source: mainline/kernel/generic/src/proc/thread.c@ a3d87b9

Last change on this file since a3d87b9 was a3d87b9, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 17 months ago

We don't need to check thread state to wait for thread exit

  • Property mode set to 100644
File size: 26.7 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2018 Jiri Svoboda
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_proc
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Thread management functions.
37 */
38
39#include <assert.h>
40#include <proc/scheduler.h>
41#include <proc/thread.h>
42#include <proc/task.h>
43#include <mm/frame.h>
44#include <mm/page.h>
45#include <arch/asm.h>
46#include <arch/cycle.h>
47#include <arch.h>
48#include <synch/spinlock.h>
49#include <synch/waitq.h>
50#include <synch/syswaitq.h>
51#include <cpu.h>
52#include <str.h>
53#include <context.h>
54#include <adt/list.h>
55#include <adt/odict.h>
56#include <time/clock.h>
57#include <time/timeout.h>
58#include <time/delay.h>
59#include <config.h>
60#include <arch/interrupt.h>
61#include <smp/ipi.h>
62#include <atomic.h>
63#include <memw.h>
64#include <stdio.h>
65#include <stdlib.h>
66#include <main/uinit.h>
67#include <syscall/copy.h>
68#include <errno.h>
69#include <debug.h>
70#include <halt.h>
71
72/** Thread states */
73const char *thread_states[] = {
74 "Invalid",
75 "Running",
76 "Sleeping",
77 "Ready",
78 "Entering",
79 "Exiting",
80 "Lingering"
81};
82
83/** Lock protecting the @c threads ordered dictionary .
84 *
85 * For locking rules, see declaration thereof.
86 */
87IRQ_SPINLOCK_INITIALIZE(threads_lock);
88
89/** Ordered dictionary of all threads by their address (i.e. pointer to
90 * the thread_t structure).
91 *
92 * When a thread is found in the @c threads ordered dictionary, it is
93 * guaranteed to exist as long as the @c threads_lock is held.
94 *
95 * Members are of type thread_t.
96 *
97 * This structure contains weak references. Any reference from it must not leave
98 * threads_lock critical section unless strengthened via thread_try_ref().
99 */
100odict_t threads;
101
102IRQ_SPINLOCK_STATIC_INITIALIZE(tidlock);
103static thread_id_t last_tid = 0;
104
105static slab_cache_t *thread_cache;
106
107static void *threads_getkey(odlink_t *);
108static int threads_cmp(void *, void *);
109
110/** Initialization and allocation for thread_t structure
111 *
112 */
113static errno_t thr_constructor(void *obj, unsigned int kmflags)
114{
115 thread_t *thread = (thread_t *) obj;
116
117 irq_spinlock_initialize(&thread->lock, "thread_t_lock");
118 link_initialize(&thread->rq_link);
119 link_initialize(&thread->wq_link);
120 link_initialize(&thread->th_link);
121
122 /* call the architecture-specific part of the constructor */
123 thr_constructor_arch(thread);
124
125 /*
126 * Allocate the kernel stack from the low-memory to prevent an infinite
127 * nesting of TLB-misses when accessing the stack from the part of the
128 * TLB-miss handler written in C.
129 *
130 * Note that low-memory is safe to be used for the stack as it will be
131 * covered by the kernel identity mapping, which guarantees not to
132 * nest TLB-misses infinitely (either via some hardware mechanism or
133 * by the construction of the assembly-language part of the TLB-miss
134 * handler).
135 *
136 * This restriction can be lifted once each architecture provides
137 * a similar guarantee, for example, by locking the kernel stack
138 * in the TLB whenever it is allocated from the high-memory and the
139 * thread is being scheduled to run.
140 */
141 kmflags |= FRAME_LOWMEM;
142 kmflags &= ~FRAME_HIGHMEM;
143
144 /*
145 * NOTE: All kernel stacks must be aligned to STACK_SIZE,
146 * see CURRENT.
