source: mainline/kernel/generic/src/mm/slab.c@ 24345a5

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 24345a5 was 599d6f5, checked in by Jakub Jermar <jakub@…>, 17 years ago

Avoid easy deadlock while printing slab cache statistics.

  • Property mode set to 100644
File size: 25.9 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * it might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level
100 */
101
102#include <synch/spinlock.h>
103#include <mm/slab.h>
104#include <adt/list.h>
105#include <memstr.h>
106#include <align.h>
107#include <mm/frame.h>
108#include <config.h>
109#include <print.h>
110#include <arch.h>
111#include <panic.h>
112#include <debug.h>
113#include <bitops.h>
114#include <macros.h>
115
116SPINLOCK_INITIALIZE(slab_cache_lock);
117static LIST_INITIALIZE(slab_cache_list);
118
119/** Magazine cache */
120static slab_cache_t mag_cache;
121/** Cache for cache descriptors */
122static slab_cache_t slab_cache_cache;
123/** Cache for external slab descriptors
124 * This time we want per-cpu cache, so do not make it static
125 * - using slab for internal slab structures will not deadlock,
126 * as all slab structures are 'small' - control structures of
127 * their caches do not require further allocation
128 */
129static slab_cache_t *slab_extern_cache;
130/** Caches for malloc */
131static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132char *malloc_names[] = {
133 "malloc-16",
134 "malloc-32",
135 "malloc-64",
136 "malloc-128",
137 "malloc-256",
138 "malloc-512",
139 "malloc-1K",
140 "malloc-2K",
141 "malloc-4K",
142 "malloc-8K",
143 "malloc-16K",
144 "malloc-32K",
145 "malloc-64K",
146 "malloc-128K",
147 "malloc-256K"
148};
149
150/** Slab descriptor */
151typedef struct {
152 slab_cache_t *cache; /**< Pointer to parent cache. */
153 link_t link; /**< List of full/partial slabs. */
154 void *start; /**< Start address of first available item. */
155 count_t available; /**< Count of available items in this slab. */
156 index_t nextavail; /**< The index of next available item. */
157} slab_t;
158
159#ifdef CONFIG_DEBUG
160static int _slab_initialized = 0;
161#endif
162
163/**************************************/
164/* Slab allocation functions */
165
166/**
167 * Allocate frames for slab space and initialize
168 *
169 */
170static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
171{
172 void *data;
173 slab_t *slab;
174 size_t fsize;
175 unsigned int i;
176 unsigned int zone = 0;
177
178 data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
179 if (!data) {
180 return NULL;
181 }
182 if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
183 slab = slab_alloc(slab_extern_cache, flags);
184 if (!slab) {
185 frame_free(KA2PA(data));
186 return NULL;
187 }
188 } else {
189 fsize = (PAGE_SIZE << cache->order);
190 slab = data + fsize - sizeof(*slab);
191 }
192
193 /* Fill in slab structures */
194 for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
195 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
196
197 slab->start = data;
198 slab->available = cache->objects;
199 slab->nextavail = 0;
200 slab->cache = cache;
201
202 for (i = 0; i < cache->objects; i++)
203 *((int *) (slab->start + i*cache->size)) = i + 1;
204
205 atomic_inc(&cache->allocated_slabs);
206 return slab;
207}
208
209/**
210 * Deallocate space associated with slab
211 *
212 * @return number of freed frames
213 */
214static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
215{
216 frame_free(KA2PA(slab->start));
217 if (! (cache->flags & SLAB_CACHE_SLINSIDE))
218 slab_free(slab_extern_cache, slab);
219
220 atomic_dec(&cache->allocated_slabs);
221
222 return 1 << cache->order;
223}
224
225/** Map object to slab structure */
226static slab_t * obj2slab(void *obj)
227{
228 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
229}
230
231/**************************************/
232/* Slab functions */
233
234
235/**
236 * Return object to slab and call a destructor
237 *
238 * @param slab If the caller knows directly slab of the object, otherwise NULL
