source: mainline/kernel/generic/src/mm/slab.c@ a501e22c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since a501e22c was b0c2075, checked in by Martin Decky <martin@…>, 12 years ago

new physical memory allocator supporting physical address constrains
the buddy allocator framework is retired and replaced by a two-level bitmap
the allocator can allocate an arbitrary number of frames, not only a power-of-two count

Caution: Change of semantics
The physical memory allocator no longer allocates naturally aligned blocks. If you require an aligned block, specify it as the constraint.

  • Property mode set to 100644
File size: 26.0 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <synch/spinlock.h>
104#include <mm/slab.h>
105#include <adt/list.h>
106#include <memstr.h>
107#include <align.h>
108#include <mm/frame.h>
109#include <config.h>
110#include <print.h>
111#include <arch.h>
112#include <panic.h>
113#include <debug.h>
114#include <bitops.h>
115#include <macros.h>
116
117IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
118static LIST_INITIALIZE(slab_cache_list);
119
120/** Magazine cache */
121static slab_cache_t mag_cache;
122
123/** Cache for cache descriptors */
124static slab_cache_t slab_cache_cache;
125
126/** Cache for external slab descriptors
127 * This time we want per-cpu cache, so do not make it static
128 * - using slab for internal slab structures will not deadlock,
129 * as all slab structures are 'small' - control structures of
130 * their caches do not require further allocation
131 */
132static slab_cache_t *slab_extern_cache;
133
134/** Caches for malloc */
135static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
136
137static const char *malloc_names[] = {
138 "malloc-16",
139 "malloc-32",
140 "malloc-64",
141 "malloc-128",
142 "malloc-256",
143 "malloc-512",
144 "malloc-1K",
145 "malloc-2K",
146 "malloc-4K",
147 "malloc-8K",
148 "malloc-16K",
149 "malloc-32K",
150 "malloc-64K",
151 "malloc-128K",
152 "malloc-256K",
153 "malloc-512K",
154 "malloc-1M",
155 "malloc-2M",
156 "malloc-4M"
157};
158
159/** Slab descriptor */
160typedef struct {
161 slab_cache_t *cache; /**< Pointer to parent cache. */
162 link_t link; /**< List of full/partial slabs. */
163 void *start; /**< Start address of first available item. */
164 size_t available; /**< Count of available items in this slab. */
165 size_t nextavail; /**< The index of next available item. */
166} slab_t;
167
168#ifdef CONFIG_DEBUG
169static unsigned int _slab_initialized = 0;
170#endif
171
172/**************************************/
173/* Slab allocation functions */
174/**************************************/
175
176/** Allocate frames for slab space and initialize
177 *
178 */
179NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
180 unsigned int flags)
181{
182 size_t zone = 0;
183
184 void *data = (void *)
185 PA2KA(frame_alloc_generic(cache->frames, flags, 0, &zone));
186 if (!data)
187 return NULL;
188
189 slab_t *slab;
190 size_t fsize;
191
192 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
193 slab = slab_alloc(slab_extern_cache, flags);
194 if (!slab) {
195 frame_free(KA2PA(data));
196 return NULL;
197 }
198 } else {
199 fsize = FRAMES2SIZE(cache->frames);
200 slab = data + fsize - sizeof(*slab);
201 }
202
203 /* Fill in slab structures */
204 size_t i;
205 for (i = 0; i < cache->frames; i++)
206 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
207
208 slab->start = data;
209 slab->available = cache->objects;
210 slab->nextavail = 0;
211 slab->cache = cache;
212
213 for (i = 0; i < cache->objects; i++)