147 */
148
149 uintptr_t stack_phys =
150 frame_alloc(STACK_FRAMES, kmflags, STACK_SIZE - 1);
151 if (!stack_phys)
152 return ENOMEM;
153
154 thread->kstack = (uint8_t *) PA2KA(stack_phys);
155
156#ifdef CONFIG_UDEBUG
157 mutex_initialize(&thread->udebug.lock, MUTEX_PASSIVE);
158#endif
159
160 return EOK;
161}
162
163/** Destruction of thread_t object */
164static size_t thr_destructor(void *obj)
165{
166 thread_t *thread = (thread_t *) obj;
167
168 /* call the architecture-specific part of the destructor */
169 thr_destructor_arch(thread);
170
171 frame_free(KA2PA(thread->kstack), STACK_FRAMES);
172
173 return STACK_FRAMES; /* number of frames freed */
174}
175
176/** Initialize threads
177 *
178 * Initialize kernel threads support.
179 *
180 */
181void thread_init(void)
182{
183 THREAD = NULL;
184
185 atomic_store(&nrdy, 0);
186 thread_cache = slab_cache_create("thread_t", sizeof(thread_t), _Alignof(thread_t),
187 thr_constructor, thr_destructor, 0);
188
189 odict_initialize(&threads, threads_getkey, threads_cmp);
190}
191
192/** Wire thread to the given CPU
193 *
194 * @param cpu CPU to wire the thread to.
195 *
196 */
197void thread_wire(thread_t *thread, cpu_t *cpu)
198{
199 irq_spinlock_lock(&thread->lock, true);
200 atomic_set_unordered(&thread->cpu, cpu);
201 thread->nomigrate++;
202 irq_spinlock_unlock(&thread->lock, true);
203}
204
205/** Start a thread that wasn't started yet since it was created.
206 *
207 * @param thread A reference to the newly created thread.
208 */
209void thread_start(thread_t *thread)
210{
211 assert(atomic_get_unordered(&thread->state) == Entering);
212 thread_requeue_sleeping(thread_ref(thread));
213}
214
215/** Create new thread
216 *
217 * Create a new thread.
218 *
219 * @param func Thread's implementing function.
220 * @param arg Thread's implementing function argument.
221 * @param task Task to which the thread belongs. The caller must
222 * guarantee that the task won't cease to exist during the
223 * call. The task's lock may not be held.
224 * @param flags Thread flags.
225 * @param name Symbolic name (a copy is made).
226 *
227 * @return New thread's structure on success, NULL on failure.
228 *
229 */
230thread_t *thread_create(void (*func)(void *), void *arg, task_t *task,
231 thread_flags_t flags, const char *name)
232{
233 thread_t *thread = (thread_t *) slab_alloc(thread_cache, FRAME_ATOMIC);
234 if (!thread)
235 return NULL;
236
237 refcount_init(&thread->refcount);
238
239 if (thread_create_arch(thread, flags) != EOK) {
240 slab_free(thread_cache, thread);
241 return NULL;
242 }
243
244 /* Not needed, but good for debugging */
245 memsetb(thread->kstack, STACK_SIZE, 0);
246
247 irq_spinlock_lock(&tidlock, true);
248 thread->tid = ++last_tid;
249 irq_spinlock_unlock(&tidlock, true);
250
251 context_create(&thread->saved_context, thread_main_func,
252 thread->kstack, STACK_SIZE);
253
254 current_initialize((current_t *) thread->kstack);
255
256 str_cpy(thread->name, THREAD_NAME_BUFLEN, name);
257
258 thread->thread_code = func;
259 thread->thread_arg = arg;
260 thread->ucycles = ATOMIC_TIME_INITIALIZER();
261 thread->kcycles = ATOMIC_TIME_INITIALIZER();
262 thread->uncounted =
263 ((flags & THREAD_FLAG_UNCOUNTED) == THREAD_FLAG_UNCOUNTED);
264 atomic_init(&thread->priority, 0);
265 atomic_init(&thread->cpu, NULL);
266 thread->stolen = false;
267 thread->uspace =
268 ((flags & THREAD_FLAG_USPACE) == THREAD_FLAG_USPACE);
269
270 thread->nomigrate = 0;
271 atomic_init(&thread->state, Entering);
272
273 atomic_init(&thread->sleep_queue, NULL);
274
275 thread->in_copy_from_uspace = false;
276 thread->in_copy_to_uspace = false;
277
278 thread->interrupted = false;
279 atomic_init(&thread->sleep_state, SLEEP_INITIAL);
280
281 waitq_initialize(&thread->join_wq);
282
283 thread->task = task;
284
285 thread->fpu_context_exists = false;
286
287 odlink_initialize(&thread->lthreads);
288
289#ifdef CONFIG_UDEBUG
290 /* Initialize debugging stuff */
291 atomic_init(&thread->btrace, false);
292 udebug_thread_initialize(&thread->udebug);
293#endif
294
295 if ((flags & THREAD_FLAG_NOATTACH) != THREAD_FLAG_NOATTACH)
296 thread_attach(thread, task);
297
298 return thread;
299}
300
301/** Destroy thread memory structure
302 *
303 * Detach thread from all queues, cpus etc. and destroy it.
