source: mainline/kernel/generic/src/mm/slab.c@ ddb56be

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ddb56be was ddb56be, checked in by Jakub Jermar <jakub@…>, 13 years ago

Convert slab_cache_t's slablock into an IRQ spinlock as it is taken from
a callpath called from slab_cache_destroy(), which does not disable
interrupts.

  • Property mode set to 100644
File size: 26.3 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <synch/spinlock.h>
104#include <mm/slab.h>
105#include <adt/list.h>
106#include <memstr.h>
107#include <align.h>
108#include <mm/frame.h>
109#include <config.h>
110#include <print.h>
111#include <arch.h>
112#include <panic.h>
113#include <debug.h>
114#include <bitops.h>
115#include <macros.h>
116
117IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
118static LIST_INITIALIZE(slab_cache_list);
119
120/** Magazine cache */
121static slab_cache_t mag_cache;
122
123/** Cache for cache descriptors */
124static slab_cache_t slab_cache_cache;
125
126/** Cache for external slab descriptors
127 * This time we want per-cpu cache, so do not make it static
128 * - using slab for internal slab structures will not deadlock,
129 * as all slab structures are 'small' - control structures of
130 * their caches do not require further allocation
131 */
132static slab_cache_t *slab_extern_cache;
133
134/** Caches for malloc */
135static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
136
137static const char *malloc_names[] = {
138 "malloc-16",
139 "malloc-32",
140 "malloc-64",
141 "malloc-128",
142 "malloc-256",
143 "malloc-512",
144 "malloc-1K",
145 "malloc-2K",
146 "malloc-4K",
147 "malloc-8K",
148 "malloc-16K",
149 "malloc-32K",
150 "malloc-64K",
151 "malloc-128K",
152 "malloc-256K",
153 "malloc-512K",
154 "malloc-1M",
155 "malloc-2M",
156 "malloc-4M"
157};
158
159/** Slab descriptor */
160typedef struct {
161 slab_cache_t *cache; /**< Pointer to parent cache. */
162 link_t link; /**< List of full/partial slabs. */
163 void *start; /**< Start address of first available item. */
164 size_t available; /**< Count of available items in this slab. */
165 size_t nextavail; /**< The index of next available item. */
166} slab_t;
167
168#ifdef CONFIG_DEBUG
169static unsigned int _slab_initialized = 0;
170#endif
171
172/**************************************/
173/* Slab allocation functions */
174/**************************************/
175
176/** Allocate frames for slab space and initialize
177 *
178 */
179NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
180 unsigned int flags)
181{
182 size_t zone = 0;
183
184 void *data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
185 if (!data) {
186 return NULL;
187 }
188
189 slab_t *slab;
190 size_t fsize;
191
192 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
193 slab = slab_alloc(slab_extern_cache, flags);
194 if (!slab) {
195 frame_free(KA2PA(data));
196 return NULL;
197 }
198 } else {
199 fsize = (PAGE_SIZE << cache->order);
200 slab = data + fsize - sizeof(*slab);
201 }
202
203 /* Fill in slab structures */
204 size_t i;
205 for (i = 0; i < ((size_t) 1 << cache->order); i++)
206 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
207
208 slab->start = data;
209 slab->available = cache->objects;
210 slab->nextavail = 0;
211 slab->cache = cache;
212
213 for (i = 0; i < cache->objects; i++)
214 *((size_t *) (slab->start + i * cache->size)) = i + 1;
215
216 atomic_inc(&cache->allocated_slabs);
217 return slab;
218}
