source: mainline/kernel/generic/src/mm/slab.c@ d1582b50

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d1582b50 was d1582b50, checked in by Jiri Svoboda <jiri@…>, 5 years ago

Fix spacing in single-line comments using latest ccheck

This found incorrectly formatted section comments (with blocks of
asterisks or dashes). I strongly believe against using section comments
but I am not simply removing them since that would probably be
controversial.

  • Property mode set to 100644
File size: 24.6 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup kernel_generic_mm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <assert.h>
104#include <errno.h>
105#include <synch/spinlock.h>
106#include <mm/slab.h>
107#include <adt/list.h>
108#include <mem.h>
109#include <align.h>
110#include <mm/frame.h>
111#include <config.h>
112#include <stdio.h>
113#include <arch.h>
114#include <panic.h>
115#include <bitops.h>
116#include <macros.h>
117#include <cpu.h>
118#include <stdlib.h>
119
120IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
121static LIST_INITIALIZE(slab_cache_list);
122
123/** Magazine cache */
124static slab_cache_t mag_cache;
125
126/** Cache for cache descriptors */
127static slab_cache_t slab_cache_cache;
128
129/** Cache for per-CPU magazines of caches */
130static slab_cache_t slab_mag_cache;
131
132/** Cache for external slab descriptors
133 * This time we want per-cpu cache, so do not make it static
134 * - using slab for internal slab structures will not deadlock,
135 * as all slab structures are 'small' - control structures of
136 * their caches do not require further allocation
137 */
138static slab_cache_t *slab_extern_cache;
139
140/** Slab descriptor */
141typedef struct {
142 slab_cache_t *cache; /**< Pointer to parent cache. */
143 link_t link; /**< List of full/partial slabs. */
144 void *start; /**< Start address of first available item. */
145 size_t available; /**< Count of available items in this slab. */
146 size_t nextavail; /**< The index of next available item. */
147} slab_t;
148
149#ifdef CONFIG_DEBUG
150static unsigned int _slab_initialized = 0;
151#endif
152
153/*
154 * Slab allocation functions
155 */
156
157/** Allocate frames for slab space and initialize
158 *
159 */
160_NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
161 unsigned int flags)
162{
163 size_t zone = 0;
164
165 uintptr_t data_phys =
166 frame_alloc_generic(cache->frames, FRAME_LOWMEM | flags, 0, &zone);
167 if (!data_phys)
168 return NULL;
169
170 void *data = (void *) PA2KA(data_phys);
171
172 slab_t *slab;
173 size_t fsize;
174
175 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
176 slab = slab_alloc(slab_extern_cache, flags);
177 if (!slab) {
178 frame_free(KA2PA(data), cache->frames);
179 return NULL;
180 }
181 } else {
182 fsize = FRAMES2SIZE(cache->frames);
183 slab = data + fsize - sizeof(*slab);
184 }
185
186 /* Fill in slab structures */
187 size_t i;
188 for (i = 0; i < cache->frames; i++)
189 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
190
191 slab->start = data;
192 slab->available = cache->objects;
193 slab->nextavail = 0;
194 slab->cache = cache;
195
196 for (i = 0; i < cache->objects; i++)
197 *((size_t *) (slab->start + i * cache->size)) = i + 1;
198
199 atomic_inc(&cache->allocated_slabs);
200 return slab;
201}
202
203/** Deallocate space associated with slab
