source: mainline/kernel/generic/src/synch/rcu.c@ 4a6da62

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 4a6da62 was 4a6da62, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

rcu: Added rcu_read_locked().

  • Property mode set to 100644
File size: 41.5 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29
30/** @addtogroup sync
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Preemptible read-copy update. Usable from interrupt handlers.
37 */
38
39#include <synch/rcu.h>
40#include <synch/condvar.h>
41#include <synch/semaphore.h>
42#include <synch/spinlock.h>
43#include <proc/thread.h>
44#include <cpu/cpu_mask.h>
45#include <cpu.h>
46#include <smp/smp_call.h>
47#include <compiler/barrier.h>
48#include <atomic.h>
49#include <arch.h>
50#include <macros.h>
51
52/*
53 * Number of milliseconds to give to preexisting readers to finish
54 * when non-expedited grace period detection is in progress.
55 */
56#define DETECT_SLEEP_MS 10
57/*
58 * Max number of pending callbacks in the local cpu's queue before
59 * aggressively expediting the current grace period
60 */
61#define EXPEDITE_THRESHOLD 2000
62/*
63 * Max number of callbacks to execute in one go with preemption
64 * enabled. If there are more callbacks to be executed they will
65 * be run with preemption disabled in order to prolong reclaimer's
66 * time slice and give it a chance to catch up with callback producers.
67 */
68#define CRITICAL_THRESHOLD 30000
69/* Half the number of values a uint32 can hold. */
70#define UINT32_MAX_HALF 2147483648U
71
72
73/** Global RCU data. */
74typedef struct rcu_data {
75 /** Detector uses so signal reclaimers that a grace period ended. */
76 condvar_t gp_ended;
77 /** Reclaimers notify the detector when they request more grace periods.*/
78 condvar_t req_gp_changed;
79 /** Reclaimers use to notify the detector to accelerate GP detection. */
80 condvar_t expedite_now;
81 /**
82 * The detector waits on this semaphore for any readers delaying the GP.
83 *
84 * Each of the cpus with readers that are delaying the current GP
85 * must up() this sema once they reach a quiescent state. If there
86 * are any readers in cur_preempted (ie preempted preexisting) and
87 * they are already delaying GP detection, the last to unlock its
88 * reader section must up() this sema once.
89 */
90 semaphore_t remaining_readers;
91
92 /** Protects the 4 fields below. */
93 SPINLOCK_DECLARE(gp_lock);
94 /** Number of grace period ends the detector was requested to announce. */
95 size_t req_gp_end_cnt;
96 /** Number of consecutive grace periods to detect quickly and aggressively.*/
97 size_t req_expedited_cnt;
98 /**
99 * The current grace period number. Increases monotonically.
100 * Lock gp_lock or preempt_lock to get a current value.
101 */
102 rcu_gp_t cur_gp;
103 /**
104 * The number of the most recently completed grace period.
105 * At most one behind cur_gp. If equal to cur_gp, a grace
106 * period detection is not in progress and the detector
107 * is idle.
108 */
109 rcu_gp_t completed_gp;
110
111 /** Protects the following 3 fields. */
112 IRQ_SPINLOCK_DECLARE(preempt_lock);
113 /** Preexisting readers that have been preempted. */
114 list_t cur_preempted;
115 /** Reader that have been preempted and might delay the next grace period.*/
116 list_t next_preempted;
117 /**
118 * The detector is waiting for the last preempted reader
119 * in cur_preempted to announce that it exited its reader
120 * section by up()ing remaining_readers.
121 */
122 bool preempt_blocking_det;
123
124 /**
125 * Number of cpus with readers that are delaying the current GP.
126 * They will up() remaining_readers.
127 */
128 atomic_t delaying_cpu_cnt;
129
130 /** Interruptible attached detector thread pointer. */
131 thread_t *detector_thr;
132
133 /* Some statistics. */
134 size_t stat_expedited_cnt;
135 size_t stat_delayed_cnt;
136 size_t stat_preempt_blocking_cnt;
137 /* Does not contain self/local calls. */
138 size_t stat_smp_call_cnt;
139} rcu_data_t;
140
141
142static rcu_data_t rcu;
143
144static void start_detector(void);
145static void start_reclaimers(void);
146static void rcu_read_unlock_impl(size_t *pnesting_cnt);
147static void synch_complete(rcu_item_t *rcu_item);
148static void check_qs(void);
149static void record_qs(void);
150static void signal_read_unlock(void);
151static bool arriving_cbs_empty(void);
152static bool next_cbs_empty(void);
153static bool cur_cbs_empty(void);
154static bool all_cbs_empty(void);
155static void reclaimer(void *arg);
156static bool wait_for_pending_cbs(void);
157static bool advance_cbs(void);
158static void exec_completed_cbs(rcu_gp_t last_completed_gp);
159static void exec_cbs(rcu_item_t **phead);
160static void req_detection(size_t req_cnt);
161static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *last_completed_gp);
162static void upd_missed_gp_in_wait(rcu_gp_t completed_gp);
163static bool cv_wait_for_gp(rcu_gp_t wait_on_gp);
164static void detector(void *);
165static bool wait_for_detect_req(void);
166static void start_new_gp(void);
167static void end_cur_gp(void);
168static bool wait_for_readers(void);
169static void rm_quiescent_cpus(cpu_mask_t *cpu_mask);
170static bool gp_sleep(void);
171static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask);
172static void sample_local_cpu(void *);
173static bool wait_for_delaying_cpus(void);
174static bool wait_for_preempt_reader(void);
175static void upd_max_cbs_in_slice(void);
176
177
178
179/** Initializes global RCU structures. */
180void rcu_init(void)
181{
182 condvar_initialize(&rcu.gp_ended);
183 condvar_initialize(&rcu.req_gp_changed);
