source: mainline/kernel/generic/src/mm/slab.c@ 0f269c2

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 0f269c2 was 6c441cf8, checked in by Martin Decky <martin@…>, 17 years ago

code cleanup (mostly signed/unsigned)
allow extra compiler warnings

  • Property mode set to 100644
File size: 24.5 KB
Line 
1/*
2 * Copyright (c) 2006 Ondrej Palkovsky
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Slab allocator.
36 *
37 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39 *
40 * with the following exceptions:
41 * @li empty slabs are deallocated immediately
42 * (in Linux they are kept in linked list, in Solaris ???)
43 * @li empty magazines are deallocated when not needed
44 * (in Solaris they are held in linked list in slab cache)
45 *
46 * Following features are not currently supported but would be easy to do:
47 * @li cache coloring
48 * @li dynamic magazine growing (different magazine sizes are already
49 * supported, but we would need to adjust allocation strategy)
50 *
51 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52 * good SMP scaling.
53 *
54 * When a new object is being allocated, it is first checked, if it is
55 * available in a CPU-bound magazine. If it is not found there, it is
56 * allocated from a CPU-shared slab - if a partially full one is found,
57 * it is used, otherwise a new one is allocated.
58 *
59 * When an object is being deallocated, it is put to a CPU-bound magazine.
60 * If there is no such magazine, a new one is allocated (if this fails,
61 * the object is deallocated into slab). If the magazine is full, it is
62 * put into cpu-shared list of magazines and a new one is allocated.
63 *
64 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66 * size boundary. LIFO order is enforced, which should avoid fragmentation
67 * as much as possible.
68 *
69 * Every cache contains list of full slabs and list of partially full slabs.
70 * Empty slabs are immediately freed (thrashing will be avoided because
71 * of magazines).
72 *
73 * The slab information structure is kept inside the data area, if possible.
74 * The cache can be marked that it should not use magazines. This is used
75 * only for slab related caches to avoid deadlocks and infinite recursion
76 * (the slab allocator uses itself for allocating all it's control structures).
77 *
78 * The slab allocator allocates a lot of space and does not free it. When
79 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82 * is deallocated in each cache (this algorithm should probably change).
83 * The brutal reclaim removes all cached objects, even from CPU-bound
84 * magazines.
85 *
86 * @todo
87 * For better CPU-scaling the magazine allocation strategy should
88 * be extended. Currently, if the cache does not have magazine, it asks
89 * for non-cpu cached magazine cache to provide one. It might be feasible
90 * to add cpu-cached magazine cache (which would allocate it's magazines
91 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92 * buffer. The other possibility is to use the per-cache
93 * 'empty-magazine-list', which decreases competing for 1 per-system
94 * magazine cache.
95 *
96 * @todo
97 * it might be good to add granularity of locks even to slab level,
98 * we could then try_spinlock over all partial slabs and thus improve
99 * scalability even on slab level
100 */
101
102#include <synch/spinlock.h>
103#include <mm/slab.h>
104#include <adt/list.h>
105#include <memstr.h>
106#include <align.h>
107#include <mm/frame.h>
108#include <config.h>
109#include <print.h>
110#include <arch.h>
111#include <panic.h>
112#include <debug.h>
113#include <bitops.h>
114#include <macros.h>
115
116SPINLOCK_INITIALIZE(slab_cache_lock);
117static LIST_INITIALIZE(slab_cache_list);
118
119/** Magazine cache */
120static slab_cache_t mag_cache;
121/** Cache for cache descriptors */
122static slab_cache_t slab_cache_cache;
123/** Cache for external slab descriptors
124 * This time we want per-cpu cache, so do not make it static
125 * - using slab for internal slab structures will not deadlock,
126 * as all slab structures are 'small' - control structures of
127 * their caches do not require further allocation
128 */
