source: mainline/kernel/generic/src/mm/slab.c@ 9dae191e

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 9dae191e was a000878c, checked in by Martin Decky <martin@…>, 15 years ago

make sure that all statically allocated strings are declared as "const char *"
and are treated as read-only

  • Property mode set to 100644
File size: 25.9 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * it might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level
100 */
101
102#include <synch/spinlock.h>
103#include <mm/slab.h>
104#include <adt/list.h>
105#include <memstr.h>
106#include <align.h>
107#include <mm/frame.h>
108#include <config.h>
109#include <print.h>
110#include <arch.h>
111#include <panic.h>
112#include <debug.h>
113#include <bitops.h>
114#include <macros.h>
115
116SPINLOCK_INITIALIZE(slab_cache_lock);
117static LIST_INITIALIZE(slab_cache_list);
118
119/** Magazine cache */
120static slab_cache_t mag_cache;
121/** Cache for cache descriptors */
122static slab_cache_t slab_cache_cache;
123/** Cache for external slab descriptors
124 * This time we want per-cpu cache, so do not make it static
125 * - using slab for internal slab structures will not deadlock,
126 * as all slab structures are 'small' - control structures of
127 * their caches do not require further allocation
128 */
129static slab_cache_t *slab_extern_cache;
130/** Caches for malloc */
131static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132static const char *malloc_names[] = {
133 "malloc-16",
134 "malloc-32",
135 "malloc-64",
136 "malloc-128",
137 "malloc-256",
138 "malloc-512",
139 "malloc-1K",
140 "malloc-2K",
141 "malloc-4K",
142 "malloc-8K",
143 "malloc-16K",
144 "malloc-32K",
145 "malloc-64K",
146 "malloc-128K",
147 "malloc-256K",
148 "malloc-512K",
149 "malloc-1M",
150 "malloc-2M",
151 "malloc-4M"
152};
153
154/** Slab descriptor */
155typedef struct {
156 slab_cache_t *cache; /**< Pointer to parent cache. */
157 link_t link; /**< List of full/partial slabs. */
158 void *start; /**< Start address of first available item. */
159 size_t available; /**< Count of available items in this slab. */
160 size_t nextavail; /**< The index of next available item. */
161} slab_t;
162
163#ifdef CONFIG_DEBUG
164static int _slab_initialized = 0;
165#endif
166
167/**************************************/
168/* Slab allocation functions */
169
170/**
171 * Allocate frames for slab space and initialize
172 *
173 */
174static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
175{
176 void *data;
177 slab_t *slab;
178 size_t fsize;
179 unsigned int i;
180 size_t zone = 0;
181
182 data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
183 if (!data) {
184 return NULL;
185 }
186 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
187 slab = slab_alloc(slab_extern_cache, flags);
188 if (!slab) {
189 frame_free(KA2PA(data));
190 return NULL;
191 }
192 } else {
193 fsize = (PAGE_SIZE << cache->order);
194 slab = data + fsize - sizeof(*slab);
195 }
196
197 /* Fill in slab structures */
198 for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
199 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
200
201 slab->start = data;
202 slab->available = cache->objects;
203 slab->nextavail = 0;
204 slab->cache = cache;
205
206 for (i = 0; i < cache->objects; i++)
207 *((int *) (slab->start + i*cache->size)) = i + 1;
208
209 atomic_inc(&cache->allocated_slabs);
210 return slab;
211}
212
213/**
214 * Deallocate space associated with slab
215 *
216 * @return number of freed frames
217 */
218static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
219{
220 frame_free(KA2PA(slab->start));
221 if (! (cache->flags & SLAB_CACHE_SLINSIDE))
222 slab_free(slab_extern_cache, slab);
223
224 atomic_dec(&cache->allocated_slabs);
225
226 return 1 << cache->order;
227}
228
229/** Map object to slab structure */
230static slab_t * obj2slab(void *obj)
231{
232 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
233}
234
235/**************************************/
236/* Slab functions */
237
238
239/**
240 * Return object to slab and call a destructor