214 *((size_t *) (slab->start + i * cache->size)) = i + 1;
215
216 atomic_inc(&cache->allocated_slabs);
217 return slab;
218}
219
220/** Deallocate space associated with slab
221 *
222 * @return number of freed frames
223 *
224 */
225NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
226{
227 frame_free(KA2PA(slab->start));
228 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
229 slab_free(slab_extern_cache, slab);
230
231 atomic_dec(&cache->allocated_slabs);
232
233 return cache->frames;
234}
235
236/** Map object to slab structure */
237NO_TRACE static slab_t *obj2slab(void *obj)
238{
239 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
240}
241
242/******************/
243/* Slab functions */
244/******************/
245
246/** Return object to slab and call a destructor
247 *
248 * @param slab If the caller knows directly slab of the object, otherwise NULL
249 *
250 * @return Number of freed pages
251 *
252 */
253NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
254 slab_t *slab)
255{
256 if (!slab)
257 slab = obj2slab(obj);
258
259 ASSERT(slab->cache == cache);
260
261 size_t freed = 0;
262
263 if (cache->destructor)
264 freed = cache->destructor(obj);
265
266 irq_spinlock_lock(&cache->slablock, true);
267 ASSERT(slab->available < cache->objects);
268
269 *((size_t *) obj) = slab->nextavail;
270 slab->nextavail = (obj - slab->start) / cache->size;
271 slab->available++;
272
273 /* Move it to correct list */
274 if (slab->available == cache->objects) {
275 /* Free associated memory */
276 list_remove(&slab->link);
277 irq_spinlock_unlock(&cache->slablock, true);
278
279 return freed + slab_space_free(cache, slab);
280 } else if (slab->available == 1) {
281 /* It was in full, move to partial */
282 list_remove(&slab->link);
283 list_prepend(&slab->link, &cache->partial_slabs);
284 }
285
286 irq_spinlock_unlock(&cache->slablock, true);
287 return freed;
288}
289
290/** Take new object from slab or create new if needed
291 *
292 * @return Object address or null
293 *
294 */
295NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
296{
297 irq_spinlock_lock(&cache->slablock, true);
298
299 slab_t *slab;
300
301 if (list_empty(&cache->partial_slabs)) {
302 /*
303 * Allow recursion and reclaiming
304 * - this should work, as the slab control structures
305 * are small and do not need to allocate with anything
306 * other than frame_alloc when they are allocating,
307 * that's why we should get recursion at most 1-level deep
308 *
309 */
310 irq_spinlock_unlock(&cache->slablock, true);
311 slab = slab_space_alloc(cache, flags);
312 if (!slab)
313 return NULL;
314
315 irq_spinlock_lock(&cache->slablock, true);
316 } else {
317 slab = list_get_instance(list_first(&cache->partial_slabs),
318 slab_t, link);
319 list_remove(&slab->link);
320 }
321
322 void *obj = slab->start + slab->nextavail * cache->size;
323 slab->nextavail = *((size_t *) obj);
324 slab->available--;
325
326 if (!slab->available)
327 list_prepend(&slab->link, &cache->full_slabs);
328 else
329 list_prepend(&slab->link, &cache->partial_slabs);
330
331 irq_spinlock_unlock(&cache->slablock, true);
332
333 if ((cache->constructor) && (cache->constructor(obj, flags))) {
334 /* Bad, bad, construction failed */
335 slab_obj_destroy(cache, obj, slab);
336 return NULL;
337 }
338
339 return obj;
340}
341
342/****************************/
343/* CPU-Cache slab functions */
344/****************************/
345
346/** Find a full magazine in cache, take it from list and return it
347 *
348 * @param first If true, return first, else last mag.