184 condvar_initialize(&rcu.expedite_now);
185 semaphore_initialize(&rcu.remaining_readers, 0);
186
187 spinlock_initialize(&rcu.gp_lock, "rcu.gp_lock");
188 rcu.req_gp_end_cnt = 0;
189 rcu.req_expedited_cnt = 0;
190 rcu.cur_gp = 0;
191 rcu.completed_gp = 0;
192
193 irq_spinlock_initialize(&rcu.preempt_lock, "rcu.preempt_lock");
194 list_initialize(&rcu.cur_preempted);
195 list_initialize(&rcu.next_preempted);
196 rcu.preempt_blocking_det = false;
197
198 atomic_set(&rcu.delaying_cpu_cnt, 0);
199
200 rcu.detector_thr = 0;
201
202 rcu.stat_expedited_cnt = 0;
203 rcu.stat_delayed_cnt = 0;
204 rcu.stat_preempt_blocking_cnt = 0;
205 rcu.stat_smp_call_cnt = 0;
206}
207
208/** Initializes per-CPU RCU data. If on the boot cpu inits global data too.*/
209void rcu_cpu_init(void)
210{
211 if (config.cpu_active == 1) {
212 rcu_init();
213 }
214
215 CPU->rcu.last_seen_gp = 0;
216
217 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
218 CPU->rcu.tmp_nesting_cnt = 0;
219
220 CPU->rcu.cur_cbs = 0;
221 CPU->rcu.cur_cbs_cnt = 0;
222 CPU->rcu.next_cbs = 0;
223 CPU->rcu.next_cbs_cnt = 0;
224 CPU->rcu.arriving_cbs = 0;
225 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
226 CPU->rcu.arriving_cbs_cnt = 0;
227
228 CPU->rcu.cur_cbs_gp = 0;
229 CPU->rcu.next_cbs_gp = 0;
230
231 CPU->rcu.is_delaying_gp = false;
232
233 semaphore_initialize(&CPU->rcu.arrived_flag, 0);
234
235 /* BSP creates reclaimer threads before AP's rcu_cpu_init() runs. */
236 if (config.cpu_active == 1)
237 CPU->rcu.reclaimer_thr = 0;
238
239 CPU->rcu.stat_max_cbs = 0;
240 CPU->rcu.stat_avg_cbs = 0;
241 CPU->rcu.stat_missed_gps = 0;
242 CPU->rcu.stat_missed_gp_in_wait = 0;
243 CPU->rcu.stat_max_slice_cbs = 0;
244 CPU->rcu.last_arriving_cnt = 0;
245}
246
247/** Completes RCU init. Creates and runs the detector and reclaimer threads.*/
248void rcu_kinit_init(void)
249{
250 start_detector();
251 start_reclaimers();
252}
253
254/** Initializes any per-thread RCU structures. */
255void rcu_thread_init(thread_t *thread)
256{
257 thread->rcu.nesting_cnt = 0;
258 thread->rcu.was_preempted = false;
259 link_initialize(&thread->rcu.preempt_link);
260}
261
262/** Called from scheduler() when exiting the current thread.
263 *
264 * Preemption or interrupts are disabled and the scheduler() already
265 * switched away from the current thread, calling rcu_after_thread_ran().
266 */
267void rcu_thread_exiting(void)
268{
269 ASSERT(THREAD != 0);
270 ASSERT(THREAD->state == Exiting);
271 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
272 /*
273 * The scheduler() must have already switched to a temporary
274 * nesting counter for interrupt handlers (we could be idle)
275 * so that interrupt handlers do not modify the exiting thread's
276 * reader section nesting count while we examine/process it.
277 */
278 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
279
280 /*
281 * The thread forgot to exit its reader critical secion.
282 * It is a bug, but rather than letting the entire system lock up
283 * forcefully leave the reader section. The thread is not holding
284 * any references anyway since it is exiting so it is safe.
285 */
286 if (0 < THREAD->rcu.nesting_cnt) {
287 THREAD->rcu.nesting_cnt = 1;
288 rcu_read_unlock_impl(&THREAD->rcu.nesting_cnt);
289 }
290}
291
292/** Cleans up global RCU resources and stops dispatching callbacks.
293 *
294 * Call when shutting down the kernel. Outstanding callbacks will
295 * not be processed. Instead they will linger forever.
296 */
297void rcu_stop(void)
298{
299 /* todo: stop accepting new callbacks instead of just letting them linger?*/
300
301 /* Stop and wait for reclaimers. */
302 for (unsigned int cpu_id = 0; cpu_id < config.cpu_active; ++cpu_id) {
303 ASSERT(cpus[cpu_id].rcu.reclaimer_thr != 0);
304
305 if (cpus[cpu_id].rcu.reclaimer_thr) {
306 thread_interrupt(cpus[cpu_id].rcu.reclaimer_thr);
307 thread_join(cpus[cpu_id].rcu.reclaimer_thr);
308 thread_detach(cpus[cpu_id].rcu.reclaimer_thr);
309 cpus[cpu_id].rcu.reclaimer_thr = 0;
310 }
311 }
312
313 /* Stop the detector and wait. */
314 if (rcu.detector_thr) {
315 thread_interrupt(rcu.detector_thr);
316 thread_join(rcu.detector_thr);
317 thread_detach(rcu.detector_thr);
318 rcu.detector_thr = 0;
319 }
320}
321
322/** Starts the detector thread. */
323static void start_detector(void)
324{
325 rcu.detector_thr =
326 thread_create(detector, 0, TASK, THREAD_FLAG_NONE, "rcu-det");
327
328 if (!rcu.detector_thr)
329 panic("Failed to create RCU detector thread.");
330
331 thread_ready(rcu.detector_thr);
332}
333
334/** Creates and runs cpu-bound reclaimer threads. */
335static void start_reclaimers(void)
336{
337 for (unsigned int cpu_id = 0; cpu_id < config.cpu_count; ++cpu_id) {
338 char name[THREAD_NAME_BUFLEN] = {0};
339
340 snprintf(name, THREAD_NAME_BUFLEN - 1, "rcu-rec/%u", cpu_id);
341
342 cpus[cpu_id].rcu.reclaimer_thr =
343 thread_create(reclaimer, 0, TASK, THREAD_FLAG_NONE, name);
344
345 if (!cpus[cpu_id].rcu.reclaimer_thr)
346 panic("Failed to create RCU reclaimer thread on cpu%u.", cpu_id);
347
348 thread_wire(cpus[cpu_id].rcu.reclaimer_thr, &cpus[cpu_id]);
349 thread_ready(cpus[cpu_id].rcu.reclaimer_thr);
350 }
351}
352
353/** Returns the number of elapsed grace periods since boot. */
354uint64_t rcu_completed_gps(void)
355{
356 spinlock_lock(&rcu.gp_lock);
357 uint64_t completed = rcu.completed_gp;
358 spinlock_unlock(&rcu.gp_lock);
359
360 return completed;
361}
362
363/** Delimits the start of an RCU reader critical section.
364 *
365 * Reader sections may be nested and are preemptable. You must not
366 * however block/sleep within reader sections.