241 *
242 * @param slab If the caller knows directly slab of the object, otherwise NULL
243 *
244 * @return Number of freed pages
245 */
246static size_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
247{
248 int freed = 0;
249
250 if (!slab)
251 slab = obj2slab(obj);
252
253 ASSERT(slab->cache == cache);
254
255 if (cache->destructor)
256 freed = cache->destructor(obj);
257
258 spinlock_lock(&cache->slablock);
259 ASSERT(slab->available < cache->objects);
260
261 *((int *)obj) = slab->nextavail;
262 slab->nextavail = (obj - slab->start) / cache->size;
263 slab->available++;
264
265 /* Move it to correct list */
266 if (slab->available == cache->objects) {
267 /* Free associated memory */
268 list_remove(&slab->link);
269 spinlock_unlock(&cache->slablock);
270
271 return freed + slab_space_free(cache, slab);
272
273 } else if (slab->available == 1) {
274 /* It was in full, move to partial */
275 list_remove(&slab->link);
276 list_prepend(&slab->link, &cache->partial_slabs);
277 }
278 spinlock_unlock(&cache->slablock);
279 return freed;
280}
281
282/**
283 * Take new object from slab or create new if needed
284 *
285 * @return Object address or null
286 */
287static void *slab_obj_create(slab_cache_t *cache, int flags)
288{
289 slab_t *slab;
290 void *obj;
291
292 spinlock_lock(&cache->slablock);
293
294 if (list_empty(&cache->partial_slabs)) {
295 /* Allow recursion and reclaiming
296 * - this should work, as the slab control structures
297 * are small and do not need to allocate with anything
298 * other than frame_alloc when they are allocating,
299 * that's why we should get recursion at most 1-level deep
300 */
301 spinlock_unlock(&cache->slablock);
302 slab = slab_space_alloc(cache, flags);
303 if (!slab)
304 return NULL;
305 spinlock_lock(&cache->slablock);
306 } else {
307 slab = list_get_instance(cache->partial_slabs.next, slab_t,
308 link);
309 list_remove(&slab->link);
310 }
311 obj = slab->start + slab->nextavail * cache->size;
312 slab->nextavail = *((int *)obj);
313 slab->available--;
314
315 if (!slab->available)
316 list_prepend(&slab->link, &cache->full_slabs);
317 else
318 list_prepend(&slab->link, &cache->partial_slabs);
319
320 spinlock_unlock(&cache->slablock);
321
322 if (cache->constructor && cache->constructor(obj, flags)) {
323 /* Bad, bad, construction failed */
324 slab_obj_destroy(cache, obj, slab);
325 return NULL;
326 }
327 return obj;
328}
329
330/**************************************/
331/* CPU-Cache slab functions */
332
333/**
334 * Finds a full magazine in cache, takes it from list
335 * and returns it
336 *
337 * @param first If true, return first, else last mag
338 */
339static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
340{
341 slab_magazine_t *mag = NULL;
342 link_t *cur;
343
344 spinlock_lock(&cache->maglock);
345 if (!list_empty(&cache->magazines)) {
346 if (first)
347 cur = cache->magazines.next;
348 else
349 cur = cache->magazines.prev;
350 mag = list_get_instance(cur, slab_magazine_t, link);
351 list_remove(&mag->link);
352 atomic_dec(&cache->magazine_counter);
353 }
354 spinlock_unlock(&cache->maglock);
355 return mag;
356}
357
358/** Prepend magazine to magazine list in cache */
359static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
360{
361 spinlock_lock(&cache->maglock);
362
363 list_prepend(&mag->link, &cache->magazines);
364 atomic_inc(&cache->magazine_counter);
365
366 spinlock_unlock(&cache->maglock);
367}
368
369/**
370 * Free all objects in magazine and free memory associated with magazine
371 *
372 * @return Number of freed pages
373 */
374static size_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
375{
376 unsigned int i;
377 size_t frames = 0;
378
379 for (i = 0; i < mag->busy; i++) {
380 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
381 atomic_dec(&cache->cached_objs);
382 }
383
384 slab_free(&mag_cache, mag);
385
386 return frames;
387}
388
389/**
390 * Find full magazine, set it as current and return it
391 *
392 * Assume cpu_magazine lock is held
393 */