239 *
240 * @return Number of freed pages
241 */
242static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
243{
244 int freed = 0;
245
246 if (!slab)
247 slab = obj2slab(obj);
248
249 ASSERT(slab->cache == cache);
250
251 if (cache->destructor)
252 freed = cache->destructor(obj);
253
254 spinlock_lock(&cache->slablock);
255 ASSERT(slab->available < cache->objects);
256
257 *((int *)obj) = slab->nextavail;
258 slab->nextavail = (obj - slab->start) / cache->size;
259 slab->available++;
260
261 /* Move it to correct list */
262 if (slab->available == cache->objects) {
263 /* Free associated memory */
264 list_remove(&slab->link);
265 spinlock_unlock(&cache->slablock);
266
267 return freed + slab_space_free(cache, slab);
268
269 } else if (slab->available == 1) {
270 /* It was in full, move to partial */
271 list_remove(&slab->link);
272 list_prepend(&slab->link, &cache->partial_slabs);
273 }
274 spinlock_unlock(&cache->slablock);
275 return freed;
276}
277
278/**
279 * Take new object from slab or create new if needed
280 *
281 * @return Object address or null
282 */
283static void *slab_obj_create(slab_cache_t *cache, int flags)
284{
285 slab_t *slab;
286 void *obj;
287
288 spinlock_lock(&cache->slablock);
289
290 if (list_empty(&cache->partial_slabs)) {
291 /* Allow recursion and reclaiming
292 * - this should work, as the slab control structures
293 * are small and do not need to allocate with anything
294 * other than frame_alloc when they are allocating,
295 * that's why we should get recursion at most 1-level deep
296 */
297 spinlock_unlock(&cache->slablock);
298 slab = slab_space_alloc(cache, flags);
299 if (!slab)
300 return NULL;
301 spinlock_lock(&cache->slablock);
302 } else {
303 slab = list_get_instance(cache->partial_slabs.next, slab_t,
304 link);
305 list_remove(&slab->link);
306 }
307 obj = slab->start + slab->nextavail * cache->size;
308 slab->nextavail = *((int *)obj);
309 slab->available--;
310
311 if (!slab->available)
312 list_prepend(&slab->link, &cache->full_slabs);
313 else
314 list_prepend(&slab->link, &cache->partial_slabs);
315
316 spinlock_unlock(&cache->slablock);
317
318 if (cache->constructor && cache->constructor(obj, flags)) {
319 /* Bad, bad, construction failed */
320 slab_obj_destroy(cache, obj, slab);
321 return NULL;
322 }
323 return obj;
324}
325
326/**************************************/
327/* CPU-Cache slab functions */
328
329/**
330 * Finds a full magazine in cache, takes it from list
331 * and returns it
332 *
333 * @param first If true, return first, else last mag
334 */
335static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
336{
337 slab_magazine_t *mag = NULL;
338 link_t *cur;
339
340 spinlock_lock(&cache->maglock);
341 if (!list_empty(&cache->magazines)) {
342 if (first)
343 cur = cache->magazines.next;
344 else
345 cur = cache->magazines.prev;
346 mag = list_get_instance(cur, slab_magazine_t, link);
347 list_remove(&mag->link);
348 atomic_dec(&cache->magazine_counter);
349 }
350 spinlock_unlock(&cache->maglock);
351 return mag;
352}
353
354/** Prepend magazine to magazine list in cache */
355static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
356{
357 spinlock_lock(&cache->maglock);
358
359 list_prepend(&mag->link, &cache->magazines);
360 atomic_inc(&cache->magazine_counter);
361
362 spinlock_unlock(&cache->maglock);
363}
364
365/**
366 * Free all objects in magazine and free memory associated with magazine
367 *
368 * @return Number of freed pages
369 */
370static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
371{
372 unsigned int i;
373 count_t frames = 0;
374
375 for (i = 0; i < mag->busy; i++) {
376 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
377 atomic_dec(&cache->cached_objs);
378 }
379
380 slab_free(&mag_cache, mag);
381
382 return frames;
383}
384
385/**
386 * Find full magazine, set it as current and return it
387 *
388 * Assume cpu_magazine lock is held
389 */
390static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
391{
