source: mainline/kernel/generic/src/mm/slab.c@ 36f0738

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 36f0738 was 7f11dc6, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 8 years ago

Numerous minor error code tweaks in kernel.

  • Property mode set to 100644
File size: 26.2 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <assert.h>
104#include <errno.h>
105#include <synch/spinlock.h>
106#include <mm/slab.h>
107#include <adt/list.h>
108#include <mem.h>
109#include <align.h>
110#include <mm/frame.h>
111#include <config.h>
112#include <print.h>
113#include <arch.h>
114#include <panic.h>
115#include <bitops.h>
116#include <macros.h>
117#include <cpu.h>
118
119IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
120static LIST_INITIALIZE(slab_cache_list);
121
122/** Magazine cache */
123static slab_cache_t mag_cache;
124
125/** Cache for cache descriptors */
126static slab_cache_t slab_cache_cache;
127
128/** Cache for external slab descriptors
129 * This time we want per-cpu cache, so do not make it static
130 * - using slab for internal slab structures will not deadlock,
131 * as all slab structures are 'small' - control structures of
132 * their caches do not require further allocation
133 */
134static slab_cache_t *slab_extern_cache;
135
136/** Caches for malloc */
137static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
138
139static const char *malloc_names[] = {
140 "malloc-16",
141 "malloc-32",
142 "malloc-64",
143 "malloc-128",
144 "malloc-256",
145 "malloc-512",
146 "malloc-1K",
147 "malloc-2K",
148 "malloc-4K",
149 "malloc-8K",
150 "malloc-16K",
151 "malloc-32K",
152 "malloc-64K",
153 "malloc-128K",
154 "malloc-256K",
155 "malloc-512K",
156 "malloc-1M",
157 "malloc-2M",
158 "malloc-4M"
159};
160
161/** Slab descriptor */
162typedef struct {
163 slab_cache_t *cache; /**< Pointer to parent cache. */
164 link_t link; /**< List of full/partial slabs. */
165 void *start; /**< Start address of first available item. */
166 size_t available; /**< Count of available items in this slab. */
167 size_t nextavail; /**< The index of next available item. */
168} slab_t;
169
170#ifdef CONFIG_DEBUG
171static unsigned int _slab_initialized = 0;
172#endif
173
174/**************************************/
175/* Slab allocation functions */
176/**************************************/
177
178/** Allocate frames for slab space and initialize
179 *
180 */
181NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
182 unsigned int flags)
183{
184 size_t zone = 0;
185
186 uintptr_t data_phys =
187 frame_alloc_generic(cache->frames, flags, 0, &zone);
188 if (!data_phys)
189 return NULL;
190
191 void *data = (void *) PA2KA(data_phys);
192
193 slab_t *slab;
194 size_t fsize;
195
196 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
197 slab = slab_alloc(slab_extern_cache, flags);
198 if (!slab) {
199 frame_free(KA2PA(data), cache->frames);
200 return NULL;
201 }
202 } else {
203 fsize = FRAMES2SIZE(cache->frames);
204 slab = data + fsize - sizeof(*slab);
205 }
206
207 /* Fill in slab structures */
208 size_t i;
209 for (i = 0; i < cache->frames; i++)
210 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
211
212 slab->start = data;
213 slab->available = cache->objects;
214 slab->nextavail = 0;
215 slab->cache = cache;
216
217 for (i = 0; i < cache->objects; i++)
218 *((size_t *) (slab->start + i * cache->size)) = i + 1;
219
220 atomic_inc(&cache->allocated_slabs);
221 return slab;
222}
223