219
220/** Deallocate space associated with slab
221 *
222 * @return number of freed frames
223 *
224 */
225NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
226{
227 frame_free(KA2PA(slab->start));
228 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
229 slab_free(slab_extern_cache, slab);
230
231 atomic_dec(&cache->allocated_slabs);
232
233 return (1 << cache->order);
234}
235
236/** Map object to slab structure */
237NO_TRACE static slab_t *obj2slab(void *obj)
238{
239 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
240}
241
242/******************/
243/* Slab functions */
244/******************/
245
246/** Return object to slab and call a destructor
247 *
248 * @param slab If the caller knows directly slab of the object, otherwise NULL
249 *
250 * @return Number of freed pages
251 *
252 */
253NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
254 slab_t *slab)
255{
256 if (!slab)
257 slab = obj2slab(obj);
258
259 ASSERT(slab->cache == cache);
260
261 size_t freed = 0;
262
263 if (cache->destructor)
264 freed = cache->destructor(obj);
265
266 irq_spinlock_lock(&cache->slablock, true);
267 ASSERT(slab->available < cache->objects);
268
269 *((size_t *) obj) = slab->nextavail;
270 slab->nextavail = (obj - slab->start) / cache->size;
271 slab->available++;
272
273 /* Move it to correct list */
274 if (slab->available == cache->objects) {
275 /* Free associated memory */
276 list_remove(&slab->link);
277 irq_spinlock_unlock(&cache->slablock, true);
278
279 return freed + slab_space_free(cache, slab);
280 } else if (slab->available == 1) {
281 /* It was in full, move to partial */
282 list_remove(&slab->link);
283 list_prepend(&slab->link, &cache->partial_slabs);
284 }
285
286 irq_spinlock_unlock(&cache->slablock, true);
287 return freed;
288}
289
290/** Take new object from slab or create new if needed
291 *
292 * @return Object address or null
293 *
294 */
295NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
296{
297 irq_spinlock_lock(&cache->slablock, true);
298
299 slab_t *slab;
300
301 if (list_empty(&cache->partial_slabs)) {
302 /*
303 * Allow recursion and reclaiming
304 * - this should work, as the slab control structures
305 * are small and do not need to allocate with anything
306 * other than frame_alloc when they are allocating,
307 * that's why we should get recursion at most 1-level deep
308 *
309 */
310 irq_spinlock_unlock(&cache->slablock, true);
311 slab = slab_space_alloc(cache, flags);
312 if (!slab)
313 return NULL;
314
315 irq_spinlock_lock(&cache->slablock, true);
316 } else {
317 slab = list_get_instance(list_first(&cache->partial_slabs),
318 slab_t, link);
319 list_remove(&slab->link);
320 }
321
322 void *obj = slab->start + slab->nextavail * cache->size;
323 slab->nextavail = *((size_t *) obj);
324 slab->available--;
325
326 if (!slab->available)
327 list_prepend(&slab->link, &cache->full_slabs);
328 else
329 list_prepend(&slab->link, &cache->partial_slabs);
330
331 irq_spinlock_unlock(&cache->slablock, true);
332
333 if ((cache->constructor) && (cache->constructor(obj, flags))) {
334 /* Bad, bad, construction failed */
335 slab_obj_destroy(cache, obj, slab);
336 return NULL;
337 }
338
339 return obj;
340}
341
342/****************************/
343/* CPU-Cache slab functions */
344/****************************/
345
346/** Find a full magazine in cache, take it from list and return it
347 *
348 * @param first If true, return first, else last mag.