392 slab_magazine_t *cmag, *lastmag, *newmag;
393
394 cmag = cache->mag_cache[CPU->id].current;
395 lastmag = cache->mag_cache[CPU->id].last;
396 if (cmag) { /* First try local CPU magazines */
397 if (cmag->busy)
398 return cmag;
399
400 if (lastmag && lastmag->busy) {
401 cache->mag_cache[CPU->id].current = lastmag;
402 cache->mag_cache[CPU->id].last = cmag;
403 return lastmag;
404 }
405 }
406 /* Local magazines are empty, import one from magazine list */
407 newmag = get_mag_from_cache(cache, 1);
408 if (!newmag)
409 return NULL;
410
411 if (lastmag)
412 magazine_destroy(cache, lastmag);
413
414 cache->mag_cache[CPU->id].last = cmag;
415 cache->mag_cache[CPU->id].current = newmag;
416 return newmag;
417}
418
419/**
420 * Try to find object in CPU-cache magazines
421 *
422 * @return Pointer to object or NULL if not available
423 */
424static void *magazine_obj_get(slab_cache_t *cache)
425{
426 slab_magazine_t *mag;
427 void *obj;
428
429 if (!CPU)
430 return NULL;
431
432 spinlock_lock(&cache->mag_cache[CPU->id].lock);
433
434 mag = get_full_current_mag(cache);
435 if (!mag) {
436 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
437 return NULL;
438 }
439 obj = mag->objs[--mag->busy];
440 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
441 atomic_dec(&cache->cached_objs);
442
443 return obj;
444}
445
446/**
447 * Assure that the current magazine is empty, return pointer to it, or NULL if
448 * no empty magazine is available and cannot be allocated
449 *
450 * Assume mag_cache[CPU->id].lock is held
451 *
452 * We have 2 magazines bound to processor.
453 * First try the current.
454 * If full, try the last.
455 * If full, put to magazines list.
456 * allocate new, exchange last & current
457 *
458 */
459static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
460{
461 slab_magazine_t *cmag,*lastmag,*newmag;
462
463 cmag = cache->mag_cache[CPU->id].current;
464 lastmag = cache->mag_cache[CPU->id].last;
465
466 if (cmag) {
467 if (cmag->busy < cmag->size)
468 return cmag;
469 if (lastmag && lastmag->busy < lastmag->size) {
470 cache->mag_cache[CPU->id].last = cmag;
471 cache->mag_cache[CPU->id].current = lastmag;
472 return lastmag;
473 }
474 }
475 /* current | last are full | nonexistent, allocate new */
476 /* We do not want to sleep just because of caching */
477 /* Especially we do not want reclaiming to start, as
478 * this would deadlock */
479 newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
480 if (!newmag)
481 return NULL;
482 newmag->size = SLAB_MAG_SIZE;
483 newmag->busy = 0;
484
485 /* Flush last to magazine list */
486 if (lastmag)
487 put_mag_to_cache(cache, lastmag);
488
489 /* Move current as last, save new as current */
490 cache->mag_cache[CPU->id].last = cmag;
491 cache->mag_cache[CPU->id].current = newmag;
492
493 return newmag;
494}
495
496/**
497 * Put object into CPU-cache magazine
498 *
499 * @return 0 - success, -1 - could not get memory
500 */
501static int magazine_obj_put(slab_cache_t *cache, void *obj)
502{
503 slab_magazine_t *mag;
504
505 if (!CPU)
506 return -1;
507
508 spinlock_lock(&cache->mag_cache[CPU->id].lock);
509
510 mag = make_empty_current_mag(cache);
511 if (!mag) {
512 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
513 return -1;
514 }
515
516 mag->objs[mag->busy++] = obj;
517
518 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
519 atomic_inc(&cache->cached_objs);
520 return 0;
521}
522
523
524/**************************************/
525/* Slab cache functions */
526
527/** Return number of objects that fit in certain cache size */
528static unsigned int comp_objects(slab_cache_t *cache)
529{
530 if (cache->flags & SLAB_CACHE_SLINSIDE)
531 return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
532 cache->size;
533 else
534 return (PAGE_SIZE << cache->order) / cache->size;
535}
536
537/** Return wasted space in slab */
538static unsigned int badness(slab_cache_t *cache)
539{
540 unsigned int objects;
541 unsigned int ssize;
542
543 objects = comp_objects(cache);
544 ssize = PAGE_SIZE << cache->order;