367 */
368void rcu_read_lock(void)
369{
370 ASSERT(CPU);
371 preemption_disable();
372
373 check_qs();
374 ++(*CPU->rcu.pnesting_cnt);
375
376 preemption_enable();
377}
378
379/** Delimits the end of an RCU reader critical section. */
380void rcu_read_unlock(void)
381{
382 ASSERT(CPU);
383 preemption_disable();
384
385 rcu_read_unlock_impl(CPU->rcu.pnesting_cnt);
386
387 preemption_enable();
388}
389
390/** Returns true if in an rcu reader section. */
391bool rcu_read_locked(void)
392{
393 preemption_disable();
394 bool locked = 0 < *CPU->rcu.pnesting_cnt;
395 preemption_enable();
396
397 return locked;
398}
399
400/** Unlocks the local reader section using the given nesting count.
401 *
402 * Preemption or interrupts must be disabled.
403 *
404 * @param pnesting_cnt Either &CPU->rcu.tmp_nesting_cnt or
405 * THREAD->rcu.nesting_cnt.
406 */
407static void rcu_read_unlock_impl(size_t *pnesting_cnt)
408{
409 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
410
411 if (0 == --(*pnesting_cnt)) {
412 record_qs();
413
414 /*
415 * The thread was preempted while in a critical section or
416 * the detector is eagerly waiting for this cpu's reader
417 * to finish.
418 *
419 * Note that THREAD may be 0 in scheduler() and not just during boot.
420 */
421 if ((THREAD && THREAD->rcu.was_preempted) || CPU->rcu.is_delaying_gp) {
422 /* Rechecks with disabled interrupts. */
423 signal_read_unlock();
424 }
425 }
426}
427
428/** Records a QS if not in a reader critical section. */
429static void check_qs(void)
430{
431 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
432
433 if (0 == *CPU->rcu.pnesting_cnt)
434 record_qs();
435}
436
437/** Unconditionally records a quiescent state for the local cpu. */
438static void record_qs(void)
439{
440 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
441
442 /*
443 * A new GP was started since the last time we passed a QS.
444 * Notify the detector we have reached a new QS.
445 */
446 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
447 rcu_gp_t cur_gp = ACCESS_ONCE(rcu.cur_gp);
448 /*
449 * Contain memory accesses within a reader critical section.
450 * If we are in rcu_lock() it also makes changes prior to the
451 * start of the GP visible in the reader section.
452 */
453 memory_barrier();
454 /*
455 * Acknowledge we passed a QS since the beginning of rcu.cur_gp.
456 * Cache coherency will lazily transport the value to the
457 * detector while it sleeps in gp_sleep().
458 *
459 * Note that there is a theoretical possibility that we
460 * overwrite a more recent/greater last_seen_gp here with
461 * an older/smaller value. If this cpu is interrupted here
462 * while in rcu_lock() reader sections in the interrupt handler
463 * will update last_seen_gp to the same value as is currently
464 * in local cur_gp. However, if the cpu continues processing
465 * interrupts and the detector starts a new GP immediately,
466 * local interrupt handlers may update last_seen_gp again (ie
467 * properly ack the new GP) with a value greater than local cur_gp.
468 * Resetting last_seen_gp to a previous value here is however
469 * benign and we only have to remember that this reader may end up
470 * in cur_preempted even after the GP ends. That is why we
471 * append next_preempted to cur_preempted rather than overwriting
472 * it as if cur_preempted were empty.
473 */
474 CPU->rcu.last_seen_gp = cur_gp;
475 }
476}
477
478/** If necessary, signals the detector that we exited a reader section. */
479static void signal_read_unlock(void)
480{
481 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
482
483 /*
484 * We have to disable interrupts in order to make checking
485 * and resetting was_preempted and is_delaying_gp atomic
486 * with respect to local interrupt handlers. Otherwise
487 * an interrupt could beat us to calling semaphore_up()
488 * before we reset the appropriate flag.
489 */
490 ipl_t ipl = interrupts_disable();
491
492 /*
493 * If the detector is eagerly waiting for this cpu's reader to unlock,
494 * notify it that the reader did so.
495 */
496 if (CPU->rcu.is_delaying_gp) {
497 CPU->rcu.is_delaying_gp = false;
498 semaphore_up(&rcu.remaining_readers);
499 }
500
501 /*
502 * This reader was preempted while in a reader section.
503 * We might be holding up the current GP. Notify the
504 * detector if so.
505 */
506 if (THREAD && THREAD->rcu.was_preempted) {
507 ASSERT(link_used(&THREAD->rcu.preempt_link));
508 THREAD->rcu.was_preempted = false;
509
510 irq_spinlock_lock(&rcu.preempt_lock, false);
511
512 bool prev_empty = list_empty(&rcu.cur_preempted);
513 list_remove(&THREAD->rcu.preempt_link);
514 bool now_empty = list_empty(&rcu.cur_preempted);
515
516 /* This was the last reader in cur_preempted. */
517 bool last_removed = now_empty && !prev_empty;
518
519 /*
520 * Preempted readers are blocking the detector and
521 * this was the last reader blocking the current GP.
522 */
523 if (last_removed && rcu.preempt_blocking_det) {
524 rcu.preempt_blocking_det = false;
525 semaphore_up(&rcu.remaining_readers);
526 }
527
528 irq_spinlock_unlock(&rcu.preempt_lock, false);
529 }
530 interrupts_restore(ipl);
531}
532
533typedef struct synch_item {
534 waitq_t wq;
535 rcu_item_t rcu_item;
536} synch_item_t;
537
538/** Blocks until all preexisting readers exit their critical sections. */
539void rcu_synchronize(void)
540{
541 /* Calling from a reader section will deadlock. */
542 ASSERT(THREAD == 0 || 0 == THREAD->rcu.nesting_cnt);
543
544 synch_item_t completion;
545
546 waitq_initialize(&completion.wq);
547 rcu_call(&completion.rcu_item, synch_complete);
548 waitq_sleep(&completion.wq);
549 waitq_complete_wakeup(&completion.wq);
550}
551
552/** rcu_synchronize's callback. */
553static void synch_complete(rcu_item_t *rcu_item)
554{
555 synch_item_t *completion = member_to_inst(rcu_item, synch_item_t, rcu_item);
556 ASSERT(completion);
557 waitq_wakeup(&completion->wq, WAKEUP_FIRST);
558}
559
560/** Adds a callback to invoke after all preexisting readers finish.
561 *
562 * May be called from within interrupt handlers or RCU reader sections.
563 *
564 * @param rcu_item Used by RCU to track the call. Must remain
565 * until the user callback function is entered.
566 * @param func User callback function that will be invoked once a full
567 * grace period elapsed, ie at a time when all preexisting
568 * readers have finished. The callback should be short and must
569 * not block. If you must sleep, enqueue your work in the system
570 * work queue from the callback (ie workq_global_enqueue()).