129static slab_cache_t *slab_extern_cache;
130/** Caches for malloc */
131static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132char *malloc_names[] = {
133 "malloc-16",
134 "malloc-32",
135 "malloc-64",
136 "malloc-128",
137 "malloc-256",
138 "malloc-512",
139 "malloc-1K",
140 "malloc-2K",
141 "malloc-4K",
142 "malloc-8K",
143 "malloc-16K",
144 "malloc-32K",
145 "malloc-64K",
146 "malloc-128K",
147 "malloc-256K"
148};
149
150/** Slab descriptor */
151typedef struct {
152 slab_cache_t *cache; /**< Pointer to parent cache. */
153 link_t link; /**< List of full/partial slabs. */
154 void *start; /**< Start address of first available item. */
155 count_t available; /**< Count of available items in this slab. */
156 index_t nextavail; /**< The index of next available item. */
157} slab_t;
158
159#ifdef CONFIG_DEBUG
160static int _slab_initialized = 0;
161#endif
162
163/**************************************/
164/* Slab allocation functions */
165
166/**
167 * Allocate frames for slab space and initialize
168 *
169 */
170static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
171{
172 void *data;
173 slab_t *slab;
174 size_t fsize;
175 unsigned int i;
176 unsigned int zone = 0;
177
178 data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
179 if (!data) {
180 return NULL;
181 }
182 if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
183 slab = slab_alloc(slab_extern_cache, flags);
184 if (!slab) {
185 frame_free(KA2PA(data));
186 return NULL;
187 }
188 } else {
189 fsize = (PAGE_SIZE << cache->order);
190 slab = data + fsize - sizeof(*slab);
191 }
192
193 /* Fill in slab structures */
194 for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
195 frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
196
197 slab->start = data;
198 slab->available = cache->objects;
199 slab->nextavail = 0;
200 slab->cache = cache;
201
202 for (i = 0; i < cache->objects; i++)
203 *((int *) (slab->start + i*cache->size)) = i+1;
204
205 atomic_inc(&cache->allocated_slabs);
206 return slab;
207}
208
209/**
210 * Deallocate space associated with slab
211 *
212 * @return number of freed frames
213 */
214static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
215{
216 frame_free(KA2PA(slab->start));
217 if (! (cache->flags & SLAB_CACHE_SLINSIDE))
218 slab_free(slab_extern_cache, slab);
219
220 atomic_dec(&cache->allocated_slabs);
221
222 return 1 << cache->order;
223}
224
225/** Map object to slab structure */
226static slab_t * obj2slab(void *obj)
227{
228 return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
229}
230
231/**************************************/
232/* Slab functions */
233
234
235/**
236 * Return object to slab and call a destructor
237 *
238 * @param slab If the caller knows directly slab of the object, otherwise NULL
239 *
240 * @return Number of freed pages
241 */
242static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
243 slab_t *slab)
244{
245 int freed = 0;
246
247 if (!slab)
248 slab = obj2slab(obj);
249
250 ASSERT(slab->cache == cache);
251
252 if (cache->destructor)
253 freed = cache->destructor(obj);
254
255 spinlock_lock(&cache->slablock);
256 ASSERT(slab->available < cache->objects);
257
258 *((int *)obj) = slab->nextavail;
259 slab->nextavail = (obj - slab->start)/cache->size;
260 slab->available++;
261
262 /* Move it to correct list */
263 if (slab->available == cache->objects) {
264 /* Free associated memory */
265 list_remove(&slab->link);
266 spinlock_unlock(&cache->slablock);
267
268 return freed + slab_space_free(cache, slab);
269
270 } else if (slab->available == 1) {
271 /* It was in full, move to partial */
272 list_remove(&slab->link);
273 list_prepend(&slab->link, &cache->partial_slabs);
274 }
275 spinlock_unlock(&cache->slablock);
276 return freed;
277}
278
279/**
280 * Take new object from slab or create new if needed
281 *
282 * @return Object address or null
283 */
284static void * slab_obj_create(slab_cache_t *cache, int flags)
285{
286 slab_t *slab;
287 void *obj;
288
289 spinlock_lock(&cache->slablock);
290
291 if (list_empty(&cache->partial_slabs)) {
292 /* Allow recursion and reclaiming
293 * - this should work, as the slab control structures
294 * are small and do not need to allocate with anything