349 *
350 */
351NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
352 bool first)
353{
354 slab_magazine_t *mag = NULL;
355 link_t *cur;
356
357 ASSERT(interrupts_disabled());
358
359 spinlock_lock(&cache->maglock);
360 if (!list_empty(&cache->magazines)) {
361 if (first)
362 cur = list_first(&cache->magazines);
363 else
364 cur = list_last(&cache->magazines);
365
366 mag = list_get_instance(cur, slab_magazine_t, link);
367 list_remove(&mag->link);
368 atomic_dec(&cache->magazine_counter);
369 }
370 spinlock_unlock(&cache->maglock);
371
372 return mag;
373}
374
375/** Prepend magazine to magazine list in cache
376 *
377 */
378NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
379 slab_magazine_t *mag)
380{
381 ASSERT(interrupts_disabled());
382
383 spinlock_lock(&cache->maglock);
384
385 list_prepend(&mag->link, &cache->magazines);
386 atomic_inc(&cache->magazine_counter);
387
388 spinlock_unlock(&cache->maglock);
389}
390
391/** Free all objects in magazine and free memory associated with magazine
392 *
393 * @return Number of freed pages
394 *
395 */
396NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
397 slab_magazine_t *mag)
398{
399 size_t i;
400 size_t frames = 0;
401
402 for (i = 0; i < mag->busy; i++) {
403 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
404 atomic_dec(&cache->cached_objs);
405 }
406
407 slab_free(&mag_cache, mag);
408
409 return frames;
410}
411
412/** Find full magazine, set it as current and return it
413 *
414 */
415NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
416{
417 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
418 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
419
420 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
421
422 if (cmag) { /* First try local CPU magazines */
423 if (cmag->busy)
424 return cmag;
425
426 if ((lastmag) && (lastmag->busy)) {
427 cache->mag_cache[CPU->id].current = lastmag;
428 cache->mag_cache[CPU->id].last = cmag;
429 return lastmag;
430 }
431 }
432
433 /* Local magazines are empty, import one from magazine list */
434 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
435 if (!newmag)
436 return NULL;
437
438 if (lastmag)
439 magazine_destroy(cache, lastmag);
440
441 cache->mag_cache[CPU->id].last = cmag;
442 cache->mag_cache[CPU->id].current = newmag;
443
444 return newmag;
445}
446
447/** Try to find object in CPU-cache magazines
448 *
449 * @return Pointer to object or NULL if not available
450 *
451 */
452NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
453{
454 if (!CPU)
455 return NULL;
456
457 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
458
459 slab_magazine_t *mag = get_full_current_mag(cache);
460 if (!mag) {
461 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
462 return NULL;
463 }
464
465 void *obj = mag->objs[--mag->busy];
466 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
467
468 atomic_dec(&cache->cached_objs);
469
470 return obj;
471}
472
473/** Assure that the current magazine is empty, return pointer to it,
474 * or NULL if no empty magazine is available and cannot be allocated
475 *
476 * We have 2 magazines bound to processor.
477 * First try the current.
478 * If full, try the last.
479 * If full, put to magazines list.
480 *
481 */
482NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
483{
484 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
485 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
486
487 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
488
489 if (cmag) {
490 if (cmag->busy < cmag->size)
491 return cmag;
492
493 if ((lastmag) && (lastmag->busy < lastmag->size)) {
494 cache->mag_cache[CPU->id].last = cmag;
495 cache->mag_cache[CPU->id].current = lastmag;
496 return lastmag;
497 }
498 }
499
500 /* current | last are full | nonexistent, allocate new */
501
502 /*
503 * We do not want to sleep just because of caching,
504 * especially we do not want reclaiming to start, as
505 * this would deadlock.
506 *
507 */
508 slab_magazine_t *newmag = slab_alloc(&mag_cache,
509 FRAME_ATOMIC | FRAME_NO_RECLAIM);
510 if (!newmag)
511 return NULL;
512
513 newmag->size = SLAB_MAG_SIZE;
514 newmag->busy = 0;
515
516 /* Flush last to magazine list */
517 if (lastmag)
518 put_mag_to_cache(cache, lastmag);
519
520 /* Move current as last, save new as current */
521 cache->mag_cache[CPU->id].last = cmag;
522 cache->mag_cache[CPU->id].current = newmag;
523
524 return newmag;
525}
526
527/** Put object into CPU-cache magazine
528 *