349 *
350 */
351NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
352 bool first)
353{
354 slab_magazine_t *mag = NULL;
355 link_t *cur;
356
357 irq_spinlock_lock(&cache->maglock, true);
358 if (!list_empty(&cache->magazines)) {
359 if (first)
360 cur = list_first(&cache->magazines);
361 else
362 cur = list_last(&cache->magazines);
363
364 mag = list_get_instance(cur, slab_magazine_t, link);
365 list_remove(&mag->link);
366 atomic_dec(&cache->magazine_counter);
367 }
368 irq_spinlock_unlock(&cache->maglock, true);
369
370 return mag;
371}
372
373/** Prepend magazine to magazine list in cache
374 *
375 */
376NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
377 slab_magazine_t *mag)
378{
379 irq_spinlock_lock(&cache->maglock, true);
380
381 list_prepend(&mag->link, &cache->magazines);
382 atomic_inc(&cache->magazine_counter);
383
384 irq_spinlock_unlock(&cache->maglock, true);
385}
386
387/** Free all objects in magazine and free memory associated with magazine
388 *
389 * @return Number of freed pages
390 *
391 */
392NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
393 slab_magazine_t *mag)
394{
395 size_t i;
396 size_t frames = 0;
397
398 for (i = 0; i < mag->busy; i++) {
399 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
400 atomic_dec(&cache->cached_objs);
401 }
402
403 slab_free(&mag_cache, mag);
404
405 return frames;
406}
407
408/** Find full magazine, set it as current and return it
409 *
410 */
411NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
412{
413 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
414 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
415
416 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
417
418 if (cmag) { /* First try local CPU magazines */
419 if (cmag->busy)
420 return cmag;
421
422 if ((lastmag) && (lastmag->busy)) {
423 cache->mag_cache[CPU->id].current = lastmag;
424 cache->mag_cache[CPU->id].last = cmag;
425 return lastmag;
426 }
427 }
428
429 /* Local magazines are empty, import one from magazine list */
430 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
431 if (!newmag)
432 return NULL;
433
434 if (lastmag)
435 magazine_destroy(cache, lastmag);
436
437 cache->mag_cache[CPU->id].last = cmag;
438 cache->mag_cache[CPU->id].current = newmag;
439
440 return newmag;
441}
442
443/** Try to find object in CPU-cache magazines
444 *
445 * @return Pointer to object or NULL if not available
446 *
447 */
448NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
449{
450 if (!CPU)
451 return NULL;
452
453 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
454
455 slab_magazine_t *mag = get_full_current_mag(cache);
456 if (!mag) {
457 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
458 return NULL;
459 }
460
461 void *obj = mag->objs[--mag->busy];
462 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
463
464 atomic_dec(&cache->cached_objs);
465
466 return obj;
467}
468
469/** Assure that the current magazine is empty, return pointer to it,
470 * or NULL if no empty magazine is available and cannot be allocated
471 *
472 * We have 2 magazines bound to processor.
473 * First try the current.
474 * If full, try the last.
475 * If full, put to magazines list.
476 *
477 */
478NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
479{
480 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
481 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
482
483 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
484
485 if (cmag) {
486 if (cmag->busy < cmag->size)
487 return cmag;
488
489 if ((lastmag) && (lastmag->busy < lastmag->size)) {
490 cache->mag_cache[CPU->id].last = cmag;
491 cache->mag_cache[CPU->id].current = lastmag;
492 return lastmag;
493 }
494 }
495
496 /* current | last are full | nonexistent, allocate new */
497
498 /*
499 * We do not want to sleep just because of caching,
500 * especially we do not want reclaiming to start, as
501 * this would deadlock.
502 *
503 */
504 slab_magazine_t *newmag = slab_alloc(&mag_cache,
505 FRAME_ATOMIC | FRAME_NO_RECLAIM);
506 if (!newmag)
507 return NULL;
508
509 newmag->size = SLAB_MAG_SIZE;
510 newmag->busy = 0;
511
512 /* Flush last to magazine list */
513 if (lastmag)
514 put_mag_to_cache(cache, lastmag);
515
516 /* Move current as last, save new as current */
517 cache->mag_cache[CPU->id].last = cmag;
518 cache->mag_cache[CPU->id].current = newmag;
519
520 return newmag;
521}
522
523/** Put object into CPU-cache magazine