204 *
205 * @return number of freed frames
206 *
207 */
208_NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
209{
210 frame_free(KA2PA(slab->start), slab->cache->frames);
211 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
212 slab_free(slab_extern_cache, slab);
213
214 atomic_dec(&cache->allocated_slabs);
215
216 return cache->frames;
217}
218
219/** Map object to slab structure */
220_NO_TRACE static slab_t *obj2slab(void *obj)
221{
222 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
223}
224
225/*
226 * Slab functions
227 */
228
229/** Return object to slab and call a destructor
230 *
231 * @param slab If the caller knows directly slab of the object, otherwise NULL
232 *
233 * @return Number of freed pages
234 *
235 */
236_NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
237 slab_t *slab)
238{
239 if (!slab)
240 slab = obj2slab(obj);
241
242 assert(slab->cache == cache);
243
244 size_t freed = 0;
245
246 if (cache->destructor)
247 freed = cache->destructor(obj);
248
249 irq_spinlock_lock(&cache->slablock, true);
250 assert(slab->available < cache->objects);
251
252 *((size_t *) obj) = slab->nextavail;
253 slab->nextavail = (obj - slab->start) / cache->size;
254 slab->available++;
255
256 /* Move it to correct list */
257 if (slab->available == cache->objects) {
258 /* Free associated memory */
259 list_remove(&slab->link);
260 irq_spinlock_unlock(&cache->slablock, true);
261
262 return freed + slab_space_free(cache, slab);
263 } else if (slab->available == 1) {
264 /* It was in full, move to partial */
265 list_remove(&slab->link);
266 list_prepend(&slab->link, &cache->partial_slabs);
267 }
268
269 irq_spinlock_unlock(&cache->slablock, true);
270 return freed;
271}
272
273/** Take new object from slab or create new if needed
274 *
275 * @return Object address or null
276 *
277 */
278_NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
279{
280 irq_spinlock_lock(&cache->slablock, true);
281
282 slab_t *slab;
283
284 if (list_empty(&cache->partial_slabs)) {
285 /*
286 * Allow recursion and reclaiming
287 * - this should work, as the slab control structures
288 * are small and do not need to allocate with anything
289 * other than frame_alloc when they are allocating,
290 * that's why we should get recursion at most 1-level deep
291 *
292 */
293 irq_spinlock_unlock(&cache->slablock, true);
294 slab = slab_space_alloc(cache, flags);
295 if (!slab)
296 return NULL;
297
298 irq_spinlock_lock(&cache->slablock, true);
299 } else {
300 slab = list_get_instance(list_first(&cache->partial_slabs),
301 slab_t, link);
302 list_remove(&slab->link);
303 }
304
305 void *obj = slab->start + slab->nextavail * cache->size;
306 slab->nextavail = *((size_t *) obj);
307 slab->available--;
308
309 if (!slab->available)
310 list_prepend(&slab->link, &cache->full_slabs);
311 else
312 list_prepend(&slab->link, &cache->partial_slabs);
313
314 irq_spinlock_unlock(&cache->slablock, true);
315
316 if ((cache->constructor) && (cache->constructor(obj, flags) != EOK)) {
317 /* Bad, bad, construction failed */
318 slab_obj_destroy(cache, obj, slab);
319 return NULL;
320 }
321
322 return obj;
323}
324
325/*
326 * CPU-Cache slab functions
327 */
328
329/** Find a full magazine in cache, take it from list and return it
330 *
331 * @param first If true, return first, else last mag.