224/** Deallocate space associated with slab
225 *
226 * @return number of freed frames
227 *
228 */
229NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
230{
231 frame_free(KA2PA(slab->start), slab->cache->frames);
232 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
233 slab_free(slab_extern_cache, slab);
234
235 atomic_dec(&cache->allocated_slabs);
236
237 return cache->frames;
238}
239
240/** Map object to slab structure */
241NO_TRACE static slab_t *obj2slab(void *obj)
242{
243 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
244}
245
246/******************/
247/* Slab functions */
248/******************/
249
250/** Return object to slab and call a destructor
251 *
252 * @param slab If the caller knows directly slab of the object, otherwise NULL
253 *
254 * @return Number of freed pages
255 *
256 */
257NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
258 slab_t *slab)
259{
260 if (!slab)
261 slab = obj2slab(obj);
262
263 assert(slab->cache == cache);
264
265 size_t freed = 0;
266
267 if (cache->destructor)
268 freed = cache->destructor(obj);
269
270 irq_spinlock_lock(&cache->slablock, true);
271 assert(slab->available < cache->objects);
272
273 *((size_t *) obj) = slab->nextavail;
274 slab->nextavail = (obj - slab->start) / cache->size;
275 slab->available++;
276
277 /* Move it to correct list */
278 if (slab->available == cache->objects) {
279 /* Free associated memory */
280 list_remove(&slab->link);
281 irq_spinlock_unlock(&cache->slablock, true);
282
283 return freed + slab_space_free(cache, slab);
284 } else if (slab->available == 1) {
285 /* It was in full, move to partial */
286 list_remove(&slab->link);
287 list_prepend(&slab->link, &cache->partial_slabs);
288 }
289
290 irq_spinlock_unlock(&cache->slablock, true);
291 return freed;
292}
293
294/** Take new object from slab or create new if needed
295 *
296 * @return Object address or null
297 *
298 */
299NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
300{
301 irq_spinlock_lock(&cache->slablock, true);
302
303 slab_t *slab;
304
305 if (list_empty(&cache->partial_slabs)) {
306 /*
307 * Allow recursion and reclaiming
308 * - this should work, as the slab control structures
309 * are small and do not need to allocate with anything
310 * other than frame_alloc when they are allocating,
311 * that's why we should get recursion at most 1-level deep
312 *
313 */
314 irq_spinlock_unlock(&cache->slablock, true);
315 slab = slab_space_alloc(cache, flags);
316 if (!slab)
317 return NULL;
318
319 irq_spinlock_lock(&cache->slablock, true);
320 } else {
321 slab = list_get_instance(list_first(&cache->partial_slabs),
322 slab_t, link);
323 list_remove(&slab->link);
324 }
325
326 void *obj = slab->start + slab->nextavail * cache->size;
327 slab->nextavail = *((size_t *) obj);
328 slab->available--;
329
330 if (!slab->available)
331 list_prepend(&slab->link, &cache->full_slabs);
332 else
333 list_prepend(&slab->link, &cache->partial_slabs);
334
335 irq_spinlock_unlock(&cache->slablock, true);
336
337 if ((cache->constructor) && (cache->constructor(obj, flags) != EOK)) {
338 /* Bad, bad, construction failed */
339 slab_obj_destroy(cache, obj, slab);
340 return NULL;
341 }
342
343 return obj;
344}
345
346/****************************/
347/* CPU-Cache slab functions */
348/****************************/
349
350/** Find a full magazine in cache, take it from list and return it
351 *
352 * @param first If true, return first, else last mag.