295 * other than frame_alloc when they are allocating,
296 * that's why we should get recursion at most 1-level deep
297 */
298 spinlock_unlock(&cache->slablock);
299 slab = slab_space_alloc(cache, flags);
300 if (!slab)
301 return NULL;
302 spinlock_lock(&cache->slablock);
303 } else {
304 slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
305 list_remove(&slab->link);
306 }
307 obj = slab->start + slab->nextavail * cache->size;
308 slab->nextavail = *((int *)obj);
309 slab->available--;
310
311 if (!slab->available)
312 list_prepend(&slab->link, &cache->full_slabs);
313 else
314 list_prepend(&slab->link, &cache->partial_slabs);
315
316 spinlock_unlock(&cache->slablock);
317
318 if (cache->constructor && cache->constructor(obj, flags)) {
319 /* Bad, bad, construction failed */
320 slab_obj_destroy(cache, obj, slab);
321 return NULL;
322 }
323 return obj;
324}
325
326/**************************************/
327/* CPU-Cache slab functions */
328
329/**
330 * Finds a full magazine in cache, takes it from list
331 * and returns it
332 *
333 * @param first If true, return first, else last mag
334 */
335static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
336 int first)
337{
338 slab_magazine_t *mag = NULL;
339 link_t *cur;
340
341 spinlock_lock(&cache->maglock);
342 if (!list_empty(&cache->magazines)) {
343 if (first)
344 cur = cache->magazines.next;
345 else
346 cur = cache->magazines.prev;
347 mag = list_get_instance(cur, slab_magazine_t, link);
348 list_remove(&mag->link);
349 atomic_dec(&cache->magazine_counter);
350 }
351 spinlock_unlock(&cache->maglock);
352 return mag;
353}
354
355/** Prepend magazine to magazine list in cache */
356static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
357{
358 spinlock_lock(&cache->maglock);
359
360 list_prepend(&mag->link, &cache->magazines);
361 atomic_inc(&cache->magazine_counter);
362
363 spinlock_unlock(&cache->maglock);
364}
365
366/**
367 * Free all objects in magazine and free memory associated with magazine
368 *
369 * @return Number of freed pages
370 */
371static count_t magazine_destroy(slab_cache_t *cache,
372 slab_magazine_t *mag)
373{
374 unsigned int i;
375 count_t frames = 0;
376
377 for (i = 0; i < mag->busy; i++) {
378 frames += slab_obj_destroy(cache, mag->objs[i], NULL);
379 atomic_dec(&cache->cached_objs);
380 }
381
382 slab_free(&mag_cache, mag);
383
384 return frames;
385}
386
387/**
388 * Find full magazine, set it as current and return it
389 *
390 * Assume cpu_magazine lock is held
391 */
392static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
393{
394 slab_magazine_t *cmag, *lastmag, *newmag;
395
396 cmag = cache->mag_cache[CPU->id].current;
397 lastmag = cache->mag_cache[CPU->id].last;
398 if (cmag) { /* First try local CPU magazines */
399 if (cmag->busy)
400 return cmag;
401
402 if (lastmag && lastmag->busy) {
403 cache->mag_cache[CPU->id].current = lastmag;
404 cache->mag_cache[CPU->id].last = cmag;
405 return lastmag;
406 }
407 }
408 /* Local magazines are empty, import one from magazine list */
409 newmag = get_mag_from_cache(cache, 1);
410 if (!newmag)
411 return NULL;
412
413 if (lastmag)
414 magazine_destroy(cache, lastmag);
415
416 cache->mag_cache[CPU->id].last = cmag;
417 cache->mag_cache[CPU->id].current = newmag;
418 return newmag;
419}
420
421/**
422 * Try to find object in CPU-cache magazines
423 *
424 * @return Pointer to object or NULL if not available
425 */
426static void * magazine_obj_get(slab_cache_t *cache)
427{
428 slab_magazine_t *mag;
429 void *obj;
430
431 if (!CPU)
432 return NULL;
433
434 spinlock_lock(&cache->mag_cache[CPU->id].lock);
435
436 mag = get_full_current_mag(cache);
437 if (!mag) {
438 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
439 return NULL;
440 }
441 obj = mag->objs[--mag->busy];
442 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
443 atomic_dec(&cache->cached_objs);
444
445 return obj;
446}
447
448/**
449 * Assure that the current magazine is empty, return pointer to it, or NULL if
450 * no empty magazine is available and cannot be allocated
451 *
452 * Assume mag_cache[CPU->id].lock is held
453 *
454 * We have 2 magazines bound to processor.
