source: mainline/kernel/generic/src/mm/slab.c@ bab75df6

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since bab75df6 was bab75df6, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Let kernel code get printf via the standard stdio header. Clean up unused includes.

  • Property mode set to 100644
File size: 26.7 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup kernel_generic_mm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <assert.h>
104#include <errno.h>
105#include <synch/spinlock.h>
106#include <mm/slab.h>
107#include <adt/list.h>
108#include <mem.h>
109#include <align.h>
110#include <mm/frame.h>
111#include <config.h>
112#include <stdio.h>
113#include <arch.h>
114#include <panic.h>
115#include <bitops.h>
116#include <macros.h>
117#include <cpu.h>
118
119IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
120static LIST_INITIALIZE(slab_cache_list);
121
122/** Magazine cache */
123static slab_cache_t mag_cache;
124
125/** Cache for cache descriptors */
126static slab_cache_t slab_cache_cache;
127
128/** Cache for per-CPU magazines of caches */
129static slab_cache_t slab_mag_cache;
130
131/** Cache for external slab descriptors
132 * This time we want per-cpu cache, so do not make it static
133 * - using slab for internal slab structures will not deadlock,
134 * as all slab structures are 'small' - control structures of
135 * their caches do not require further allocation
136 */
137static slab_cache_t *slab_extern_cache;
138
139/** Caches for malloc */
140static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
141
142static const char *malloc_names[] = {
143 "malloc-16",
144 "malloc-32",
145 "malloc-64",
146 "malloc-128",
147 "malloc-256",
148 "malloc-512",
149 "malloc-1K",
150 "malloc-2K",
151 "malloc-4K",
152 "malloc-8K",
153 "malloc-16K",
154 "malloc-32K",
155 "malloc-64K",
156 "malloc-128K",
157 "malloc-256K",
158 "malloc-512K",
159 "malloc-1M",
160 "malloc-2M",
161 "malloc-4M"
162};
163
164/** Slab descriptor */
165typedef struct {
166 slab_cache_t *cache; /**< Pointer to parent cache. */
167 link_t link; /**< List of full/partial slabs. */
168 void *start; /**< Start address of first available item. */
169 size_t available; /**< Count of available items in this slab. */
170 size_t nextavail; /**< The index of next available item. */
171} slab_t;
172
173#ifdef CONFIG_DEBUG
174static unsigned int _slab_initialized = 0;
175#endif
176
177/**************************************/
178/* Slab allocation functions */
179/**************************************/
180
181/** Allocate frames for slab space and initialize
182 *
183 */
184NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
185 unsigned int flags)
186{
187 size_t zone = 0;
188
189 uintptr_t data_phys =
190 frame_alloc_generic(cache->frames, FRAME_LOWMEM | flags, 0, &zone);
191 if (!data_phys)
192 return NULL;
193
194 void *data = (void *) PA2KA(data_phys);
195
196 slab_t *slab;
197 size_t fsize;
198
199 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
200 slab = slab_alloc(slab_extern_cache, flags);
201 if (!slab) {
202 frame_free(KA2PA(data), cache->frames);
203 return NULL;
204 }
205 } else {
206 fsize = FRAMES2SIZE(cache->frames);
207 slab = data + fsize - sizeof(*slab);
208 }
209
210 /* Fill in slab structures */
211 size_t i;
212 for (i = 0; i < cache->frames; i++)
213 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
214
215 slab->start = data;
216 slab->available = cache->objects;
217 slab->nextavail = 0;
218 slab->cache = cache;
219
220 for (i = 0; i < cache->objects; i++)
221 *((size_t *) (slab->start + i * cache->size)) = i + 1;
222
223 atomic_inc(&cache->allocated_slabs);
224 return slab;
225}
226
227/** Deallocate space associated with slab
228 *
229 * @return number of freed frames
230 *
231 */
232NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
233{
234 frame_free(KA2PA(slab->start), slab->cache->frames);
235 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
236 slab_free(slab_extern_cache, slab);
237
238 atomic_dec(&cache->allocated_slabs);
239
240 return cache->frames;
241}
242
243/** Map object to slab structure */