394static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
395{
396 slab_magazine_t *cmag, *lastmag, *newmag;
397
398 cmag = cache->mag_cache[CPU->id].current;
399 lastmag = cache->mag_cache[CPU->id].last;
400 if (cmag) { /* First try local CPU magazines */
401 if (cmag->busy)
402 return cmag;
403
404 if (lastmag && lastmag->busy) {
405 cache->mag_cache[CPU->id].current = lastmag;
406 cache->mag_cache[CPU->id].last = cmag;
407 return lastmag;
408 }
409 }
410 /* Local magazines are empty, import one from magazine list */
411 newmag = get_mag_from_cache(cache, 1);
412 if (!newmag)
413 return NULL;
414
415 if (lastmag)
416 magazine_destroy(cache, lastmag);
417
418 cache->mag_cache[CPU->id].last = cmag;
419 cache->mag_cache[CPU->id].current = newmag;
420 return newmag;
421}
422
423/**
424 * Try to find object in CPU-cache magazines
425 *
426 * @return Pointer to object or NULL if not available
427 */
428static void *magazine_obj_get(slab_cache_t *cache)
429{
430 slab_magazine_t *mag;
431 void *obj;
432
433 if (!CPU)
434 return NULL;
435
436 spinlock_lock(&cache->mag_cache[CPU->id].lock);
437
438 mag = get_full_current_mag(cache);
439 if (!mag) {
440 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
441 return NULL;
442 }
443 obj = mag->objs[--mag->busy];
444 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
445 atomic_dec(&cache->cached_objs);
446
447 return obj;
448}
449
450/**
451 * Assure that the current magazine is empty, return pointer to it, or NULL if
452 * no empty magazine is available and cannot be allocated
453 *
454 * Assume mag_cache[CPU->id].lock is held
455 *
456 * We have 2 magazines bound to processor.
457 * First try the current.
458 * If full, try the last.
459 * If full, put to magazines list.
460 * allocate new, exchange last & current
461 *
462 */
463static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
464{
465 slab_magazine_t *cmag,*lastmag,*newmag;
466
467 cmag = cache->mag_cache[CPU->id].current;
468 lastmag = cache->mag_cache[CPU->id].last;
469
470 if (cmag) {
471 if (cmag->busy < cmag->size)
472 return cmag;
473 if (lastmag && lastmag->busy < lastmag->size) {
474 cache->mag_cache[CPU->id].last = cmag;
475 cache->mag_cache[CPU->id].current = lastmag;
476 return lastmag;
477 }
478 }
479 /* current | last are full | nonexistent, allocate new */
480 /* We do not want to sleep just because of caching */
481 /* Especially we do not want reclaiming to start, as
482 * this would deadlock */
483 newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
484 if (!newmag)
485 return NULL;
486 newmag->size = SLAB_MAG_SIZE;
487 newmag->busy = 0;
488
489 /* Flush last to magazine list */
490 if (lastmag)
491 put_mag_to_cache(cache, lastmag);
492
493 /* Move current as last, save new as current */
494 cache->mag_cache[CPU->id].last = cmag;
495 cache->mag_cache[CPU->id].current = newmag;
496
497 return newmag;
498}
499
500/**
501 * Put object into CPU-cache magazine
502 *
503 * @return 0 - success, -1 - could not get memory
504 */
505static int magazine_obj_put(slab_cache_t *cache, void *obj)
506{
507 slab_magazine_t *mag;
508
509 if (!CPU)
510 return -1;
511
512 spinlock_lock(&cache->mag_cache[CPU->id].lock);
513
514 mag = make_empty_current_mag(cache);
515 if (!mag) {
516 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
517 return -1;
518 }
519
520 mag->objs[mag->busy++] = obj;
521
522 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
523 atomic_inc(&cache->cached_objs);
524 return 0;
525}
526
527
528/**************************************/
529/* Slab cache functions */
530
531/** Return number of objects that fit in certain cache size */
532static unsigned int comp_objects(slab_cache_t *cache)
533{
534 if (cache->flags & SLAB_CACHE_SLINSIDE)
535 return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
536 cache->size;
537 else
538 return (PAGE_SIZE << cache->order) / cache->size;
539}
540
541/** Return wasted space in slab */
542static unsigned int badness(slab_cache_t *cache)
543{
544 unsigned int objects;
545 unsigned int ssize;
546
547 objects = comp_objects(cache);
