cbs(rcu_item_t **phead);
|
---|
266 | static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *last_completed_gp);
|
---|
267 | static void upd_missed_gp_in_wait(rcu_gp_t completed_gp);
|
---|
268 |
|
---|
269 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
270 | static void start_detector(void);
|
---|
271 | static void read_unlock_impl(size_t *pnesting_cnt);
|
---|
272 | static void req_detection(size_t req_cnt);
|
---|
273 | static bool cv_wait_for_gp(rcu_gp_t wait_on_gp);
|
---|
274 | static void detector(void *);
|
---|
275 | static bool wait_for_detect_req(void);
|
---|
276 | static void end_cur_gp(void);
|
---|
277 | static bool wait_for_readers(void);
|
---|
278 | static bool gp_sleep(void);
|
---|
279 | static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask);
|
---|
280 | static bool wait_for_delaying_cpus(void);
|
---|
281 | #elif defined(RCU_PREEMPT_A)
|
---|
282 | static bool wait_for_readers(bool expedite);
|
---|
283 | static bool gp_sleep(bool *expedite);
|
---|
284 | #endif
|
---|
285 |
|
---|
286 | static void start_new_gp(void);
|
---|
287 | static void rm_quiescent_cpus(cpu_mask_t *cpu_mask);
|
---|
288 | static void sample_cpus(cpu_mask_t *reader_cpus, void *arg);
|
---|
289 | static void sample_local_cpu(void *);
|
---|
290 | static bool wait_for_preempt_reader(void);
|
---|
291 | static void note_preempted_reader(void);
|
---|
292 | static void rm_preempted_reader(void);
|
---|
293 | static void upd_max_cbs_in_slice(size_t arriving_cbs_cnt);
|
---|
294 |
|
---|
295 |
|
---|
296 |
|
---|
297 | /** Initializes global RCU structures. */
|
---|
298 | void rcu_init(void)
|
---|
299 | {
|
---|
300 | condvar_initialize(&rcu.gp_ended);
|
---|
301 | condvar_initialize(&rcu.expedite_now);
|
---|
302 |
|
---|
303 | spinlock_initialize(&rcu.gp_lock, "rcu.gp_lock");
|
---|
304 | _rcu_cur_gp = 0;
|
---|
305 | rcu.completed_gp = 0;
|
---|
306 |
|
---|
307 | irq_spinlock_initialize(&rcu.preempt_lock, "rcu.preempt_lock");
|
---|
308 | list_initialize(&rcu.cur_preempted);
|
---|
309 | list_initialize(&rcu.next_preempted);
|
---|
310 | rcu.preempt_blocking_det = false;
|
---|
311 |
|
---|
312 | mutex_initialize(&rcu.barrier_mtx, MUTEX_PASSIVE);
|
---|
313 | atomic_set(&rcu.barrier_wait_cnt, 0);
|
---|
314 | waitq_initialize(&rcu.barrier_wq);
|
---|
315 |
|
---|
316 | semaphore_initialize(&rcu.remaining_readers, 0);
|
---|
317 |
|
---|
318 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
319 | condvar_initialize(&rcu.req_gp_changed);
|
---|
320 |
|
---|
321 | rcu.req_gp_end_cnt = 0;
|
---|
322 | rcu.req_expedited_cnt = 0;
|
---|
323 | atomic_set(&rcu.delaying_cpu_cnt, 0);
|
---|
324 | #endif
|
---|
325 |
|
---|
326 | rcu.detector_thr = NULL;
|
---|
327 |
|
---|
328 | rcu.stat_expedited_cnt = 0;
|
---|
329 | rcu.stat_delayed_cnt = 0;
|
---|
330 | rcu.stat_preempt_blocking_cnt = 0;
|
---|
331 | rcu.stat_smp_call_cnt = 0;
|
---|
332 | }
|
---|
333 |
|
---|
334 | /** Initializes per-CPU RCU data. If on the boot cpu inits global data too.*/
|
---|
335 | void rcu_cpu_init(void)
|
---|
336 | {
|
---|
337 | if (config.cpu_active == 1) {
|
---|
338 | rcu_init();
|
---|
339 | }
|
---|
340 |
|
---|
341 | CPU->rcu.last_seen_gp = 0;
|
---|
342 |
|
---|
343 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
344 | CPU->rcu.nesting_cnt = 0;
|
---|
345 | CPU->rcu.is_delaying_gp = false;
|
---|
346 | CPU->rcu.signal_unlock = false;
|
---|
347 | #endif
|
---|
348 |
|
---|
349 | CPU->rcu.cur_cbs = NULL;
|
---|
350 | CPU->rcu.cur_cbs_cnt = 0;
|
---|
351 | CPU->rcu.next_cbs = NULL;
|
---|
352 | CPU->rcu.next_cbs_cnt = 0;
|
---|
353 | CPU->rcu.arriving_cbs = NULL;
|
---|
354 | CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
|
---|
355 | CPU->rcu.arriving_cbs_cnt = 0;
|
---|
356 |
|
---|
357 | CPU->rcu.cur_cbs_gp = 0;
|
---|
358 | CPU->rcu.next_cbs_gp = 0;
|
---|
359 |
|
---|
360 | semaphore_initialize(&CPU->rcu.arrived_flag, 0);
|
---|
361 |
|
---|
362 | /* BSP creates reclaimer threads before AP's rcu_cpu_init() runs. */
|
---|
363 | if (config.cpu_active == 1)
|
---|
364 | CPU->rcu.reclaimer_thr = NULL;
|
---|
365 |
|
---|
366 | CPU->rcu.stat_max_cbs = 0;
|
---|
367 | CPU->rcu.stat_avg_cbs = 0;
|
---|
368 | CPU->rcu.stat_missed_gps = 0;
|
---|
369 | CPU->rcu.stat_missed_gp_in_wait = 0;
|
---|
370 | CPU->rcu.stat_max_slice_cbs = 0;
|
---|
371 | CPU->rcu.last_arriving_cnt = 0;
|
---|
372 | }
|
---|
373 |
|
---|
374 | /** Completes RCU init. Creates and runs the detector and reclaimer threads.*/
|
---|
375 | void rcu_kinit_init(void)
|
---|
376 | {
|
---|
377 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
378 | start_detector();
|
---|
379 | #endif
|
---|
380 |
|
---|
381 | start_reclaimers();
|
---|
382 | }
|
---|
383 |
|
---|
384 | /** Initializes any per-thread RCU structures. */
|
---|
385 | void rcu_thread_init(thread_t *thread)
|
---|
386 | {
|
---|
387 | thread->rcu.nesting_cnt = 0;
|
---|
388 |
|
---|
389 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
390 | thread->rcu.was_preempted = false;
|
---|
391 | #endif
|
---|
392 |
|
---|
393 | link_initialize(&thread->rcu.preempt_link);
|
---|
394 | }
|
---|
395 |
|
---|
396 |
|
---|
397 | /** Cleans up global RCU resources and stops dispatching callbacks.
|
---|
398 | *
|
---|
399 | * Call when shutting down the kernel. Outstanding callbacks will
|
---|
400 | * not be processed. Instead they will linger forever.
|
---|
401 | */
|
---|
402 | void rcu_stop(void)
|
---|
403 | {
|
---|
404 | /* Stop and wait for reclaimers. */
|
---|
405 | for (unsigned int cpu_id = 0; cpu_id < config.cpu_active; ++cpu_id) {
|
---|
406 | ASSERT(cpus[cpu_id].rcu.reclaimer_thr != NULL);
|
---|
407 |
|
---|
408 | if (cpus[cpu_id].rcu.reclaimer_thr) {
|
---|
409 | thread_interrupt(cpus[cpu_id].rcu.reclaimer_thr);
|
---|
410 | thread_join(cpus[cpu_id].rcu.reclaimer_thr);
|
---|
411 | thread_detach(cpus[cpu_id].rcu.reclaimer_thr);
|
---|
412 | cpus[cpu_id].rcu.reclaimer_thr = NULL;
|
---|
413 | }
|
---|
414 | }
|
---|
415 |
|
---|
416 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
417 | /* Stop the detector and wait. */
|
---|
418 | if (rcu.detector_thr) {
|
---|
419 | thread_interrupt(rcu.detector_thr);
|
---|
420 | thread_join(rcu.detector_thr);
|
---|
421 | thread_detach(rcu.detector_thr);
|
---|
422 | rcu.detector_thr = NULL;
|
---|
423 | }
|
---|
424 | #endif
|
---|
425 | }
|
---|
426 |
|
---|
427 | /** Returns the number of elapsed grace periods since boot. */
|
---|
428 | uint64_t rcu_completed_gps(void)
|
---|
429 | {
|
---|
430 | spinlock_lock(&rcu.gp_lock);
|
---|
431 | uint64_t completed = rcu.completed_gp;
|
---|
432 | spinlock_unlock(&rcu.gp_lock);
|
---|
433 |
|
---|
434 | return completed;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /** Creates and runs cpu-bound reclaimer threads. */
|
---|
438 | static void start_reclaimers(void)
|
---|
439 | {
|
---|
440 | for (unsigned int cpu_id = 0; cpu_id < config.cpu_count; ++cpu_id) {
|
---|
441 | char name[THREAD_NAME_BUFLEN] = {0};
|
---|
442 |
|
---|
443 | snprintf(name, THREAD_NAME_BUFLEN - 1, "rcu-rec/%u", cpu_id);
|
---|
444 |
|
---|
445 | cpus[cpu_id].rcu.reclaimer_thr =
|
---|
446 | thread_create(reclaimer, NULL, TASK, THREAD_FLAG_NONE, name);
|
---|
447 |
|
---|
448 | if (!cpus[cpu_id].rcu.reclaimer_thr)
|
---|
449 | panic("Failed to create RCU reclaimer thread on cpu%u.", cpu_id);
|
---|
450 |
|
---|
451 | thread_wire(cpus[cpu_id].rcu.reclaimer_thr, &cpus[cpu_id]);
|
---|
452 | thread_ready(cpus[cpu_id].rcu.reclaimer_thr);
|
---|
453 | }
|
---|
454 | }
|
---|
455 |
|
---|
456 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
457 |
|
---|
458 | /** Starts the detector thread. */
|
---|
459 | static void start_detector(void)
|
---|
460 | {
|
---|
461 | rcu.detector_thr =
|
---|
462 | thread_create(detector, NULL, TASK, THREAD_FLAG_NONE, "rcu-det");
|
---|
463 |
|
---|
464 | if (!rcu.detector_thr)
|
---|
465 | panic("Failed to create RCU detector thread.");
|
---|
466 |
|
---|
467 | thread_ready(rcu.detector_thr);
|
---|
468 | }
|
---|
469 |
|
---|
470 | /** Returns true if in an rcu reader section. */
|
---|
471 | bool rcu_read_locked(void)
|
---|
472 | {
|
---|
473 | preemption_disable();
|
---|
474 | bool locked = 0 < CPU->rcu.nesting_cnt;
|
---|
475 | preemption_enable();
|
---|
476 |
|
---|
477 | return locked;
|
---|
478 | }
|
---|
479 |
|
---|
480 | /** Unlocks the local reader section using the given nesting count.