571 */
572void rcu_call(rcu_item_t *rcu_item, rcu_func_t func)
573{
574 _rcu_call(false, rcu_item, func);
575}
576
577/** rcu_call() implementation. See rcu_call() for comments. */
578void _rcu_call(bool expedite, rcu_item_t *rcu_item, rcu_func_t func)
579{
580 ASSERT(rcu_item);
581
582 rcu_item->func = func;
583 rcu_item->next = 0;
584
585 preemption_disable();
586
587 ipl_t ipl = interrupts_disable();
588
589 *CPU->rcu.parriving_cbs_tail = rcu_item;
590 CPU->rcu.parriving_cbs_tail = &rcu_item->next;
591
592 size_t cnt = ++CPU->rcu.arriving_cbs_cnt;
593 interrupts_restore(ipl);
594
595 if (expedite) {
596 CPU->rcu.expedite_arriving = true;
597 }
598
599 /* Added first callback - notify the reclaimer. */
600 if (cnt == 1 && !semaphore_count_get(&CPU->rcu.arrived_flag)) {
601 semaphore_up(&CPU->rcu.arrived_flag);
602 }
603
604 preemption_enable();
605}
606
607static bool cur_cbs_empty(void)
608{
609 ASSERT(THREAD && THREAD->wired);
610 return 0 == CPU->rcu.cur_cbs;
611}
612
613static bool next_cbs_empty(void)
614{
615 ASSERT(THREAD && THREAD->wired);
616 return 0 == CPU->rcu.next_cbs;
617}
618
619/** Disable interrupts to get an up-to-date result. */
620static bool arriving_cbs_empty(void)
621{
622 ASSERT(THREAD && THREAD->wired);
623 /*
624 * Accessing with interrupts enabled may at worst lead to
625 * a false negative if we race with a local interrupt handler.
626 */
627 return 0 == CPU->rcu.arriving_cbs;
628}
629
630static bool all_cbs_empty(void)
631{
632 return cur_cbs_empty() && next_cbs_empty() && arriving_cbs_empty();
633}
634
635/** Reclaimer thread dispatches locally queued callbacks once a GP ends. */
636static void reclaimer(void *arg)
637{
638 ASSERT(THREAD && THREAD->wired);
639 ASSERT(THREAD == CPU->rcu.reclaimer_thr);
640
641 rcu_gp_t last_compl_gp = 0;
642 bool ok = true;
643
644 while (ok && wait_for_pending_cbs()) {
645 ASSERT(CPU->rcu.reclaimer_thr == THREAD);
646
647 exec_completed_cbs(last_compl_gp);
648
649 bool expedite = advance_cbs();
650
651 ok = wait_for_cur_cbs_gp_end(expedite, &last_compl_gp);
652 }
653}
654
655/** Waits until there are callbacks waiting to be dispatched. */
656static bool wait_for_pending_cbs(void)
657{
658 if (!all_cbs_empty())
659 return true;
660
661 bool ok = true;
662
663 while (arriving_cbs_empty() && ok) {
664 ok = semaphore_down_interruptable(&CPU->rcu.arrived_flag);
665 }
666
667 return ok;
668}
669
670static void upd_stat_missed_gp(rcu_gp_t compl)
671{
672 if (CPU->rcu.cur_cbs_gp < compl) {
673 CPU->rcu.stat_missed_gps += (size_t)(compl - CPU->rcu.cur_cbs_gp);
674 }
675}
676
677/** Executes all callbacks for the given completed grace period. */
678static void exec_completed_cbs(rcu_gp_t last_completed_gp)
679{
680 upd_stat_missed_gp(last_completed_gp);
681
682 /* Both next_cbs and cur_cbs GP elapsed. */
683 if (CPU->rcu.next_cbs_gp <= last_completed_gp) {
684 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
685
686 size_t exec_cnt = CPU->rcu.cur_cbs_cnt + CPU->rcu.next_cbs_cnt;
687
688 if (exec_cnt < CRITICAL_THRESHOLD) {
689 exec_cbs(&CPU->rcu.cur_cbs);
690 exec_cbs(&CPU->rcu.next_cbs);
691 } else {
692 /*
693 * Getting overwhelmed with too many callbacks to run.
694 * Disable preemption in order to prolong our time slice
695 * and catch up with updaters posting new callbacks.
696 */
697 preemption_disable();
698 exec_cbs(&CPU->rcu.cur_cbs);
699 exec_cbs(&CPU->rcu.next_cbs);
700 preemption_enable();
701 }
702
703 CPU->rcu.cur_cbs_cnt = 0;
704 CPU->rcu.next_cbs_cnt = 0;
705 } else if (CPU->rcu.cur_cbs_gp <= last_completed_gp) {
706
707 if (CPU->rcu.cur_cbs_cnt < CRITICAL_THRESHOLD) {
708 exec_cbs(&CPU->rcu.cur_cbs);
709 } else {
710 /*
711 * Getting overwhelmed with too many callbacks to run.
712 * Disable preemption in order to prolong our time slice
713 * and catch up with updaters posting new callbacks.
714 */
715 preemption_disable();
716 exec_cbs(&CPU->rcu.cur_cbs);
717 preemption_enable();
718 }
719
720 CPU->rcu.cur_cbs_cnt = 0;
721 }
722}
723
724/** Executes callbacks in the single-linked list. The list is left empty. */
725static void exec_cbs(rcu_item_t **phead)
726{
727 rcu_item_t *rcu_item = *phead;
728
729 while (rcu_item) {
730 /* func() may free rcu_item. Get a local copy. */
731 rcu_item_t *next = rcu_item->next;
732 rcu_func_t func = rcu_item->func;
733
734 func(rcu_item);
735
736 rcu_item = next;
737 }
738
739 *phead = 0;
740}
741
742static void upd_stat_cb_cnts(size_t arriving_cnt)
743{
744 CPU->rcu.stat_max_cbs = max(arriving_cnt, CPU->rcu.stat_max_cbs);
745 if (0 < arriving_cnt) {
746 CPU->rcu.stat_avg_cbs =
747 (99 * CPU->rcu.stat_avg_cbs + 1 * arriving_cnt) / 100;
748 }
749}
750
751
752/** Prepares another batch of callbacks to dispatch at the nest grace period.
753 *
754 * @return True if the next batch of callbacks must be expedited quickly.