545 if (cache->flags & SLAB_CACHE_SLINSIDE)
546 ssize -= sizeof(slab_t);
547 return ssize - objects * cache->size;
548}
549
550/**
551 * Initialize mag_cache structure in slab cache
552 */
553static void make_magcache(slab_cache_t *cache)
554{
555 unsigned int i;
556
557 ASSERT(_slab_initialized >= 2);
558
559 cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
560 0);
561 for (i = 0; i < config.cpu_count; i++) {
562 memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
563 spinlock_initialize(&cache->mag_cache[i].lock,
564 "slab_maglock_cpu");
565 }
566}
567
568/** Initialize allocated memory as a slab cache */
569static void
570_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
571 int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
572 int flags)
573{
574 int pages;
575 ipl_t ipl;
576
577 memsetb(cache, sizeof(*cache), 0);
578 cache->name = name;
579
580 if (align < sizeof(unative_t))
581 align = sizeof(unative_t);
582 size = ALIGN_UP(size, align);
583
584 cache->size = size;
585
586 cache->constructor = constructor;
587 cache->destructor = destructor;
588 cache->flags = flags;
589
590 list_initialize(&cache->full_slabs);
591 list_initialize(&cache->partial_slabs);
592 list_initialize(&cache->magazines);
593 spinlock_initialize(&cache->slablock, "slab_lock");
594 spinlock_initialize(&cache->maglock, "slab_maglock");
595 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
596 make_magcache(cache);
597
598 /* Compute slab sizes, object counts in slabs etc. */
599 if (cache->size < SLAB_INSIDE_SIZE)
600 cache->flags |= SLAB_CACHE_SLINSIDE;
601
602 /* Minimum slab order */
603 pages = SIZE2FRAMES(cache->size);
604 /* We need the 2^order >= pages */
605 if (pages == 1)
606 cache->order = 0;
607 else
608 cache->order = fnzb(pages - 1) + 1;
609
610 while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
611 cache->order += 1;
612 }
613 cache->objects = comp_objects(cache);
614 /* If info fits in, put it inside */
615 if (badness(cache) > sizeof(slab_t))
616 cache->flags |= SLAB_CACHE_SLINSIDE;
617
618 /* Add cache to cache list */
619 ipl = interrupts_disable();
620 spinlock_lock(&slab_cache_lock);
621
622 list_append(&cache->link, &slab_cache_list);
623
624 spinlock_unlock(&slab_cache_lock);
625 interrupts_restore(ipl);
626}
627
628/** Create slab cache */
629slab_cache_t *
630slab_cache_create(char *name, size_t size, size_t align,
631 int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
632 int flags)
633{
634 slab_cache_t *cache;
635
636 cache = slab_alloc(&slab_cache_cache, 0);
637 _slab_cache_create(cache, name, size, align, constructor, destructor,
638 flags);
639 return cache;
640}
641
642/**
643 * Reclaim space occupied by objects that are already free
644 *
645 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
646 * @return Number of freed pages
647 */
648static count_t _slab_reclaim(slab_cache_t *cache, int flags)
649{
650 unsigned int i;
651 slab_magazine_t *mag;
652 count_t frames = 0;
653 int magcount;
654
655 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
656 return 0; /* Nothing to do */
657
658 /* We count up to original magazine count to avoid
659 * endless loop
660 */
661 magcount = atomic_get(&cache->magazine_counter);
662 while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
663 frames += magazine_destroy(cache,mag);
664 if (!(flags & SLAB_RECLAIM_ALL) && frames)
665 break;
666 }
667
668 if (flags & SLAB_RECLAIM_ALL) {
669 /* Free cpu-bound magazines */
670 /* Destroy CPU magazines */
671 for (i = 0; i < config.cpu_count; i++) {
672 spinlock_lock(&cache->mag_cache[i].lock);
673
674 mag = cache->mag_cache[i].current;
675 if (mag)
676 frames += magazine_destroy(cache, mag);
677 cache->mag_cache[i].current = NULL;
678
679 mag = cache->mag_cache[i].last;
680 if (mag)
681 frames += magazine_destroy(cache, mag);
682 cache->mag_cache[i].last = NULL;
683
684 spinlock_unlock(&cache->mag_cache[i].lock);
685 }
686 }
687
688 return frames;
689}
690
691/** Check that there are no slabs and remove cache from system */