304 *
305 * @param obj Thread to be destroyed.
306 *
307 */
308static void thread_destroy(void *obj)
309{
310 thread_t *thread = (thread_t *) obj;
311
312 assert_link_not_used(&thread->rq_link);
313 assert_link_not_used(&thread->wq_link);
314
315 assert(thread->task);
316
317 ipl_t ipl = interrupts_disable();
318
319 /* Remove thread from global list. */
320 irq_spinlock_lock(&threads_lock, false);
321 odict_remove(&thread->lthreads);
322 irq_spinlock_unlock(&threads_lock, false);
323
324 /* Remove thread from task's list and accumulate accounting. */
325 irq_spinlock_lock(&thread->task->lock, false);
326
327 list_remove(&thread->th_link);
328
329 /*
330 * No other CPU has access to this thread anymore, so we don't need
331 * thread->lock for accessing thread's fields after this point.
332 */
333
334 if (!thread->uncounted) {
335 thread->task->ucycles += atomic_time_read(&thread->ucycles);
336 thread->task->kcycles += atomic_time_read(&thread->kcycles);
337 }
338
339 irq_spinlock_unlock(&thread->task->lock, false);
340
341 assert((atomic_get_unordered(&thread->state) == Exiting) || (atomic_get_unordered(&thread->state) == Lingering));
342
343 /* Clear cpu->fpu_owner if set to this thread. */
344#ifdef CONFIG_FPU_LAZY
345 cpu_t *cpu = atomic_get_unordered(&thread->cpu);
346 if (cpu) {
347 /*
348 * We need to lock for this because the old CPU can concurrently try
349 * to dump this thread's FPU state, in which case we need to wait for
350 * it to finish. An atomic compare-and-swap wouldn't be enough.
351 */
352 irq_spinlock_lock(&cpu->fpu_lock, false);
353
354 if (atomic_get_unordered(&cpu->fpu_owner) == thread)
355 atomic_set_unordered(&cpu->fpu_owner, NULL);
356
357 irq_spinlock_unlock(&cpu->fpu_lock, false);
358 }
359#endif
360
361 interrupts_restore(ipl);
362
363 /*
364 * Drop the reference to the containing task.
365 */
366 task_release(thread->task);
367 thread->task = NULL;
368
369 slab_free(thread_cache, thread);
370}
371
372void thread_put(thread_t *thread)
373{
374 if (refcount_down(&thread->refcount)) {
375 thread_destroy(thread);
376 }
377}
378
379/** Make the thread visible to the system.
380 *
381 * Attach the thread structure to the current task and make it visible in the
382 * threads_tree.
383 *
384 * @param t Thread to be attached to the task.
385 * @param task Task to which the thread is to be attached.
386 *
387 */
388void thread_attach(thread_t *thread, task_t *task)
389{
390 ipl_t ipl = interrupts_disable();
391
392 /*
393 * Attach to the specified task.
394 */
395 irq_spinlock_lock(&task->lock, false);
396
397 /* Hold a reference to the task. */
398 task_hold(task);
399
400 /* Must not count kbox thread into lifecount */
401 if (thread->uspace)
402 atomic_inc(&task->lifecount);
403
404 list_append(&thread->th_link, &task->threads);
405
406 irq_spinlock_unlock(&task->lock, false);
407
408 /*
409 * Register this thread in the system-wide dictionary.
