source: mainline/kernel/generic/src/mm/slab.c@ 25ebfbd

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 25ebfbd was 25ebfbd, checked in by Jakub Jermar <jakub@…>, 13 years ago

Make slab_mag_cache_t's spinlock IRQ safe.

  • slab_cache_destroy() was taking this lock while interrupts were not disabled.
  • Some TLB shootdown sequences could allocate memory, which may involve taking the lock.
  • The above could lead to a deadlock if one CPU took the lock and another one started the TLB shootdown sequence which also takes this lock.
  • Property mode set to 100644
File size: 26.1 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * It might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level.
100 *
101 */
102
103#include <synch/spinlock.h>
104#include <mm/slab.h>
105#include <adt/list.h>
106#include <memstr.h>
107#include <align.h>
108#include <mm/frame.h>
109#include <config.h>
110#include <print.h>
111#include <arch.h>
112#include <panic.h>
113#include <debug.h>
114#include <bitops.h>
115#include <macros.h>
116
117IRQ_SPINLOCK_STATIC_INITIALIZE(slab_cache_lock);
118static LIST_INITIALIZE(slab_cache_list);
119
120/** Magazine cache */
121static slab_cache_t mag_cache;
122
123/** Cache for cache descriptors */
124static slab_cache_t slab_cache_cache;
125
126/** Cache for external slab descriptors
127 * This time we want per-cpu cache, so do not make it static
128 * - using slab for internal slab structures will not deadlock,
129 * as all slab structures are 'small' - control structures of
130 * their caches do not require further allocation
131 */
132static slab_cache_t *slab_extern_cache;
133
134/** Caches for malloc */
135static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
136
137static const char *malloc_names[] = {
138 "malloc-16",
139 "malloc-32",
140 "malloc-64",
141 "malloc-128",
142 "malloc-256",
143 "malloc-512",
144 "malloc-1K",
145 "malloc-2K",
146 "malloc-4K",
147 "malloc-8K",
148 "malloc-16K",
149 "malloc-32K",
150 "malloc-64K",
151 "malloc-128K",
152 "malloc-256K",
153 "malloc-512K",
154 "malloc-1M",
155 "malloc-2M",
156 "malloc-4M"
157};
158
159/** Slab descriptor */
160typedef struct {
161 slab_cache_t *cache; /**< Pointer to parent cache. */
162 link_t link; /**< List of full/partial slabs. */
163 void *start; /**< Start address of first available item. */
164 size_t available; /**< Count of available items in this slab. */
165 size_t nextavail; /**< The index of next available item. */
166} slab_t;
167
168#ifdef CONFIG_DEBUG
169static unsigned int _slab_initialized = 0;
170#endif
171
172/**************************************/
173/* Slab allocation functions */
174/**************************************/
175
176/** Allocate frames for slab space and initialize
177 *
178 */
179NO_TRACE static slab_t *slab_space_alloc(slab_cache_t *cache,
180 unsigned int flags)
181{
182 size_t zone = 0;
183
184 void *data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
185 if (!data) {
186 return NULL;
187 }
188
189 slab_t *slab;
190 size_t fsize;
191
192 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
193 slab = slab_alloc(slab_extern_cache, flags);
194 if (!slab) {
195 frame_free(KA2PA(data));
196 return NULL;
197 }
198 } else {
199 fsize = (PAGE_SIZE << cache->order);
200 slab = data + fsize - sizeof(*slab);
201 }
202
203 /* Fill in slab structures */
204 size_t i;
205 for (i = 0; i < ((size_t) 1 << cache->order); i++)
206 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
207
208 slab->start = data;
209 slab->available = cache->objects;
210 slab->nextavail = 0;
211 slab->cache = cache;
212
213 for (i = 0; i < cache->objects; i++)
214 *((size_t *) (slab->start + i * cache->size)) = i + 1;
215
216 atomic_inc(&cache->allocated_slabs);
217 return slab;
218}
219
220/** Deallocate space associated with slab
221 *
222 * @return number of freed frames
223 *
224 */
225NO_TRACE static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
226{
227 frame_free(KA2PA(slab->start));
228 if (!(cache->flags & SLAB_CACHE_SLINSIDE))
229 slab_free(slab_extern_cache, slab);
230
231 atomic_dec(&cache->allocated_slabs);
232
233 return (1 << cache->order);