332 *
333 */
334_NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
335 bool first)
336{
337 slab_magazine_t *mag = NULL;
338 link_t *cur;
339
340 irq_spinlock_lock(&cache->maglock, true);
341 if (!list_empty(&cache->magazines)) {
342 if (first)
343 cur = list_first(&cache->magazines);
344 else
345 cur = list_last(&cache->magazines);
346
347 mag = list_get_instance(cur, slab_magazine_t, link);
348 list_remove(&mag->link);
349 atomic_dec(&cache->magazine_counter);
350 }
351 irq_spinlock_unlock(&cache->maglock, true);
352
353 return mag;
354}
355
356/** Prepend magazine to magazine list in cache
357 *
358 */
359_NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
360 slab_magazine_t *mag)
361{
362 irq_spinlock_lock(&cache->maglock, true);
363
364 list_prepend(&mag->link, &cache->magazines);
365 atomic_inc(&cache->magazine_counter);
366
367 irq_spinlock_unlock(&cache->maglock, true);
368}
369
370/** Free all objects in magazine and free memory associated with magazine
371 *
372 * @return Number of freed pages
373 *
374 */
375_NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
376 slab_magazine_t *mag)
377{
378 size_t i;
379 size_t frames = 0;
380
381 for (i = 0; i < mag->busy; i++) {
382 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
383 atomic_dec(&cache->cached_objs);
384 }
385
386 slab_free(&mag_cache, mag);
387
388 return frames;
389}
390
391/** Find full magazine, set it as current and return it
392 *
393 */
394_NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
395{
396 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
397 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
398
399 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
400
401 if (cmag) { /* First try local CPU magazines */
402 if (cmag->busy)
403 return cmag;
404
405 if ((lastmag) && (lastmag->busy)) {
406 cache->mag_cache[CPU->id].current = lastmag;
407 cache->mag_cache[CPU->id].last = cmag;
408 return lastmag;
409 }
410 }
411
412 /* Local magazines are empty, import one from magazine list */
413 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
414 if (!newmag)
415 return NULL;
416
417 if (lastmag)
418 magazine_destroy(cache, lastmag);
419
420 cache->mag_cache[CPU->id].last = cmag;
421 cache->mag_cache[CPU->id].current = newmag;
422
423 return newmag;
424}
425
426/** Try to find object in CPU-cache magazines
427 *
428 * @return Pointer to object or NULL if not available
429 *
430 */
431_NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
432{
433 if (!CPU)
434 return NULL;
435
436 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
437
438 slab_magazine_t *mag = get_full_current_mag(cache);
439 if (!mag) {
440 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
441 return NULL;
442 }
443
444 void *obj = mag->objs[--mag->busy];
445 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
446
447 atomic_dec(&cache->cached_objs);
448
449 return obj;
450}
451
452/** Assure that the current magazine is empty, return pointer to it,
453 * or NULL if no empty magazine is available and cannot be allocated
454 *
455 * We have 2 magazines bound to processor.
456 * First try the current.
457 * If full, try the last.
458 * If full, put to magazines list.
459 *
460 */
461_NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
462{
463 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
464 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
465
466 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
467
468 if (cmag) {
469 if (cmag->busy < cmag->size)
470 return cmag;
471
472 if ((lastmag) && (lastmag->busy < lastmag->size)) {
473 cache->mag_cache[CPU->id].last = cmag;
474 cache->mag_cache[CPU->id].current = lastmag;
475 return lastmag;
476 }
477 }
478
479 /* current | last are full | nonexistent, allocate new */
480
481 /*
482 * We do not want to sleep just because of caching,
483 * especially we do not want reclaiming to start, as
484 * this would deadlock.
485 *
486 */
487 slab_magazine_t *newmag = slab_alloc(&mag_cache,
488 FRAME_ATOMIC | FRAME_NO_RECLAIM);
489 if (!newmag)
490 return NULL;
491
492 newmag->size = SLAB_MAG_SIZE;
493 newmag->busy = 0;
494
495 /* Flush last to magazine list */
496 if (lastmag)