|
---|
481 | *
|
---|
482 | * Preemption or interrupts must be disabled.
|
---|
483 | *
|
---|
484 | * @param pnesting_cnt Either &CPU->rcu.tmp_nesting_cnt or
|
---|
485 | * THREAD->rcu.nesting_cnt.
|
---|
486 | */
|
---|
487 | static void read_unlock_impl(size_t *pnesting_cnt)
|
---|
488 | {
|
---|
489 | ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
|
---|
490 |
|
---|
491 | if (0 == --(*pnesting_cnt)) {
|
---|
492 | _rcu_record_qs();
|
---|
493 |
|
---|
494 | /*
|
---|
495 | * The thread was preempted while in a critical section or
|
---|
496 | * the detector is eagerly waiting for this cpu's reader
|
---|
497 | * to finish.
|
---|
498 | *
|
---|
499 | * Note that THREAD may be NULL in scheduler() and not just during boot.
|
---|
500 | */
|
---|
501 | if ((THREAD && THREAD->rcu.was_preempted) || CPU->rcu.is_delaying_gp) {
|
---|
502 | /* Rechecks with disabled interrupts. */
|
---|
503 | _rcu_signal_read_unlock();
|
---|
504 | }
|
---|
505 | }
|
---|
506 | }
|
---|
507 |
|
---|
508 | /** If necessary, signals the detector that we exited a reader section. */
|
---|
509 | void _rcu_signal_read_unlock(void)
|
---|
510 | {
|
---|
511 | ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
|
---|
512 |
|
---|
513 | /*
|
---|
514 | * If an interrupt occurs here (even a NMI) it may beat us to
|
---|
515 | * resetting .is_delaying_gp or .was_preempted and up the semaphore
|
---|
516 | * for us.
|
---|
517 | */
|
---|
518 |
|
---|
519 | /*
|
---|
520 | * If the detector is eagerly waiting for this cpu's reader to unlock,
|
---|
521 | * notify it that the reader did so.
|
---|
522 | */
|
---|
523 | if (local_atomic_exchange(&CPU->rcu.is_delaying_gp, false)) {
|
---|
524 | semaphore_up(&rcu.remaining_readers);
|
---|
525 | }
|
---|
526 |
|
---|
527 | /*
|
---|
528 | * This reader was preempted while in a reader section.
|
---|
529 | * We might be holding up the current GP. Notify the
|
---|
530 | * detector if so.
|
---|
531 | */
|
---|
532 | if (THREAD && local_atomic_exchange(&THREAD->rcu.was_preempted, false)) {
|
---|
533 | ASSERT(link_used(&THREAD->rcu.preempt_link));
|
---|
534 |
|
---|
535 | rm_preempted_reader();
|
---|
536 | }
|
---|
537 |
|
---|
538 | /* If there was something to signal to the detector we have done so. */
|
---|
539 | CPU->rcu.signal_unlock = false;
|
---|
540 | }
|
---|
541 |
|
---|
542 | #endif /* RCU_PREEMPT_PODZIMEK */
|
---|
543 |
|
---|
544 | typedef struct synch_item {
|
---|
545 | waitq_t wq;
|
---|
546 | rcu_item_t rcu_item;
|
---|
547 | } synch_item_t;
|
---|
548 |
|
---|
549 | /** Blocks until all preexisting readers exit their critical sections. */
|
---|
550 | void rcu_synchronize(void)
|
---|
551 | {
|
---|
552 | _rcu_synchronize(false);
|
---|
553 | }
|
---|
554 |
|
---|
555 | /** Blocks until all preexisting readers exit their critical sections. */
|
---|
556 | void rcu_synchronize_expedite(void)
|
---|
557 | {
|
---|
558 | _rcu_synchronize(true);
|
---|
559 | }
|
---|
560 |
|
---|
561 | /** Blocks until all preexisting readers exit their critical sections. */
|
---|
562 | void _rcu_synchronize(bool expedite)
|
---|
563 | {
|
---|
564 | /* Calling from a reader section will deadlock. */
|
---|
565 | ASSERT(!rcu_read_locked());
|
---|
566 |
|
---|
567 | synch_item_t completion;
|
---|
568 |
|
---|
569 | waitq_initialize(&completion.wq);
|
---|
570 | _rcu_call(expedite, &completion.rcu_item, synch_complete);
|
---|
571 | waitq_sleep(&completion.wq);
|
---|
572 | }
|
---|
573 |
|
---|
574 | /** rcu_synchronize's callback. */
|
---|
575 | static void synch_complete(rcu_item_t *rcu_item)
|
---|
576 | {
|
---|
577 | synch_item_t *completion = member_to_inst(rcu_item, synch_item_t, rcu_item);
|
---|
578 | ASSERT(completion);
|
---|
579 | waitq_wakeup(&completion->wq, WAKEUP_FIRST);
|
---|
580 | }
|
---|
581 |
|
---|
582 | /** Waits for all outstanding rcu calls to complete. */
|
---|
583 | void rcu_barrier(void)
|
---|
584 | {
|
---|
585 | /*
|
---|
586 | * Serialize rcu_barrier() calls so we don't overwrite cpu.barrier_item
|
---|
587 | * currently in use by rcu_barrier().
|
---|
588 | */
|
---|
589 | mutex_lock(&rcu.barrier_mtx);
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Ensure we queue a barrier callback on all cpus before the already
|
---|
593 | * enqueued barrier callbacks start signaling completion.
|
---|
594 | */
|
---|
595 | atomic_set(&rcu.barrier_wait_cnt, 1);
|
---|
596 |
|
---|
597 | DEFINE_CPU_MASK(cpu_mask);
|
---|
598 | cpu_mask_active(cpu_mask);
|
---|
599 |
|
---|
600 | cpu_mask_for_each(*cpu_mask, cpu_id) {
|
---|
601 | smp_call(cpu_id, add_barrier_cb, NULL);
|
---|
602 | }
|
---|
603 |
|
---|
604 | if (0 < atomic_predec(&rcu.barrier_wait_cnt)) {
|
---|
605 | waitq_sleep(&rcu.barrier_wq);
|
---|
606 | }
|
---|
607 |
|
---|
608 | mutex_unlock(&rcu.barrier_mtx);
|
---|
609 | }
|
---|
610 |
|
---|
611 | /** Issues a rcu_barrier() callback on the local cpu.
|
---|
612 | *
|
---|
613 | * Executed with interrupts disabled.
|
---|
614 | */
|
---|
615 | static void add_barrier_cb(void *arg)
|
---|
616 | {
|
---|
617 | ASSERT(interrupts_disabled() || PREEMPTION_DISABLED);
|
---|
618 | atomic_inc(&rcu.barrier_wait_cnt);
|
---|
619 | rcu_call(&CPU->rcu.barrier_item, barrier_complete);
|
---|
620 | }
|
---|
621 |
|
---|
622 | /** Local cpu's rcu_barrier() completion callback. */
|
---|
623 | static void barrier_complete(rcu_item_t *barrier_item)
|
---|
624 | {
|
---|
625 | /* Is this the last barrier callback completed? */
|
---|
626 | if (0 == atomic_predec(&rcu.barrier_wait_cnt)) {
|
---|
627 | /* Notify rcu_barrier() that we're done. */
|
---|
628 | waitq_wakeup(&rcu.barrier_wq, WAKEUP_FIRST);
|
---|
629 | }
|
---|
630 | }
|
---|
631 |
|
---|
632 | /** Adds a callback to invoke after all preexisting readers finish.
|
---|
633 | *
|
---|
634 | * May be called from within interrupt handlers or RCU reader sections.
|
---|
635 | *
|
---|
636 | * @param rcu_item Used by RCU to track the call. Must remain
|
---|
637 | * until the user callback function is entered.
|
---|
638 | * @param func User callback function that will be invoked once a full
|
---|
639 | * grace period elapsed, ie at a time when all preexisting
|
---|
640 | * readers have finished. The callback should be short and must
|
---|
641 | * not block. If you must sleep, enqueue your work in the system
|
---|
642 | * work queue from the callback (ie workq_global_enqueue()).
|
---|
643 | */
|
---|
644 | void rcu_call(rcu_item_t *rcu_item, rcu_func_t func)
|
---|
645 | {
|
---|
646 | rcu_call_impl(false, rcu_item, func);
|
---|
647 | }
|
---|
648 |
|
---|
649 | /** rcu_call() implementation. See rcu_call() for comments. */
|
---|
650 | void _rcu_call(bool expedite, rcu_item_t *rcu_item, rcu_func_t func)
|
---|
651 | {
|
---|
652 | rcu_call_impl(expedite, rcu_item, func);
|
---|
653 | }
|
---|
654 |
|
---|
655 | /** rcu_call() inline-able implementation. See rcu_call() for comments. */
|
---|
656 | static inline void rcu_call_impl(bool expedite, rcu_item_t *rcu_item,
|
---|
657 | rcu_func_t func)
|
---|
658 | {
|
---|
659 | ASSERT(rcu_item);
|
---|
660 |
|
---|
661 | rcu_item->func = func;
|
---|
662 | rcu_item->next = NULL;
|
---|
663 |
|
---|
664 | preemption_disable();
|
---|
665 |
|
---|
666 | rcu_cpu_data_t *r = &CPU->rcu;
|
---|
667 |
|
---|
668 | rcu_item_t **prev_tail
|
---|
669 | = local_atomic_exchange(&r->parriving_cbs_tail, &rcu_item->next);
|
---|
670 | *prev_tail = rcu_item;
|
---|
671 |
|
---|
672 | /* Approximate the number of callbacks present. */
|
---|
673 | ++r->arriving_cbs_cnt;
|
---|
674 |
|
---|
675 | if (expedite) {
|
---|
676 | r->expedite_arriving = true;
|
---|
677 | }
|
---|
678 |
|
---|
679 | bool first_cb = (prev_tail == &CPU->rcu.arriving_cbs);
|
---|
680 |
|
---|
681 | /* Added first callback - notify the reclaimer. */
|
---|
682 | if (first_cb && !semaphore_count_get(&r->arrived_flag)) {
|
---|
683 | semaphore_up(&r->arrived_flag);
|
---|
684 | }
|
---|
685 |
|
---|
686 | preemption_enable();
|
---|
687 | }
|
---|
688 |
|
---|
689 | static bool cur_cbs_empty(void)
|
---|
690 | {
|
---|
691 | ASSERT(THREAD && THREAD->wired);
|
---|
692 | return NULL == CPU->rcu.cur_cbs;
|
---|
693 | }
|
---|
694 |
|
---|
695 | static bool next_cbs_empty(void)
|
---|
696 | {
|
---|
697 | ASSERT(THREAD && THREAD->wired);
|
---|
698 | return NULL == CPU->rcu.next_cbs;
|
---|
699 | }
|
---|
700 |
|
---|
701 | /** Disable interrupts to get an up-to-date result. */
|
---|
702 | static bool arriving_cbs_empty(void)
|
---|
703 | {
|
---|
704 | ASSERT(THREAD && THREAD->wired);
|
---|
705 | /*
|
---|
706 | * Accessing with interrupts enabled may at worst lead to
|
---|
707 | * a false negative if we race with a local interrupt handler.