234}
235
236/** Map object to slab structure */
237NO_TRACE static slab_t *obj2slab(void *obj)
238{
239 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
240}
241
242/******************/
243/* Slab functions */
244/******************/
245
246/** Return object to slab and call a destructor
247 *
248 * @param slab If the caller knows directly slab of the object, otherwise NULL
249 *
250 * @return Number of freed pages
251 *
252 */
253NO_TRACE static size_t slab_obj_destroy(slab_cache_t *cache, void *obj,
254 slab_t *slab)
255{
256 if (!slab)
257 slab = obj2slab(obj);
258
259 ASSERT(slab->cache == cache);
260
261 size_t freed = 0;
262
263 if (cache->destructor)
264 freed = cache->destructor(obj);
265
266 spinlock_lock(&cache->slablock);
267 ASSERT(slab->available < cache->objects);
268
269 *((size_t *) obj) = slab->nextavail;
270 slab->nextavail = (obj - slab->start) / cache->size;
271 slab->available++;
272
273 /* Move it to correct list */
274 if (slab->available == cache->objects) {
275 /* Free associated memory */
276 list_remove(&slab->link);
277 spinlock_unlock(&cache->slablock);
278
279 return freed + slab_space_free(cache, slab);
280 } else if (slab->available == 1) {
281 /* It was in full, move to partial */
282 list_remove(&slab->link);
283 list_prepend(&slab->link, &cache->partial_slabs);
284 }
285
286 spinlock_unlock(&cache->slablock);
287 return freed;
288}
289
290/** Take new object from slab or create new if needed
291 *
292 * @return Object address or null
293 *
294 */
295NO_TRACE static void *slab_obj_create(slab_cache_t *cache, unsigned int flags)
296{
297 spinlock_lock(&cache->slablock);
298
299 slab_t *slab;
300
301 if (list_empty(&cache->partial_slabs)) {
302 /*
303 * Allow recursion and reclaiming
304 * - this should work, as the slab control structures
305 * are small and do not need to allocate with anything
306 * other than frame_alloc when they are allocating,
307 * that's why we should get recursion at most 1-level deep
308 *
309 */
310 spinlock_unlock(&cache->slablock);
311 slab = slab_space_alloc(cache, flags);
312 if (!slab)
313 return NULL;
314
315 spinlock_lock(&cache->slablock);
316 } else {
317 slab = list_get_instance(list_first(&cache->partial_slabs),
318 slab_t, link);
319 list_remove(&slab->link);
320 }
321
322 void *obj = slab->start + slab->nextavail * cache->size;
323 slab->nextavail = *((size_t *) obj);
324 slab->available--;
325
326 if (!slab->available)
327 list_prepend(&slab->link, &cache->full_slabs);
328 else
329 list_prepend(&slab->link, &cache->partial_slabs);
330
331 spinlock_unlock(&cache->slablock);
332
333 if ((cache->constructor) && (cache->constructor(obj, flags))) {
334 /* Bad, bad, construction failed */
335 slab_obj_destroy(cache, obj, slab);
336 return NULL;
337 }
338
339 return obj;
340}
341
342/****************************/
343/* CPU-Cache slab functions */
344/****************************/
345
346/** Find a full magazine in cache, take it from list and return it
347 *
348 * @param first If true, return first, else last mag.
349 *
350 */
351NO_TRACE static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache,
352 bool first)
353{
354 slab_magazine_t *mag = NULL;
355 link_t *cur;
356
357 spinlock_lock(&cache->maglock);
358 if (!list_empty(&cache->magazines)) {
359 if (first)
360 cur = list_first(&cache->magazines);
361 else
362 cur = list_last(&cache->magazines);
363
364 mag = list_get_instance(cur, slab_magazine_t, link);
365 list_remove(&mag->link);
366 atomic_dec(&cache->magazine_counter);
367 }
368 spinlock_unlock(&cache->maglock);
369
370 return mag;
371}
372
373/** Prepend magazine to magazine list in cache
374 *
375 */
376NO_TRACE static void put_mag_to_cache(slab_cache_t *cache,
377 slab_magazine_t *mag)
378{
379 spinlock_lock(&cache->maglock);
380
381 list_prepend(&mag->link, &cache->magazines);
382 atomic_inc(&cache->magazine_counter);
383
384 spinlock_unlock(&cache->maglock);
385}
386
387/** Free all objects in magazine and free memory associated with magazine
388 *
389 * @return Number of freed pages
390 *
391 */
392NO_TRACE static size_t magazine_destroy(slab_cache_t *cache,