755 */
756static bool advance_cbs(void)
757{
758 /* Move next_cbs to cur_cbs. */
759 CPU->rcu.cur_cbs = CPU->rcu.next_cbs;
760 CPU->rcu.cur_cbs_cnt = CPU->rcu.next_cbs_cnt;
761 CPU->rcu.cur_cbs_gp = CPU->rcu.next_cbs_gp;
762
763 /* Move arriving_cbs to next_cbs. Empties arriving_cbs. */
764 ipl_t ipl = interrupts_disable();
765
766 /*
767 * Too many callbacks queued. Better speed up the detection
768 * or risk exhausting all system memory.
769 */
770 bool expedite = (EXPEDITE_THRESHOLD < CPU->rcu.arriving_cbs_cnt)
771 || CPU->rcu.expedite_arriving;
772
773 CPU->rcu.expedite_arriving = false;
774
775 CPU->rcu.next_cbs = CPU->rcu.arriving_cbs;
776 CPU->rcu.next_cbs_cnt = CPU->rcu.arriving_cbs_cnt;
777
778 CPU->rcu.arriving_cbs = 0;
779 CPU->rcu.parriving_cbs_tail = &CPU->rcu.arriving_cbs;
780 CPU->rcu.arriving_cbs_cnt = 0;
781
782 interrupts_restore(ipl);
783
784 /* Update statistics of arrived callbacks. */
785 upd_stat_cb_cnts(CPU->rcu.next_cbs_cnt);
786
787 /*
788 * Make changes prior to queuing next_cbs visible to readers.
789 * See comment in wait_for_readers().
790 */
791 memory_barrier(); /* MB A, B */
792
793 /* At the end of next_cbs_gp, exec next_cbs. Determine what GP that is. */
794
795 if (!next_cbs_empty()) {
796 spinlock_lock(&rcu.gp_lock);
797
798 /* Exec next_cbs at the end of the next GP. */
799 CPU->rcu.next_cbs_gp = rcu.cur_gp + 1;
800
801 /*
802 * There are no callbacks to invoke before next_cbs. Instruct
803 * wait_for_cur_cbs_gp() to notify us of the nearest GP end.
804 * That could be sooner than next_cbs_gp (if the current GP
805 * had not yet completed), so we'll create a shorter batch
806 * of callbacks next time around.
807 */
808 if (cur_cbs_empty()) {
809 CPU->rcu.cur_cbs_gp = rcu.completed_gp + 1;
810 }
811
812 spinlock_unlock(&rcu.gp_lock);
813 } else {
814 CPU->rcu.next_cbs_gp = CPU->rcu.cur_cbs_gp;
815 }
816
817 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
818
819 return expedite;
820}
821
822/** Waits for the grace period associated with callbacks cub_cbs to elapse.
823 *
824 * @param expedite Instructs the detector to aggressively speed up grace
825 * period detection without any delay.
826 * @param completed_gp Returns the most recent completed grace period
827 * number.
828 * @return false if the thread was interrupted and should stop.
829 */
830static bool wait_for_cur_cbs_gp_end(bool expedite, rcu_gp_t *completed_gp)
831{
832 /*
833 * Use a possibly outdated version of completed_gp to bypass checking
834 * with the lock.
835 *
836 * Note that loading and storing rcu.completed_gp is not atomic
837 * (it is 64bit wide). Reading a clobbered value that is less than
838 * rcu.completed_gp is harmless - we'll recheck with a lock. The
839 * only way to read a clobbered value that is greater than the actual
840 * value is if the detector increases the higher-order word first and
841 * then decreases the lower-order word (or we see stores in that order),
842 * eg when incrementing from 2^32 - 1 to 2^32. The loaded value
843 * suddenly jumps by 2^32. It would take hours for such an increase
844 * to occur so it is safe to discard the value. We allow increases
845 * of up to half the maximum to generously accommodate for loading an
846 * outdated lower word.
847 */
848 rcu_gp_t compl_gp = ACCESS_ONCE(rcu.completed_gp);
849 if (CPU->rcu.cur_cbs_gp <= compl_gp
850 && compl_gp <= CPU->rcu.cur_cbs_gp + UINT32_MAX_HALF) {
851 *completed_gp = compl_gp;
852 return true;
853 }
854
855 spinlock_lock(&rcu.gp_lock);
856
857 if (CPU->rcu.cur_cbs_gp <= rcu.completed_gp) {
858 *completed_gp = rcu.completed_gp;
859 spinlock_unlock(&rcu.gp_lock);
860 return true;
861 }
862
863 ASSERT(CPU->rcu.cur_cbs_gp <= CPU->rcu.next_cbs_gp);
864 ASSERT(rcu.cur_gp <= CPU->rcu.cur_cbs_gp);
865
866 /*
867 * Notify the detector of how many GP ends we intend to wait for, so
868 * it can avoid going to sleep unnecessarily. Optimistically assume
869 * new callbacks will arrive while we're waiting; hence +1.
870 */
871 size_t remaining_gp_ends = (size_t) (CPU->rcu.next_cbs_gp - rcu.cur_gp);
872 req_detection(remaining_gp_ends + (arriving_cbs_empty() ? 0 : 1));
873
874 /*
875 * Ask the detector to speed up GP detection if there are too many
876 * pending callbacks and other reclaimers have not already done so.
877 */
878 if (expedite) {
879 if(0 == rcu.req_expedited_cnt)
880 condvar_signal(&rcu.expedite_now);
881
882 /*
883 * Expedite only cub_cbs. If there really is a surge of callbacks
884 * the arriving batch will expedite the GP for the huge number
885 * of callbacks currently in next_cbs
886 */
887 rcu.req_expedited_cnt = 1;
888 }
889
890 /* Wait for cur_cbs_gp to end. */
891 bool interrupted = cv_wait_for_gp(CPU->rcu.cur_cbs_gp);
892
893 *completed_gp = rcu.completed_gp;
894 spinlock_unlock(&rcu.gp_lock);
895
896 upd_missed_gp_in_wait(*completed_gp);
897
898 return !interrupted;
899}
900
901static void upd_missed_gp_in_wait(rcu_gp_t completed_gp)
902{
903 ASSERT(CPU->rcu.cur_cbs_gp <= completed_gp);
904
905 size_t delta = (size_t)(completed_gp - CPU->rcu.cur_cbs_gp);
906 CPU->rcu.stat_missed_gp_in_wait += delta;
907}
908
909
910/** Requests the detector to detect at least req_cnt consecutive grace periods.*/
911static void req_detection(size_t req_cnt)
912{
913 if (rcu.req_gp_end_cnt < req_cnt) {
914 bool detector_idle = (0 == rcu.req_gp_end_cnt);
915 rcu.req_gp_end_cnt = req_cnt;
916
917 if (detector_idle) {
918 ASSERT(rcu.cur_gp == rcu.completed_gp);
919 condvar_signal(&rcu.req_gp_changed);
920 }
921 }
922}
923
924/** Waits for an announcement of the end of the grace period wait_on_gp. */
925static bool cv_wait_for_gp(rcu_gp_t wait_on_gp)
926{
927 ASSERT(spinlock_locked(&rcu.gp_lock));
928
929 bool interrupted = false;
930
931 /* Wait until wait_on_gp ends. */
932 while (rcu.completed_gp < wait_on_gp && !interrupted) {
933 int ret = _condvar_wait_timeout_spinlock(&rcu.gp_ended, &rcu.gp_lock,
934 SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
935 interrupted = (ret == ESYNCH_INTERRUPTED);
936 }
937
938 ASSERT(wait_on_gp <= rcu.completed_gp);
939
940 return interrupted;
941}
942
943/** The detector thread detects and notifies reclaimers of grace period ends. */
944static void detector(void *arg)
945{
946 spinlock_lock(&rcu.gp_lock);
947
948 while (wait_for_detect_req()) {
949 /*
950 * Announce new GP started. Readers start lazily acknowledging that
951 * they passed a QS.