|
---|
708 | */
|
---|
709 | return NULL == CPU->rcu.arriving_cbs;
|
---|
710 | }
|
---|
711 |
|
---|
712 | static bool all_cbs_empty(void)
|
---|
713 | {
|
---|
714 | return cur_cbs_empty() && next_cbs_empty() && arriving_cbs_empty();
|
---|
715 | }
|
---|
716 |
|
---|
717 |
|
---|
718 | /** Reclaimer thread dispatches locally queued callbacks once a GP ends. */
|
---|
719 | static void reclaimer(void *arg)
|
---|
720 | {
|
---|
721 | ASSERT(THREAD && THREAD->wired);
|
---|
722 | ASSERT(THREAD == CPU->rcu.reclaimer_thr);
|
---|
723 |
|
---|
724 | rcu_gp_t last_compl_gp = 0;
|
---|
725 | bool ok = true;
|
---|
726 |
|
---|
727 | while (ok && wait_for_pending_cbs()) {
|
---|
728 | ASSERT(CPU->rcu.reclaimer_thr == THREAD);
|
---|
729 |
|
---|
730 | exec_completed_cbs(last_compl_gp);
|
---|
731 |
|
---|
732 | bool expedite = advance_cbs();
|
---|
733 |
|
---|
734 | ok = wait_for_cur_cbs_gp_end(expedite, &last_compl_gp);
|
---|
735 | }
|
---|
736 | }
|
---|
737 |
|
---|
738 | /** Waits until there are callbacks waiting to be dispatched. */
|
---|
739 | static bool wait_for_pending_cbs(void)
|
---|
740 | {
|
---|
741 | if (!all_cbs_empty())
|
---|
742 | return true;
|
---|
743 |
|
---|
744 | bool ok = true;
|
---|
745 |
|
---|
746 | while (arriving_cbs_empty() && ok) {
|
---|
747 | ok = semaphore_down_interruptable(&CPU->rcu.arrived_flag);
|
---|
748 | }
|
---|
749 |
|
---|
750 | return ok;
|
---|
751 | }
|
---|
752 |
|
---|
753 | static void upd_stat_missed_gp(rcu_gp_t compl)
|
---|
754 | {
|
---|
755 | if (CPU->rcu.cur_cbs_gp < compl) {
|
---|
756 | CPU->rcu.stat_missed_gps += (size_t)(compl - CPU->rcu.cur_cbs_gp);
|
---|
757 | }
|
---|
758 | }
|
---|
759 |
|
---|
760 | /** Executes all callbacks for the given completed grace period. */
|
---|
761 | static void exec_completed_cbs(rcu_gp_t last_completed_gp)
|
---|
762 | {
|
---|
763 | upd_stat_missed_gp(last_completed_gp);
|
---|
764 |
|
---|
765 | /* Both next_cbs and cur_cbs GP elapsed. */
|
---|
766 | if (CPU->rcu.next_cbs_gp <= last_completed_gp) {
|
---|
767 | ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
|
---|
768 |
|
---|
769 | size_t exec_cnt = CPU->rcu.cur_cbs_cnt + CPU->rcu.next_cbs_cnt;
|
---|
770 |
|
---|
771 | if (exec_cnt < CRITICAL_THRESHOLD) {
|
---|
772 | exec_cbs(&CPU->rcu.cur_cbs);
|
---|
773 | exec_cbs(&CPU->rcu.next_cbs);
|
---|
774 | } else {
|
---|
775 | /*
|
---|
776 | * Getting overwhelmed with too many callbacks to run.
|
---|
777 | * Disable preemption in order to prolong our time slice
|
---|
778 | * and catch up with updaters posting new callbacks.
|
---|
779 | */
|
---|
780 | preemption_disable();
|
---|
781 | exec_cbs(&CPU->rcu.cur_cbs);
|
---|
782 | exec_cbs(&CPU->rcu.next_cbs);
|
---|
783 | preemption_enable();
|
---|
784 | }
|
---|
785 |
|
---|
786 | CPU->rcu.cur_cbs_cnt = 0;
|
---|
787 | CPU->rcu.next_cbs_cnt = 0;
|
---|
788 | } else if (CPU->rcu.cur_cbs_gp <= last_completed_gp) {
|
---|
789 |
|
---|
790 | if (CPU->rcu.cur_cbs_cnt < CRITICAL_THRESHOLD) {
|
---|
791 | exec_cbs(&CPU->rcu.cur_cbs);
|
---|
792 | } else {
|
---|
793 | /*
|
---|
794 | * Getting overwhelmed with too many callbacks to run.
|
---|
795 | * Disable preemption in order to prolong our time slice
|
---|
796 | * and catch up with updaters posting new callbacks.
|
---|
797 | */
|
---|
798 | preemption_disable();
|
---|
799 | exec_cbs(&CPU->rcu.cur_cbs);
|
---|
800 | preemption_enable();
|
---|
801 | }
|
---|
802 |
|
---|
803 | CPU->rcu.cur_cbs_cnt = 0;
|
---|
804 | }
|
---|
805 | }
|
---|
806 |
|
---|
807 | /** Executes callbacks in the single-linked list. The list is left empty. */
|
---|
808 | static void exec_cbs(rcu_item_t **phead)
|
---|
809 | {
|
---|
810 | rcu_item_t *rcu_item = *phead;
|
---|
811 |
|
---|
812 | while (rcu_item) {
|
---|
813 | /* func() may free rcu_item. Get a local copy. */
|
---|
814 | rcu_item_t *next = rcu_item->next;
|
---|
815 | rcu_func_t func = rcu_item->func;
|
---|
816 |
|
---|
817 | func(rcu_item);
|
---|
818 |
|
---|
819 | rcu_item = next;
|
---|
820 | }
|
---|
821 |
|
---|
822 | *phead = NULL;
|
---|
823 | }
|
---|
824 |
|
---|
825 | static void upd_stat_cb_cnts(size_t arriving_cnt)
|
---|
826 | {
|
---|
827 | CPU->rcu.stat_max_cbs = max(arriving_cnt, CPU->rcu.stat_max_cbs);
|
---|
828 | if (0 < arriving_cnt) {
|
---|
829 | CPU->rcu.stat_avg_cbs =
|
---|
830 | (99 * CPU->rcu.stat_avg_cbs + 1 * arriving_cnt) / 100;
|
---|
831 | }
|
---|
832 | }
|
---|
833 |
|
---|
834 | /** Prepares another batch of callbacks to dispatch at the nest grace period.
|
---|
835 | *
|
---|
836 | * @return True if the next batch of callbacks must be expedited quickly.
|
---|
837 | */
|
---|
838 | static bool advance_cbs(void)
|
---|
839 | {
|
---|
840 | /* Move next_cbs to cur_cbs. */
|
---|
841 | CPU->rcu.cur_cbs = CPU->rcu.next_cbs;
|
---|
842 | CPU->rcu.cur_cbs_cnt = CPU->rcu.next_cbs_cnt;
|
---|
843 | CPU->rcu.cur_cbs_gp = CPU->rcu.next_cbs_gp;
|
---|
844 |
|
---|
845 | /* Move arriving_cbs to next_cbs. */
|
---|
846 |
|
---|
847 | CPU->rcu.next_cbs_cnt = CPU->rcu.arriving_cbs_cnt;
|
---|
848 | CPU->rcu.arriving_cbs_cnt = 0;
|
---|
849 |
|
---|
850 | /*
|
---|
851 | * Too many callbacks queued. Better speed up the detection
|
---|
852 | * or risk exhausting all system memory.
|
---|
853 | */
|
---|
854 | bool expedite = (EXPEDITE_THRESHOLD < CPU->rcu.next_cbs_cnt)
|
---|
855 | || CPU->rcu.expedite_arriving;
|
---|
856 | CPU->rcu.expedite_arriving = false;
|
---|
857 |
|
---|
858 | /* Start moving the arriving_cbs list to next_cbs. */
|
---|
859 | CPU->rcu.next_cbs = CPU->rcu.arriving_cbs;
|
---|
860 |
|
---|
861 | /*
|
---|
862 | * At least one callback arrived. The tail therefore does not point
|
---|
863 | * to the head of arriving_cbs and we can safely reset it to NULL.
|
---|
864 | */
|
---|
865 | if (CPU->rcu.next_cbs) {
|
---|
866 | ASSERT(CPU->rcu.parriving_cbs_tail != &CPU->rcu.arriving_cbs);
|
---|
867 |
|
---|
868 | CPU->rcu.arriving_cbs = NULL;
|
---|
869 | /* Reset arriving_cbs before updating the tail pointer. */
|
---|
870 | compiler_barrier();
|
---|
871 | /* Updating the tail pointer completes the move of arriving_cbs. */
|
---|
872 | ACCESS_ONCE(CPU->rcu.parriving_cbs_tail) = &CPU->rcu.arriving_cbs;
|
---|
873 | } else {
|
---|
874 | /*
|
---|
875 | * arriving_cbs was null and parriving_cbs_tail pointed to it
|
---|
876 | * so leave it that way. Note that interrupt handlers may have
|
---|
877 | * added a callback in the meantime so it is not safe to reset
|
---|
878 | * arriving_cbs or parriving_cbs.