497 put_mag_to_cache(cache, lastmag);
498
499 /* Move current as last, save new as current */
500 cache->mag_cache[CPU->id].last = cmag;
501 cache->mag_cache[CPU->id].current = newmag;
502
503 return newmag;
504}
505
506/** Put object into CPU-cache magazine
507 *
508 * @return 0 on success, -1 on no memory
509 *
510 */
511_NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
512{
513 if (!CPU)
514 return -1;
515
516 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
517
518 slab_magazine_t *mag = make_empty_current_mag(cache);
519 if (!mag) {
520 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
521 return -1;
522 }
523
524 mag->objs[mag->busy++] = obj;
525
526 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
527
528 atomic_inc(&cache->cached_objs);
529
530 return 0;
531}
532
533/*
534 * Slab cache functions
535 */
536
537/** Return number of objects that fit in certain cache size
538 *
539 */
540_NO_TRACE static size_t comp_objects(slab_cache_t *cache)
541{
542 if (cache->flags & SLAB_CACHE_SLINSIDE)
543 return (FRAMES2SIZE(cache->frames) - sizeof(slab_t)) /
544 cache->size;
545 else
546 return FRAMES2SIZE(cache->frames) / cache->size;
547}
548
549/** Return wasted space in slab
550 *
551 */
552_NO_TRACE static size_t badness(slab_cache_t *cache)
553{
554 size_t objects = comp_objects(cache);
555 size_t ssize = FRAMES2SIZE(cache->frames);
556
557 if (cache->flags & SLAB_CACHE_SLINSIDE)
558 ssize -= sizeof(slab_t);
559
560 return ssize - objects * cache->size;
561}
562
563/** Initialize mag_cache structure in slab cache
564 *
565 */
566_NO_TRACE static bool make_magcache(slab_cache_t *cache)
567{
568 assert(_slab_initialized >= 2);
569
570 cache->mag_cache = slab_alloc(&slab_mag_cache, FRAME_ATOMIC);
571 if (!cache->mag_cache)
572 return false;
573
574 size_t i;
575 for (i = 0; i < config.cpu_count; i++) {
576 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
577 irq_spinlock_initialize(&cache->mag_cache[i].lock,
578 "slab.cache.mag_cache[].lock");
579 }
580
581 return true;
582}
583
584/** Initialize allocated memory as a slab cache
585 *
586 */
587_NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
588 size_t size, size_t align, errno_t (*constructor)(void *obj,
589 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
590{
591 assert(size > 0);
592
593 memsetb(cache, sizeof(*cache), 0);
594 cache->name = name;
595
596 if (align < sizeof(sysarg_t))
597 align = sizeof(sysarg_t);
598
599 size = ALIGN_UP(size, align);
600
601 cache->size = size;
602 cache->constructor = constructor;
603 cache->destructor = destructor;
604 cache->flags = flags;
605
606 list_initialize(&cache->full_slabs);
607 list_initialize(&cache->partial_slabs);
608 list_initialize(&cache->magazines);
609
610 irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
611 irq_spinlock_initialize(&cache->maglock, "slab.cache.maglock");
612
613 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
614 (void) make_magcache(cache);
615
616 /* Compute slab sizes, object counts in slabs etc. */
617 if (cache->size < SLAB_INSIDE_SIZE)
618 cache->flags |= SLAB_CACHE_SLINSIDE;
619
620 /* Minimum slab frames */
621 cache->frames = SIZE2FRAMES(cache->size);
622
623 while (badness(cache) > SLAB_MAX_BADNESS(cache))
624 cache->frames <<= 1;
625
626 cache->objects = comp_objects(cache);
627
628 /* If info fits in, put it inside */
629 if (badness(cache) > sizeof(slab_t))
630 cache->flags |= SLAB_CACHE_SLINSIDE;
631
632 /* Add cache to cache list */
633 irq_spinlock_lock(&slab_cache_lock, true);
634 list_append(&cache->link, &slab_cache_list);
635 irq_spinlock_unlock(&slab_cache_lock, true);
636}
637
638/** Create slab cache
639 *
640 */
641slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
642 errno_t (*constructor)(void *obj, unsigned int kmflag),
643 size_t (*destructor)(void *obj), unsigned int flags)
644{
645 slab_cache_t *cache = slab_alloc(&slab_cache_cache, FRAME_ATOMIC);
646 if (!cache)
647 panic("Not enough memory to allocate slab cache %s.", name);
648
649 _slab_cache_create(cache, name, size, align, constructor, destructor,
650 flags);
651
652 return cache;
653}
654
655/** Reclaim space occupied by objects that are already free