952 */
953 start_new_gp();
954
955 spinlock_unlock(&rcu.gp_lock);
956
957 if (!wait_for_readers())
958 goto unlocked_out;
959
960 spinlock_lock(&rcu.gp_lock);
961
962 /* Notify reclaimers that they may now invoke queued callbacks. */
963 end_cur_gp();
964 }
965
966 spinlock_unlock(&rcu.gp_lock);
967
968unlocked_out:
969 return;
970}
971
972/** Waits for a request from a reclaimer thread to detect a grace period. */
973static bool wait_for_detect_req(void)
974{
975 ASSERT(spinlock_locked(&rcu.gp_lock));
976
977 bool interrupted = false;
978
979 while (0 == rcu.req_gp_end_cnt && !interrupted) {
980 int ret = _condvar_wait_timeout_spinlock(&rcu.req_gp_changed,
981 &rcu.gp_lock, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_INTERRUPTIBLE);
982
983 interrupted = (ret == ESYNCH_INTERRUPTED);
984 }
985
986 return !interrupted;
987}
988
989/** Announces the start of a new grace period for preexisting readers to ack. */
990static void start_new_gp(void)
991{
992 ASSERT(spinlock_locked(&rcu.gp_lock));
993
994 irq_spinlock_lock(&rcu.preempt_lock, true);
995
996 /* Start a new GP. Announce to readers that a quiescent state is needed. */
997 ++rcu.cur_gp;
998
999 /*
1000 * Readers preempted before the start of this GP (next_preempted)
1001 * are preexisting readers now that a GP started and will hold up
1002 * the current GP until they exit their reader sections.
1003 *
1004 * Preempted readers from the previous GP have finished so
1005 * cur_preempted is empty, but see comment in record_qs().
1006 */
1007 list_concat(&rcu.cur_preempted, &rcu.next_preempted);
1008
1009 irq_spinlock_unlock(&rcu.preempt_lock, true);
1010}
1011
1012static void end_cur_gp(void)
1013{
1014 ASSERT(spinlock_locked(&rcu.gp_lock));
1015
1016 rcu.completed_gp = rcu.cur_gp;
1017 --rcu.req_gp_end_cnt;
1018
1019 condvar_broadcast(&rcu.gp_ended);
1020}
1021
1022/** Waits for readers that started before the current GP started to finish. */
1023static bool wait_for_readers(void)
1024{
1025 DEFINE_CPU_MASK(reading_cpus);
1026
1027 /* All running cpus have potential readers. */
1028 cpu_mask_active(reading_cpus);
1029
1030 /*
1031 * Ensure the announcement of the start of a new GP (ie up-to-date
1032 * cur_gp) propagates to cpus that are just coming out of idle
1033 * mode before we sample their idle state flag.
1034 *
1035 * Cpus guarantee that after they set CPU->idle = true they will not
1036 * execute any RCU reader sections without first setting idle to
1037 * false and issuing a memory barrier. Therefore, if rm_quiescent_cpus()
1038 * later on sees an idle cpu, but the cpu is just exiting its idle mode,
1039 * the cpu must not have yet executed its memory barrier (otherwise
1040 * it would pair up with this mem barrier and we would see idle == false).
1041 * That memory barrier will pair up with the one below and ensure
1042 * that a reader on the now-non-idle cpu will see the most current
1043 * cur_gp. As a result, such a reader will never attempt to semaphore_up(
1044 * pending_readers) during this GP, which allows the detector to
1045 * ignore that cpu (the detector thinks it is idle). Moreover, any
1046 * changes made by RCU updaters will have propagated to readers
1047 * on the previously idle cpu -- again thanks to issuing a memory
1048 * barrier after returning from idle mode.
1049 *
1050 * idle -> non-idle cpu | detector | reclaimer
1051 * ------------------------------------------------------
1052 * rcu reader 1 | | rcu_call()
1053 * MB X | |
1054 * idle = true | | rcu_call()
1055 * (no rcu readers allowed ) | | MB A in advance_cbs()
1056 * MB Y | (...) | (...)
1057 * (no rcu readers allowed) | | MB B in advance_cbs()
1058 * idle = false | ++cur_gp |
1059 * (no rcu readers allowed) | MB C |
1060 * MB Z | signal gp_end |
1061 * rcu reader 2 | | exec_cur_cbs()
1062 *
1063 *
1064 * MB Y orders visibility of changes to idle for detector's sake.
1065 *
1066 * MB Z pairs up with MB C. The cpu making a transition from idle
1067 * will see the most current value of cur_gp and will not attempt
1068 * to notify the detector even if preempted during this GP.
1069 *
1070 * MB Z pairs up with MB A from the previous batch. Updaters' changes
1071 * are visible to reader 2 even when the detector thinks the cpu is idle
1072 * but it is not anymore.
1073 *
1074 * MB X pairs up with MB B. Late mem accesses of reader 1 are contained
1075 * and visible before idling and before any callbacks are executed
1076 * by reclaimers.
1077 *
1078 * In summary, the detector does not know of or wait for reader 2, but
1079 * it does not have to since it is a new reader that will not access
1080 * data from previous GPs and will see any changes.
1081 */
1082 memory_barrier(); /* MB C */
1083
1084 /*
1085 * Give readers time to pass through a QS. Also, batch arriving
1086 * callbacks in order to amortize detection overhead.