|
---|
879 | */
|
---|
880 | }
|
---|
881 |
|
---|
882 | /* Update statistics of arrived callbacks. */
|
---|
883 | upd_stat_cb_cnts(CPU->rcu.next_cbs_cnt);
|
---|
884 |
|
---|
885 | /*
|
---|
886 | * Make changes prior to queuing next_cbs visible to readers.
|
---|
887 | * See comment in wait_for_readers().
|
---|
888 | */
|
---|
889 | memory_barrier(); /* MB A, B */
|
---|
890 |
|
---|
891 | /* At the end of next_cbs_gp, exec next_cbs. Determine what GP that is. */
|
---|
892 |
|
---|
893 | if (!next_cbs_empty()) {
|
---|
894 | spinlock_lock(&rcu.gp_lock);
|
---|
895 |
|
---|
896 | /* Exec next_cbs at the end of the next GP. */
|
---|
897 | CPU->rcu.next_cbs_gp = _rcu_cur_gp + 1;
|
---|
898 |
|
---|
899 | /*
|
---|
900 | * There are no callbacks to invoke before next_cbs. Instruct
|
---|
901 | * wait_for_cur_cbs_gp() to notify us of the nearest GP end.
|
---|
902 | * That could be sooner than next_cbs_gp (if the current GP
|
---|
903 | * had not yet completed), so we'll create a shorter batch
|
---|
904 | * of callbacks next time around.
|
---|
905 | */
|
---|
906 | if (cur_cbs_empty()) {
|
---|
907 | CPU->rcu.cur_cbs_gp = rcu.completed_gp + 1;
|
---|
908 | }
|
---|
909 |
|
---|
910 | spinlock_unlock(&rcu.gp_lock);
|
---|
911 | } else {
|
---|
912 | CPU->rcu.next_cbs_gp = CPU->rcu.cur_cbs_gp;
|
---|
913 | }
|
---|
914 |
|
---|
915 | ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
|
---|
916 |
|
---|
917 | return expedite;
|
---|
918 | }
|
---|
919 |
|
---|
920 |
|
---|
921 | #ifdef RCU_PREEMPT_A
|
---|
922 |
|
---|
923 | /** Waits for the grace period associated with callbacks cub_cbs to elapse.
|
---|
924 | *
|
---|
925 | * @param expedite Instructs the detector to aggressively speed up grace
|
---|
926 | * period detection without any delay.
|
---|
927 | * @param completed_gp Returns the most recent completed grace period
|
---|
928 | * number.
|
---|
929 | * @return false if the thread was interrupted and should stop.
|
---|
930 | */
|
---|
931 | static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *completed_gp)
|
---|
932 | {
|
---|
933 | spinlock_lock(&rcu.gp_lock);
|
---|
934 |
|
---|
935 | ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
|
---|
936 | ASSERT(CPU->rcu.cur_cbs_gp <= _rcu_cur_gp + 1);
|
---|
937 |
|
---|
938 | while (rcu.completed_gp < CPU->rcu.cur_cbs_gp) {
|
---|
939 | /* GP has not yet started - start a new one. */
|
---|
940 | if (rcu.completed_gp == _rcu_cur_gp) {
|
---|
941 | start_new_gp();
|
---|
942 | spinlock_unlock(&rcu.gp_lock);
|
---|
943 |
|
---|
944 | if (!wait_for_readers(expedite))
|
---|
945 | return false;
|
---|
946 |
|
---|
947 | spinlock_lock(&rcu.gp_lock);
|
---|
948 | /* Notify any reclaimers this GP had ended. */
|
---|
949 | rcu.completed_gp = _rcu_cur_gp;
|
---|
950 | condvar_broadcast(&rcu.gp_ended);
|
---|
951 | } else {
|
---|
952 | /* GP detection is in progress.*/
|
---|
953 |
|
---|
954 | if (expedite)
|
---|
955 | condvar_signal(&rcu.expedite_now);
|
---|
956 |
|
---|
957 | /* Wait for the GP to complete. */
|
---|
958 | int ret = _condvar_wait_timeout_spinlock(&rcu.gp_ended, &rcu.gp_lock,
|
---|
959 | SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
|
---|
960 |
|
---|
961 | if (ret == ESYNCH_INTERRUPTED) {
|
---|
962 | spinlock_unlock(&rcu.gp_lock);
|
---|
963 | return false;
|
---|
964 | }
|
---|
965 | }
|
---|
966 | }
|
---|
967 |
|
---|
968 | upd_missed_gp_in_wait(rcu.completed_gp);
|
---|
969 |
|
---|
970 | *completed_gp = rcu.completed_gp;
|
---|
971 | spinlock_unlock(&rcu.gp_lock);
|
---|
972 |
|
---|
973 | return true;
|
---|
974 | }
|
---|
975 |
|
---|
976 | static bool wait_for_readers(bool expedite)
|
---|
977 | {
|
---|
978 | DEFINE_CPU_MASK(reader_cpus);
|
---|
979 |
|
---|
980 | cpu_mask_active(reader_cpus);
|
---|
981 | rm_quiescent_cpus(reader_cpus);
|
---|
982 |
|
---|
983 | while (!cpu_mask_is_none(reader_cpus)) {
|
---|
984 | /* Give cpus a chance to context switch (a QS) and batch callbacks. */
|
---|
985 | if(!gp_sleep(&expedite))
|
---|
986 | return false;
|
---|
987 |
|
---|
988 | rm_quiescent_cpus(reader_cpus);
|
---|
989 | sample_cpus(reader_cpus, reader_cpus);
|
---|
990 | }
|
---|
991 |
|
---|
992 | /* Update statistic. */
|
---|
993 | if (expedite) {
|
---|
994 | ++rcu.stat_expedited_cnt;
|
---|
995 | }
|
---|
996 |
|
---|
997 | /*
|
---|
998 | * All cpus have passed through a QS and see the most recent _rcu_cur_gp.
|
---|
999 | * As a result newly preempted readers will associate with next_preempted
|
---|
1000 | * and the number of old readers in cur_preempted will monotonically
|
---|
1001 | * decrease. Wait for those old/preexisting readers.
|
---|
1002 | */
|
---|
1003 | return wait_for_preempt_reader();
|
---|
1004 | }
|
---|
1005 |
|
---|
1006 | static bool gp_sleep(bool *expedite)
|
---|
1007 | {
|
---|
1008 | if (*expedite) {
|
---|
1009 | scheduler();
|
---|
1010 | return true;
|
---|
1011 | } else {
|
---|
1012 | spinlock_lock(&rcu.gp_lock);
|
---|
1013 |
|
---|
1014 | int ret = 0;
|
---|
1015 | ret = _condvar_wait_timeout_spinlock(&rcu.expedite_now, &rcu.gp_lock,
|
---|
1016 | DETECT_SLEEP_MS * 1000, SYNCH_FLAGS_INTERRUPTIBLE);
|
---|
1017 |
|
---|
1018 | /* rcu.expedite_now was signaled. */
|
---|
1019 | if (ret == ESYNCH_OK_BLOCKED) {
|
---|
1020 | *expedite = true;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | spinlock_unlock(&rcu.gp_lock);
|
---|
1024 |
|
---|
1025 | return (ret != ESYNCH_INTERRUPTED);
|
---|
1026 | }
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | static void sample_local_cpu(void *arg)
|
---|
1030 | {
|
---|
1031 | ASSERT(interrupts_disabled());
|
---|
1032 | cpu_mask_t *reader_cpus = (cpu_mask_t *)arg;
|
---|
1033 |
|
---|
1034 | bool locked = RCU_CNT_INC <= THE->rcu_nesting;
|
---|
1035 | /* smp_call machinery makes the most current _rcu_cur_gp visible. */
|
---|
1036 | bool passed_qs = (CPU->rcu.last_seen_gp == _rcu_cur_gp);
|
---|
1037 |
|
---|
1038 | if (locked && !passed_qs) {
|
---|
1039 | /*
|
---|
1040 | * This cpu has not yet passed a quiescent state during this grace
|
---|
1041 | * period and it is currently in a reader section. We'll have to
|
---|
1042 | * try to sample this cpu again later.
|
---|
1043 | */
|
---|
1044 | } else {
|
---|
1045 | /* Either not in a reader section or already passed a QS. */
|
---|
1046 | cpu_mask_reset(reader_cpus, CPU->id);
|
---|
1047 | /* Contain new reader sections and make prior changes visible to them.*/
|
---|
1048 | memory_barrier();
|
---|
1049 | CPU->rcu.last_seen_gp = _rcu_cur_gp;
|
---|
1050 | }
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | /** Called by the scheduler() when switching away from the current thread. */
|
---|
1054 | void rcu_after_thread_ran(void)
|
---|
1055 | {
|
---|
1056 | ASSERT(interrupts_disabled());
|
---|
1057 |
|
---|
1058 | /*
|
---|
1059 | * In order not to worry about NMI seeing rcu_nesting change work
|
---|
1060 | * with a local copy.
|
---|
1061 | */
|
---|
1062 | size_t nesting_cnt = local_atomic_exchange(&THE->rcu_nesting, 0);
|
---|
1063 |
|
---|
1064 | /*
|
---|
1065 | * Ensures NMIs see .rcu_nesting without the WAS_PREEMPTED mark and
|
---|
1066 | * do not accidentally call rm_preempted_reader() from unlock().
|
---|
1067 | */
|
---|
1068 | compiler_barrier();
|
---|
1069 |
|
---|
1070 | /* Preempted a reader critical section for the first time. */
|
---|
1071 | if (RCU_CNT_INC <= nesting_cnt && !(nesting_cnt & RCU_WAS_PREEMPTED)) {
|
---|
1072 | nesting_cnt |= RCU_WAS_PREEMPTED;
|
---|
1073 | note_preempted_reader();
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | /* Save the thread's nesting count when it is not running. */
|
---|
1077 | THREAD->rcu.nesting_cnt = nesting_cnt;
|
---|
1078 |
|
---|
1079 | if (CPU->rcu.last_seen_gp != _rcu_cur_gp) {
|
---|
1080 | /*
|
---|
1081 | * Contain any memory accesses of old readers before announcing a QS.
|
---|
1082 | * Also make changes from the previous GP visible to this cpu.
|
---|
1083 | * Moreover it separates writing to last_seen_gp from
|
---|
1084 | * note_preempted_reader().
|
---|
1085 | */
|
---|
1086 | memory_barrier();
|
---|
1087 | /*
|
---|
1088 | * The preempted reader has been noted globally. There are therefore
|
---|
1089 | * no readers running on this cpu so this is a quiescent state.