455 * First try the current.
456 * If full, try the last.
457 * If full, put to magazines list.
458 * allocate new, exchange last & current
459 *
460 */
461static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
462{
463 slab_magazine_t *cmag,*lastmag,*newmag;
464
465 cmag = cache->mag_cache[CPU->id].current;
466 lastmag = cache->mag_cache[CPU->id].last;
467
468 if (cmag) {
469 if (cmag->busy < cmag->size)
470 return cmag;
471 if (lastmag && lastmag->busy < lastmag->size) {
472 cache->mag_cache[CPU->id].last = cmag;
473 cache->mag_cache[CPU->id].current = lastmag;
474 return lastmag;
475 }
476 }
477 /* current | last are full | nonexistent, allocate new */
478 /* We do not want to sleep just because of caching */
479 /* Especially we do not want reclaiming to start, as
480 * this would deadlock */
481 newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
482 if (!newmag)
483 return NULL;
484 newmag->size = SLAB_MAG_SIZE;
485 newmag->busy = 0;
486
487 /* Flush last to magazine list */
488 if (lastmag)
489 put_mag_to_cache(cache, lastmag);
490
491 /* Move current as last, save new as current */
492 cache->mag_cache[CPU->id].last = cmag;
493 cache->mag_cache[CPU->id].current = newmag;
494
495 return newmag;
496}
497
498/**
499 * Put object into CPU-cache magazine
500 *
501 * @return 0 - success, -1 - could not get memory
502 */
503static int magazine_obj_put(slab_cache_t *cache, void *obj)
504{
505 slab_magazine_t *mag;
506
507 if (!CPU)
508 return -1;
509
510 spinlock_lock(&cache->mag_cache[CPU->id].lock);
511
512 mag = make_empty_current_mag(cache);
513 if (!mag) {
514 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
515 return -1;
516 }
517
518 mag->objs[mag->busy++] = obj;
519
520 spinlock_unlock(&cache->mag_cache[CPU->id].lock);
521 atomic_inc(&cache->cached_objs);
522 return 0;
523}
524
525
526/**************************************/
527/* Slab cache functions */
528
529/** Return number of objects that fit in certain cache size */
530static unsigned int comp_objects(slab_cache_t *cache)
531{
532 if (cache->flags & SLAB_CACHE_SLINSIDE)
533 return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
534 else
535 return (PAGE_SIZE << cache->order) / cache->size;
536}
537
538/** Return wasted space in slab */
539static unsigned int badness(slab_cache_t *cache)
540{
541 unsigned int objects;
542 unsigned int ssize;
543
544 objects = comp_objects(cache);
545 ssize = PAGE_SIZE << cache->order;
546 if (cache->flags & SLAB_CACHE_SLINSIDE)
547 ssize -= sizeof(slab_t);
548 return ssize - objects * cache->size;
549}
550
551/**
552 * Initialize mag_cache structure in slab cache
553 */
554static void make_magcache(slab_cache_t *cache)
555{
556 unsigned int i;
557
558 ASSERT(_slab_initialized >= 2);
559
560 cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
561 for (i = 0; i < config.cpu_count; i++) {
562 memsetb((uintptr_t)&cache->mag_cache[i],
563 sizeof(cache->mag_cache[i]), 0);