353 *
354 */
355NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
356 bool first)
357{
358 slab_magazine_t *mag = NULL;
359 link_t *cur;
360
361 irq_spinlock_lock(&cache->maglock, true);
362 if (!list_empty(&cache->magazines)) {
363 if (first)
364 cur = list_first(&cache->magazines);
365 else
366 cur = list_last(&cache->magazines);
367
368 mag = list_get_instance(cur, slab_magazine_t, link);
369 list_remove(&mag->link);
370 atomic_dec(&cache->magazine_counter);
371 }
372 irq_spinlock_unlock(&cache->maglock, true);
373
374 return mag;
375}
376
377/** Prepend magazine to magazine list in cache
378 *
379 */
380NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
381 slab_magazine_t *mag)
382{
383 irq_spinlock_lock(&cache->maglock, true);
384
385 list_prepend(&mag->link, &cache->magazines);
386 atomic_inc(&cache->magazine_counter);
387
388 irq_spinlock_unlock(&cache->maglock, true);
389}
390
391/** Free all objects in magazine and free memory associated with magazine
392 *
393 * @return Number of freed pages
394 *
395 */
396NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
397 slab_magazine_t *mag)
398{
399 size_t i;
400 size_t frames = 0;
401
402 for (i = 0; i < mag->busy; i++) {
403 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
404 atomic_dec(&cache->cached_objs);
405 }
406
407 slab_free(&mag_cache, mag);
408
409 return frames;
410}
411
412/** Find full magazine, set it as current and return it
413 *
414 */
415NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
416{
417 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
418 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
419
420 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
421
422 if (cmag) { /* First try local CPU magazines */
423 if (cmag->busy)
424 return cmag;
425
426 if ((lastmag) && (lastmag->busy)) {
427 cache->mag_cache[CPU->id].current = lastmag;
428 cache->mag_cache[CPU->id].last = cmag;
429 return lastmag;
430 }
431 }
432
433 /* Local magazines are empty, import one from magazine list */
434 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
435 if (!newmag)
436 return NULL;
437
438 if (lastmag)
439 magazine_destroy(cache, lastmag);
440
441 cache->mag_cache[CPU->id].last = cmag;
442 cache->mag_cache[CPU->id].current = newmag;
443
444 return newmag;
445}
446
447/** Try to find object in CPU-cache magazines
448 *
449 * @return Pointer to object or NULL if not available
450 *
451 */
452NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
453{
454 if (!CPU)
455 return NULL;
456
457 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
458
459 slab_magazine_t *mag = get_full_current_mag(cache);
460 if (!mag) {
461 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
462 return NULL;
463 }
464
465 void *obj = mag->objs[--mag->busy];
466 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
467
468 atomic_dec(&cache->cached_objs);
469
470 return obj;
471}
472
473/** Assure that the current magazine is empty, return pointer to it,
474 * or NULL if no empty magazine is available and cannot be allocated
475 *
476 * We have 2 magazines bound to processor.
477 * First try the current.
478 * If full, try the last.
479 * If full, put to magazines list.
480 *
481 */
482NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
483{
484 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
485 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
486
487 assert(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
488
489 if (cmag) {
490 if (cmag->busy < cmag->size)
491 return cmag;
492
493 if ((lastmag) && (lastmag->busy < lastmag->size)) {
494 cache->mag_cache[CPU->id].last = cmag;
495 cache->mag_cache[CPU->id].current = lastmag;
496 return lastmag;
497 }
498 }
499
500 /* current | last are full | nonexistent, allocate new */
501
502 /*
503 * We do not want to sleep just because of caching,
504 * especially we do not want reclaiming to start, as
505 * this would deadlock.
506 *
507 */
508 slab_magazine_t *newmag = slab_alloc(&mag_cache,
509 FRAME_ATOMIC | FRAME_NO_RECLAIM);
510 if (!newmag)
511 return NULL;
512
513 newmag->size = SLAB_MAG_SIZE;
514 newmag->busy = 0;
515
516 /* Flush last to magazine list */
517 if (lastmag)
518 put_mag_to_cache(cache, lastmag);
519
520 /* Move current as last, save new as current */
521 cache->mag_cache[CPU->id].last = cmag;
522 cache->mag_cache[CPU->id].current = newmag;
523
524 return newmag;
525}
526
527/** Put object into CPU-cache magazine