656 *
657 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
658 *
659 * @return Number of freed pages
660 *
661 */
662_NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
663{
664 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
665 return 0; /* Nothing to do */
666
667 /*
668 * We count up to original magazine count to avoid
669 * endless loop
670 */
671 size_t magcount = atomic_load(&cache->magazine_counter);
672
673 slab_magazine_t *mag;
674 size_t frames = 0;
675
676 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
677 frames += magazine_destroy(cache, mag);
678 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
679 break;
680 }
681
682 if (flags & SLAB_RECLAIM_ALL) {
683 /* Free cpu-bound magazines */
684 /* Destroy CPU magazines */
685 size_t i;
686 for (i = 0; i < config.cpu_count; i++) {
687 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
688
689 mag = cache->mag_cache[i].current;
690 if (mag)
691 frames += magazine_destroy(cache, mag);
692 cache->mag_cache[i].current = NULL;
693
694 mag = cache->mag_cache[i].last;
695 if (mag)
696 frames += magazine_destroy(cache, mag);
697 cache->mag_cache[i].last = NULL;
698
699 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
700 }
701 }
702
703 return frames;
704}
705
706/** Return object to cache, use slab if known
707 *
708 */
709_NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
710{
711 if (!obj)
712 return;
713
714 ipl_t ipl = interrupts_disable();
715
716 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
717 (magazine_obj_put(cache, obj)))
718 slab_obj_destroy(cache, obj, slab);
719
720 interrupts_restore(ipl);
721 atomic_dec(&cache->allocated_objs);
722}
723
724/** Check that there are no slabs and remove cache from system
725 *
726 */
727void slab_cache_destroy(slab_cache_t *cache)
728{
729 /*
730 * First remove cache from link, so that we don't need
731 * to disable interrupts later
732 *
733 */
734 irq_spinlock_lock(&slab_cache_lock, true);
735 list_remove(&cache->link);
736 irq_spinlock_unlock(&slab_cache_lock, true);
737
738 /*
739 * Do not lock anything, we assume the software is correct and
740 * does not touch the cache when it decides to destroy it
741 *
742 */
743
744 /* Destroy all magazines */
745 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
746
747 /* All slabs must be empty */
748 if ((!list_empty(&cache->full_slabs)) ||
749 (!list_empty(&cache->partial_slabs)))
750 panic("Destroying cache that is not empty.");
751
752 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE) && cache->mag_cache) {
753 slab_free(&slab_mag_cache, cache->mag_cache);
754 }
755
756 slab_free(&slab_cache_cache, cache);
757}
758
759/** Allocate new object from cache - if no flags given, always returns memory
760 *
761 */
762void *slab_alloc(slab_cache_t *cache, unsigned int flags)
763{
764 /* Disable interrupts to avoid deadlocks with interrupt handlers */
765 ipl_t ipl = interrupts_disable();
766
767 void *result = NULL;
768
769 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
770 result = magazine_obj_get(cache);
771
772 if (!result)
773 result = slab_obj_create(cache, flags);
774
775 interrupts_restore(ipl);
776
777 if (result)
778 atomic_inc(&cache->allocated_objs);
779
780 return result;
781}
782
783/** Return slab object to cache
784 *
785 */
786void slab_free(slab_cache_t *cache, void *obj)
787{
788 _slab_free(cache, obj, NULL);
789}
790
791/** Go through all caches and reclaim what is possible */
792size_t slab_reclaim(unsigned int flags)
793{
794 irq_spinlock_lock(&slab_cache_lock, true);
795
796 size_t frames = 0;
797 list_foreach(slab_cache_list, link, slab_cache_t, cache) {
798 frames += _slab_reclaim(cache, flags);
799 }
800
801 irq_spinlock_unlock(&slab_cache_lock, true);
802
803 return frames;
804}
805
806/* Print list of caches */
807void slab_print_list(void)
808{
809 printf("[cache name ] [size ] [pages ] [obj/pg] [slabs ]"
810 " [cached] [alloc ] [ctl]\n");
811
812 size_t skip = 0;
813 while (true) {
814 /*
815 * We must not hold the slab_cache_lock spinlock when printing
816 * the statistics. Otherwise we can easily deadlock if the print
817 * needs to allocate memory.