564 spinlock_initialize(&cache->mag_cache[i].lock, "slab_maglock_cpu");
565 }
566}
567
568/** Initialize allocated memory as a slab cache */
569static void
570_slab_cache_create(slab_cache_t *cache,
571 char *name,
572 size_t size,
573 size_t align,
574 int (*constructor)(void *obj, int kmflag),
575 int (*destructor)(void *obj),
576 int flags)
577{
578 int pages;
579 ipl_t ipl;
580
581 memsetb((uintptr_t)cache, sizeof(*cache), 0);
582 cache->name = name;
583
584 if (align < sizeof(unative_t))
585 align = sizeof(unative_t);
586 size = ALIGN_UP(size, align);
587
588 cache->size = size;
589
590 cache->constructor = constructor;
591 cache->destructor = destructor;
592 cache->flags = flags;
593
594 list_initialize(&cache->full_slabs);
595 list_initialize(&cache->partial_slabs);
596 list_initialize(&cache->magazines);
597 spinlock_initialize(&cache->slablock, "slab_lock");
598 spinlock_initialize(&cache->maglock, "slab_maglock");
599 if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
600 make_magcache(cache);
601
602 /* Compute slab sizes, object counts in slabs etc. */
603 if (cache->size < SLAB_INSIDE_SIZE)
604 cache->flags |= SLAB_CACHE_SLINSIDE;
605
606 /* Minimum slab order */
607 pages = SIZE2FRAMES(cache->size);
608 /* We need the 2^order >= pages */
609 if (pages == 1)
610 cache->order = 0;
611 else
612 cache->order = fnzb(pages-1)+1;
613
614 while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
615 cache->order += 1;
616 }
617 cache->objects = comp_objects(cache);
618 /* If info fits in, put it inside */
619 if (badness(cache) > sizeof(slab_t))
620 cache->flags |= SLAB_CACHE_SLINSIDE;
621
622 /* Add cache to cache list */
623 ipl = interrupts_disable();
624 spinlock_lock(&slab_cache_lock);
625
626 list_append(&cache->link, &slab_cache_list);
627
628 spinlock_unlock(&slab_cache_lock);
629 interrupts_restore(ipl);
630}
631
632/** Create slab cache */
633slab_cache_t * slab_cache_create(char *name,
634 size_t size,
635 size_t align,
636 int (*constructor)(void *obj, int kmflag),
637 int (*destructor)(void *obj),
638 int flags)
639{
640 slab_cache_t *cache;
641
642 cache = slab_alloc(&slab_cache_cache, 0);
643 _slab_cache_create(cache, name, size, align, constructor, destructor,
644 flags);
645 return cache;
646}
647
648/**
649 * Reclaim space occupied by objects that are already free
650 *
651 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
652 * @return Number of freed pages
653 */
654static count_t _slab_reclaim(slab_cache_t *cache, int flags)
655{
656 unsigned int i;
657 slab_magazine_t *mag;
658 count_t frames = 0;
659 int magcount;
660
661 if (cache->flags & SLAB_CACHE_NOMAGAZINE)
662 return 0; /* Nothing to do */
663
664 /* We count up to original magazine count to avoid
665 * endless loop
666 */
667 magcount = atomic_get(&cache->magazine_counter);
668 while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
669 frames += magazine_destroy(cache,mag);
670 if (!(flags & SLAB_RECLAIM_ALL) && frames)
671 break;
672 }
673