524 *
525 * @return 0 on success, -1 on no memory
526 *
527 */
528NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
529{
530 if (!CPU)
531 return -1;
532
533 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
534
535 slab_magazine_t *mag = make_empty_current_mag(cache);
536 if (!mag) {
537 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
538 return -1;
539 }
540
541 mag->objs[mag->busy++] = obj;
542
543 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
544
545 atomic_inc(&cache->cached_objs);
546
547 return 0;
548}
549
550/************************/
551/* Slab cache functions */
552/************************/
553
554/** Return number of objects that fit in certain cache size
555 *
556 */
557NO_TRACE static size_t comp_objects(slab_cache_t *cache)
558{
559 if (cache->flags & SLAB_CACHE_SLINSIDE)
560 return (FRAMES2SIZE(cache->frames) - sizeof(slab_t)) /
561 cache->size;
562 else
563 return FRAMES2SIZE(cache->frames) / cache->size;
564}
565
566/** Return wasted space in slab
567 *
568 */
569NO_TRACE static size_t badness(slab_cache_t *cache)
570{
571 size_t objects = comp_objects(cache);
572 size_t ssize = FRAMES2SIZE(cache->frames);
573
574 if (cache->flags & SLAB_CACHE_SLINSIDE)
575 ssize -= sizeof(slab_t);
576
577 return ssize - objects * cache->size;
578}
579
580/** Initialize mag_cache structure in slab cache
581 *
582 */
583NO_TRACE static bool make_magcache(slab_cache_t *cache)
584{
585 ASSERT(_slab_initialized >= 2);
586
587 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
588 FRAME_ATOMIC);
589 if (!cache->mag_cache)
590 return false;
591
592 size_t i;
593 for (i = 0; i < config.cpu_count; i++) {
594 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
595 irq_spinlock_initialize(&cache->mag_cache[i].lock,
596 "slab.cache.mag_cache[].lock");
597 }
598
599 return true;
600}
601
602/** Initialize allocated memory as a slab cache
603 *
604 */
605NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
606 size_t size, size_t align, int (*constructor)(void *obj,
607 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
608{
609 memsetb(cache, sizeof(*cache), 0);
610 cache->name = name;
611
612 if (align < sizeof(sysarg_t))
613 align = sizeof(sysarg_t);
614
615 size = ALIGN_UP(size, align);
616
617 cache->size = size;
618 cache->constructor = constructor;
619 cache->destructor = destructor;
620 cache->flags = flags;
621
622 list_initialize(&cache->full_slabs);
623 list_initialize(&cache->partial_slabs);
624 list_initialize(&cache->magazines);
625
626 irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
627 irq_spinlock_initialize(&cache->maglock, "slab.cache.maglock");
628
629 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
630 (void) make_magcache(cache);
631
632 /* Compute slab sizes, object counts in slabs etc. */
633 if (cache->size < SLAB_INSIDE_SIZE)
634 cache->flags |= SLAB_CACHE_SLINSIDE;
635
636 /* Minimum slab frames */
637 cache->frames = SIZE2FRAMES(cache->size);
638
639 while (badness(cache) > SLAB_MAX_BADNESS(cache))
640 cache->frames <<= 1;
641
642 cache->objects = comp_objects(cache);
643
644 /* If info fits in, put it inside */
645 if (badness(cache) > sizeof(slab_t))
646 cache->flags |= SLAB_CACHE_SLINSIDE;
647
648 /* Add cache to cache list */
649 irq_spinlock_lock(&slab_cache_lock, true);
650 list_append(&cache->link, &slab_cache_list);
651 irq_spinlock_unlock(&slab_cache_lock, true);
652}
653
654/** Create slab cache
655 *
656 */
657slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
658 int (*constructor)(void *obj, unsigned int kmflag),
659 size_t (*destructor)(void *obj), unsigned int flags)
660{
661 slab_cache_t *cache = slab_alloc(&slab_cache_cache, 0);
662 _slab_cache_create(cache, name, size, align, constructor, destructor,
663 flags);
664
665 return cache;
666}
667
668/** Reclaim space occupied by objects that are already free
669 *
670 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
671 *
672 * @return Number of freed pages
673 *
674 */
675NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
676{
677 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
678 return 0; /* Nothing to do */
679
680 /*
681 * We count up to original magazine count to avoid
682 * endless loop
683 */
684 atomic_count_t magcount = atomic_get(&cache->magazine_counter);
685
686 slab_magazine_t *mag;
687 size_t frames = 0;
688
689 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