410 */
411 irq_spinlock_lock(&threads_lock, false);
412 odict_insert(&thread->lthreads, &threads, NULL);
413 irq_spinlock_unlock(&threads_lock, false);
414
415 interrupts_restore(ipl);
416}
417
418/** Terminate thread.
419 *
420 * End current thread execution and switch it to the exiting state.
421 * All pending timeouts are executed.
422 *
423 */
424void thread_exit(void)
425{
426 if (THREAD->uspace) {
427#ifdef CONFIG_UDEBUG
428 /* Generate udebug THREAD_E event */
429 udebug_thread_e_event();
430
431 /*
432 * This thread will not execute any code or system calls from
433 * now on.
434 */
435 udebug_stoppable_begin();
436#endif
437 if (atomic_predec(&TASK->lifecount) == 0) {
438 /*
439 * We are the last userspace thread in the task that
440 * still has not exited. With the exception of the
441 * moment the task was created, new userspace threads
442 * can only be created by threads of the same task.
443 * We are safe to perform cleanup.
444 *
445 */
446 ipc_cleanup();
447 sys_waitq_task_cleanup();
448 LOG("Cleanup of task %" PRIu64 " completed.", TASK->taskid);
449 }
450 }
451
452 scheduler_enter(Exiting);
453 unreachable();
454}
455
456/** Interrupts an existing thread so that it may exit as soon as possible.
457 *
458 * Threads that are blocked waiting for a synchronization primitive
459 * are woken up with a return code of EINTR if the
460 * blocking call was interruptable. See waitq_sleep_timeout().
461 *
462 * Interrupted threads automatically exit when returning back to user space.
463 *
464 * @param thread A valid thread object.
465 */
466void thread_interrupt(thread_t *thread)
467{
468 assert(thread != NULL);
469 thread->interrupted = true;
470 thread_wakeup(thread);
471}
472
473/** Prepare for putting the thread to sleep.
474 *
475 * @returns whether the thread is currently terminating. If THREAD_OK
476 * is returned, the thread is guaranteed to be woken up instantly if the thread
477 * is terminated at any time between this function's return and
478 * thread_wait_finish(). If THREAD_TERMINATING is returned, the thread can still
479 * go to sleep, but doing so will delay termination.
480 */
481thread_termination_state_t thread_wait_start(void)
482{
483 assert(THREAD != NULL);
484
485 /*
486 * This is an exchange rather than a store so that we can use the acquire
487 * semantics, which is needed to ensure that code after this operation sees
488 * memory ops made before thread_wakeup() in other thread, if that wakeup
489 * was reset by this operation.
490 *
491 * In particular, we need this to ensure we can't miss the thread being
492 * terminated concurrently with a synchronization primitive preparing to
493 * sleep.
494 */
495 (void) atomic_exchange_explicit(&THREAD->sleep_state, SLEEP_INITIAL,
496 memory_order_acquire);
497
498 return THREAD->interrupted ? THREAD_TERMINATING : THREAD_OK;
499}
500
501static void thread_wait_timeout_callback(void *arg)
502{
503 thread_wakeup(arg);
504}
505
506/**
507 * Suspends this thread's execution until thread_wakeup() is called on it,
508 * or deadline is reached.
509 *
510 * The way this would normally be used is that the current thread call
511 * thread_wait_start(), and if interruption has not been signaled, stores
512 * a reference to itself in a synchronized structure (such as waitq).
513 * After that, it releases any spinlocks it might hold and calls this function.
514 *
515 * The thread doing the wakeup will acquire the thread's reference from said
516 * synchronized structure and calls thread_wakeup() on it.
517 *
518 * Notably, there can be more than one thread performing wakeup.
519 * The number of performed calls to thread_wakeup(), or their relative
520 * ordering with thread_wait_finish(), does not matter. However, calls to
521 * thread_wakeup() are expected to be synchronized with thread_wait_start()
522 * with which they are associated, otherwise wakeups may be missed.