1087 */
1088 if (!gp_sleep())
1089 return false;
1090
1091 /* Non-intrusively determine which cpus have yet to pass a QS. */
1092 rm_quiescent_cpus(reading_cpus);
1093
1094 /* Actively interrupt cpus delaying the current GP and demand a QS. */
1095 interrupt_delaying_cpus(reading_cpus);
1096
1097 /* Wait for the interrupted cpus to notify us that they reached a QS. */
1098 if (!wait_for_delaying_cpus())
1099 return false;
1100 /*
1101 * All cpus recorded a QS or are still idle. Any new readers will be added
1102 * to next_preempt if preempted, ie the number of readers in cur_preempted
1103 * monotonically descreases.
1104 */
1105
1106 /* Wait for the last reader in cur_preempted to notify us it is done. */
1107 if (!wait_for_preempt_reader())
1108 return false;
1109
1110 return true;
1111}
1112
1113/** Remove those cpus from the mask that have already passed a quiescent
1114 * state since the start of the current grace period.
1115 */
1116static void rm_quiescent_cpus(cpu_mask_t *cpu_mask)
1117{
1118 cpu_mask_for_each(*cpu_mask, cpu_id) {
1119 /*
1120 * The cpu already checked for and passed through a quiescent
1121 * state since the beginning of this GP.
1122 *
1123 * rcu.cur_gp is modified by local detector thread only.
1124 * Therefore, it is up-to-date even without a lock.
1125 */
1126 bool cpu_acked_gp = (cpus[cpu_id].rcu.last_seen_gp == rcu.cur_gp);
1127
1128 /*
1129 * Either the cpu is idle or it is exiting away from idle mode
1130 * and already sees the most current rcu.cur_gp. See comment
1131 * in wait_for_readers().
1132 */
1133 bool cpu_idle = cpus[cpu_id].idle;
1134
1135 if (cpu_acked_gp || cpu_idle) {
1136 cpu_mask_reset(cpu_mask, cpu_id);
1137 }
1138 }
1139}
1140
1141/** Sleeps a while if the current grace period is not to be expedited. */
1142static bool gp_sleep(void)
1143{
1144 spinlock_lock(&rcu.gp_lock);
1145
1146 int ret = 0;
1147 while (0 == rcu.req_expedited_cnt && 0 == ret) {
1148 /* minor bug: sleeps for the same duration if woken up spuriously. */
1149 ret = _condvar_wait_timeout_spinlock(&rcu.expedite_now, &rcu.gp_lock,
1150 DETECT_SLEEP_MS * 1000, SYNCH_FLAGS_INTERRUPTIBLE);
1151 }
1152
1153 if (0 < rcu.req_expedited_cnt) {
1154 --rcu.req_expedited_cnt;
1155 /* Update statistic. */
1156 ++rcu.stat_expedited_cnt;
1157 }
1158
1159 spinlock_unlock(&rcu.gp_lock);
1160
1161 return (ret != ESYNCH_INTERRUPTED);
1162}
1163
1164/** Actively interrupts and checks the offending cpus for quiescent states. */
1165static void interrupt_delaying_cpus(cpu_mask_t *cpu_mask)
1166{
1167 const size_t max_conconcurrent_calls = 16;
1168 smp_call_t call[max_conconcurrent_calls];
1169 size_t outstanding_calls = 0;
1170
1171 atomic_set(&rcu.delaying_cpu_cnt, 0);
1172
1173 cpu_mask_for_each(*cpu_mask, cpu_id) {
1174 smp_call_async(cpu_id, sample_local_cpu, 0, &call[outstanding_calls]);
1175 ++outstanding_calls;
1176
1177 /* Update statistic. */
1178 if (CPU->id != cpu_id)
1179 ++rcu.stat_smp_call_cnt;
1180
1181 if (outstanding_calls == max_conconcurrent_calls) {
1182 for (size_t k = 0; k < outstanding_calls; ++k) {
1183 smp_call_wait(&call[k]);
1184 }
1185
1186 outstanding_calls = 0;
1187 }
1188 }
1189
1190 for (size_t k = 0; k < outstanding_calls; ++k) {
1191 smp_call_wait(&call[k]);
1192 }
1193}
1194
1195/** Invoked on a cpu delaying grace period detection.
1196 *
1197 * Induces a quiescent state for the cpu or it instructs remaining
1198 * readers to notify the detector once they finish.
1199 */
1200static void sample_local_cpu(void *arg)
1201{
1202 ASSERT(interrupts_disabled());
1203 ASSERT(!CPU->rcu.is_delaying_gp);
1204
1205 /* Cpu did not pass a quiescent state yet. */
1206 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1207 /* Interrupted a reader in a reader critical section. */
1208 if (0 < (*CPU->rcu.pnesting_cnt)) {
1209 ASSERT(!CPU->idle);
1210 /* Note to notify the detector from rcu_read_unlock(). */
1211 CPU->rcu.is_delaying_gp = true;
1212 atomic_inc(&rcu.delaying_cpu_cnt);
1213 } else {
1214 /*
1215 * The cpu did not enter any rcu reader sections since
1216 * the start of the current GP. Record a quiescent state.
1217 *
1218 * Or, we interrupted rcu_read_unlock_impl() right before
1219 * it recorded a QS. Record a QS for it. The memory barrier
1220 * contains the reader section's mem accesses before
1221 * updating last_seen_gp.
1222 *
1223 * Or, we interrupted rcu_read_lock() right after it recorded
1224 * a QS for the previous GP but before it got a chance to
1225 * increment its nesting count. The memory barrier again
1226 * stops the CS code from spilling out of the CS.
1227 */
1228 memory_barrier();
1229 CPU->rcu.last_seen_gp = rcu.cur_gp;
1230 }
1231 } else {
1232 /*
1233 * This cpu already acknowledged that it had passed through
1234 * a quiescent state since the start of cur_gp.
1235 */
1236 }
1237
1238 /*
1239 * smp_call() makes sure any changes propagate back to the caller.
1240 * In particular, it makes the most current last_seen_gp visible
1241 * to the detector.