393 slab_magazine_t *mag)
394{
395 size_t i;
396 size_t frames = 0;
397
398 for (i = 0; i < mag->busy; i++) {
399 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
400 atomic_dec(&cache->cached_objs);
401 }
402
403 slab_free(&mag_cache, mag);
404
405 return frames;
406}
407
408/** Find full magazine, set it as current and return it
409 *
410 */
411NO_TRACE static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
412{
413 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
414 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
415
416 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
417
418 if (cmag) { /* First try local CPU magazines */
419 if (cmag->busy)
420 return cmag;
421
422 if ((lastmag) && (lastmag->busy)) {
423 cache->mag_cache[CPU->id].current = lastmag;
424 cache->mag_cache[CPU->id].last = cmag;
425 return lastmag;
426 }
427 }
428
429 /* Local magazines are empty, import one from magazine list */
430 slab_magazine_t *newmag = get_mag_from_cache(cache, 1);
431 if (!newmag)
432 return NULL;
433
434 if (lastmag)
435 magazine_destroy(cache, lastmag);
436
437 cache->mag_cache[CPU->id].last = cmag;
438 cache->mag_cache[CPU->id].current = newmag;
439
440 return newmag;
441}
442
443/** Try to find object in CPU-cache magazines
444 *
445 * @return Pointer to object or NULL if not available
446 *
447 */
448NO_TRACE static void *magazine_obj_get(slab_cache_t *cache)
449{
450 if (!CPU)
451 return NULL;
452
453 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
454
455 slab_magazine_t *mag = get_full_current_mag(cache);
456 if (!mag) {
457 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
458 return NULL;
459 }
460
461 void *obj = mag->objs[--mag->busy];
462 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
463
464 atomic_dec(&cache->cached_objs);
465
466 return obj;
467}
468
469/** Assure that the current magazine is empty, return pointer to it,
470 * or NULL if no empty magazine is available and cannot be allocated
471 *
472 * We have 2 magazines bound to processor.
473 * First try the current.
474 * If full, try the last.
475 * If full, put to magazines list.
476 *
477 */
478NO_TRACE static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
479{
480 slab_magazine_t *cmag = cache->mag_cache[CPU->id].current;
481 slab_magazine_t *lastmag = cache->mag_cache[CPU->id].last;
482
483 ASSERT(irq_spinlock_locked(&cache->mag_cache[CPU->id].lock));
484
485 if (cmag) {
486 if (cmag->busy < cmag->size)
487 return cmag;
488
489 if ((lastmag) && (lastmag->busy < lastmag->size)) {
490 cache->mag_cache[CPU->id].last = cmag;
491 cache->mag_cache[CPU->id].current = lastmag;
492 return lastmag;
493 }
494 }
495
496 /* current | last are full | nonexistent, allocate new */
497
498 /*
499 * We do not want to sleep just because of caching,
500 * especially we do not want reclaiming to start, as
501 * this would deadlock.
502 *
503 */
504 slab_magazine_t *newmag = slab_alloc(&mag_cache,
505 FRAME_ATOMIC | FRAME_NO_RECLAIM);
506 if (!newmag)
507 return NULL;
508
509 newmag->size = SLAB_MAG_SIZE;
510 newmag->busy = 0;
511
512 /* Flush last to magazine list */
513 if (lastmag)
514 put_mag_to_cache(cache, lastmag);
515
516 /* Move current as last, save new as current */
517 cache->mag_cache[CPU->id].last = cmag;
518 cache->mag_cache[CPU->id].current = newmag;
519
520 return newmag;
521}
522
523/** Put object into CPU-cache magazine
524 *
525 * @return 0 on success, -1 on no memory
526 *
527 */
528NO_TRACE static int magazine_obj_put(slab_cache_t *cache, void *obj)
529{
530 if (!CPU)
531 return -1;
532
533 irq_spinlock_lock(&cache->mag_cache[CPU->id].lock, true);
534
535 slab_magazine_t *mag = make_empty_current_mag(cache);
536 if (!mag) {
537 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
538 return -1;
539 }
540
541 mag->objs[mag->busy++] = obj;
542
543 irq_spinlock_unlock(&cache->mag_cache[CPU->id].lock, true);
544
545 atomic_inc(&cache->cached_objs);
546
547 return 0;
548}
549
550/************************/
551/* Slab cache functions */
552/************************/
553
554/** Return number of objects that fit in certain cache size
555 *
556 */