523 * However, the operation of thread_wakeup() is defined at any time,
524 * synchronization notwithstanding (in the sense of C un/defined behavior),
525 * and is in fact used to interrupt waiting threads by external events.
526 * The waiting thread must operate correctly in face of spurious wakeups,
527 * and clean up its reference in the synchronization structure if necessary.
528 *
529 * Returns THREAD_WAIT_TIMEOUT if timeout fired, which is a necessary condition
530 * for it to have been waken up by the timeout, but the caller must assume
531 * that proper wakeups, timeouts and interrupts may occur concurrently, so
532 * the fact timeout has been registered does not necessarily mean the thread
533 * has not been woken up or interrupted.
534 */
535thread_wait_result_t thread_wait_finish(deadline_t deadline)
536{
537 assert(THREAD != NULL);
538
539 timeout_t timeout;
540
541 /* Extra check to avoid going to scheduler if we don't need to. */
542 if (atomic_load_explicit(&THREAD->sleep_state, memory_order_acquire) !=
543 SLEEP_INITIAL)
544 return THREAD_WAIT_SUCCESS;
545
546 if (deadline != DEADLINE_NEVER) {
547 timeout_initialize(&timeout);
548 timeout_register_deadline(&timeout, deadline,
549 thread_wait_timeout_callback, THREAD);
550 }
551
552 scheduler_enter(Sleeping);
553
554 if (deadline != DEADLINE_NEVER && !timeout_unregister(&timeout)) {
555 return THREAD_WAIT_TIMEOUT;
556 } else {
557 return THREAD_WAIT_SUCCESS;
558 }
559}
560
561void thread_wakeup(thread_t *thread)
562{
563 assert(thread != NULL);
564
565 int state = atomic_exchange_explicit(&thread->sleep_state, SLEEP_WOKE,
566 memory_order_acq_rel);
567
568 if (state == SLEEP_ASLEEP) {
569 /*
570 * Only one thread gets to do this.
571 * The reference consumed here is the reference implicitly passed to
572 * the waking thread by the sleeper in thread_wait_finish().
573 */
574 thread_requeue_sleeping(thread);
575 }
576}
577
578/** Prevent the current thread from being migrated to another processor. */
579void thread_migration_disable(void)
580{
581 assert(THREAD);
582
583 THREAD->nomigrate++;
584}
585
586/** Allow the current thread to be migrated to another processor. */
587void thread_migration_enable(void)
588{
589 assert(THREAD);
590 assert(THREAD->nomigrate > 0);
591
592 if (THREAD->nomigrate > 0)
593 THREAD->nomigrate--;
594}
595
596/** Thread sleep
597 *
598 * Suspend execution of the current thread.
599 *
600 * @param sec Number of seconds to sleep.
601 *
602 */
603void thread_sleep(uint32_t sec)
604{
605 /*
606 * Sleep in 1000 second steps to support
607 * full argument range
608 */
609 while (sec > 0) {
610 uint32_t period = (sec > 1000) ? 1000 : sec;
611
612 thread_usleep(period * 1000000);
613 sec -= period;
614 }
615}
616
617errno_t thread_join(thread_t *thread)
618{
619 return thread_join_timeout(thread, SYNCH_NO_TIMEOUT, SYNCH_FLAGS_NONE);
620}
621
622/** Wait for another thread to exit.
623 * After successful wait, the thread reference is destroyed.
624 *
625 * @param thread Thread to join on exit.
626 * @param usec Timeout in microseconds.
627 * @param flags Mode of operation.
628 *
629 * @return An error code from errno.h or an error code from synch.h.
630 *
631 */
632errno_t thread_join_timeout(thread_t *thread, uint32_t usec, unsigned int flags)
633{
634 assert(thread != NULL);
635
636 if (thread == THREAD)
637 return EINVAL;
638
639 errno_t rc = _waitq_sleep_timeout(&thread->join_wq, usec, flags);
640
641 if (rc == EOK)
642 thread_put(thread);
643
644 return rc;
645}
646
647void thread_detach(thread_t *thread)
648{
649 thread_put(thread);
650}
651
652/** Thread usleep
653 *
654 * Suspend execution of the current thread.