|
---|
1090 | *
|
---|
1091 | * Reading the multiword _rcu_cur_gp non-atomically is benign.
|
---|
1092 | * At worst, the read value will be different from the actual value.
|
---|
1093 | * As a result, both the detector and this cpu will believe
|
---|
1094 | * this cpu has not yet passed a QS although it really did.
|
---|
1095 | *
|
---|
1096 | * Reloading _rcu_cur_gp is benign, because it cannot change
|
---|
1097 | * until this cpu acknowledges it passed a QS by writing to
|
---|
1098 | * last_seen_gp. Since interrupts are disabled, only this
|
---|
1099 | * code may to so (IPIs won't get through).
|
---|
1100 | */
|
---|
1101 | CPU->rcu.last_seen_gp = _rcu_cur_gp;
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | /*
|
---|
1105 | * Forcefully associate the reclaimer with the highest priority
|
---|
1106 | * even if preempted due to its time slice running out.
|
---|
1107 | */
|
---|
1108 | if (THREAD == CPU->rcu.reclaimer_thr) {
|
---|
1109 | THREAD->priority = -1;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | upd_max_cbs_in_slice(CPU->rcu.arriving_cbs_cnt);
|
---|
1113 | }
|
---|
1114 |
|
---|
1115 | /** Called by the scheduler() when switching to a newly scheduled thread. */
|
---|
1116 | void rcu_before_thread_runs(void)
|
---|
1117 | {
|
---|
1118 | ASSERT(!rcu_read_locked());
|
---|
1119 |
|
---|
1120 | /* Load the thread's saved nesting count from before it was preempted. */
|
---|
1121 | THE->rcu_nesting = THREAD->rcu.nesting_cnt;
|
---|
1122 | }
|
---|
1123 |
|
---|
1124 | /** Called from scheduler() when exiting the current thread.
|
---|
1125 | *
|
---|
1126 | * Preemption or interrupts are disabled and the scheduler() already
|
---|
1127 | * switched away from the current thread, calling rcu_after_thread_ran().
|
---|
1128 | */
|
---|
1129 | void rcu_thread_exiting(void)
|
---|
1130 | {
|
---|
1131 | ASSERT(THE->rcu_nesting == 0);
|
---|
1132 |
|
---|
1133 | /*
|
---|
1134 | * The thread forgot to exit its reader critical section.
|
---|
1135 | * It is a bug, but rather than letting the entire system lock up
|
---|
1136 | * forcefully leave the reader section. The thread is not holding
|
---|
1137 | * any references anyway since it is exiting so it is safe.
|
---|
1138 | */
|
---|
1139 | if (RCU_CNT_INC <= THREAD->rcu.nesting_cnt) {
|
---|
1140 | /* Emulate _rcu_preempted_unlock() with the proper nesting count. */
|
---|
1141 | if (THREAD->rcu.nesting_cnt & RCU_WAS_PREEMPTED) {
|
---|
1142 | rm_preempted_reader();
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 | printf("Bug: thread (id %" PRIu64 " \"%s\") exited while in RCU read"
|
---|
1146 | " section.\n", THREAD->tid, THREAD->name);
|
---|
1147 | }
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | /** Returns true if in an rcu reader section. */
|
---|
1151 | bool rcu_read_locked(void)
|
---|
1152 | {
|
---|
1153 | return RCU_CNT_INC <= THE->rcu_nesting;
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /** Invoked when a preempted reader finally exits its reader section. */
|
---|
1157 | void _rcu_preempted_unlock(void)
|
---|
1158 | {
|
---|
1159 | ASSERT(0 == THE->rcu_nesting || RCU_WAS_PREEMPTED == THE->rcu_nesting);
|
---|
1160 |
|
---|
1161 | size_t prev = local_atomic_exchange(&THE->rcu_nesting, 0);
|
---|
1162 | if (prev == RCU_WAS_PREEMPTED) {
|
---|
1163 | /*
|
---|
1164 | * NMI handlers are never preempted but may call rm_preempted_reader()
|
---|
1165 | * if a NMI occurred in _rcu_preempted_unlock() of a preempted thread.
|
---|
1166 | * The only other rcu code that may have been interrupted by the NMI
|
---|
1167 | * in _rcu_preempted_unlock() is: an IPI/sample_local_cpu() and
|
---|
1168 | * the initial part of rcu_after_thread_ran().
|
---|
1169 | *
|
---|
1170 | * rm_preempted_reader() will not deadlock because none of the locks
|
---|
1171 | * it uses are locked in this case. Neither _rcu_preempted_unlock()
|
---|
1172 | * nor sample_local_cpu() nor the initial part of rcu_after_thread_ran()
|
---|
1173 | * acquire any locks.
|
---|
1174 | */
|
---|
1175 | rm_preempted_reader();
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | #elif defined(RCU_PREEMPT_PODZIMEK)
|
---|
1180 |
|
---|
1181 | /** Waits for the grace period associated with callbacks cub_cbs to elapse.
|
---|
1182 | *
|
---|
1183 | * @param expedite Instructs the detector to aggressively speed up grace
|
---|
1184 | * period detection without any delay.
|
---|
1185 | * @param completed_gp Returns the most recent completed grace period
|
---|
1186 | * number.
|
---|
1187 | * @return false if the thread was interrupted and should stop.
|
---|
1188 | */
|
---|
1189 | static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *completed_gp)
|
---|
1190 | {
|
---|
1191 | /*
|
---|
1192 | * Use a possibly outdated version of completed_gp to bypass checking
|
---|
1193 | * with the lock.
|
---|
1194 | *
|
---|
1195 | * Note that loading and storing rcu.completed_gp is not atomic
|
---|
1196 | * (it is 64bit wide). Reading a clobbered value that is less than
|
---|
1197 | * rcu.completed_gp is harmless - we'll recheck with a lock. The
|
---|
1198 | * only way to read a clobbered value that is greater than the actual
|
---|
1199 | * value is if the detector increases the higher-order word first and
|
---|
1200 | * then decreases the lower-order word (or we see stores in that order),
|
---|
1201 | * eg when incrementing from 2^32 - 1 to 2^32. The loaded value
|
---|
1202 | * suddenly jumps by 2^32. It would take hours for such an increase
|
---|
1203 | * to occur so it is safe to discard the value. We allow increases
|
---|
1204 | * of up to half the maximum to generously accommodate for loading an
|
---|
1205 | * outdated lower word.
|
---|
1206 | */
|
---|
1207 | rcu_gp_t compl_gp = ACCESS_ONCE(rcu.completed_gp);
|
---|
1208 | if (CPU->rcu.cur_cbs_gp <= compl_gp
|
---|
1209 | && compl_gp <= CPU->rcu.cur_cbs_gp + UINT32_MAX_HALF) {
|
---|
1210 | *completed_gp = compl_gp;
|
---|
1211 | return true;
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | spinlock_lock(&rcu.gp_lock);
|
---|
1215 |
|
---|
1216 | if (CPU->rcu.cur_cbs_gp <= rcu.completed_gp) {
|
---|
1217 | *completed_gp = rcu.completed_gp;
|
---|
1218 | spinlock_unlock(&rcu.gp_lock);
|
---|
1219 | return true;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
|
---|
1223 | ASSERT(_rcu_cur_gp <= CPU->rcu.cur_cbs_gp);
|
---|
1224 |
|
---|
1225 | /*
|
---|
1226 | * Notify the detector of how many GP ends we intend to wait for, so
|
---|
1227 | * it can avoid going to sleep unnecessarily. Optimistically assume
|
---|
1228 | * new callbacks will arrive while we're waiting; hence +1.
|
---|
1229 | */
|
---|
1230 | size_t remaining_gp_ends = (size_t) (CPU->rcu.next_cbs_gp - _rcu_cur_gp);
|
---|
1231 | req_detection(remaining_gp_ends + (arriving_cbs_empty() ? 0 : 1));
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * Ask the detector to speed up GP detection if there are too many
|
---|
1235 | * pending callbacks and other reclaimers have not already done so.
|
---|
1236 | */
|
---|
1237 | if (expedite) {
|
---|
1238 | if(0 == rcu.req_expedited_cnt)
|
---|
1239 | condvar_signal(&rcu.expedite_now);
|
---|
1240 |
|
---|
1241 | /*
|
---|
1242 | * Expedite only cub_cbs. If there really is a surge of callbacks
|
---|
1243 | * the arriving batch will expedite the GP for the huge number
|
---|
1244 | * of callbacks currently in next_cbs
|
---|
1245 | */
|
---|
1246 | rcu.req_expedited_cnt = 1;
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 | /* Wait for cur_cbs_gp to end. */
|
---|
1250 | bool interrupted = cv_wait_for_gp(CPU->rcu.cur_cbs_gp);
|
---|
1251 |
|
---|
1252 | *completed_gp = rcu.completed_gp;
|
---|
1253 | spinlock_unlock(&rcu.gp_lock);
|
---|
1254 |
|
---|
1255 | if (!interrupted)
|
---|
1256 | upd_missed_gp_in_wait(*completed_gp);
|
---|
1257 |
|
---|
1258 | return !interrupted;
|
---|
1259 | }
|
---|
1260 |
|
---|
1261 | /** Waits for an announcement of the end of the grace period wait_on_gp. */
|
---|
1262 | static bool cv_wait_for_gp(rcu_gp_t wait_on_gp)
|
---|
1263 | {
|
---|
1264 | ASSERT(spinlock_locked(&rcu.gp_lock));
|
---|
1265 |
|
---|
1266 | bool interrupted = false;
|
---|
1267 |
|
---|
1268 | /* Wait until wait_on_gp ends. */
|
---|
1269 | while (rcu.completed_gp < wait_on_gp && !interrupted) {
|
---|
1270 | int ret = _condvar_wait_timeout_spinlock(&rcu.gp_ended, &rcu.gp_lock,
|
---|
1271 | SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
|
---|
1272 | interrupted = (ret == ESYNCH_INTERRUPTED);
|
---|
1273 | }
|
---|
1274 |
|
---|
1275 | return interrupted;
|
---|
1276 | }
|
---|
1277 |
|
---|
1278 | /** Requests the detector to detect at least req_cnt consecutive grace periods.*/
|
---|
1279 | static void req_detection(size_t req_cnt)
|
---|
1280 | {
|
---|
1281 | if (rcu.req_gp_end_cnt < req_cnt) {
|
---|
1282 | bool detector_idle = (0 == rcu.req_gp_end_cnt);
|
---|
1283 | rcu.req_gp_end_cnt = req_cnt;
|
---|
1284 |
|
---|
1285 | if (detector_idle) {
|
---|
1286 | ASSERT(_rcu_cur_gp == rcu.completed_gp);
|
---|
1287 | condvar_signal(&rcu.req_gp_changed);
|
---|
1288 | }
|
---|
1289 | }
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 |
|
---|
1293 | /** The detector thread detects and notifies reclaimers of grace period ends. */
|
---|
1294 | static void detector(void *arg)
|
---|
1295 | {
|
---|
1296 | spinlock_lock(&rcu.gp_lock);
|
---|
1297 |
|
---|
1298 | while (wait_for_detect_req()) {
|
---|
1299 | /*
|
---|
1300 | * Announce new GP started. Readers start lazily acknowledging that
|
---|
1301 | * they passed a QS.