692void slab_cache_destroy(slab_cache_t *cache)
693{
694 ipl_t ipl;
695
696 /* First remove cache from link, so that we don't need
697 * to disable interrupts later
698 */
699
700 ipl = interrupts_disable();
701 spinlock_lock(&slab_cache_lock);
702
703 list_remove(&cache->link);
704
705 spinlock_unlock(&slab_cache_lock);
706 interrupts_restore(ipl);
707
708 /* Do not lock anything, we assume the software is correct and
709 * does not touch the cache when it decides to destroy it */
710
711 /* Destroy all magazines */
712 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
713
714 /* All slabs must be empty */
715 if (!list_empty(&cache->full_slabs) ||
716 !list_empty(&cache->partial_slabs))
717 panic("Destroying cache that is not empty.");
718
719 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
720 free(cache->mag_cache);
721 slab_free(&slab_cache_cache, cache);
722}
723
724/** Allocate new object from cache - if no flags given, always returns memory */
725void *slab_alloc(slab_cache_t *cache, int flags)
726{
727 ipl_t ipl;
728 void *result = NULL;
729
730 /* Disable interrupts to avoid deadlocks with interrupt handlers */
731 ipl = interrupts_disable();
732
733 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
734 result = magazine_obj_get(cache);
735 }
736 if (!result)
737 result = slab_obj_create(cache, flags);
738
739 interrupts_restore(ipl);
740
741 if (result)
742 atomic_inc(&cache->allocated_objs);
743
744 return result;
745}
746
747/** Return object to cache, use slab if known */
748static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
749{
750 ipl_t ipl;
751
752 ipl = interrupts_disable();
753
754 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
755 magazine_obj_put(cache, obj)) {
756 slab_obj_destroy(cache, obj, slab);
757
758 }
759 interrupts_restore(ipl);
760 atomic_dec(&cache->allocated_objs);
761}
762
763/** Return slab object to cache */
764void slab_free(slab_cache_t *cache, void *obj)
765{
766 _slab_free(cache, obj, NULL);
767}
768
769/* Go through all caches and reclaim what is possible */
770count_t slab_reclaim(int flags)
771{
772 slab_cache_t *cache;
773 link_t *cur;
774 count_t frames = 0;
775
776 spinlock_lock(&slab_cache_lock);
777
778 /* TODO: Add assert, that interrupts are disabled, otherwise
779 * memory allocation from interrupts can deadlock.
780 */
781
782 for (cur = slab_cache_list.next; cur != &slab_cache_list;
783 cur = cur->next) {
784 cache = list_get_instance(cur, slab_cache_t, link);
785 frames += _slab_reclaim(cache, flags);
786 }
787
788 spinlock_unlock(&slab_cache_lock);
789
790 return frames;
791}
792
793
794/* Print list of slabs */
795void slab_print_list(void)
796{
797 int skip = 0;
798
799 printf("slab name size pages obj/pg slabs cached allocated"
800 " ctl\n");
801 printf("---------------- -------- ------ ------ ------ ------ ---------"
802 " ---\n");
803
804 while (true) {
805 slab_cache_t *cache;
806 link_t *cur;
807 ipl_t ipl;
808 int i;
809
810 /*
811 * We must not hold the slab_cache_lock spinlock when printing
812 * the statistics. Otherwise we can easily deadlock if the print
813 * needs to allocate memory.
814 *
815 * Therefore, we walk through the slab cache list, skipping some
816 * amount of already processed caches during each iteration and
817 * gathering statistics about the first unprocessed cache. For
818 * the sake of printing the statistics, we realese the
819 * slab_cache_lock and reacquire it afterwards. Then the walk
820 * starts again.
821 *
822 * This limits both the efficiency and also accuracy of the
823 * obtained statistics. The efficiency is decreased because the
824 * time complexity of the algorithm is quadratic instead of
825 * linear. The accuracy is impacted because we drop the lock
826 * after processing one cache. If there is someone else
827 * manipulating the cache list, we might omit an arbitrary
828 * number of caches or process one cache multiple times.
829 * However, we don't bleed for this algorithm for it is only
830 * statistics.