244NO_TRACE static slab_t *obj2slab(void *obj)
245{
246 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
247}
248
249/******************/
250/* Slab functions */
251/******************/
252
253/** Return object to slab and call a destructor
254 *
255 * @param slab If the caller knows directly slab of the object, otherwise NULL
256 *
257 * @return Number of freed pages
258 *
259 */
260NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
261 slab_t *slab)
262{
263 if (!slab)
264 slab = obj2slab(obj);
265
266 assert(slab->cache == cache);
267
268 size_t freed = 0;
269
270 if (cache->destructor)
271 freed = cache->destructor(obj);
272
273 irq_spinlock_lock(&cache->slablock, true);
274 assert(slab->available < cache->objects);
275
276 *((size_t *) obj) = slab->nextavail;
277 slab->nextavail = (obj - slab->start) / cache->size;
278 slab->available++;
279
280 /* Move it to correct list */
281 if (slab->available == cache->objects) {
282 /* Free associated memory */
283 list_remove(&slab->link);
284 irq_spinlock_unlock(&cache->slablock, true);
285
286 return freed + slab_space_free(cache, slab);
287 } else if (slab->available == 1) {
288 /* It was in full, move to partial */
289 list_remove(&slab->link);
290 list_prepend(&slab->link, &cache->partial_slabs);
291 }
292
293 irq_spinlock_unlock(&cache->slablock, true);
294 return freed;
295}
296
297/** Take new object from slab or create new if needed
298 *
299 * @return Object address or null
300 *
301 */
302NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
303{
304 irq_spinlock_lock(&cache->slablock, true);
305
306 slab_t *slab;
307
308 if (list_empty(&cache->partial_slabs)) {
309 /*
310 * Allow recursion and reclaiming
311 * - this should work, as the slab control structures
312 * are small and do not need to allocate with anything
313 * other than frame_alloc when they are allocating,
314 * that's why we should get recursion at most 1-level deep
315 *
316 */
317 irq_spinlock_unlock(&cache->slablock, true);
318 slab = slab_space_alloc(cache, flags);
319 if (!slab)
320 return NULL;
321
322 irq_spinlock_lock(&cache->slablock, true);
323 } else {
324 slab = list_get_instance(list_first(&cache->partial_slabs),
325 slab_t, link);
326 list_remove(&slab->link);
327 }
328
329 void *obj = slab->start + slab->nextavail * cache->size;
330 slab->nextavail = *((size_t *) obj);
331 slab->available--;
332
333 if (!slab->available)
334 list_prepend(&slab->link, &cache->full_slabs);
335 else
336 list_prepend(&slab->link, &cache->partial_slabs);
337
338 irq_spinlock_unlock(&cache->slablock, true);
339
340 if ((cache->constructor) && (cache->constructor(obj, flags) != EOK)) {
341 /* Bad, bad, construction failed */
342 slab_obj_destroy(cache, obj, slab);
343 return NULL;
344 }
345
346 return obj;
347}
348
349/****************************/
350/* CPU-Cache slab functions */
351/****************************/
352
353/** Find a full magazine in cache, take it from list and return it
354 *
355 * @param first If true, return first, else last mag.
356 *
357 */
358NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
359 bool first)
360{
361 slab_magazine_t *mag = NULL;
362 link_t *cur;
363
364 irq_spinlock_lock(&cache->maglock, true);
365 if (!list_empty(&cache->magazines)) {
366 if (first)
367 cur = list_first(&cache->magazines);
368 else
369 cur = list_last(&cache->magazines);
370
371 mag = list_get_instance(cur, slab_magazine_t, link);
372 list_remove(&mag->link);
373 atomic_dec(&cache->magazine_counter);
374 }
375 irq_spinlock_unlock(&cache->maglock, true);
376
377 return mag;
378}
379
380/** Prepend magazine to magazine list in cache
381 *
382 */
383NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
384 slab_magazine_t *mag)
385{
386 irq_spinlock_lock(&cache->maglock, true);
387
388 list_prepend(&mag->link, &cache->magazines);
389 atomic_inc(&cache->magazine_counter);
390
391 irq_spinlock_unlock(&cache->maglock, true);
392}
393
394/** Free all objects in magazine and free memory associated with magazine
395 *
396 * @return Number of freed pages
397 *
398 */
399NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
400 slab_magazine_t *mag)
401{
402 size_t i;
403 size_t frames = 0;
404
405 for (i = 0; i < mag->busy; i++) {
406 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
407 atomic_dec(&cache->cached_objs);
408 }
409
410 slab_free(&mag_cache, mag);
411
412 return frames;
413}
414
415/** Find full magazine, set it as current and return it
416 *
417 */
418NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
419{
420 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
421 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
422
423 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
424
425 if (cmag) { /* First try local CPU magazines */
426 if (cmag->busy)
427 return cmag;
428
429 if ((lastmag) && (lastmag->busy)) {
430 cache->mag_cache[CPU->id].current = lastmag;
431 cache->mag_cache[CPU->id].last = cmag;
432 return lastmag;
433 }
434 }
435
436 /* Local magazines are empty, import one from magazine list */
437 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
438 if (!newmag)
439 return NULL;
440
441 if (lastmag)
442 magazine_destroy(cache, lastmag);
443
444 cache->mag_cache[CPU->id].last = cmag;
445 cache->mag_cache[CPU->id].current = newmag;
446
447 return newmag;
448}
449
450/** Try to find object in CPU-cache magazines
451 *
452 * @return Pointer to object or NULL if not available
453 *
454 */
455NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
456{
457 if (!CPU)
458 return NULL;
459
460 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
461
462 slab_magazine_t *mag = get_full_current_mag(cache);
463 if (!mag) {
464 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
465 return NULL;
466 }
467
468 void *obj = mag->objs[--mag->busy];
469 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
470
471 atomic_dec(&cache->cached_objs);
472
473 return obj;
474}
475
476/** Assure that the current magazine is empty, return pointer to it,
477 * or NULL if no empty magazine is available and cannot be allocated
478 *
479 * We have 2 magazines bound to processor.
480 * First try the current.
481 * If full, try the last.
482 * If full, put to magazines list.
483 *
484 */
485NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
486{
487 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
488 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
489
490 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
491
492 if (cmag) {
493 if (cmag->busy < cmag->size)
494 return cmag;
495
496 if ((lastmag) && (lastmag->busy < lastmag->size)) {
497 cache->mag_cache[CPU->id].last = cmag;
498 cache->mag_cache[CPU->id].current = lastmag;
499 return lastmag;
500 }
501 }
502
503 /* current | last are full | nonexistent, allocate new */
504
505 /*
506 * We do not want to sleep just because of caching,
507 * especially we do not want reclaiming to start, as
508 * this would deadlock.
509 *
510 */
511 slab_magazine_t *newmag = slab_alloc(&mag_cache,
512 FRAME_ATOMIC | FRAME_NO_RECLAIM);
513 if (!newmag)
514 return NULL;
515
516 newmag->size = SLAB_MAG_SIZE;
517 newmag->busy = 0;
518
519 /* Flush last to magazine list */
520 if (lastmag)
521 put_mag_to_cache(cache, lastmag);
522
523 /* Move current as last, save new as current */
524 cache->mag_cache[CPU->id].last = cmag;
525 cache->mag_cache[CPU->id].current = newmag;
526
527 return newmag;
528}
529
530/** Put object into CPU-cache magazine
531 *
532 * @return 0 on success, -1 on no memory
533 *
534 */
535NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
536{
537 if (!CPU)
538 return -1;
539
540 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
541
542 slab_magazine_t *mag = make_empty_current_mag(cache);
543 if (!mag) {
544 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
545 return -1;
546 }
547
548 mag->objs[mag->busy++] = obj;
549
550 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
551
552 atomic_inc(&cache->cached_objs);
553
554 return 0;
555}
556
557/************************/
558/* Slab cache functions */
559/************************/
560
561/** Return number of objects that fit in certain cache size
562 *
563 */