529 * @return 0 on success, -1 on no memory
530 *
531 */
532NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
533{
534 if (!CPU)
535 return -1;
536
537 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
538
539 slab_magazine_t *mag = make_empty_current_mag(cache);
540 if (!mag) {
541 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
542 return -1;
543 }
544
545 mag->objs[mag->busy++] = obj;
546
547 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
548
549 atomic_inc(&cache->cached_objs);
550
551 return 0;
552}
553
554/************************/
555/* Slab cache functions */
556/************************/
557
558/** Return number of objects that fit in certain cache size
559 *
560 */
561NO_TRACE static size_t comp_objects(slab_cache_t *cache)
562{
563 if (cache->flags & SLAB_CACHE_SLINSIDE)
564 return ((PAGE_SIZE << cache->order)
565 - sizeof(slab_t)) / cache->size;
566 else
567 return (PAGE_SIZE << cache->order) / cache->size;
568}
569
570/** Return wasted space in slab
571 *
572 */
573NO_TRACE static size_t badness(slab_cache_t *cache)
574{
575 size_t objects = comp_objects(cache);
576 size_t ssize = PAGE_SIZE << cache->order;
577
578 if (cache->flags & SLAB_CACHE_SLINSIDE)
579 ssize -= sizeof(slab_t);
580
581 return ssize - objects * cache->size;
582}
583
584/** Initialize mag_cache structure in slab cache
585 *
586 */
587NO_TRACE static bool make_magcache(slab_cache_t *cache)
588{
589 ASSERT(_slab_initialized >= 2);
590
591 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
592 FRAME_ATOMIC);
593 if (!cache->mag_cache)
594 return false;
595
596 size_t i;
597 for (i = 0; i < config.cpu_count; i++) {
598 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
599 irq_spinlock_initialize(&cache->mag_cache[i].lock,
600 "slab.cache.mag_cache[].lock");
601 }
602
603 return true;
604}
605
606/** Initialize allocated memory as a slab cache
607 *
608 */
609NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
610 size_t size, size_t align, int (*constructor)(void *obj,
611 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
612{
613 memsetb(cache, sizeof(*cache), 0);
614 cache->name = name;
615
616 if (align < sizeof(sysarg_t))
617 align = sizeof(sysarg_t);
618
619 size = ALIGN_UP(size, align);
620
621 cache->size = size;
622 cache->constructor = constructor;
623 cache->destructor = destructor;
624 cache->flags = flags;
625
626 list_initialize(&cache->full_slabs);
627 list_initialize(&cache->partial_slabs);
628 list_initialize(&cache->magazines);
629
630 irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
631 spinlock_initialize(&cache->maglock, "slab.cache.maglock");
632
633 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
634 (void) make_magcache(cache);
635
636 /* Compute slab sizes, object counts in slabs etc. */
637 if (cache->size < SLAB_INSIDE_SIZE)
638 cache->flags |= SLAB_CACHE_SLINSIDE;
639
640 /* Minimum slab order */
641 size_t pages = SIZE2FRAMES(cache->size);
642
643 /* We need the 2^order >= pages */
644 if (pages == 1)
645 cache->order = 0;
646 else
647 cache->order = fnzb(pages - 1) + 1;
648
649 while (badness(cache) > SLAB_MAX_BADNESS(cache))
650 cache->order += 1;
651
652 cache->objects = comp_objects(cache);
653
654 /* If info fits in, put it inside */
655 if (badness(cache) > sizeof(slab_t))
656 cache->flags |= SLAB_CACHE_SLINSIDE;
657
658 /* Add cache to cache list */
659 irq_spinlock_lock(&slab_cache_lock, true);
660 list_append(&cache->link, &slab_cache_list);
661 irq_spinlock_unlock(&slab_cache_lock, true);
662}
663
664/** Create slab cache
665 *
666 */
667slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
668 int (*constructor)(void *obj, unsigned int kmflag),
669 size_t (*destructor)(void *obj), unsigned int flags)
670{
671 slab_cache_t *cache = slab_alloc(&slab_cache_cache, 0);
672 _slab_cache_create(cache, name, size, align, constructor, destructor,
673 flags);
674
675 return cache;
676}
677
678/** Reclaim space occupied by objects that are already free
679 *
680 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
681 *
682 * @return Number of freed pages
683 *
684 */
685NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
686{
687 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
688 return 0; /* Nothing to do */
689
690 /*
691 * We count up to original magazine count to avoid
692 * endless loop
693 */
694 atomic_count_t magcount = atomic_get(&cache->magazine_counter);
695
696 slab_magazine_t *mag;
697 size_t frames = 0;
698