528 *
529 * @return 0 on success, -1 on no memory
530 *
531 */
532NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
533{
534 if (!CPU)
535 return -1;
536
537 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
538
539 slab_magazine_t *mag = make_empty_current_mag(cache);
540 if (!mag) {
541 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
542 return -1;
543 }
544
545 mag->objs[mag->busy++] = obj;
546
547 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
548
549 atomic_inc(&cache->cached_objs);
550
551 return 0;
552}
553
554/************************/
555/* Slab cache functions */
556/************************/
557
558/** Return number of objects that fit in certain cache size
559 *
560 */
561NO_TRACE static size_t comp_objects(slab_cache_t *cache)
562{
563 if (cache->flags & SLAB_CACHE_SLINSIDE)
564 return (FRAMES2SIZE(cache->frames) - sizeof(slab_t)) /
565 cache->size;
566 else
567 return FRAMES2SIZE(cache->frames) / cache->size;
568}
569
570/** Return wasted space in slab
571 *
572 */
573NO_TRACE static size_t badness(slab_cache_t *cache)
574{
575 size_t objects = comp_objects(cache);
576 size_t ssize = FRAMES2SIZE(cache->frames);
577
578 if (cache->flags & SLAB_CACHE_SLINSIDE)
579 ssize -= sizeof(slab_t);
580
581 return ssize - objects * cache->size;
582}
583
584/** Initialize mag_cache structure in slab cache
585 *
586 */
587NO_TRACE static bool make_magcache(slab_cache_t *cache)
588{
589 assert(_slab_initialized >= 2);
590
591 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
592 FRAME_ATOMIC);
593 if (!cache->mag_cache)
594 return false;
595
596 size_t i;
597 for (i = 0; i < config.cpu_count; i++) {
598 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
599 irq_spinlock_initialize(&cache->mag_cache[i].lock,
600 "slab.cache.mag_cache[].lock");
601 }
602
603 return true;
604}
605
606/** Initialize allocated memory as a slab cache
607 *
608 */
609NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
610 size_t size, size_t align, int (*constructor)(void *obj,
611 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
612{
613 assert(size > 0);
614
615 memsetb(cache, sizeof(*cache), 0);
616 cache->name = name;
617
618 if (align < sizeof(sysarg_t))
619 align = sizeof(sysarg_t);
620
621 size = ALIGN_UP(size, align);
622
623 cache->size = size;
624 cache->constructor = constructor;
625 cache->destructor = destructor;
626 cache->flags = flags;
627
628 list_initialize(&cache->full_slabs);
629 list_initialize(&cache->partial_slabs);
630 list_initialize(&cache->magazines);
631
632 irq_spinlock_initialize(&cache->slablock, "slab.cache.slablock");
633 irq_spinlock_initialize(&cache->maglock, "slab.cache.maglock");
634
635 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
636 (void) make_magcache(cache);
637
638 /* Compute slab sizes, object counts in slabs etc. */
639 if (cache->size < SLAB_INSIDE_SIZE)
640 cache->flags |= SLAB_CACHE_SLINSIDE;
641
642 /* Minimum slab frames */
643 cache->frames = SIZE2FRAMES(cache->size);
644
645 while (badness(cache) > SLAB_MAX_BADNESS(cache))
646 cache->frames <<= 1;
647
648 cache->objects = comp_objects(cache);
649
650 /* If info fits in, put it inside */
651 if (badness(cache) > sizeof(slab_t))
652 cache->flags |= SLAB_CACHE_SLINSIDE;
653
654 /* Add cache to cache list */
655 irq_spinlock_lock(&slab_cache_lock, true);
656 list_append(&cache->link, &slab_cache_list);
657 irq_spinlock_unlock(&slab_cache_lock, true);
658}
659
660/** Create slab cache
661 *
662 */
663slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
664 int (*constructor)(void *obj, unsigned int kmflag),
665 size_t (*destructor)(void *obj), unsigned int flags)
666{
667 slab_cache_t *cache = slab_alloc(&slab_cache_cache, 0);
668 _slab_cache_create(cache, name, size, align, constructor, destructor,
669 flags);
670
671 return cache;
672}
673
674/** Reclaim space occupied by objects that are already free
675 *
676 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
677 *
678 * @return Number of freed pages
679 *
680 */
681NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
682{
683 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
684 return 0; /* Nothing to do */
685
686 /*
687 * We count up to original magazine count to avoid
688 * endless loop
689 */
690 atomic_count_t magcount = atomic_get(&cache->magazine_counter);
691
692 slab_magazine_t *mag;
693 size_t frames = 0;
694
695 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