564NO_TRACE static size_t comp_objects(slab_cache_t *cache)
565{
566 if (cache->flags & SLAB_CACHE_SLINSIDE)
567 return (FRAMES2SIZE(cache->frames) - sizeof(slab_t)) /
568 cache->size;
569 else
570 return FRAMES2SIZE(cache->frames) / cache->size;
571}
572
573/** Return wasted space in slab
574 *
575 */
576NO_TRACE static size_t badness(slab_cache_t *cache)
577{
578 size_t objects = comp_objects(cache);
579 size_t ssize = FRAMES2SIZE(cache->frames);
580
581 if (cache->flags & SLAB_CACHE_SLINSIDE)
582 ssize -= sizeof(slab_t);
583
584 return ssize - objects * cache->size;
585}
586
587/** Initialize mag_cache structure in slab cache
588 *
589 */
590NO_TRACE static bool make_magcache(slab_cache_t *cache)
591{
592 assert(_slab_initialized >= 2);
593
594 cache->mag_cache = slab_alloc(&slab_mag_cache, FRAME_ATOMIC);
595 if (!cache->mag_cache)
596 return false;
597
598 size_t i;
599 for (i = 0; i < config.cpu_count; i++) {
600 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
601 irq_spinlock_initialize(&cache->mag_cache[i].lock,
602 "slab.cache.mag_cache[].lock");
603 }
604
605 return true;
606}
607
608/** Initialize allocated memory as a slab cache
609 *
610 */
611NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
612 size_t size, size_t align, errno_t (*constructor)(void *obj,
613 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
614{
615 assert(size > 0);
616
617 memsetb(cache, sizeof(*cache), 0);
618 cache->name = name;
619
620 if (align < sizeof(sysarg_t))
621 align = sizeof(sysarg_t);
622
623 size = ALIGN_UP(size, align);
624
625 cache->size = size;
626 cache->constructor = constructor;
627 cache->destructor = destructor;
628 cache->flags = flags;
629
630 list_initialize(&cache->full_slabs);
631 list_initialize(&cache->partial_slabs);
632 list_initialize(&cache->magazines);
633
634 irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
635 irq_spinlock_initialize(&cache->maglock, "slab.cache.maglock");
636
637 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
638 (void) make_magcache(cache);
639
640 /* Compute slab sizes, object counts in slabs etc. */
641 if (cache->size < SLAB_INSIDE_SIZE)
642 cache->flags |= SLAB_CACHE_SLINSIDE;
643
644 /* Minimum slab frames */
645 cache->frames = SIZE2FRAMES(cache->size);
646
647 while (badness(cache) > SLAB_MAX_BADNESS(cache))
648 cache->frames <<= 1;
649
650 cache->objects = comp_objects(cache);
651
652 /* If info fits in, put it inside */
653 if (badness(cache) > sizeof(slab_t))
654 cache->flags |= SLAB_CACHE_SLINSIDE;
655
656 /* Add cache to cache list */
657 irq_spinlock_lock(&slab_cache_lock, true);
658 list_append(&cache->link, &slab_cache_list);
659 irq_spinlock_unlock(&slab_cache_lock, true);
660}
661
662/** Create slab cache
663 *
664 */
665slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
666 errno_t (*constructor)(void *obj, unsigned int kmflag),
667 size_t (*destructor)(void *obj), unsigned int flags)
668{
669 slab_cache_t *cache = slab_alloc(&slab_cache_cache, 0);
670 _slab_cache_create(cache, name, size, align, constructor, destructor,
671 flags);
672
673 return cache;
674}
675
676/** Reclaim space occupied by objects that are already free
677 *
678 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
679 *
680 * @return Number of freed pages
681 *
682 */
683NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
684{
685 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
686 return 0; /* Nothing to do */
687
688 /*
689 * We count up to original magazine count to avoid
690 * endless loop
691 */
692 size_t magcount = atomic_load(&cache->magazine_counter);
693
694 slab_magazine_t *mag;
695 size_t frames = 0;
696
697 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
698 frames += magazine_destroy(cache, mag);
699 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
700 break;
701 }
702
703 if (flags & SLAB_RECLAIM_ALL) {
704 /* Free cpu-bound magazines */
705 /* Destroy CPU magazines */
706 size_t i;
707 for (i = 0; i < config.cpu_count; i++) {
708 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
709
710 mag = cache->mag_cache[i].current;
711 if (mag)