699 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
700 frames += magazine_destroy(cache, mag);
701 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
702 break;
703 }
704
705 if (flags & SLAB_RECLAIM_ALL) {
706 /* Free cpu-bound magazines */
707 /* Destroy CPU magazines */
708 size_t i;
709 for (i = 0; i < config.cpu_count; i++) {
710 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
711
712 mag = cache->mag_cache[i].current;
713 if (mag)
714 frames += magazine_destroy(cache, mag);
715 cache->mag_cache[i].current = NULL;
716
717 mag = cache->mag_cache[i].last;
718 if (mag)
719 frames += magazine_destroy(cache, mag);
720 cache->mag_cache[i].last = NULL;
721
722 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
723 }
724 }
725
726 return frames;
727}
728
729/** Check that there are no slabs and remove cache from system
730 *
731 */
732void slab_cache_destroy(slab_cache_t *cache)
733{
734 /*
735 * First remove cache from link, so that we don't need
736 * to disable interrupts later
737 *
738 */
739 irq_spinlock_lock(&slab_cache_lock, true);
740 list_remove(&cache->link);
741 irq_spinlock_unlock(&slab_cache_lock, true);
742
743 /*
744 * Do not lock anything, we assume the software is correct and
745 * does not touch the cache when it decides to destroy it
746 *
747 */
748
749 /* Destroy all magazines */
750 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
751
752 /* All slabs must be empty */
753 if ((!list_empty(&cache->full_slabs)) ||
754 (!list_empty(&cache->partial_slabs)))
755 panic("Destroying cache that is not empty.");
756
757 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
758 free(cache->mag_cache);
759
760 slab_free(&slab_cache_cache, cache);
761}
762
763/** Allocate new object from cache - if no flags given, always returns memory
764 *
765 */
766void *slab_alloc(slab_cache_t *cache, unsigned int flags)
767{
768 /* Disable interrupts to avoid deadlocks with interrupt handlers */
769 ipl_t ipl = interrupts_disable();
770
771 void *result = NULL;
772
773 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
774 result = magazine_obj_get(cache);
775
776 if (!result)
777 result = slab_obj_create(cache, flags);
778
779 interrupts_restore(ipl);
780
781 if (result)
782 atomic_inc(&cache->allocated_objs);
783
784 return result;
785}
786
787/** Return object to cache, use slab if known
788 *
789 */
790NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
791{
792 ipl_t ipl = interrupts_disable();
793
794 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
795 (magazine_obj_put(cache, obj)))
796 slab_obj_destroy(cache, obj, slab);
797
798 interrupts_restore(ipl);
799 atomic_dec(&cache->allocated_objs);
800}
801
802/** Return slab object to cache
803 *
804 */
805void slab_free(slab_cache_t *cache, void *obj)
806{
807 _slab_free(cache, obj, NULL);
808}
809
810/** Go through all caches and reclaim what is possible */
811size_t slab_reclaim(unsigned int flags)
812{
813 irq_spinlock_lock(&slab_cache_lock, true);
814
815 size_t frames = 0;
816 list_foreach(slab_cache_list, cur) {
817 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
818 frames += _slab_reclaim(cache, flags);
819 }
820
821 irq_spinlock_unlock(&slab_cache_lock, true);
822
823 return frames;
824}
825
826/* Print list of slabs
827 *
828 */
829void slab_print_list(void)
830{
831 printf("[slab name ] [size ] [pages ] [obj/pg] [slabs ]"
832 " [cached] [alloc ] [ctl]\n");
833
834 size_t skip = 0;
835 while (true) {
836 /*
837 * We must not hold the slab_cache_lock spinlock when printing
838 * the statistics. Otherwise we can easily deadlock if the print
839 * needs to allocate memory.
840 *
841 * Therefore, we walk through the slab cache list, skipping some
842 * amount of already processed caches during each iteration and
843 * gathering statistics about the first unprocessed cache. For
844 * the sake of printing the statistics, we realese the
845 * slab_cache_lock and reacquire it afterwards. Then the walk
846 * starts again.
847 *
848 * This limits both the efficiency and also accuracy of the
849 * obtained statistics. The efficiency is decreased because the
850 * time complexity of the algorithm is quadratic instead of
851 * linear. The accuracy is impacted because we drop the lock
852 * after processing one cache. If there is someone else
853 * manipulating the cache list, we might omit an arbitrary
854 * number of caches or process one cache multiple times.
855 * However, we don't bleed for this algorithm for it is only
856 * statistics.