|
---|
1302 | */
|
---|
1303 | start_new_gp();
|
---|
1304 |
|
---|
1305 | spinlock_unlock(&rcu.gp_lock);
|
---|
1306 |
|
---|
1307 | if (!wait_for_readers())
|
---|
1308 | goto unlocked_out;
|
---|
1309 |
|
---|
1310 | spinlock_lock(&rcu.gp_lock);
|
---|
1311 |
|
---|
1312 | /* Notify reclaimers that they may now invoke queued callbacks. */
|
---|
1313 | end_cur_gp();
|
---|
1314 | }
|
---|
1315 |
|
---|
1316 | spinlock_unlock(&rcu.gp_lock);
|
---|
1317 |
|
---|
1318 | unlocked_out:
|
---|
1319 | return;
|
---|
1320 | }
|
---|
1321 |
|
---|
1322 | /** Waits for a request from a reclaimer thread to detect a grace period. */
|
---|
1323 | static bool wait_for_detect_req(void)
|
---|
1324 | {
|
---|
1325 | ASSERT(spinlock_locked(&rcu.gp_lock));
|
---|
1326 |
|
---|
1327 | bool interrupted = false;
|
---|
1328 |
|
---|
1329 | while (0 == rcu.req_gp_end_cnt && !interrupted) {
|
---|
1330 | int ret = _condvar_wait_timeout_spinlock(&rcu.req_gp_changed,
|
---|
1331 | &rcu.gp_lock, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
|
---|
1332 |
|
---|
1333 | interrupted = (ret == ESYNCH_INTERRUPTED);
|
---|
1334 | }
|
---|
1335 |
|
---|
1336 | return !interrupted;
|
---|
1337 | }
|
---|
1338 |
|
---|
1339 |
|
---|
1340 | static void end_cur_gp(void)
|
---|
1341 | {
|
---|
1342 | ASSERT(spinlock_locked(&rcu.gp_lock));
|
---|
1343 |
|
---|
1344 | rcu.completed_gp = _rcu_cur_gp;
|
---|
1345 | --rcu.req_gp_end_cnt;
|
---|
1346 |
|
---|
1347 | condvar_broadcast(&rcu.gp_ended);
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | /** Waits for readers that started before the current GP started to finish. */
|
---|
1351 | static bool wait_for_readers(void)
|
---|
1352 | {
|
---|
1353 | DEFINE_CPU_MASK(reading_cpus);
|
---|
1354 |
|
---|
1355 | /* All running cpus have potential readers. */
|
---|
1356 | cpu_mask_active(reading_cpus);
|
---|
1357 |
|
---|
1358 | /*
|
---|
1359 | * Give readers time to pass through a QS. Also, batch arriving
|
---|
1360 | * callbacks in order to amortize detection overhead.
|
---|
1361 | */
|
---|
1362 | if (!gp_sleep())
|
---|
1363 | return false;
|
---|
1364 |
|
---|
1365 | /* Non-intrusively determine which cpus have yet to pass a QS. */
|
---|
1366 | rm_quiescent_cpus(reading_cpus);
|
---|
1367 |
|
---|
1368 | /* Actively interrupt cpus delaying the current GP and demand a QS. */
|
---|
1369 | interrupt_delaying_cpus(reading_cpus);
|
---|
1370 |
|
---|
1371 | /* Wait for the interrupted cpus to notify us that they reached a QS. */
|
---|
1372 | if (!wait_for_delaying_cpus())
|
---|
1373 | return false;
|
---|
1374 | /*
|
---|
1375 | * All cpus recorded a QS or are still idle. Any new readers will be added
|
---|
1376 | * to next_preempt if preempted, ie the number of readers in cur_preempted
|
---|
1377 | * monotonically descreases.
|
---|
1378 | */
|
---|
1379 |
|
---|
1380 | /* Wait for the last reader in cur_preempted to notify us it is done. */
|
---|
1381 | if (!wait_for_preempt_reader())
|
---|
1382 | return false;
|
---|
1383 |
|
---|
1384 | return true;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 | /** Sleeps a while if the current grace period is not to be expedited. */
|
---|
1388 | static bool gp_sleep(void)
|
---|
1389 | {
|
---|
1390 | spinlock_lock(&rcu.gp_lock);
|
---|
1391 |
|
---|
1392 | int ret = 0;
|
---|
1393 | while (0 == rcu.req_expedited_cnt && 0 == ret) {
|
---|
1394 | /* minor bug: sleeps for the same duration if woken up spuriously. */
|
---|
1395 | ret = _condvar_wait_timeout_spinlock(&rcu.expedite_now, &rcu.gp_lock,
|
---|
1396 | DETECT_SLEEP_MS * 1000, SYNCH_FLAGS_INTERRUPTIBLE);
|
---|
1397 | }
|
---|
1398 |
|
---|
1399 | if (0 < rcu.req_expedited_cnt) {
|
---|
1400 | --rcu.req_expedited_cnt;
|
---|
1401 | /* Update statistic. */
|
---|
1402 | ++rcu.stat_expedited_cnt;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 | spinlock_unlock(&rcu.gp_lock);
|
---|
1406 |
|
---|
1407 | return (ret != ESYNCH_INTERRUPTED);
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | /** Actively interrupts and checks the offending cpus for quiescent states. */
|
---|
1411 | static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask)
|
---|
1412 | {
|
---|
1413 | atomic_set(&rcu.delaying_cpu_cnt, 0);
|
---|
1414 |
|
---|
1415 | sample_cpus(cpu_mask, NULL);
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | /** Invoked on a cpu delaying grace period detection.
|
---|
1419 | *
|
---|
1420 | * Induces a quiescent state for the cpu or it instructs remaining
|
---|
1421 | * readers to notify the detector once they finish.
|
---|
1422 | */
|
---|
1423 | static void sample_local_cpu(void *arg)
|
---|
1424 | {
|
---|
1425 | ASSERT(interrupts_disabled());
|
---|
1426 | ASSERT(!CPU->rcu.is_delaying_gp);
|
---|
1427 |
|
---|
1428 | /* Cpu did not pass a quiescent state yet. */
|
---|
1429 | if (CPU->rcu.last_seen_gp != _rcu_cur_gp) {
|
---|
1430 | /* Interrupted a reader in a reader critical section. */
|
---|
1431 | if (0 < CPU->rcu.nesting_cnt) {
|
---|
1432 | ASSERT(!CPU->idle);
|
---|
1433 | /*
|
---|
1434 | * Note to notify the detector from rcu_read_unlock().
|
---|
1435 | *
|
---|
1436 | * ACCESS_ONCE ensures the compiler writes to is_delaying_gp
|
---|
1437 | * only after it determines that we are in a reader CS.
|
---|
1438 | */
|
---|
1439 | ACCESS_ONCE(CPU->rcu.is_delaying_gp) = true;
|
---|
1440 | CPU->rcu.signal_unlock = true;
|
---|
1441 |
|
---|
1442 | atomic_inc(&rcu.delaying_cpu_cnt);
|
---|
1443 | } else {
|
---|
1444 | /*
|
---|
1445 | * The cpu did not enter any rcu reader sections since
|
---|
1446 | * the start of the current GP. Record a quiescent state.
|
---|
1447 | *
|
---|
1448 | * Or, we interrupted rcu_read_unlock_impl() right before
|
---|
1449 | * it recorded a QS. Record a QS for it. The memory barrier
|
---|
1450 | * contains the reader section's mem accesses before
|
---|
1451 | * updating last_seen_gp.
|
---|
1452 | *
|
---|
1453 | * Or, we interrupted rcu_read_lock() right after it recorded
|
---|
1454 | * a QS for the previous GP but before it got a chance to
|
---|
1455 | * increment its nesting count. The memory barrier again
|
---|
1456 | * stops the CS code from spilling out of the CS.
|
---|
1457 | */
|
---|
1458 | memory_barrier();
|
---|
1459 | CPU->rcu.last_seen_gp = _rcu_cur_gp;
|
---|
1460 | }
|
---|
1461 | } else {
|
---|
1462 | /*
|
---|
1463 | * This cpu already acknowledged that it had passed through
|
---|
1464 | * a quiescent state since the start of cur_gp.
|
---|
1465 | */
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | /*
|
---|
1469 | * smp_call() makes sure any changes propagate back to the caller.
|
---|
1470 | * In particular, it makes the most current last_seen_gp visible
|
---|
1471 | * to the detector.
|
---|
1472 | */
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 | /** Waits for cpus delaying the current grace period if there are any. */
|
---|
1476 | static bool wait_for_delaying_cpus(void)
|
---|
1477 | {
|
---|
1478 | int delaying_cpu_cnt = atomic_get(&rcu.delaying_cpu_cnt);
|
---|
1479 |
|
---|
1480 | for (int i = 0; i < delaying_cpu_cnt; ++i){
|
---|
1481 | if (!semaphore_down_interruptable(&rcu.remaining_readers))
|
---|
1482 | return false;
|
---|
1483 | }
|
---|
1484 |
|
---|
1485 | /* Update statistic. */
|
---|
1486 | rcu.stat_delayed_cnt += delaying_cpu_cnt;
|
---|
1487 |
|
---|
1488 | return true;
|
---|
1489 | }
|
---|
1490 |
|
---|
1491 | /** Called by the scheduler() when switching away from the current thread. */
|
---|
1492 | void rcu_after_thread_ran(void)
|
---|
1493 | {
|
---|
1494 | ASSERT(interrupts_disabled());
|
---|
1495 |
|
---|
1496 | /*
|
---|
1497 | * Prevent NMI handlers from interfering. The detector will be notified
|
---|
1498 | * in this function if CPU->rcu.is_delaying_gp. The current thread is
|
---|
1499 | * no longer running so there is nothing else to signal to the detector.