690 frames += magazine_destroy(cache, mag);
691 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
692 break;
693 }
694
695 if (flags & SLAB_RECLAIM_ALL) {
696 /* Free cpu-bound magazines */
697 /* Destroy CPU magazines */
698 size_t i;
699 for (i = 0; i < config.cpu_count; i++) {
700 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
701
702 mag = cache->mag_cache[i].current;
703 if (mag)
704 frames += magazine_destroy(cache, mag);
705 cache->mag_cache[i].current = NULL;
706
707 mag = cache->mag_cache[i].last;
708 if (mag)
709 frames += magazine_destroy(cache, mag);
710 cache->mag_cache[i].last = NULL;
711
712 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
713 }
714 }
715
716 return frames;
717}
718
719/** Check that there are no slabs and remove cache from system
720 *
721 */
722void slab_cache_destroy(slab_cache_t *cache)
723{
724 /*
725 * First remove cache from link, so that we don't need
726 * to disable interrupts later
727 *
728 */
729 irq_spinlock_lock(&slab_cache_lock, true);
730 list_remove(&cache->link);
731 irq_spinlock_unlock(&slab_cache_lock, true);
732
733 /*
734 * Do not lock anything, we assume the software is correct and
735 * does not touch the cache when it decides to destroy it
736 *
737 */
738
739 /* Destroy all magazines */
740 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
741
742 /* All slabs must be empty */
743 if ((!list_empty(&cache->full_slabs)) ||
744 (!list_empty(&cache->partial_slabs)))
745 panic("Destroying cache that is not empty.");
746
747 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
748 free(cache->mag_cache);
749
750 slab_free(&slab_cache_cache, cache);
751}
752
753/** Allocate new object from cache - if no flags given, always returns memory
754 *
755 */
756void *slab_alloc(slab_cache_t *cache, unsigned int flags)
757{
758 /* Disable interrupts to avoid deadlocks with interrupt handlers */
759 ipl_t ipl = interrupts_disable();
760
761 void *result = NULL;
762
763 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
764 result = magazine_obj_get(cache);
765
766 if (!result)
767 result = slab_obj_create(cache, flags);
768
769 interrupts_restore(ipl);
770
771 if (result)
772 atomic_inc(&cache->allocated_objs);
773
774 return result;
775}
776
777/** Return object to cache, use slab if known
778 *
779 */
780NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
781{
782 ipl_t ipl = interrupts_disable();
783
784 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
785 (magazine_obj_put(cache, obj)))
786 slab_obj_destroy(cache, obj, slab);
787
788 interrupts_restore(ipl);
789 atomic_dec(&cache->allocated_objs);
790}
791
792/** Return slab object to cache
793 *
794 */
795void slab_free(slab_cache_t *cache, void *obj)
796{
797 _slab_free(cache, obj, NULL);
798}
799
800/** Go through all caches and reclaim what is possible */
801size_t slab_reclaim(unsigned int flags)
802{
803 irq_spinlock_lock(&slab_cache_lock, true);
804
805 size_t frames = 0;
806 list_foreach(slab_cache_list, link, slab_cache_t, cache) {
807 frames += _slab_reclaim(cache, flags);
808 }
809
810 irq_spinlock_unlock(&slab_cache_lock, true);
811
812 return frames;
813}
814
815/* Print list of slabs
816 *
817 */
818void slab_print_list(void)
819{
820 printf("[slab name ] [size ] [pages ] [obj/pg] [slabs ]"
821 " [cached] [alloc ] [ctl]\n");
822
823 size_t skip = 0;
824 while (true) {
825 /*
826 * We must not hold the slab_cache_lock spinlock when printing
827 * the statistics. Otherwise we can easily deadlock if the print
828 * needs to allocate memory.
829 *
830 * Therefore, we walk through the slab cache list, skipping some
831 * amount of already processed caches during each iteration and
832 * gathering statistics about the first unprocessed cache. For
833 * the sake of printing the statistics, we realese the
834 * slab_cache_lock and reacquire it afterwards. Then the walk
835 * starts again.
836 *
837 * This limits both the efficiency and also accuracy of the
838 * obtained statistics. The efficiency is decreased because the
839 * time complexity of the algorithm is quadratic instead of
840 * linear. The accuracy is impacted because we drop the lock
841 * after processing one cache. If there is someone else
842 * manipulating the cache list, we might omit an arbitrary
843 * number of caches or process one cache multiple times.
844 * However, we don't bleed for this algorithm for it is only
845 * statistics.