831 */
832
833 ipl = interrupts_disable();
834 spinlock_lock(&slab_cache_lock);
835
836 for (i = 0, cur = slab_cache_list.next;
837 i < skip && cur != &slab_cache_list;
838 i++, cur = cur->next)
839 ;
840
841 if (cur == &slab_cache_list) {
842 spinlock_unlock(&slab_cache_lock);
843 interrupts_restore(ipl);
844 break;
845 }
846
847 skip++;
848
849 cache = list_get_instance(cur, slab_cache_t, link);
850
851 char *name = cache->name;
852 uint8_t order = cache->order;
853 size_t size = cache->size;
854 unsigned int objects = cache->objects;
855 long allocated_slabs = atomic_get(&cache->allocated_slabs);
856 long cached_objs = atomic_get(&cache->cached_objs);
857 long allocated_objs = atomic_get(&cache->allocated_objs);
858 int flags = cache->flags;
859
860 spinlock_unlock(&slab_cache_lock);
861 interrupts_restore(ipl);
862
863 printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
864 name, size, (1 << order), objects, allocated_slabs,
865 cached_objs, allocated_objs,
866 flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
867 }
868}
869
870void slab_cache_init(void)
871{
872 int i, size;
873
874 /* Initialize magazine cache */
875 _slab_cache_create(&mag_cache, "slab_magazine",
876 sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
877 sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
878 SLAB_CACHE_SLINSIDE);
879 /* Initialize slab_cache cache */
880 _slab_cache_create(&slab_cache_cache, "slab_cache",
881 sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
882 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
883 /* Initialize external slab cache */
884 slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
885 NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
886
887 /* Initialize structures for malloc */
888 for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
889 i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
890 i++, size <<= 1) {
891 malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
892 NULL, NULL, SLAB_CACHE_MAGDEFERRED);
893 }
894#ifdef CONFIG_DEBUG
895 _slab_initialized = 1;
896#endif
897}
898
899/** Enable cpu_cache
900 *
901 * Kernel calls this function, when it knows the real number of
902 * processors.
903 * Allocate slab for cpucache and enable it on all existing
904 * slabs that are SLAB_CACHE_MAGDEFERRED
905 */
906void slab_enable_cpucache(void)
907{
908 link_t *cur;
909 slab_cache_t *s;
910
911#ifdef CONFIG_DEBUG
912 _slab_initialized = 2;
913#endif
914
915 spinlock_lock(&slab_cache_lock);
916
917 for (cur = slab_cache_list.next; cur != &slab_cache_list;
918 cur = cur->next){
919 s = list_get_instance(cur, slab_cache_t, link);
920 if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
921 SLAB_CACHE_MAGDEFERRED)
922 continue;
923 make_magcache(s);
924 s->flags &= ~SLAB_CACHE_MAGDEFERRED;
925 }
926
927 spinlock_unlock(&slab_cache_lock);
928}
929
930/**************************************/
931/* kalloc/kfree functions */
932void *malloc(unsigned int size, int flags)
933{
934 ASSERT(_slab_initialized);
935 ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
936
937 if (size < (1 << SLAB_MIN_MALLOC_W))
938 size = (1 << SLAB_MIN_MALLOC_W);
939
940 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
941
942 return slab_alloc(malloc_caches[idx], flags);
943}
944
945void *realloc(void *ptr, unsigned int size, int flags)
946{
947 ASSERT(_slab_initialized);
948 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
949
950 void *new_ptr;
951
952 if (size > 0) {
953 if (size < (1 << SLAB_MIN_MALLOC_W))
954 size = (1 << SLAB_MIN_MALLOC_W);
955 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
956
957 new_ptr = slab_alloc(malloc_caches[idx], flags);
958 } else
959 new_ptr = NULL;
960
961 if ((new_ptr != NULL) && (ptr != NULL)) {
962 slab_t *slab = obj2slab(ptr);
963 memcpy(new_ptr, ptr, min(size, slab->cache->size));
964 }
965
966 if (ptr != NULL)
967 free(ptr);
968
969 return new_ptr;
970}
971
972void free(void *ptr)
973{
974 if (!ptr)
975 return;
976
977 slab_t *slab = obj2slab(ptr);
978 _slab_free(slab->cache, ptr, slab);
979}
980
981/** @}
982 */
Note: See TracBrowser for help on using the repository browser.