712 frames += magazine_destroy(cache, mag);
713 cache->mag_cache[i].current = NULL;
714
715 mag = cache->mag_cache[i].last;
716 if (mag)
717 frames += magazine_destroy(cache, mag);
718 cache->mag_cache[i].last = NULL;
719
720 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
721 }
722 }
723
724 return frames;
725}
726
727/** Return object to cache, use slab if known
728 *
729 */
730NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
731{
732 ipl_t ipl = interrupts_disable();
733
734 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
735 (magazine_obj_put(cache, obj)))
736 slab_obj_destroy(cache, obj, slab);
737
738 interrupts_restore(ipl);
739 atomic_dec(&cache->allocated_objs);
740}
741
742/** Check that there are no slabs and remove cache from system
743 *
744 */
745void slab_cache_destroy(slab_cache_t *cache)
746{
747 /*
748 * First remove cache from link, so that we don't need
749 * to disable interrupts later
750 *
751 */
752 irq_spinlock_lock(&slab_cache_lock, true);
753 list_remove(&cache->link);
754 irq_spinlock_unlock(&slab_cache_lock, true);
755
756 /*
757 * Do not lock anything, we assume the software is correct and
758 * does not touch the cache when it decides to destroy it
759 *
760 */
761
762 /* Destroy all magazines */
763 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
764
765 /* All slabs must be empty */
766 if ((!list_empty(&cache->full_slabs)) ||
767 (!list_empty(&cache->partial_slabs)))
768 panic("Destroying cache that is not empty.");
769
770 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
771 slab_t *mag_slab = obj2slab(cache->mag_cache);
772 _slab_free(mag_slab->cache, cache->mag_cache, mag_slab);
773 }
774
775 slab_free(&slab_cache_cache, cache);
776}
777
778/** Allocate new object from cache - if no flags given, always returns memory
779 *
780 */
781void *slab_alloc(slab_cache_t *cache, unsigned int flags)
782{
783 /* Disable interrupts to avoid deadlocks with interrupt handlers */
784 ipl_t ipl = interrupts_disable();
785
786 void *result = NULL;
787
788 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
789 result = magazine_obj_get(cache);
790
791 if (!result)
792 result = slab_obj_create(cache, flags);
793
794 interrupts_restore(ipl);
795
796 if (result)
797 atomic_inc(&cache->allocated_objs);
798
799 return result;
800}
801
802/** Return slab object to cache
803 *
804 */
805void slab_free(slab_cache_t *cache, void *obj)
806{
807 _slab_free(cache, obj, NULL);
808}
809
810/** Go through all caches and reclaim what is possible */
811size_t slab_reclaim(unsigned int flags)
812{
813 irq_spinlock_lock(&slab_cache_lock, true);
814
815 size_t frames = 0;
816 list_foreach(slab_cache_list, link, slab_cache_t, cache) {
817 frames += _slab_reclaim(cache, flags);
818 }
819
820 irq_spinlock_unlock(&slab_cache_lock, true);
821
822 return frames;
823}
824
825/* Print list of caches */
826void slab_print_list(void)
827{
828 printf("[cache name ] [size ] [pages ] [obj/pg] [slabs ]"
829 " [cached] [alloc ] [ctl]\n");
830
831 size_t skip = 0;
832 while (true) {
833 /*
834 * We must not hold the slab_cache_lock spinlock when printing
835 * the statistics. Otherwise we can easily deadlock if the print
836 * needs to allocate memory.
837 *
838 * Therefore, we walk through the slab cache list, skipping some
839 * amount of already processed caches during each iteration and
840 * gathering statistics about the first unprocessed cache. For
841 * the sake of printing the statistics, we realese the
842 * slab_cache_lock and reacquire it afterwards. Then the walk
843 * starts again.
844 *
845 * This limits both the efficiency and also accuracy of the
846 * obtained statistics. The efficiency is decreased because the
847 * time complexity of the algorithm is quadratic instead of
848 * linear. The accuracy is impacted because we drop the lock
849 * after processing one cache. If there is someone else
850 * manipulating the cache list, we might omit an arbitrary
851 * number of caches or process one cache multiple times.
852 * However, we don't bleed for this algorithm for it is only
853 * statistics.