1242 */
1243}
1244
1245/** Waits for cpus delaying the current grace period if there are any. */
1246static bool wait_for_delaying_cpus(void)
1247{
1248 int delaying_cpu_cnt = atomic_get(&rcu.delaying_cpu_cnt);
1249
1250 for (int i = 0; i < delaying_cpu_cnt; ++i){
1251 if (!semaphore_down_interruptable(&rcu.remaining_readers))
1252 return false;
1253 }
1254
1255 /* Update statistic. */
1256 rcu.stat_delayed_cnt += delaying_cpu_cnt;
1257
1258 return true;
1259}
1260
1261/** Waits for any preempted readers blocking this grace period to finish.*/
1262static bool wait_for_preempt_reader(void)
1263{
1264 irq_spinlock_lock(&rcu.preempt_lock, true);
1265
1266 bool reader_exists = !list_empty(&rcu.cur_preempted);
1267 rcu.preempt_blocking_det = reader_exists;
1268
1269 irq_spinlock_unlock(&rcu.preempt_lock, true);
1270
1271 if (reader_exists) {
1272 /* Update statistic. */
1273 ++rcu.stat_preempt_blocking_cnt;
1274
1275 return semaphore_down_interruptable(&rcu.remaining_readers);
1276 }
1277
1278 return true;
1279}
1280
1281/** Called by the scheduler() when switching away from the current thread. */
1282void rcu_after_thread_ran(void)
1283{
1284 ASSERT(interrupts_disabled());
1285 ASSERT(CPU->rcu.pnesting_cnt == &THREAD->rcu.nesting_cnt);
1286
1287 /* Preempted a reader critical section for the first time. */
1288 if (0 < THREAD->rcu.nesting_cnt && !THREAD->rcu.was_preempted) {
1289 THREAD->rcu.was_preempted = true;
1290
1291 irq_spinlock_lock(&rcu.preempt_lock, false);
1292
1293 if (CPU->rcu.last_seen_gp != rcu.cur_gp) {
1294 /* The reader started before the GP started - we must wait for it.*/
1295 list_append(&THREAD->rcu.preempt_link, &rcu.cur_preempted);
1296 } else {
1297 /*
1298 * The reader started after the GP started and this cpu
1299 * already noted a quiescent state. We might block the next GP.
1300 */
1301 list_append(&THREAD->rcu.preempt_link, &rcu.next_preempted);
1302 }
1303
1304 irq_spinlock_unlock(&rcu.preempt_lock, false);
1305 }
1306
1307 /*
1308 * The preempted reader has been noted globally. There are therefore
1309 * no readers running on this cpu so this is a quiescent state.
1310 */
1311 record_qs();
1312
1313 /*
1314 * This cpu is holding up the current GP. Let the detector know
1315 * it has just passed a quiescent state.
1316 *
1317 * The detector waits separately for preempted readers, so we have
1318 * to notify the detector even if we have just preempted a reader.
1319 */
1320 if (CPU->rcu.is_delaying_gp) {
1321 CPU->rcu.is_delaying_gp = false;
1322 semaphore_up(&rcu.remaining_readers);
1323 }
1324
1325 /*
1326 * After this point THREAD is 0 and stays 0 until the scheduler()
1327 * switches to a new thread. Use a temporary nesting counter for readers
1328 * in handlers of interrupts that are raised while idle in the scheduler.
1329 */
1330 CPU->rcu.pnesting_cnt = &CPU->rcu.tmp_nesting_cnt;
1331
1332 /*
1333 * Forcefully associate the detector with the highest priority
1334 * even if preempted due to its time slice running out.
1335 *
1336 * todo: Replace with strict scheduler priority classes.
1337 */
1338 if (THREAD == rcu.detector_thr) {
1339 THREAD->priority = -1;
1340 }
1341 else if (THREAD == CPU->rcu.reclaimer_thr) {
1342 THREAD->priority = -1;
1343 }
1344
1345 upd_max_cbs_in_slice();
1346}
1347
1348static void upd_max_cbs_in_slice(void)
1349{
1350 rcu_cpu_data_t *cr = &CPU->rcu;
1351
1352 if (cr->arriving_cbs_cnt > cr->last_arriving_cnt) {
1353 size_t arrived_cnt = cr->arriving_cbs_cnt - cr->last_arriving_cnt;
1354 cr->stat_max_slice_cbs = max(arrived_cnt, cr->stat_max_slice_cbs);
1355 }
1356
1357 cr->last_arriving_cnt = cr->arriving_cbs_cnt;
1358}
1359
1360/** Called by the scheduler() when switching to a newly scheduled thread. */
1361void rcu_before_thread_runs(void)
1362{
1363 ASSERT(PREEMPTION_DISABLED || interrupts_disabled());
1364 ASSERT(&CPU->rcu.tmp_nesting_cnt == CPU->rcu.pnesting_cnt);
1365
1366 CPU->rcu.pnesting_cnt = &THREAD->rcu.nesting_cnt;
1367}
1368
1369
1370/** Prints RCU run-time statistics. */
1371void rcu_print_stat(void)
1372{
1373 /*
1374 * Don't take locks. Worst case is we get out-dated values.
1375 * CPU local values are updated without any locks, so there
1376 * are no locks to lock in order to get up-to-date values.
1377 */
1378
1379 printf("Configuration: expedite_threshold=%d, critical_threshold=%d,"
1380 " detect_sleep=%dms\n",
1381 EXPEDITE_THRESHOLD, CRITICAL_THRESHOLD, DETECT_SLEEP_MS);
1382 printf("Completed GPs: %" PRIu64 "\n", rcu.completed_gp);
1383 printf("Expedited GPs: %zu\n", rcu.stat_expedited_cnt);
1384 printf("Delayed GPs: %zu (cpus w/ still running readers after gp sleep)\n",
1385 rcu.stat_delayed_cnt);
1386 printf("Preempt blocked GPs: %zu (waited for preempted readers; "
1387 "running or not)\n", rcu.stat_preempt_blocking_cnt);
1388 printf("Smp calls: %zu\n", rcu.stat_smp_call_cnt);
1389
1390 printf("Max arrived callbacks per GP and CPU:\n");
1391 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1392 printf(" %zu", cpus[i].rcu.stat_max_cbs);
1393 }
1394
1395 printf("\nAvg arrived callbacks per GP and CPU (nonempty batches only):\n");
1396 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1397 printf(" %zu", cpus[i].rcu.stat_avg_cbs);
1398 }
1399
1400 printf("\nMax arrived callbacks per time slice and CPU:\n");
1401 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1402 printf(" %zu", cpus[i].rcu.stat_max_slice_cbs);
1403 }
1404
1405 printf("\nMissed GP notifications per CPU:\n");
1406 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1407 printf(" %zu", cpus[i].rcu.stat_missed_gps);
1408 }
1409
1410 printf("\nMissed GP notifications per CPU while waking up:\n");
1411 for (unsigned int i = 0; i < config.cpu_count; ++i) {
1412 printf(" %zu", cpus[i].rcu.stat_missed_gp_in_wait);
1413 }
1414 printf("\n");
1415}
1416
1417/** @}
1418 */
Note: See TracBrowser for help on using the repository browser.