548 ssize = PAGE_SIZE << cache->order;
549 if (cache->flags & SLAB_CACHE_SLINSIDE)
550 ssize -= sizeof(slab_t);
551 return ssize - objects * cache->size;
552}
553
554/**
555 * Initialize mag_cache structure in slab cache
556 */
557static void make_magcache(slab_cache_t *cache)
558{
559 unsigned int i;
560
561 ASSERT(_slab_initialized >= 2);
562
563 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
564 0);
565 for (i = 0; i < config.cpu_count; i++) {
566 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
567 spinlock_initialize(&cache->mag_cache[i].lock,
568 "slab_maglock_cpu");
569 }
570}
571
572/** Initialize allocated memory as a slab cache */
573static void _slab_cache_create(slab_cache_t *cache, const char *name,
574 size_t size, size_t align, int (*constructor)(void *obj, int kmflag),
575 int (*destructor)(void *obj), int flags)
576{
577 int pages;
578 ipl_t ipl;
579
580 memsetb(cache, sizeof(*cache), 0);
581 cache->name = name;
582
583 if (align < sizeof(unative_t))
584 align = sizeof(unative_t);
585 size = ALIGN_UP(size, align);
586
587 cache->size = size;
588
589 cache->constructor = constructor;
590 cache->destructor = destructor;
591 cache->flags = flags;
592
593 list_initialize(&cache->full_slabs);
594 list_initialize(&cache->partial_slabs);
595 list_initialize(&cache->magazines);
596 spinlock_initialize(&cache->slablock, "slab_lock");
597 spinlock_initialize(&cache->maglock, "slab_maglock");
598 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
599 make_magcache(cache);
600
601 /* Compute slab sizes, object counts in slabs etc. */
602 if (cache->size < SLAB_INSIDE_SIZE)
603 cache->flags |= SLAB_CACHE_SLINSIDE;
604
605 /* Minimum slab order */
606 pages = SIZE2FRAMES(cache->size);
607 /* We need the 2^order >= pages */
608 if (pages == 1)
609 cache->order = 0;
610 else
611 cache->order = fnzb(pages - 1) + 1;
612
613 while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
614 cache->order += 1;
615 }
616 cache->objects = comp_objects(cache);
617 /* If info fits in, put it inside */
618 if (badness(cache) > sizeof(slab_t))
619 cache->flags |= SLAB_CACHE_SLINSIDE;
620
621 /* Add cache to cache list */
622 ipl = interrupts_disable();
623 spinlock_lock(&slab_cache_lock);
624
625 list_append(&cache->link, &slab_cache_list);
626
627 spinlock_unlock(&slab_cache_lock);
628 interrupts_restore(ipl);
629}
630
631/** Create slab cache */
632slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
633 int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
634 int flags)
635{
636 slab_cache_t *cache;
637
638 cache = slab_alloc(&slab_cache_cache, 0);
639 _slab_cache_create(cache, name, size, align, constructor, destructor,
640 flags);
641 return cache;
642}
643
644/**
645 * Reclaim space occupied by objects that are already free
646 *
647 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
648 * @return Number of freed pages
649 */
650static size_t _slab_reclaim(slab_cache_t *cache, int flags)
651{
652 unsigned int i;
653 slab_magazine_t *mag;
654 size_t frames = 0;
655 int magcount;
656
657 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
658 return 0; /* Nothing to do */
659
660 /* We count up to original magazine count to avoid
661 * endless loop
662 */
663 magcount = atomic_get(&cache->magazine_counter);
664 while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
665 frames += magazine_destroy(cache,mag);
666 if (!(flags & SLAB_RECLAIM_ALL) && frames)
667 break;
668 }
669
670 if (flags & SLAB_RECLAIM_ALL) {
671 /* Free cpu-bound magazines */
672 /* Destroy CPU magazines */
673 for (i = 0; i < config.cpu_count; i++) {
674 spinlock_lock(&cache->mag_cache[i].lock);
675
676 mag = cache->mag_cache[i].current;
677 if (mag)
678 frames += magazine_destroy(cache, mag);
679 cache->mag_cache[i].current = NULL;
680
681 mag = cache->mag_cache[i].last;
682 if (mag)
683 frames += magazine_destroy(cache, mag);
684 cache->mag_cache[i].last = NULL;
685
686 spinlock_unlock(&cache->mag_cache[i].lock);
687 }
688 }
689
690 return frames;
691}
692