|
---|
1500 | */
|
---|
1501 | CPU->rcu.signal_unlock = false;
|
---|
1502 | /*
|
---|
1503 | * Separates clearing of .signal_unlock from accesses to
|
---|
1504 | * THREAD->rcu.was_preempted and CPU->rcu.nesting_cnt.
|
---|
1505 | */
|
---|
1506 | compiler_barrier();
|
---|
1507 |
|
---|
1508 | /* Save the thread's nesting count when it is not running. */
|
---|
1509 | THREAD->rcu.nesting_cnt = CPU->rcu.nesting_cnt;
|
---|
1510 |
|
---|
1511 | /* Preempted a reader critical section for the first time. */
|
---|
1512 | if (0 < THREAD->rcu.nesting_cnt && !THREAD->rcu.was_preempted) {
|
---|
1513 | THREAD->rcu.was_preempted = true;
|
---|
1514 | note_preempted_reader();
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | /*
|
---|
1518 | * The preempted reader has been noted globally. There are therefore
|
---|
1519 | * no readers running on this cpu so this is a quiescent state.
|
---|
1520 | */
|
---|
1521 | _rcu_record_qs();
|
---|
1522 |
|
---|
1523 | /*
|
---|
1524 | * Interrupt handlers might use RCU while idle in scheduler().
|
---|
1525 | * The preempted reader has been noted globally, so the handlers
|
---|
1526 | * may now start announcing quiescent states.
|
---|
1527 | */
|
---|
1528 | CPU->rcu.nesting_cnt = 0;
|
---|
1529 |
|
---|
1530 | /*
|
---|
1531 | * This cpu is holding up the current GP. Let the detector know
|
---|
1532 | * it has just passed a quiescent state.
|
---|
1533 | *
|
---|
1534 | * The detector waits separately for preempted readers, so we have
|
---|
1535 | * to notify the detector even if we have just preempted a reader.
|
---|
1536 | */
|
---|
1537 | if (CPU->rcu.is_delaying_gp) {
|
---|
1538 | CPU->rcu.is_delaying_gp = false;
|
---|
1539 | semaphore_up(&rcu.remaining_readers);
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 | /*
|
---|
1543 | * Forcefully associate the detector with the highest priority
|
---|
1544 | * even if preempted due to its time slice running out.
|
---|
1545 | *
|
---|
1546 | * todo: Replace with strict scheduler priority classes.
|
---|
1547 | */
|
---|
1548 | if (THREAD == rcu.detector_thr) {
|
---|
1549 | THREAD->priority = -1;
|
---|
1550 | }
|
---|
1551 | else if (THREAD == CPU->rcu.reclaimer_thr) {
|
---|
1552 | THREAD->priority = -1;
|
---|
1553 | }
|
---|
1554 |
|
---|
1555 | upd_max_cbs_in_slice(CPU->rcu.arriving_cbs_cnt);
|
---|
1556 | }
|
---|
1557 |
|
---|
1558 | /** Called by the scheduler() when switching to a newly scheduled thread. */
|
---|
1559 | void rcu_before_thread_runs(void)
|
---|
1560 | {
|
---|
1561 | ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
|
---|
1562 | ASSERT(0 == CPU->rcu.nesting_cnt);
|
---|
1563 |
|
---|
1564 | /* Load the thread's saved nesting count from before it was preempted. */
|
---|
1565 | CPU->rcu.nesting_cnt = THREAD->rcu.nesting_cnt;
|
---|
1566 |
|
---|
1567 | /*
|
---|
1568 | * Ensures NMI see the proper nesting count before .signal_unlock.
|
---|
1569 | * Otherwise the NMI may incorrectly signal that a preempted reader
|
---|
1570 | * exited its reader section.
|
---|
1571 | */
|
---|
1572 | compiler_barrier();
|
---|
1573 |
|
---|
1574 | /*
|
---|
1575 | * In the unlikely event that a NMI occurs between the loading of the
|
---|
1576 | * variables and setting signal_unlock, the NMI handler may invoke
|
---|
1577 | * rcu_read_unlock() and clear signal_unlock. In that case we will
|
---|
1578 | * incorrectly overwrite signal_unlock from false to true. This event
|
---|
1579 | * is benign and the next rcu_read_unlock() will at worst
|
---|
1580 | * needlessly invoke _rcu_signal_unlock().
|
---|
1581 | */
|
---|
1582 | CPU->rcu.signal_unlock = THREAD->rcu.was_preempted || CPU->rcu.is_delaying_gp;
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 | /** Called from scheduler() when exiting the current thread.
|
---|
1586 | *
|
---|
1587 | * Preemption or interrupts are disabled and the scheduler() already
|
---|
1588 | * switched away from the current thread, calling rcu_after_thread_ran().
|
---|
1589 | */
|
---|
1590 | void rcu_thread_exiting(void)
|
---|
1591 | {
|
---|
1592 | ASSERT(THREAD != NULL);
|
---|
1593 | ASSERT(THREAD->state == Exiting);
|
---|
1594 | ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
|
---|
1595 |
|
---|
1596 | /*
|
---|
1597 | * The thread forgot to exit its reader critical section.
|
---|
1598 | * It is a bug, but rather than letting the entire system lock up
|
---|
1599 | * forcefully leave the reader section. The thread is not holding
|
---|
1600 | * any references anyway since it is exiting so it is safe.
|
---|
1601 | */
|
---|
1602 | if (0 < THREAD->rcu.nesting_cnt) {
|
---|
1603 | THREAD->rcu.nesting_cnt = 1;
|
---|
1604 | read_unlock_impl(&THREAD->rcu.nesting_cnt);
|
---|
1605 |
|
---|
1606 | printf("Bug: thread (id %" PRIu64 " \"%s\") exited while in RCU read"
|
---|
1607 | " section.\n", THREAD->tid, THREAD->name);
|
---|
1608 | }
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 |
|
---|
1612 | #endif /* RCU_PREEMPT_PODZIMEK */
|
---|
1613 |
|
---|
1614 | /** Announces the start of a new grace period for preexisting readers to ack. */
|
---|
1615 | static void start_new_gp(void)
|
---|
1616 | {
|
---|
1617 | ASSERT(spinlock_locked(&rcu.gp_lock));
|
---|
1618 |
|
---|
1619 | irq_spinlock_lock(&rcu.preempt_lock, true);
|
---|
1620 |
|
---|
1621 | /* Start a new GP. Announce to readers that a quiescent state is needed. */
|
---|
1622 | ++_rcu_cur_gp;
|
---|
1623 |
|
---|
1624 | /*
|
---|
1625 | * Readers preempted before the start of this GP (next_preempted)
|
---|
1626 | * are preexisting readers now that a GP started and will hold up
|
---|
1627 | * the current GP until they exit their reader sections.
|
---|
1628 | *
|
---|
1629 | * Preempted readers from the previous GP have finished so
|
---|
1630 | * cur_preempted is empty, but see comment in _rcu_record_qs().
|
---|
1631 | */
|
---|
1632 | list_concat(&rcu.cur_preempted, &rcu.next_preempted);
|
---|
1633 |
|
---|
1634 | irq_spinlock_unlock(&rcu.preempt_lock, true);
|
---|
1635 | }
|
---|
1636 |
|
---|
1637 | /** Remove those cpus from the mask that have already passed a quiescent
|
---|
1638 | * state since the start of the current grace period.
|
---|
1639 | */
|
---|
1640 | static void rm_quiescent_cpus(cpu_mask_t *cpu_mask)
|
---|
1641 | {
|
---|
1642 | /*
|
---|
1643 | * Ensure the announcement of the start of a new GP (ie up-to-date
|
---|
1644 | * cur_gp) propagates to cpus that are just coming out of idle
|
---|
1645 | * mode before we sample their idle state flag.
|
---|
1646 | *
|
---|
1647 | * Cpus guarantee that after they set CPU->idle = true they will not
|
---|
1648 | * execute any RCU reader sections without first setting idle to
|
---|
1649 | * false and issuing a memory barrier. Therefore, if rm_quiescent_cpus()
|
---|
1650 | * later on sees an idle cpu, but the cpu is just exiting its idle mode,
|
---|
1651 | * the cpu must not have yet executed its memory barrier (otherwise
|
---|
1652 | * it would pair up with this mem barrier and we would see idle == false).
|
---|
1653 | * That memory barrier will pair up with the one below and ensure
|
---|
1654 | * that a reader on the now-non-idle cpu will see the most current
|
---|
1655 | * cur_gp. As a result, such a reader will never attempt to semaphore_up(
|
---|
1656 | * pending_readers) during this GP, which allows the detector to
|
---|
1657 | * ignore that cpu (the detector thinks it is idle). Moreover, any
|
---|
1658 | * changes made by RCU updaters will have propagated to readers
|
---|
1659 | * on the previously idle cpu -- again thanks to issuing a memory
|
---|
1660 | * barrier after returning from idle mode.
|
---|
1661 | *
|
---|
1662 | * idle -> non-idle cpu | detector | reclaimer
|
---|
1663 | * ------------------------------------------------------
|
---|
1664 | * rcu reader 1 | | rcu_call()
|
---|
1665 | * MB X | |
|
---|
1666 | * idle = true | | rcu_call()
|
---|
1667 | * (no rcu readers allowed ) | | MB A in advance_cbs()
|
---|
1668 | * MB Y | (...) | (...)
|
---|
1669 | * (no rcu readers allowed) | | MB B in advance_cbs()
|
---|
1670 | * idle = false | ++cur_gp |
|
---|
1671 | * (no rcu readers allowed) | MB C |
|
---|
1672 | * MB Z | signal gp_end |
|
---|
1673 | * rcu reader 2 | | exec_cur_cbs()
|
---|
1674 | *
|
---|
1675 | *
|
---|
1676 | * MB Y orders visibility of changes to idle for detector's sake.
|
---|
1677 | *
|
---|
1678 | * MB Z pairs up with MB C. The cpu making a transition from idle
|
---|
1679 | * will see the most current value of cur_gp and will not attempt
|
---|
1680 | * to notify the detector even if preempted during this GP.
|
---|
1681 | *
|
---|
1682 | * MB Z pairs up with MB A from the previous batch. Updaters' changes
|
---|
1683 | * are visible to reader 2 even when the detector thinks the cpu is idle
|
---|
1684 | * but it is not anymore.