655 *
656 * @param usec Number of microseconds to sleep.
657 *
658 */
659void thread_usleep(uint32_t usec)
660{
661 waitq_t wq;
662
663 waitq_initialize(&wq);
664
665 (void) waitq_sleep_timeout(&wq, usec);
666}
667
668/** Allow other threads to run. */
669void thread_yield(void)
670{
671 assert(THREAD != NULL);
672 scheduler_enter(Running);
673}
674
675static void thread_print(thread_t *thread, bool additional)
676{
677 uint64_t ucycles, kcycles;
678 char usuffix, ksuffix;
679 order_suffix(atomic_time_read(&thread->ucycles), &ucycles, &usuffix);
680 order_suffix(atomic_time_read(&thread->kcycles), &kcycles, &ksuffix);
681
682 state_t state = atomic_get_unordered(&thread->state);
683
684 char *name;
685 if (str_cmp(thread->name, "uinit") == 0)
686 name = thread->task->name;
687 else
688 name = thread->name;
689
690 if (additional)
691 printf("%-8" PRIu64 " %p %p %9" PRIu64 "%c %9" PRIu64 "%c ",
692 thread->tid, thread->thread_code, thread->kstack,
693 ucycles, usuffix, kcycles, ksuffix);
694 else
695 printf("%-8" PRIu64 " %-14s %p %-8s %p %-5" PRIu32 "\n",
696 thread->tid, name, thread, thread_states[state],
697 thread->task, thread->task->container);
698
699 if (additional) {
700 cpu_t *cpu = atomic_get_unordered(&thread->cpu);
701 if (cpu)
702 printf("%-5u", cpu->id);
703 else
704 printf("none ");
705
706 if (state == Sleeping) {
707 printf(" %p", thread->sleep_queue);
708 }
709
710 printf("\n");
711 }
712}
713
714/** Print list of threads debug info
715 *
716 * @param additional Print additional information.
717 *
718 */
719void thread_print_list(bool additional)
720{
721 thread_t *thread;
722
723 /* Accessing system-wide threads list through thread_first()/thread_next(). */
724 irq_spinlock_lock(&threads_lock, true);
725
726 if (sizeof(void *) <= 4) {
727 if (additional)
728 printf("[id ] [code ] [stack ] [ucycles ] [kcycles ]"
729 " [cpu] [waitqueue]\n");
730 else
731 printf("[id ] [name ] [address ] [state ] [task ]"
732 " [ctn]\n");
733 } else {
734 if (additional) {
735 printf("[id ] [code ] [stack ] [ucycles ] [kcycles ]"
736 " [cpu] [waitqueue ]\n");
737 } else
738 printf("[id ] [name ] [address ] [state ]"
739 " [task ] [ctn]\n");
740 }
741
742 thread = thread_first();
743 while (thread != NULL) {
744 thread_print(thread, additional);
745 thread = thread_next(thread);
746 }
747
748 irq_spinlock_unlock(&threads_lock, true);
749}
750
751static bool thread_exists(thread_t *thread)
752{
753 odlink_t *odlink = odict_find_eq(&threads, thread, NULL);
754 return odlink != NULL;
755}
756
757/** Check whether the thread exists, and if so, return a reference to it.
758 */
759thread_t *thread_try_get(thread_t *thread)
760{
761 irq_spinlock_lock(&threads_lock, true);
762
763 if (thread_exists(thread)) {
764 /* Try to strengthen the reference. */
765 thread = thread_try_ref(thread);
766 } else {
767 thread = NULL;
768 }
769
770 irq_spinlock_unlock(&threads_lock, true);
771
772 return thread;
773}
774
775/** Update accounting of current thread.
776 *
777 * Note that thread_lock on THREAD must be already held and
778 * interrupts must be already disabled.
779 *
780 * @param user True to update user accounting, false for kernel.
781 *
782 */
783void thread_update_accounting(bool user)
784{
785 assert(interrupts_disabled());
786
787 uint64_t time = get_cycle();
788
789 if (user)
790 atomic_time_increment(&THREAD->ucycles, time - THREAD->last_cycle);
791 else
792 atomic_time_increment(&THREAD->kcycles, time - THREAD->last_cycle);
793
794 THREAD->last_cycle = time;
795}
796
797/** Find thread structure corresponding to thread ID.