557NO_TRACE static size_t comp_objects(slab_cache_t *cache)
558{
559 if (cache->flags & SLAB_CACHE_SLINSIDE)
560 return ((PAGE_SIZE << cache->order)
561 - sizeof(slab_t)) / cache->size;
562 else
563 return (PAGE_SIZE << cache->order) / cache->size;
564}
565
566/** Return wasted space in slab
567 *
568 */
569NO_TRACE static size_t badness(slab_cache_t *cache)
570{
571 size_t objects = comp_objects(cache);
572 size_t ssize = PAGE_SIZE << cache->order;
573
574 if (cache->flags & SLAB_CACHE_SLINSIDE)
575 ssize -= sizeof(slab_t);
576
577 return ssize - objects * cache->size;
578}
579
580/** Initialize mag_cache structure in slab cache
581 *
582 */
583NO_TRACE static bool make_magcache(slab_cache_t *cache)
584{
585 ASSERT(_slab_initialized >= 2);
586
587 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
588 FRAME_ATOMIC);
589 if (!cache->mag_cache)
590 return false;
591
592 size_t i;
593 for (i = 0; i < config.cpu_count; i++) {
594 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
595 irq_spinlock_initialize(&cache->mag_cache[i].lock,
596 "slab.cache.mag_cache[].lock");
597 }
598
599 return true;
600}
601
602/** Initialize allocated memory as a slab cache
603 *
604 */
605NO_TRACE static void _slab_cache_create(slab_cache_t *cache, const char *name,
606 size_t size, size_t align, int (*constructor)(void *obj,
607 unsigned int kmflag), size_t (*destructor)(void *obj), unsigned int flags)
608{
609 memsetb(cache, sizeof(*cache), 0);
610 cache->name = name;
611
612 if (align < sizeof(sysarg_t))
613 align = sizeof(sysarg_t);
614
615 size = ALIGN_UP(size, align);
616
617 cache->size = size;
618 cache->constructor = constructor;
619 cache->destructor = destructor;
620 cache->flags = flags;
621
622 list_initialize(&cache->full_slabs);
623 list_initialize(&cache->partial_slabs);
624 list_initialize(&cache->magazines);
625
626 spinlock_initialize(&cache->slablock, "slab.cache.slablock");
627 spinlock_initialize(&cache->maglock, "slab.cache.maglock");
628
629 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
630 (void) make_magcache(cache);
631
632 /* Compute slab sizes, object counts in slabs etc. */
633 if (cache->size < SLAB_INSIDE_SIZE)
634 cache->flags |= SLAB_CACHE_SLINSIDE;
635
636 /* Minimum slab order */
637 size_t pages = SIZE2FRAMES(cache->size);
638
639 /* We need the 2^order >= pages */
640 if (pages == 1)
641 cache->order = 0;
642 else
643 cache->order = fnzb(pages - 1) + 1;
644
645 while (badness(cache) > SLAB_MAX_BADNESS(cache))
646 cache->order += 1;
647
648 cache->objects = comp_objects(cache);
649
650 /* If info fits in, put it inside */
651 if (badness(cache) > sizeof(slab_t))
652 cache->flags |= SLAB_CACHE_SLINSIDE;
653
654 /* Add cache to cache list */
655 irq_spinlock_lock(&slab_cache_lock, true);
656 list_append(&cache->link, &slab_cache_list);
657 irq_spinlock_unlock(&slab_cache_lock, true);
658}
659
660/** Create slab cache
661 *
662 */
663slab_cache_t *slab_cache_create(const char *name, size_t size, size_t align,
664 int (*constructor)(void *obj, unsigned int kmflag),
665 size_t (*destructor)(void *obj), unsigned int flags)
666{
667 slab_cache_t *cache = slab_alloc(&slab_cache_cache, 0);
668 _slab_cache_create(cache, name, size, align, constructor, destructor,
669 flags);
670
671 return cache;
672}
673
674/** Reclaim space occupied by objects that are already free
675 *
676 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
677 *
678 * @return Number of freed pages
679 *
680 */
681NO_TRACE static size_t _slab_reclaim(slab_cache_t *cache, unsigned int flags)
682{
683 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
684 return 0; /* Nothing to do */
685
686 /*
687 * We count up to original magazine count to avoid
688 * endless loop
689 */
690 atomic_count_t magcount = atomic_get(&cache->magazine_counter);
691
692 slab_magazine_t *mag;
693 size_t frames = 0;
694
695 while ((magcount--) && (mag = get_mag_from_cache(cache, 0))) {
696 frames += magazine_destroy(cache, mag);
697 if ((!(flags & SLAB_RECLAIM_ALL)) && (frames))
698 break;
699 }
700
701 if (flags & SLAB_RECLAIM_ALL) {
702 /* Free cpu-bound magazines */
703 /* Destroy CPU magazines */
704 size_t i;