696 frames += magazine_destroy(cache, mag);
697 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
698 break;
699 }
700
701 if (flags & SLAB_RECLAIM_ALL) {
702 /* Free cpu-bound magazines */
703 /* Destroy CPU magazines */
704 size_t i;
705 for (i = 0; i < config.cpu_count; i++) {
706 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
707
708 mag = cache->mag_cache[i].current;
709 if (mag)
710 frames += magazine_destroy(cache, mag);
711 cache->mag_cache[i].current = NULL;
712
713 mag = cache->mag_cache[i].last;
714 if (mag)
715 frames += magazine_destroy(cache, mag);
716 cache->mag_cache[i].last = NULL;
717
718 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
719 }
720 }
721
722 return frames;
723}
724
725/** Check that there are no slabs and remove cache from system
726 *
727 */
728void slab_cache_destroy(slab_cache_t *cache)
729{
730 /*
731 * First remove cache from link, so that we don't need
732 * to disable interrupts later
733 *
734 */
735 irq_spinlock_lock(&slab_cache_lock, true);
736 list_remove(&cache->link);
737 irq_spinlock_unlock(&slab_cache_lock, true);
738
739 /*
740 * Do not lock anything, we assume the software is correct and
741 * does not touch the cache when it decides to destroy it
742 *
743 */
744
745 /* Destroy all magazines */
746 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
747
748 /* All slabs must be empty */
749 if ((!list_empty(&cache->full_slabs)) ||
750 (!list_empty(&cache->partial_slabs)))
751 panic("Destroying cache that is not empty.");
752
753 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
754 free(cache->mag_cache);
755
756 slab_free(&slab_cache_cache, cache);
757}
758
759/** Allocate new object from cache - if no flags given, always returns memory
760 *
761 */
762void *slab_alloc(slab_cache_t *cache, unsigned int flags)
763{
764 /* Disable interrupts to avoid deadlocks with interrupt handlers */
765 ipl_t ipl = interrupts_disable();
766
767 void *result = NULL;
768
769 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
770 result = magazine_obj_get(cache);
771
772 if (!result)
773 result = slab_obj_create(cache, flags);
774
775 interrupts_restore(ipl);
776
777 if (result)
778 atomic_inc(&cache->allocated_objs);
779
780 return result;
781}
782
783/** Return object to cache, use slab if known
784 *
785 */
786NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
787{
788 ipl_t ipl = interrupts_disable();
789
790 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
791 (magazine_obj_put(cache, obj)))
792 slab_obj_destroy(cache, obj, slab);
793
794 interrupts_restore(ipl);
795 atomic_dec(&cache->allocated_objs);
796}
797
798/** Return slab object to cache
799 *
800 */
801void slab_free(slab_cache_t *cache, void *obj)
802{
803 _slab_free(cache, obj, NULL);
804}
805
806/** Go through all caches and reclaim what is possible */
807size_t slab_reclaim(unsigned int flags)
808{
809 irq_spinlock_lock(&slab_cache_lock, true);
810
811 size_t frames = 0;
812 list_foreach(slab_cache_list, link, slab_cache_t, cache) {
813 frames += _slab_reclaim(cache, flags);
814 }
815
816 irq_spinlock_unlock(&slab_cache_lock, true);
817
818 return frames;
819}
820
821/* Print list of caches */
822void slab_print_list(void)
823{
824 printf("[cache name ] [size ] [pages ] [obj/pg] [slabs ]"
825 " [cached] [alloc ] [ctl]\n");
826
827 size_t skip = 0;
828 while (true) {
829 /*
830 * We must not hold the slab_cache_lock spinlock when printing
831 * the statistics. Otherwise we can easily deadlock if the print
832 * needs to allocate memory.
833 *
834 * Therefore, we walk through the slab cache list, skipping some
835 * amount of already processed caches during each iteration and
836 * gathering statistics about the first unprocessed cache. For
837 * the sake of printing the statistics, we realese the
838 * slab_cache_lock and reacquire it afterwards. Then the walk
839 * starts again.
840 *
841 * This limits both the efficiency and also accuracy of the
842 * obtained statistics. The efficiency is decreased because the
843 * time complexity of the algorithm is quadratic instead of
844 * linear. The accuracy is impacted because we drop the lock
845 * after processing one cache. If there is someone else
846 * manipulating the cache list, we might omit an arbitrary
847 * number of caches or process one cache multiple times.
848 * However, we don't bleed for this algorithm for it is only
849 * statistics.