846 */
847
848 irq_spinlock_lock(&slab_cache_lock, true);
849
850 link_t *cur;
851 size_t i;
852 for (i = 0, cur = slab_cache_list.head.next;
853 (i < skip) && (cur != &slab_cache_list.head);
854 i++, cur = cur->next);
855
856 if (cur == &slab_cache_list.head) {
857 irq_spinlock_unlock(&slab_cache_lock, true);
858 break;
859 }
860
861 skip++;
862
863 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
864
865 const char *name = cache->name;
866 size_t frames = cache->frames;
867 size_t size = cache->size;
868 size_t objects = cache->objects;
869 long allocated_slabs = atomic_get(&cache->allocated_slabs);
870 long cached_objs = atomic_get(&cache->cached_objs);
871 long allocated_objs = atomic_get(&cache->allocated_objs);
872 unsigned int flags = cache->flags;
873
874 irq_spinlock_unlock(&slab_cache_lock, true);
875
876 printf("%-18s %8zu %8zu %8zu %8ld %8ld %8ld %-5s\n",
877 name, size, frames, objects, allocated_slabs,
878 cached_objs, allocated_objs,
879 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
880 }
881}
882
883void slab_cache_init(void)
884{
885 /* Initialize magazine cache */
886 _slab_cache_create(&mag_cache, "slab_magazine_t",
887 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
888 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
889 SLAB_CACHE_SLINSIDE);
890
891 /* Initialize slab_cache cache */
892 _slab_cache_create(&slab_cache_cache, "slab_cache_cache",
893 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
894 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
895
896 /* Initialize external slab cache */
897 slab_extern_cache = slab_cache_create("slab_t", sizeof(slab_t), 0,
898 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
899
900 /* Initialize structures for malloc */
901 size_t i;
902 size_t size;
903
904 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
905 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
906 i++, size <<= 1) {
907 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
908 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
909 }
910
911#ifdef CONFIG_DEBUG
912 _slab_initialized = 1;
913#endif
914}
915
916/** Enable cpu_cache
917 *
918 * Kernel calls this function, when it knows the real number of
919 * processors. Allocate slab for cpucache and enable it on all
920 * existing slabs that are SLAB_CACHE_MAGDEFERRED
921 *
922 */
923void slab_enable_cpucache(void)
924{
925#ifdef CONFIG_DEBUG
926 _slab_initialized = 2;
927#endif
928
929 irq_spinlock_lock(&slab_cache_lock, false);
930
931 list_foreach(slab_cache_list, link, slab_cache_t, slab) {
932 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
933 SLAB_CACHE_MAGDEFERRED)
934 continue;
935
936 (void) make_magcache(slab);
937 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
938 }
939
940 irq_spinlock_unlock(&slab_cache_lock, false);
941}
942
943void *malloc(size_t size, unsigned int flags)
944{
945 ASSERT(_slab_initialized);
946 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
947
948 if (size < (1 << SLAB_MIN_MALLOC_W))
949 size = (1 << SLAB_MIN_MALLOC_W);
950
951 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
952
953 return slab_alloc(malloc_caches[idx], flags);
954}
955
956void *realloc(void *ptr, size_t size, unsigned int flags)
957{
958 ASSERT(_slab_initialized);
959 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
960
961 void *new_ptr;
962
963 if (size > 0) {
964 if (size < (1 << SLAB_MIN_MALLOC_W))
965 size = (1 << SLAB_MIN_MALLOC_W);
966 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
967
968 new_ptr = slab_alloc(malloc_caches[idx], flags);
969 } else
970 new_ptr = NULL;
971
972 if ((new_ptr != NULL) && (ptr != NULL)) {
973 slab_t *slab = obj2slab(ptr);
974 memcpy(new_ptr, ptr, min(size, slab->cache->size));
975 }
976
977 if (ptr != NULL)
978 free(ptr);
979
980 return new_ptr;
981}
982
983void free(void *ptr)
984{
985 if (!ptr)
986 return;
987
988 slab_t *slab = obj2slab(ptr);
989 _slab_free(slab->cache, ptr, slab);
990}
991
992/** @}
993 */
Note: See TracBrowser for help on using the repository browser.