798 *
799 * The threads_lock must be already held by the caller of this function and
800 * interrupts must be disabled.
801 *
802 * The returned reference is weak.
803 * If the caller needs to keep it, thread_try_ref() must be used to upgrade
804 * to a strong reference _before_ threads_lock is released.
805 *
806 * @param id Thread ID.
807 *
808 * @return Thread structure address or NULL if there is no such thread ID.
809 *
810 */
811thread_t *thread_find_by_id(thread_id_t thread_id)
812{
813 thread_t *thread;
814
815 assert(interrupts_disabled());
816 assert(irq_spinlock_locked(&threads_lock));
817
818 thread = thread_first();
819 while (thread != NULL) {
820 if (thread->tid == thread_id)
821 return thread;
822
823 thread = thread_next(thread);
824 }
825
826 return NULL;
827}
828
829/** Get count of threads.
830 *
831 * @return Number of threads in the system
832 */
833size_t thread_count(void)
834{
835 assert(interrupts_disabled());
836 assert(irq_spinlock_locked(&threads_lock));
837
838 return odict_count(&threads);
839}
840
841/** Get first thread.
842 *
843 * @return Pointer to first thread or @c NULL if there are none.
844 */
845thread_t *thread_first(void)
846{
847 odlink_t *odlink;
848
849 assert(interrupts_disabled());
850 assert(irq_spinlock_locked(&threads_lock));
851
852 odlink = odict_first(&threads);
853 if (odlink == NULL)
854 return NULL;
855
856 return odict_get_instance(odlink, thread_t, lthreads);
857}
858
859/** Get next thread.
860 *
861 * @param cur Current thread
862 * @return Pointer to next thread or @c NULL if there are no more threads.
863 */
864thread_t *thread_next(thread_t *cur)
865{
866 odlink_t *odlink;
867
868 assert(interrupts_disabled());
869 assert(irq_spinlock_locked(&threads_lock));
870
871 odlink = odict_next(&cur->lthreads, &threads);
872 if (odlink == NULL)
873 return NULL;
874
875 return odict_get_instance(odlink, thread_t, lthreads);
876}
877
878#ifdef CONFIG_UDEBUG
879
880void thread_stack_trace(thread_id_t thread_id)
881{
882 irq_spinlock_lock(&threads_lock, true);
883 thread_t *thread = thread_try_ref(thread_find_by_id(thread_id));
884 irq_spinlock_unlock(&threads_lock, true);
885
886 if (thread == NULL) {
887 printf("No such thread.\n");
888 return;
889 }
890
891 /*
892 * Schedule a stack trace to be printed
893 * just before the thread is scheduled next.
894 *
895 * If the thread is sleeping then try to interrupt
896 * the sleep. Any request for printing an uspace stack
897 * trace from within the kernel should be always
898 * considered a last resort debugging means, therefore
899 * forcing the thread's sleep to be interrupted
900 * is probably justifiable.
901 */
902
903 printf("Scheduling thread stack trace.\n");
904 atomic_set_unordered(&thread->btrace, true);
905
906 thread_wakeup(thread);
907 thread_put(thread);
908}
909
910#endif /* CONFIG_UDEBUG */
911
912/** Get key function for the @c threads ordered dictionary.
913 *
914 * @param odlink Link
915 * @return Pointer to thread structure cast as 'void *'
916 */
917static void *threads_getkey(odlink_t *odlink)
918{
919 thread_t *thread = odict_get_instance(odlink, thread_t, lthreads);
920 return (void *) thread;
921}
922
923/** Key comparison function for the @c threads ordered dictionary.
924 *
925 * @param a Pointer to thread A
926 * @param b Pointer to thread B
927 * @return -1, 0, 1 iff pointer to A is less than, equal to, greater than B
928 */
929static int threads_cmp(void *a, void *b)
930{
931 if (a > b)
932 return -1;
933 else if (a == b)
934 return 0;
935 else
936 return +1;
937}
938
939/** Process syscall to create new thread.