818 *
819 * Therefore, we walk through the slab cache list, skipping some
820 * amount of already processed caches during each iteration and
821 * gathering statistics about the first unprocessed cache. For
822 * the sake of printing the statistics, we realese the
823 * slab_cache_lock and reacquire it afterwards. Then the walk
824 * starts again.
825 *
826 * This limits both the efficiency and also accuracy of the
827 * obtained statistics. The efficiency is decreased because the
828 * time complexity of the algorithm is quadratic instead of
829 * linear. The accuracy is impacted because we drop the lock
830 * after processing one cache. If there is someone else
831 * manipulating the cache list, we might omit an arbitrary
832 * number of caches or process one cache multiple times.
833 * However, we don't bleed for this algorithm for it is only
834 * statistics.
835 */
836
837 irq_spinlock_lock(&slab_cache_lock, true);
838
839 link_t *cur = list_first(&slab_cache_list);
840 size_t i = 0;
841 while (i < skip && cur != NULL) {
842 i++;
843 cur = list_next(cur, &slab_cache_list);
844 }
845
846 if (cur == NULL) {
847 irq_spinlock_unlock(&slab_cache_lock, true);
848 break;
849 }
850
851 skip++;
852
853 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
854
855 const char *name = cache->name;
856 size_t frames = cache->frames;
857 size_t size = cache->size;
858 size_t objects = cache->objects;
859 long allocated_slabs = atomic_load(&cache->allocated_slabs);
860 long cached_objs = atomic_load(&cache->cached_objs);
861 long allocated_objs = atomic_load(&cache->allocated_objs);
862 unsigned int flags = cache->flags;
863
864 irq_spinlock_unlock(&slab_cache_lock, true);
865
866 printf("%-18s %8zu %8zu %8zu %8ld %8ld %8ld %-5s\n",
867 name, size, frames, objects, allocated_slabs,
868 cached_objs, allocated_objs,
869 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
870 }
871}
872
873void slab_cache_init(void)
874{
875 /* Initialize magazine cache */
876 _slab_cache_create(&mag_cache, "slab_magazine_t",
877 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void *),
878 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
879 SLAB_CACHE_SLINSIDE);
880
881 /* Initialize slab_cache cache */
882 _slab_cache_create(&slab_cache_cache, "slab_cache_cache",
883 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
884 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
885
886 /* Initialize external slab cache */
887 slab_extern_cache = slab_cache_create("slab_t", sizeof(slab_t), 0,
888 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
889
890#ifdef CONFIG_DEBUG
891 _slab_initialized = 1;
892#endif
893}
894
895/** Enable cpu_cache
896 *
897 * Kernel calls this function, when it knows the real number of
898 * processors. Allocate slab for cpucache and enable it on all
899 * existing slabs that are SLAB_CACHE_MAGDEFERRED
900 *
901 */
902void slab_enable_cpucache(void)
903{
904#ifdef CONFIG_DEBUG
905 _slab_initialized = 2;
906#endif
907
908 _slab_cache_create(&slab_mag_cache, "slab_mag_cache",
909 sizeof(slab_mag_cache_t) * config.cpu_count, sizeof(uintptr_t),
910 NULL, NULL, SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
911
912 irq_spinlock_lock(&slab_cache_lock, false);
913
914 list_foreach(slab_cache_list, link, slab_cache_t, slab) {
915 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
916 SLAB_CACHE_MAGDEFERRED)
917 continue;
918
919 (void) make_magcache(slab);
920 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
921 }
922
923 irq_spinlock_unlock(&slab_cache_lock, false);
924}
925
926/** @}
927 */
Note: See TracBrowser for help on using the repository browser.