850 */
851
852 irq_spinlock_lock(&slab_cache_lock, true);
853
854 link_t *cur;
855 size_t i;
856 for (i = 0, cur = slab_cache_list.head.next;
857 (i < skip) && (cur != &slab_cache_list.head);
858 i++, cur = cur->next);
859
860 if (cur == &slab_cache_list.head) {
861 irq_spinlock_unlock(&slab_cache_lock, true);
862 break;
863 }
864
865 skip++;
866
867 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
868
869 const char *name = cache->name;
870 size_t frames = cache->frames;
871 size_t size = cache->size;
872 size_t objects = cache->objects;
873 long allocated_slabs = atomic_get(&cache->allocated_slabs);
874 long cached_objs = atomic_get(&cache->cached_objs);
875 long allocated_objs = atomic_get(&cache->allocated_objs);
876 unsigned int flags = cache->flags;
877
878 irq_spinlock_unlock(&slab_cache_lock, true);
879
880 printf("%-18s %8zu %8zu %8zu %8ld %8ld %8ld %-5s\n",
881 name, size, frames, objects, allocated_slabs,
882 cached_objs, allocated_objs,
883 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
884 }
885}
886
887void slab_cache_init(void)
888{
889 /* Initialize magazine cache */
890 _slab_cache_create(&mag_cache, "slab_magazine_t",
891 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void *),
892 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
893 SLAB_CACHE_SLINSIDE);
894
895 /* Initialize slab_cache cache */
896 _slab_cache_create(&slab_cache_cache, "slab_cache_cache",
897 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
898 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
899
900 /* Initialize external slab cache */
901 slab_extern_cache = slab_cache_create("slab_t", sizeof(slab_t), 0,
902 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
903
904 /* Initialize structures for malloc */
905 size_t i;
906 size_t size;
907
908 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
909 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
910 i++, size <<= 1) {
911 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
912 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
913 }
914
915#ifdef CONFIG_DEBUG
916 _slab_initialized = 1;
917#endif
918}
919
920/** Enable cpu_cache
921 *
922 * Kernel calls this function, when it knows the real number of
923 * processors. Allocate slab for cpucache and enable it on all
924 * existing slabs that are SLAB_CACHE_MAGDEFERRED
925 *
926 */
927void slab_enable_cpucache(void)
928{
929#ifdef CONFIG_DEBUG
930 _slab_initialized = 2;
931#endif
932
933 irq_spinlock_lock(&slab_cache_lock, false);
934
935 list_foreach(slab_cache_list, link, slab_cache_t, slab) {
936 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
937 SLAB_CACHE_MAGDEFERRED)
938 continue;
939
940 (void) make_magcache(slab);
941 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
942 }
943
944 irq_spinlock_unlock(&slab_cache_lock, false);
945}
946
947void *malloc(size_t size, unsigned int flags)
948{
949 assert(_slab_initialized);
950 assert(size <= (1 << SLAB_MAX_MALLOC_W));
951
952 if (size < (1 << SLAB_MIN_MALLOC_W))
953 size = (1 << SLAB_MIN_MALLOC_W);
954
955 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
956
957 return slab_alloc(malloc_caches[idx], flags);
958}
959
960void *realloc(void *ptr, size_t size, unsigned int flags)
961{
962 assert(_slab_initialized);
963 assert(size <= (1 << SLAB_MAX_MALLOC_W));
964
965 void *new_ptr;
966
967 if (size > 0) {
968 if (size < (1 << SLAB_MIN_MALLOC_W))
969 size = (1 << SLAB_MIN_MALLOC_W);
970 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
971
972 new_ptr = slab_alloc(malloc_caches[idx], flags);
973 } else
974 new_ptr = NULL;
975
976 if ((new_ptr != NULL) && (ptr != NULL)) {
977 slab_t *slab = obj2slab(ptr);
978 memcpy(new_ptr, ptr, min(size, slab->cache->size));
979 }
980
981 if (ptr != NULL)
982 free(ptr);
983
984 return new_ptr;
985}
986
987void free(void *ptr)
988{
989 if (!ptr)
990 return;
991
992 slab_t *slab = obj2slab(ptr);
993 _slab_free(slab->cache, ptr, slab);
994}
995
996/** @}
997 */
Note: See TracBrowser for help on using the repository browser.