705 for (i = 0; i < config.cpu_count; i++) {
706 irq_spinlock_lock(&cache->mag_cache[i].lock, true);
707
708 mag = cache->mag_cache[i].current;
709 if (mag)
710 frames += magazine_destroy(cache, mag);
711 cache->mag_cache[i].current = NULL;
712
713 mag = cache->mag_cache[i].last;
714 if (mag)
715 frames += magazine_destroy(cache, mag);
716 cache->mag_cache[i].last = NULL;
717
718 irq_spinlock_unlock(&cache->mag_cache[i].lock, true);
719 }
720 }
721
722 return frames;
723}
724
725/** Check that there are no slabs and remove cache from system
726 *
727 */
728void slab_cache_destroy(slab_cache_t *cache)
729{
730 /*
731 * First remove cache from link, so that we don't need
732 * to disable interrupts later
733 *
734 */
735 irq_spinlock_lock(&slab_cache_lock, true);
736 list_remove(&cache->link);
737 irq_spinlock_unlock(&slab_cache_lock, true);
738
739 /*
740 * Do not lock anything, we assume the software is correct and
741 * does not touch the cache when it decides to destroy it
742 *
743 */
744
745 /* Destroy all magazines */
746 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
747
748 /* All slabs must be empty */
749 if ((!list_empty(&cache->full_slabs)) ||
750 (!list_empty(&cache->partial_slabs)))
751 panic("Destroying cache that is not empty.");
752
753 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
754 free(cache->mag_cache);
755
756 slab_free(&slab_cache_cache, cache);
757}
758
759/** Allocate new object from cache - if no flags given, always returns memory
760 *
761 */
762void *slab_alloc(slab_cache_t *cache, unsigned int flags)
763{
764 /* Disable interrupts to avoid deadlocks with interrupt handlers */
765 ipl_t ipl = interrupts_disable();
766
767 void *result = NULL;
768
769 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
770 result = magazine_obj_get(cache);
771
772 if (!result)
773 result = slab_obj_create(cache, flags);
774
775 interrupts_restore(ipl);
776
777 if (result)
778 atomic_inc(&cache->allocated_objs);
779
780 return result;
781}
782
783/** Return object to cache, use slab if known
784 *
785 */
786NO_TRACE static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
787{
788 ipl_t ipl = interrupts_disable();
789
790 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
791 (magazine_obj_put(cache, obj)))
792 slab_obj_destroy(cache, obj, slab);
793
794 interrupts_restore(ipl);
795 atomic_dec(&cache->allocated_objs);
796}
797
798/** Return slab object to cache
799 *
800 */
801void slab_free(slab_cache_t *cache, void *obj)
802{
803 _slab_free(cache, obj, NULL);
804}
805
806/** Go through all caches and reclaim what is possible */
807size_t slab_reclaim(unsigned int flags)
808{
809 irq_spinlock_lock(&slab_cache_lock, true);
810
811 size_t frames = 0;
812 list_foreach(slab_cache_list, cur) {
813 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
814 frames += _slab_reclaim(cache, flags);
815 }
816
817 irq_spinlock_unlock(&slab_cache_lock, true);
818
819 return frames;
820}
821
822/* Print list of slabs
823 *
824 */
825void slab_print_list(void)
826{
827 printf("[slab name ] [size ] [pages ] [obj/pg] [slabs ]"
828 " [cached] [alloc ] [ctl]\n");
829
830 size_t skip = 0;
831 while (true) {
832 /*
833 * We must not hold the slab_cache_lock spinlock when printing
834 * the statistics. Otherwise we can easily deadlock if the print
835 * needs to allocate memory.
836 *
837 * Therefore, we walk through the slab cache list, skipping some
838 * amount of already processed caches during each iteration and
839 * gathering statistics about the first unprocessed cache. For
840 * the sake of printing the statistics, we realese the
841 * slab_cache_lock and reacquire it afterwards. Then the walk
842 * starts again.
843 *
844 * This limits both the efficiency and also accuracy of the
845 * obtained statistics. The efficiency is decreased because the
846 * time complexity of the algorithm is quadratic instead of
847 * linear. The accuracy is impacted because we drop the lock
848 * after processing one cache. If there is someone else
849 * manipulating the cache list, we might omit an arbitrary
850 * number of caches or process one cache multiple times.