693/** Check that there are no slabs and remove cache from system */
694void slab_cache_destroy(slab_cache_t *cache)
695{
696 ipl_t ipl;
697
698 /* First remove cache from link, so that we don't need
699 * to disable interrupts later
700 */
701
702 ipl = interrupts_disable();
703 spinlock_lock(&slab_cache_lock);
704
705 list_remove(&cache->link);
706
707 spinlock_unlock(&slab_cache_lock);
708 interrupts_restore(ipl);
709
710 /* Do not lock anything, we assume the software is correct and
711 * does not touch the cache when it decides to destroy it */
712
713 /* Destroy all magazines */
714 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
715
716 /* All slabs must be empty */
717 if (!list_empty(&cache->full_slabs) ||
718 !list_empty(&cache->partial_slabs))
719 panic("Destroying cache that is not empty.");
720
721 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
722 free(cache->mag_cache);
723 slab_free(&slab_cache_cache, cache);
724}
725
726/** Allocate new object from cache - if no flags given, always returns memory */
727void *slab_alloc(slab_cache_t *cache, int flags)
728{
729 ipl_t ipl;
730 void *result = NULL;
731
732 /* Disable interrupts to avoid deadlocks with interrupt handlers */
733 ipl = interrupts_disable();
734
735 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
736 result = magazine_obj_get(cache);
737 }
738 if (!result)
739 result = slab_obj_create(cache, flags);
740
741 interrupts_restore(ipl);
742
743 if (result)
744 atomic_inc(&cache->allocated_objs);
745
746 return result;
747}
748
749/** Return object to cache, use slab if known */
750static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
751{
752 ipl_t ipl;
753
754 ipl = interrupts_disable();
755
756 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
757 magazine_obj_put(cache, obj)) {
758 slab_obj_destroy(cache, obj, slab);
759
760 }
761 interrupts_restore(ipl);
762 atomic_dec(&cache->allocated_objs);
763}
764
765/** Return slab object to cache */
766void slab_free(slab_cache_t *cache, void *obj)
767{
768 _slab_free(cache, obj, NULL);
769}
770
771/* Go through all caches and reclaim what is possible */
772size_t slab_reclaim(int flags)
773{
774 slab_cache_t *cache;
775 link_t *cur;
776 size_t frames = 0;
777
778 spinlock_lock(&slab_cache_lock);
779
780 /* TODO: Add assert, that interrupts are disabled, otherwise
781 * memory allocation from interrupts can deadlock.
782 */
783
784 for (cur = slab_cache_list.next; cur != &slab_cache_list;
785 cur = cur->next) {
786 cache = list_get_instance(cur, slab_cache_t, link);
787 frames += _slab_reclaim(cache, flags);
788 }
789
790 spinlock_unlock(&slab_cache_lock);
791
792 return frames;
793}
794
795
796/* Print list of slabs */
797void slab_print_list(void)
798{
799 int skip = 0;
800
801 printf("slab name size pages obj/pg slabs cached allocated"
802 " ctl\n");
803 printf("---------------- -------- ------ ------ ------ ------ ---------"
804 " ---\n");
805
806 while (true) {
807 slab_cache_t *cache;
808 link_t *cur;
809 ipl_t ipl;
810 int i;
811
812 /*
813 * We must not hold the slab_cache_lock spinlock when printing
814 * the statistics. Otherwise we can easily deadlock if the print
815 * needs to allocate memory.
816 *
817 * Therefore, we walk through the slab cache list, skipping some
818 * amount of already processed caches during each iteration and
819 * gathering statistics about the first unprocessed cache. For
820 * the sake of printing the statistics, we realese the
821 * slab_cache_lock and reacquire it afterwards. Then the walk
822 * starts again.
823 *
824 * This limits both the efficiency and also accuracy of the
825 * obtained statistics. The efficiency is decreased because the
826 * time complexity of the algorithm is quadratic instead of
827 * linear. The accuracy is impacted because we drop the lock
828 * after processing one cache. If there is someone else
829 * manipulating the cache list, we might omit an arbitrary
830 * number of caches or process one cache multiple times.
831 * However, we don't bleed for this algorithm for it is only
832 * statistics.