674 if (flags & SLAB_RECLAIM_ALL) {
675 /* Free cpu-bound magazines */
676 /* Destroy CPU magazines */
677 for (i = 0; i < config.cpu_count; i++) {
678 spinlock_lock(&cache->mag_cache[i].lock);
679
680 mag = cache->mag_cache[i].current;
681 if (mag)
682 frames += magazine_destroy(cache, mag);
683 cache->mag_cache[i].current = NULL;
684
685 mag = cache->mag_cache[i].last;
686 if (mag)
687 frames += magazine_destroy(cache, mag);
688 cache->mag_cache[i].last = NULL;
689
690 spinlock_unlock(&cache->mag_cache[i].lock);
691 }
692 }
693
694 return frames;
695}
696
697/** Check that there are no slabs and remove cache from system */
698void slab_cache_destroy(slab_cache_t *cache)
699{
700 ipl_t ipl;
701
702 /* First remove cache from link, so that we don't need
703 * to disable interrupts later
704 */
705
706 ipl = interrupts_disable();
707 spinlock_lock(&slab_cache_lock);
708
709 list_remove(&cache->link);
710
711 spinlock_unlock(&slab_cache_lock);
712 interrupts_restore(ipl);
713
714 /* Do not lock anything, we assume the software is correct and
715 * does not touch the cache when it decides to destroy it */
716
717 /* Destroy all magazines */
718 _slab_reclaim(cache, SLAB_RECLAIM_ALL);
719
720 /* All slabs must be empty */
721 if (!list_empty(&cache->full_slabs) \
722 || !list_empty(&cache->partial_slabs))
723 panic("Destroying cache that is not empty.");
724
725 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
726 free(cache->mag_cache);
727 slab_free(&slab_cache_cache, cache);
728}
729
730/** Allocate new object from cache - if no flags given, always returns
731 memory */
732void * slab_alloc(slab_cache_t *cache, int flags)
733{
734 ipl_t ipl;
735 void *result = NULL;
736
737 /* Disable interrupts to avoid deadlocks with interrupt handlers */
738 ipl = interrupts_disable();
739
740 if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
741 result = magazine_obj_get(cache);
742 }
743 if (!result)
744 result = slab_obj_create(cache, flags);
745
746 interrupts_restore(ipl);
747
748 if (result)
749 atomic_inc(&cache->allocated_objs);
750
751 return result;
752}
753
754/** Return object to cache, use slab if known */
755static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
756{
757 ipl_t ipl;
758
759 ipl = interrupts_disable();
760
761 if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
762 || magazine_obj_put(cache, obj)) {
763
764 slab_obj_destroy(cache, obj, slab);
765
766 }
767 interrupts_restore(ipl);
768 atomic_dec(&cache->allocated_objs);
769}
770
771/** Return slab object to cache */
772void slab_free(slab_cache_t *cache, void *obj)
773{
774 _slab_free(cache, obj, NULL);
775}
776
777/* Go through all caches and reclaim what is possible */
778count_t slab_reclaim(int flags)
779{
780 slab_cache_t *cache;
781 link_t *cur;
782 count_t frames = 0;
783
784 spinlock_lock(&slab_cache_lock);
785
786 /* TODO: Add assert, that interrupts are disabled, otherwise
787 * memory allocation from interrupts can deadlock.