|
---|
1685 | *
|
---|
1686 | * MB X pairs up with MB B. Late mem accesses of reader 1 are contained
|
---|
1687 | * and visible before idling and before any callbacks are executed
|
---|
1688 | * by reclaimers.
|
---|
1689 | *
|
---|
1690 | * In summary, the detector does not know of or wait for reader 2, but
|
---|
1691 | * it does not have to since it is a new reader that will not access
|
---|
1692 | * data from previous GPs and will see any changes.
|
---|
1693 | */
|
---|
1694 | memory_barrier(); /* MB C */
|
---|
1695 |
|
---|
1696 | cpu_mask_for_each(*cpu_mask, cpu_id) {
|
---|
1697 | /*
|
---|
1698 | * The cpu already checked for and passed through a quiescent
|
---|
1699 | * state since the beginning of this GP.
|
---|
1700 | *
|
---|
1701 | * _rcu_cur_gp is modified by local detector thread only.
|
---|
1702 | * Therefore, it is up-to-date even without a lock.
|
---|
1703 | *
|
---|
1704 | * cpu.last_seen_gp may not be up-to-date. At worst, we will
|
---|
1705 | * unnecessarily sample its last_seen_gp with a smp_call.
|
---|
1706 | */
|
---|
1707 | bool cpu_acked_gp = (cpus[cpu_id].rcu.last_seen_gp == _rcu_cur_gp);
|
---|
1708 |
|
---|
1709 | /*
|
---|
1710 | * Either the cpu is idle or it is exiting away from idle mode
|
---|
1711 | * and already sees the most current _rcu_cur_gp. See comment
|
---|
1712 | * in wait_for_readers().
|
---|
1713 | */
|
---|
1714 | bool cpu_idle = cpus[cpu_id].idle;
|
---|
1715 |
|
---|
1716 | if (cpu_acked_gp || cpu_idle) {
|
---|
1717 | cpu_mask_reset(cpu_mask, cpu_id);
|
---|
1718 | }
|
---|
1719 | }
|
---|
1720 | }
|
---|
1721 |
|
---|
1722 | /** Serially invokes sample_local_cpu(arg) on each cpu of reader_cpus. */
|
---|
1723 | static void sample_cpus(cpu_mask_t *reader_cpus, void *arg)
|
---|
1724 | {
|
---|
1725 | cpu_mask_for_each(*reader_cpus, cpu_id) {
|
---|
1726 | smp_call(cpu_id, sample_local_cpu, arg);
|
---|
1727 |
|
---|
1728 | /* Update statistic. */
|
---|
1729 | if (CPU->id != cpu_id)
|
---|
1730 | ++rcu.stat_smp_call_cnt;
|
---|
1731 | }
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 | static void upd_missed_gp_in_wait(rcu_gp_t completed_gp)
|
---|
1735 | {
|
---|
1736 | ASSERT(CPU->rcu.cur_cbs_gp <= completed_gp);
|
---|
1737 |
|
---|
1738 | size_t delta = (size_t)(completed_gp - CPU->rcu.cur_cbs_gp);
|
---|
1739 | CPU->rcu.stat_missed_gp_in_wait += delta;
|
---|
1740 | }
|
---|
1741 |
|
---|
1742 | /** Globally note that the current thread was preempted in a reader section. */
|
---|
1743 | static void note_preempted_reader(void)
|
---|
1744 | {
|
---|
1745 | irq_spinlock_lock(&rcu.preempt_lock, false);
|
---|
1746 |
|
---|
1747 | if (CPU->rcu.last_seen_gp != _rcu_cur_gp) {
|
---|
1748 | /* The reader started before the GP started - we must wait for it.*/
|
---|
1749 | list_append(&THREAD->rcu.preempt_link, &rcu.cur_preempted);
|
---|
1750 | } else {
|
---|
1751 | /*
|
---|
1752 | * The reader started after the GP started and this cpu
|
---|
1753 | * already noted a quiescent state. We might block the next GP.
|
---|
1754 | */
|
---|
1755 | list_append(&THREAD->rcu.preempt_link, &rcu.next_preempted);
|
---|
1756 | }
|
---|
1757 |
|
---|
1758 | irq_spinlock_unlock(&rcu.preempt_lock, false);
|
---|
1759 | }
|
---|
1760 |
|
---|
1761 | /** Remove the current thread from the global list of preempted readers. */
|
---|
1762 | static void rm_preempted_reader(void)
|
---|
1763 | {
|
---|
1764 | irq_spinlock_lock(&rcu.preempt_lock, true);
|
---|
1765 |
|
---|
1766 | ASSERT(link_used(&THREAD->rcu.preempt_link));
|
---|
1767 |
|
---|
1768 | bool prev_empty = list_empty(&rcu.cur_preempted);
|
---|
1769 | list_remove(&THREAD->rcu.preempt_link);
|
---|
1770 | bool now_empty = list_empty(&rcu.cur_preempted);
|
---|
1771 |
|
---|
1772 | /* This was the last reader in cur_preempted. */
|
---|
1773 | bool last_removed = now_empty && !prev_empty;
|
---|
1774 |
|
---|
1775 | /*
|
---|
1776 | * Preempted readers are blocking the detector and
|
---|
1777 | * this was the last reader blocking the current GP.
|
---|
1778 | */
|
---|
1779 | if (last_removed && rcu.preempt_blocking_det) {
|
---|
1780 | rcu.preempt_blocking_det = false;
|
---|
1781 | semaphore_up(&rcu.remaining_readers);
|
---|
1782 | }
|
---|
1783 |
|
---|
1784 | irq_spinlock_unlock(&rcu.preempt_lock, true);
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | /** Waits for any preempted readers blocking this grace period to finish.*/
|
---|
1788 | static bool wait_for_preempt_reader(void)
|
---|
1789 | {
|
---|
1790 | irq_spinlock_lock(&rcu.preempt_lock, true);
|
---|
1791 |
|
---|
1792 | bool reader_exists = !list_empty(&rcu.cur_preempted);
|
---|
1793 | rcu.preempt_blocking_det = reader_exists;
|
---|
1794 |
|
---|
1795 | irq_spinlock_unlock(&rcu.preempt_lock, true);
|
---|
1796 |
|
---|
1797 | if (reader_exists) {
|
---|
1798 | /* Update statistic. */
|
---|
1799 | ++rcu.stat_preempt_blocking_cnt;
|
---|
1800 |
|
---|
1801 | return semaphore_down_interruptable(&rcu.remaining_readers);
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | return true;
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 | static void upd_max_cbs_in_slice(size_t arriving_cbs_cnt)
|
---|
1808 | {
|
---|
1809 | rcu_cpu_data_t *cr = &CPU->rcu;
|
---|
1810 |
|
---|
1811 | if (arriving_cbs_cnt > cr->last_arriving_cnt) {
|
---|
1812 | size_t arrived_cnt = arriving_cbs_cnt - cr->last_arriving_cnt;
|
---|
1813 | cr->stat_max_slice_cbs = max(arrived_cnt, cr->stat_max_slice_cbs);
|
---|
1814 | }
|
---|
1815 |
|
---|
1816 | cr->last_arriving_cnt = arriving_cbs_cnt;
|
---|
1817 | }
|
---|
1818 |
|
---|
1819 | /** Prints RCU run-time statistics. */
|
---|
1820 | void rcu_print_stat(void)
|
---|
1821 | {
|
---|
1822 | /*
|
---|
1823 | * Don't take locks. Worst case is we get out-dated values.
|
---|
1824 | * CPU local values are updated without any locks, so there
|
---|
1825 | * are no locks to lock in order to get up-to-date values.
|
---|
1826 | */
|
---|
1827 |
|
---|
1828 | #ifdef RCU_PREEMPT_PODZIMEK
|
---|
1829 | const char *algo = "podzimek-preempt-rcu";
|
---|
1830 | #elif defined(RCU_PREEMPT_A)
|
---|
1831 | const char *algo = "a-preempt-rcu";
|
---|
1832 | #endif
|
---|
1833 |
|
---|
1834 | printf("Config: expedite_threshold=%d, critical_threshold=%d,"
|
---|
1835 | " detect_sleep=%dms, %s\n",
|
---|
1836 | EXPEDITE_THRESHOLD, CRITICAL_THRESHOLD, DETECT_SLEEP_MS, algo);
|
---|
1837 | printf("Completed GPs: %" PRIu64 "\n", rcu.completed_gp);
|
---|
1838 | printf("Expedited GPs: %zu\n", rcu.stat_expedited_cnt);
|
---|
1839 | printf("Delayed GPs: %zu (cpus w/ still running readers after gp sleep)\n",
|
---|
1840 | rcu.stat_delayed_cnt);
|
---|
1841 | printf("Preempt blocked GPs: %zu (waited for preempted readers; "
|
---|
1842 | "running or not)\n", rcu.stat_preempt_blocking_cnt);
|
---|
1843 | printf("Smp calls: %zu\n", rcu.stat_smp_call_cnt);
|
---|
1844 |
|
---|
1845 | printf("Max arrived callbacks per GP and CPU:\n");
|
---|
1846 | for (unsigned int i = 0; i < config.cpu_count; ++i) {
|
---|
1847 | printf(" %zu", cpus[i].rcu.stat_max_cbs);
|
---|
1848 | }
|
---|
1849 |
|
---|
1850 | printf("\nAvg arrived callbacks per GP and CPU (nonempty batches only):\n");
|
---|
1851 | for (unsigned int i = 0; i < config.cpu_count; ++i) {
|
---|
1852 | printf(" %zu", cpus[i].rcu.stat_avg_cbs);
|
---|
1853 | }
|
---|
1854 |
|
---|
1855 | printf("\nMax arrived callbacks per time slice and CPU:\n");
|
---|
1856 | for (unsigned int i = 0; i < config.cpu_count; ++i) {
|
---|
1857 | printf(" %zu", cpus[i].rcu.stat_max_slice_cbs);
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | printf("\nMissed GP notifications per CPU:\n");
|
---|
1861 | for (unsigned int i = 0; i < config.cpu_count; ++i) {
|
---|
1862 | printf(" %zu", cpus[i].rcu.stat_missed_gps);
|
---|
1863 | }
|
---|
1864 |
|
---|
1865 | printf("\nMissed GP notifications per CPU while waking up:\n");
|
---|
1866 | for (unsigned int i = 0; i < config.cpu_count; ++i) {
|
---|
1867 | printf(" %zu", cpus[i].rcu.stat_missed_gp_in_wait);
|
---|
1868 | }
|
---|
1869 | printf("\n");
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 | /** @}
|
---|
1873 | */
|
---|