851 * However, we don't bleed for this algorithm for it is only
852 * statistics.
853 */
854
855 irq_spinlock_lock(&slab_cache_lock, true);
856
857 link_t *cur;
858 size_t i;
859 for (i = 0, cur = slab_cache_list.head.next;
860 (i < skip) && (cur != &slab_cache_list.head);
861 i++, cur = cur->next);
862
863 if (cur == &slab_cache_list.head) {
864 irq_spinlock_unlock(&slab_cache_lock, true);
865 break;
866 }
867
868 skip++;
869
870 slab_cache_t *cache = list_get_instance(cur, slab_cache_t, link);
871
872 const char *name = cache->name;
873 uint8_t order = cache->order;
874 size_t size = cache->size;
875 size_t objects = cache->objects;
876 long allocated_slabs = atomic_get(&cache->allocated_slabs);
877 long cached_objs = atomic_get(&cache->cached_objs);
878 long allocated_objs = atomic_get(&cache->allocated_objs);
879 unsigned int flags = cache->flags;
880
881 irq_spinlock_unlock(&slab_cache_lock, true);
882
883 printf("%-18s %8zu %8u %8zu %8ld %8ld %8ld %-5s\n",
884 name, size, (1 << order), objects, allocated_slabs,
885 cached_objs, allocated_objs,
886 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
887 }
888}
889
890void slab_cache_init(void)
891{
892 /* Initialize magazine cache */
893 _slab_cache_create(&mag_cache, "slab_magazine",
894 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
895 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
896 SLAB_CACHE_SLINSIDE);
897
898 /* Initialize slab_cache cache */
899 _slab_cache_create(&slab_cache_cache, "slab_cache",
900 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
901 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
902
903 /* Initialize external slab cache */
904 slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
905 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
906
907 /* Initialize structures for malloc */
908 size_t i;
909 size_t size;
910
911 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
912 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
913 i++, size <<= 1) {
914 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
915 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
916 }
917
918#ifdef CONFIG_DEBUG
919 _slab_initialized = 1;
920#endif
921}
922
923/** Enable cpu_cache
924 *
925 * Kernel calls this function, when it knows the real number of
926 * processors. Allocate slab for cpucache and enable it on all
927 * existing slabs that are SLAB_CACHE_MAGDEFERRED
928 *
929 */
930void slab_enable_cpucache(void)
931{
932#ifdef CONFIG_DEBUG
933 _slab_initialized = 2;
934#endif
935
936 irq_spinlock_lock(&slab_cache_lock, false);
937
938 list_foreach(slab_cache_list, cur) {
939 slab_cache_t *slab = list_get_instance(cur, slab_cache_t, link);
940 if ((slab->flags & SLAB_CACHE_MAGDEFERRED) !=
941 SLAB_CACHE_MAGDEFERRED)
942 continue;
943
944 (void) make_magcache(slab);
945 slab->flags &= ~SLAB_CACHE_MAGDEFERRED;
946 }
947
948 irq_spinlock_unlock(&slab_cache_lock, false);
949}
950
951void *malloc(size_t size, unsigned int flags)
952{
953 ASSERT(_slab_initialized);
954 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
955
956 if (size < (1 << SLAB_MIN_MALLOC_W))
957 size = (1 << SLAB_MIN_MALLOC_W);
958
959 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
960
961 return slab_alloc(malloc_caches[idx], flags);
962}
963
964void *realloc(void *ptr, size_t size, unsigned int flags)
965{
966 ASSERT(_slab_initialized);
967 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
968
969 void *new_ptr;
970
971 if (size > 0) {
972 if (size < (1 << SLAB_MIN_MALLOC_W))
973 size = (1 << SLAB_MIN_MALLOC_W);
974 uint8_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
975
976 new_ptr = slab_alloc(malloc_caches[idx], flags);
977 } else
978 new_ptr = NULL;
979
980 if ((new_ptr != NULL) && (ptr != NULL)) {
981 slab_t *slab = obj2slab(ptr);
982 memcpy(new_ptr, ptr, min(size, slab->cache->size));
983 }
984
985 if (ptr != NULL)
986 free(ptr);
987
988 return new_ptr;
989}
990
991void free(void *ptr)
992{
993 if (!ptr)
994 return;
995
996 slab_t *slab = obj2slab(ptr);
997 _slab_free(slab->cache, ptr, slab);
998}
999
1000/** @}
1001 */
Note: See TracBrowser for help on using the repository browser.