857 */
858
859 irq_spinlock_lock(&slab_cache_lock, true);
860
861 link_t *cur;
862 size_t i;
863 for (i = 0, cur = slab_cache_list.head.next;
864 (i < skip) && (cur != &slab_cache_list.head);
865 i++, cur = cur->next);
866
867 if (cur == &slab_cache_list.head) {
868 irq_spinlock_unlock(&slab_cache_lock, true);
869 break;
870 }
871
872 skip++;
873
874 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
875
876 const char *name = cache->name;
877 uint8_t order = cache->order;
878 size_t size = cache->size;
879 size_t objects = cache->objects;
880 long allocated_slabs = atomic_get(&cache->allocated_slabs);
881 long cached_objs = atomic_get(&cache->cached_objs);
882 long allocated_objs = atomic_get(&cache->allocated_objs);
883 unsigned int flags = cache->flags;
884
885 irq_spinlock_unlock(&slab_cache_lock, true);
886
887 printf("%-18s %8zu %8u %8zu %8ld %8ld %8ld %-5s\n",
888 name, size, (1 << order), objects, allocated_slabs,
889 cached_objs, allocated_objs,
890 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
891 }
892}
893
894void slab_cache_init(void)
895{
896 /* Initialize magazine cache */
897 _slab_cache_create(&mag_cache, "slab_magazine",
898 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
899 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
900 SLAB_CACHE_SLINSIDE);
901
902 /* Initialize slab_cache cache */
903 _slab_cache_create(&slab_cache_cache, "slab_cache",
904 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
905 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
906
907 /* Initialize external slab cache */
908 slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
909 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
910
911 /* Initialize structures for malloc */
912 size_t i;
913 size_t size;
914
915 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
916 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
917 i++, size <<= 1) {
918 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
919 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
920 }
921
922#ifdef CONFIG_DEBUG
923 _slab_initialized = 1;
924#endif
925}
926
927/** Enable cpu_cache
928 *
929 * Kernel calls this function, when it knows the real number of
930 * processors. Allocate slab for cpucache and enable it on all
931 * existing slabs that are SLAB_CACHE_MAGDEFERRED
932 *
933 */
934void slab_enable_cpucache(void)
935{
936#ifdef CONFIG_DEBUG
937 _slab_initialized = 2;
938#endif
939
940 irq_spinlock_lock(&slab_cache_lock, false);
941
942 list_foreach(slab_cache_list, cur) {
943 slab_cache_t *slab = list_get_instance(cur, slab_cache_t, link);
944 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
945 SLAB_CACHE_MAGDEFERRED)
946 continue;
947
948 (void) make_magcache(slab);
949 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
950 }
951
952 irq_spinlock_unlock(&slab_cache_lock, false);
953}
954
955void *malloc(size_t size, unsigned int flags)
956{
957 ASSERT(_slab_initialized);
958 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
959
960 if (size < (1 << SLAB_MIN_MALLOC_W))
961 size = (1 << SLAB_MIN_MALLOC_W);
962
963 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
964
965 return slab_alloc(malloc_caches[idx], flags);
966}
967
968void *realloc(void *ptr, size_t size, unsigned int flags)
969{
970 ASSERT(_slab_initialized);
971 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
972
973 void *new_ptr;
974
975 if (size > 0) {
976 if (size < (1 << SLAB_MIN_MALLOC_W))
977 size = (1 << SLAB_MIN_MALLOC_W);
978 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
979
980 new_ptr = slab_alloc(malloc_caches[idx], flags);
981 } else
982 new_ptr = NULL;
983
984 if ((new_ptr != NULL) && (ptr != NULL)) {
985 slab_t *slab = obj2slab(ptr);
986 memcpy(new_ptr, ptr, min(size, slab->cache->size));
987 }
988
989 if (ptr != NULL)
990 free(ptr);
991
992 return new_ptr;
993}
994
995void free(void *ptr)
996{
997 if (!ptr)
998 return;
999
1000 slab_t *slab = obj2slab(ptr);
1001 _slab_free(slab->cache, ptr, slab);
1002}
1003
1004/** @}
1005 */
Note: See TracBrowser for help on using the repository browser.