788 */
789
790 for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
791 cache = list_get_instance(cur, slab_cache_t, link);
792 frames += _slab_reclaim(cache, flags);
793 }
794
795 spinlock_unlock(&slab_cache_lock);
796
797 return frames;
798}
799
800
801/* Print list of slabs */
802void slab_print_list(void)
803{
804 slab_cache_t *cache;
805 link_t *cur;
806 ipl_t ipl;
807
808 ipl = interrupts_disable();
809 spinlock_lock(&slab_cache_lock);
810 printf("slab name size pages obj/pg slabs cached allocated ctl\n");
811 printf("---------------- -------- ------ ------ ------ ------ --------- ---\n");
812
813 for (cur = slab_cache_list.next; cur != &slab_cache_list; cur = cur->next) {
814 cache = list_get_instance(cur, slab_cache_t, link);
815
816 printf("%-16s %8zd %6zd %6zd %6zd %6zd %9zd %-3s\n", cache->name, cache->size, (1 << cache->order), cache->objects, atomic_get(&cache->allocated_slabs), atomic_get(&cache->cached_objs), atomic_get(&cache->allocated_objs), cache->flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
817 }
818 spinlock_unlock(&slab_cache_lock);
819 interrupts_restore(ipl);
820}
821
822void slab_cache_init(void)
823{
824 int i, size;
825
826 /* Initialize magazine cache */
827 _slab_cache_create(&mag_cache,
828 "slab_magazine",
829 sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
830 sizeof(uintptr_t),
831 NULL, NULL,
832 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
833 /* Initialize slab_cache cache */
834 _slab_cache_create(&slab_cache_cache,
835 "slab_cache",
836 sizeof(slab_cache_cache),
837 sizeof(uintptr_t),
838 NULL, NULL,
839 SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
840 /* Initialize external slab cache */
841 slab_extern_cache = slab_cache_create("slab_extern",
842 sizeof(slab_t),
843 0, NULL, NULL,
844 SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
845
846 /* Initialize structures for malloc */
847 for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
848 i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
849 i++, size <<= 1) {
850 malloc_caches[i] = slab_cache_create(malloc_names[i],
851 size, 0,
852 NULL,NULL, SLAB_CACHE_MAGDEFERRED);
853 }
854#ifdef CONFIG_DEBUG
855 _slab_initialized = 1;
856#endif
857}
858
859/** Enable cpu_cache
860 *
861 * Kernel calls this function, when it knows the real number of
862 * processors.
863 * Allocate slab for cpucache and enable it on all existing
864 * slabs that are SLAB_CACHE_MAGDEFERRED
865 */
866void slab_enable_cpucache(void)
867{
868 link_t *cur;
869 slab_cache_t *s;
870
871#ifdef CONFIG_DEBUG
872 _slab_initialized = 2;
873#endif
874
875 spinlock_lock(&slab_cache_lock);
876
877 for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
878 s = list_get_instance(cur, slab_cache_t, link);
879 if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
880 continue;
881 make_magcache(s);
882 s->flags &= ~SLAB_CACHE_MAGDEFERRED;
883 }
884
885 spinlock_unlock(&slab_cache_lock);
886}
887
888/**************************************/
889/* kalloc/kfree functions */
890void * malloc(unsigned int size, int flags)
891{
892 ASSERT(_slab_initialized);
893 ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
894
895 if (size < (1 << SLAB_MIN_MALLOC_W))
896 size = (1 << SLAB_MIN_MALLOC_W);
897
898 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
899
900 return slab_alloc(malloc_caches[idx], flags);
901}
902
903void * realloc(void *ptr, unsigned int size, int flags)
904{
905 ASSERT(_slab_initialized);
906 ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
907
908 void *new_ptr;
909
910 if (size > 0) {
911 if (size < (1 << SLAB_MIN_MALLOC_W))
912 size = (1 << SLAB_MIN_MALLOC_W);
913 int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
914
915 new_ptr = slab_alloc(malloc_caches[idx], flags);
916 } else
917 new_ptr = NULL;
918
919 if ((new_ptr != NULL) && (ptr != NULL)) {
920 slab_t *slab = obj2slab(ptr);
921 memcpy(new_ptr, ptr, min(size, slab->cache->size));
922 }
923
924 if (ptr != NULL)
925 free(ptr);
926
927 return new_ptr;
928}
929
930void free(void *ptr)
931{
932 if (!ptr)
933 return;
934
935 slab_t *slab = obj2slab(ptr);
936 _slab_free(slab->cache, ptr, slab);
937}
938
939/** @}
940 */
Note: See TracBrowser for help on using the repository browser.