854 */
855
856 irq_spinlock_lock(&slab_cache_lock, true);
857
858 link_t *cur = slab_cache_list.head.next;
859 size_t i = 0;
860 while (i < skip && cur != &slab_cache_list.head) {
861 i++;
862 cur = cur->next;
863 }
864
865 if (cur == &slab_cache_list.head) {
866 irq_spinlock_unlock(&slab_cache_lock, true);
867 break;
868 }
869
870 skip++;
871
872 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
873
874 const char *name = cache->name;
875 size_t frames = cache->frames;
876 size_t size = cache->size;
877 size_t objects = cache->objects;
878 long allocated_slabs = atomic_load(&cache->allocated_slabs);
879 long cached_objs = atomic_load(&cache->cached_objs);
880 long allocated_objs = atomic_load(&cache->allocated_objs);
881 unsigned int flags = cache->flags;
882
883 irq_spinlock_unlock(&slab_cache_lock, true);
884
885 printf("%-18s %8zu %8zu %8zu %8ld %8ld %8ld %-5s\n",
886 name, size, frames, objects, allocated_slabs,
887 cached_objs, allocated_objs,
888 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
889 }
890}
891
892void slab_cache_init(void)
893{
894 /* Initialize magazine cache */
895 _slab_cache_create(&mag_cache, "slab_magazine_t",
896 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void *),
897 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
898 SLAB_CACHE_SLINSIDE);
899
900 /* Initialize slab_cache cache */
901 _slab_cache_create(&slab_cache_cache, "slab_cache_cache",
902 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
903 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
904
905 /* Initialize external slab cache */
906 slab_extern_cache = slab_cache_create("slab_t", sizeof(slab_t), 0,
907 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
908
909 /* Initialize structures for malloc */
910 size_t i;
911 size_t size;
912
913 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
914 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
915 i++, size <<= 1) {
916 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
917 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
918 }
919
920#ifdef CONFIG_DEBUG
921 _slab_initialized = 1;
922#endif
923}
924
925/** Enable cpu_cache
926 *
927 * Kernel calls this function, when it knows the real number of
928 * processors. Allocate slab for cpucache and enable it on all
929 * existing slabs that are SLAB_CACHE_MAGDEFERRED
930 *
931 */
932void slab_enable_cpucache(void)
933{
934#ifdef CONFIG_DEBUG
935 _slab_initialized = 2;
936#endif
937
938 _slab_cache_create(&slab_mag_cache, "slab_mag_cache",
939 sizeof(slab_mag_cache_t) * config.cpu_count, sizeof(uintptr_t),
940 NULL, NULL, SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
941
942 irq_spinlock_lock(&slab_cache_lock, false);
943
944 list_foreach(slab_cache_list, link, slab_cache_t, slab) {
945 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
946 SLAB_CACHE_MAGDEFERRED)
947 continue;
948
949 (void) make_magcache(slab);
950 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
951 }
952
953 irq_spinlock_unlock(&slab_cache_lock, false);
954}
955
956static void *_malloc(size_t size, unsigned int flags)
957{
958 assert(_slab_initialized);
959 assert(size <= (1 << SLAB_MAX_MALLOC_W));
960
961 if (size < (1 << SLAB_MIN_MALLOC_W))
962 size = (1 << SLAB_MIN_MALLOC_W);
963
964 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
965
966 return slab_alloc(malloc_caches[idx], flags);
967}
968
969void *malloc(size_t size)
970{
971 return _malloc(size, FRAME_ATOMIC);
972}
973
974/** Non-failing malloc.
975 * Never returns NULL, but may block forever if no memory is available.
976 */
977void *nfmalloc(size_t size)
978{
979 return _malloc(size, 0);
980}
981
982static void *_realloc(void *ptr, size_t size, unsigned int flags)
983{
984 assert(_slab_initialized);
985 assert(size <= (1 << SLAB_MAX_MALLOC_W));
986
987 void *new_ptr;
988
989 if (size > 0) {
990 if (size < (1 << SLAB_MIN_MALLOC_W))
991 size = (1 << SLAB_MIN_MALLOC_W);
992 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
993
994 new_ptr = slab_alloc(malloc_caches[idx], flags);
995 } else
996 new_ptr = NULL;
997
998 if ((new_ptr != NULL) && (ptr != NULL)) {
999 slab_t *slab = obj2slab(ptr);
1000 memcpy(new_ptr, ptr, min(size, slab->cache->size));
1001 }
1002
1003 if (ptr != NULL)
1004 free(ptr);
1005
1006 return new_ptr;
1007}
1008
1009void *realloc(void *ptr, size_t size)
1010{
1011 return _realloc(ptr, size, FRAME_ATOMIC);
1012}
1013
1014void free(void *ptr)
1015{
1016 if (!ptr)
1017 return;
1018
1019 slab_t *slab = obj2slab(ptr);
1020 _slab_free(slab->cache, ptr, slab);
1021}
1022
1023/** @}
1024 */
Note: See TracBrowser for help on using the repository browser.