833 */
834
835 ipl = interrupts_disable();
836 spinlock_lock(&slab_cache_lock);
837
838 for (i = 0, cur = slab_cache_list.next;
839 i < skip && cur != &slab_cache_list;
840 i++, cur = cur->next)
841 ;
842
843 if (cur == &slab_cache_list) {
844 spinlock_unlock(&slab_cache_lock);
845 interrupts_restore(ipl);
846 break;
847 }
848
849 skip++;
850
851 cache = list_get_instance(cur, slab_cache_t, link);
852
853 const char *name = cache->name;
854 uint8_t order = cache->order;
855 size_t size = cache->size;
856 unsigned int objects = cache->objects;
857 long allocated_slabs = atomic_get(&cache->allocated_slabs);
858 long cached_objs = atomic_get(&cache->cached_objs);
859 long allocated_objs = atomic_get(&cache->allocated_objs);
860 int flags = cache->flags;
861
862 spinlock_unlock(&slab_cache_lock);
863 interrupts_restore(ipl);
864
865 printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
866 name, size, (1 << order), objects, allocated_slabs,
867 cached_objs, allocated_objs,
868 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
869 }
870}
871
872void slab_cache_init(void)
873{
874 int i, size;
875
876 /* Initialize magazine cache */
877 _slab_cache_create(&mag_cache, "slab_magazine",
878 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
879 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
880 SLAB_CACHE_SLINSIDE);
881 /* Initialize slab_cache cache */
882 _slab_cache_create(&slab_cache_cache, "slab_cache",
883 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
884 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
885 /* Initialize external slab cache */
886 slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
887 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
888
889 /* Initialize structures for malloc */
890 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
891 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
892 i++, size <<= 1) {
893 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
894 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
895 }
896#ifdef CONFIG_DEBUG
897 _slab_initialized = 1;
898#endif
899}
900
901/** Enable cpu_cache
902 *
903 * Kernel calls this function, when it knows the real number of
904 * processors.
905 * Allocate slab for cpucache and enable it on all existing
906 * slabs that are SLAB_CACHE_MAGDEFERRED
907 */
908void slab_enable_cpucache(void)
909{
910 link_t *cur;
911 slab_cache_t *s;
912
913#ifdef CONFIG_DEBUG
914 _slab_initialized = 2;
915#endif
916
917 spinlock_lock(&slab_cache_lock);
918
919 for (cur = slab_cache_list.next; cur != &slab_cache_list;
920 cur = cur->next){
921 s = list_get_instance(cur, slab_cache_t, link);
922 if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
923 SLAB_CACHE_MAGDEFERRED)
924 continue;
925 make_magcache(s);
926 s->flags &= ~SLAB_CACHE_MAGDEFERRED;
927 }
928
929 spinlock_unlock(&slab_cache_lock);
930}
931
932/**************************************/
933/* kalloc/kfree functions */
934void *malloc(unsigned int size, int flags)
935{
936 ASSERT(_slab_initialized);
937 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
938
939 if (size < (1 << SLAB_MIN_MALLOC_W))
940 size = (1 << SLAB_MIN_MALLOC_W);
941
942 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
943
944 return slab_alloc(malloc_caches[idx], flags);
945}
946
947void *realloc(void *ptr, unsigned int size, int flags)
948{
949 ASSERT(_slab_initialized);
950 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
951
952 void *new_ptr;
953
954 if (size > 0) {
955 if (size < (1 << SLAB_MIN_MALLOC_W))
956 size = (1 << SLAB_MIN_MALLOC_W);
957 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
958
959 new_ptr = slab_alloc(malloc_caches[idx], flags);
960 } else
961 new_ptr = NULL;
962
963 if ((new_ptr != NULL) && (ptr != NULL)) {
964 slab_t *slab = obj2slab(ptr);
965 memcpy(new_ptr, ptr, min(size, slab->cache->size));
966 }
967
968 if (ptr != NULL)
969 free(ptr);
970
971 return new_ptr;
972}
973
974void free(void *ptr)
975{
976 if (!ptr)
977 return;
978
979 slab_t *slab = obj2slab(ptr);
980 _slab_free(slab->cache, ptr, slab);
981}
982
983/** @}
984 */
Note: See TracBrowser for help on using the repository browser.