940 *
941 */
942sys_errno_t sys_thread_create(uspace_ptr_uspace_arg_t uspace_uarg, uspace_ptr_char uspace_name,
943 size_t name_len, uspace_ptr_thread_id_t uspace_thread_id)
944{
945 if (name_len > THREAD_NAME_BUFLEN - 1)
946 name_len = THREAD_NAME_BUFLEN - 1;
947
948 char namebuf[THREAD_NAME_BUFLEN];
949 errno_t rc = copy_from_uspace(namebuf, uspace_name, name_len);
950 if (rc != EOK)
951 return (sys_errno_t) rc;
952
953 namebuf[name_len] = 0;
954
955 /*
956 * In case of failure, kernel_uarg will be deallocated in this function.
957 * In case of success, kernel_uarg will be freed in uinit().
958 */
959 uspace_arg_t *kernel_uarg =
960 (uspace_arg_t *) malloc(sizeof(uspace_arg_t));
961 if (!kernel_uarg)
962 return (sys_errno_t) ENOMEM;
963
964 rc = copy_from_uspace(kernel_uarg, uspace_uarg, sizeof(uspace_arg_t));
965 if (rc != EOK) {
966 free(kernel_uarg);
967 return (sys_errno_t) rc;
968 }
969
970 thread_t *thread = thread_create(uinit, kernel_uarg, TASK,
971 THREAD_FLAG_USPACE | THREAD_FLAG_NOATTACH, namebuf);
972 if (thread) {
973 if (uspace_thread_id) {
974 rc = copy_to_uspace(uspace_thread_id, &thread->tid,
975 sizeof(thread->tid));
976 if (rc != EOK) {
977 /*
978 * We have encountered a failure, but the thread
979 * has already been created. We need to undo its
980 * creation now.
981 */
982
983 /*
984 * The new thread structure is initialized, but
985 * is still not visible to the system.
986 * We can safely deallocate it.
987 */
988 slab_free(thread_cache, thread);
989 free(kernel_uarg);
990
991 return (sys_errno_t) rc;
992 }
993 }
994
995#ifdef CONFIG_UDEBUG
996 /*
997 * Generate udebug THREAD_B event and attach the thread.
998 * This must be done atomically (with the debug locks held),
999 * otherwise we would either miss some thread or receive
1000 * THREAD_B events for threads that already existed
1001 * and could be detected with THREAD_READ before.
1002 */
1003 udebug_thread_b_event_attach(thread, TASK);
1004#else
1005 thread_attach(thread, TASK);
1006#endif
1007 thread_start(thread);
1008 thread_put(thread);
1009
1010 return 0;
1011 } else
1012 free(kernel_uarg);
1013
1014 return (sys_errno_t) ENOMEM;
1015}
1016
1017/** Process syscall to terminate thread.
1018 *
1019 */
1020sys_errno_t sys_thread_exit(int uspace_status)
1021{
1022 thread_exit();
1023}
1024
1025/** Syscall for getting TID.
1026 *
1027 * @param uspace_thread_id Userspace address of 8-byte buffer where to store
1028 * current thread ID.
1029 *
1030 * @return 0 on success or an error code from @ref errno.h.
1031 *
1032 */
1033sys_errno_t sys_thread_get_id(uspace_ptr_thread_id_t uspace_thread_id)
1034{
1035 /*
1036 * No need to acquire lock on THREAD because tid
1037 * remains constant for the lifespan of the thread.
1038 *
1039 */
1040 return (sys_errno_t) copy_to_uspace(uspace_thread_id, &THREAD->tid,
1041 sizeof(THREAD->tid));
1042}
1043
1044/** Syscall wrapper for sleeping. */
1045sys_errno_t sys_thread_usleep(uint32_t usec)
1046{
1047 thread_usleep(usec);
1048 return 0;
1049}
1050
1051sys_errno_t sys_thread_udelay(uint32_t usec)
1052{
1053 delay(usec);
1054 return 0;
1055}
1056
1057/** @}
1058 */
Note: See TracBrowser for help on using the repository browser.