1 | /*
|
---|
2 | * Copyright (c) 2006 Ondrej Palkovsky
|
---|
3 | * Copyright (c) 2018 Jiří Zárevúcky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | #include <stdalign.h>
|
---|
31 | #include <stddef.h>
|
---|
32 | #include <stdlib.h>
|
---|
33 | #include <align.h>
|
---|
34 | #include <bitops.h>
|
---|
35 | #include <mm/slab.h>
|
---|
36 | #include <mem.h>
|
---|
37 | #include <main/main.h> // malloc_init()
|
---|
38 |
|
---|
39 | /** Minimum size to be allocated by malloc */
|
---|
40 | #define SLAB_MIN_MALLOC_W 4
|
---|
41 |
|
---|
42 | /** Maximum size to be allocated by malloc */
|
---|
43 | #define SLAB_MAX_MALLOC_W 22
|
---|
44 |
|
---|
45 | /** Caches for malloc */
|
---|
46 | static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
|
---|
47 |
|
---|
48 | static const char *malloc_names[] = {
|
---|
49 | "malloc-16",
|
---|
50 | "malloc-32",
|
---|
51 | "malloc-64",
|
---|
52 | "malloc-128",
|
---|
53 | "malloc-256",
|
---|
54 | "malloc-512",
|
---|
55 | "malloc-1K",
|
---|
56 | "malloc-2K",
|
---|
57 | "malloc-4K",
|
---|
58 | "malloc-8K",
|
---|
59 | "malloc-16K",
|
---|
60 | "malloc-32K",
|
---|
61 | "malloc-64K",
|
---|
62 | "malloc-128K",
|
---|
63 | "malloc-256K",
|
---|
64 | "malloc-512K",
|
---|
65 | "malloc-1M",
|
---|
66 | "malloc-2M",
|
---|
67 | "malloc-4M"
|
---|
68 | };
|
---|
69 |
|
---|
70 | void malloc_init(void)
|
---|
71 | {
|
---|
72 | /* Initialize structures for malloc */
|
---|
73 | size_t i;
|
---|
74 | size_t size;
|
---|
75 |
|
---|
76 | for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
|
---|
77 | i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
|
---|
78 | i++, size <<= 1) {
|
---|
79 | malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
|
---|
80 | NULL, NULL, SLAB_CACHE_MAGDEFERRED);
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | static void _check_sizes(size_t *alignment, size_t *size)
|
---|
85 | {
|
---|
86 | assert(size);
|
---|
87 | assert(alignment);
|
---|
88 |
|
---|
89 | assert(*size > 0);
|
---|
90 |
|
---|
91 | /* Alignment must be a power of 2. */
|
---|
92 | assert(__builtin_popcountl(*alignment) <= 1);
|
---|
93 | assert(*alignment <= PAGE_SIZE);
|
---|
94 |
|
---|
95 | if (*alignment < alignof(max_align_t))
|
---|
96 | *alignment = alignof(max_align_t);
|
---|
97 |
|
---|
98 | *size = ALIGN_UP(*size, *alignment);
|
---|
99 |
|
---|
100 | if (*size < (1 << SLAB_MIN_MALLOC_W))
|
---|
101 | *size = (1 << SLAB_MIN_MALLOC_W);
|
---|
102 | }
|
---|
103 |
|
---|
104 | static slab_cache_t *cache_for_size(size_t size)
|
---|
105 | {
|
---|
106 | assert(size > 0);
|
---|
107 | assert(size <= (1 << SLAB_MAX_MALLOC_W));
|
---|
108 |
|
---|
109 | size_t idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
|
---|
110 |
|
---|
111 | assert(idx < sizeof(malloc_caches) / sizeof(malloc_caches[0]));
|
---|
112 |
|
---|
113 | slab_cache_t *cache = malloc_caches[idx];
|
---|
114 |
|
---|
115 | assert(cache != NULL);
|
---|
116 | return cache;
|
---|
117 | }
|
---|
118 |
|
---|
119 | // TODO: Expose publicly and use mem_alloc() and mem_free() instead of malloc()
|
---|
120 |
|
---|
121 | static void *mem_alloc(size_t, size_t) __attribute__((malloc));
|
---|
122 |
|
---|
123 | static void *mem_alloc(size_t alignment, size_t size)
|
---|
124 | {
|
---|
125 | _check_sizes(&alignment, &size);
|
---|
126 |
|
---|
127 | if (size > (1 << SLAB_MAX_MALLOC_W)) {
|
---|
128 | // TODO: Allocate big objects directly from coarse allocator.
|
---|
129 | assert(size <= (1 << SLAB_MAX_MALLOC_W));
|
---|
130 | }
|
---|
131 |
|
---|
132 | /* We assume that slab objects are aligned naturally */
|
---|
133 | return slab_alloc(cache_for_size(size), FRAME_ATOMIC);
|
---|
134 | }
|
---|
135 |
|
---|
136 | /**
|
---|
137 | * Free memory allocated using mem_alloc().
|
---|
138 | *
|
---|
139 | * @param ptr Pointer returned by mem_alloc().
|
---|
140 | * @param size Size used to call mem_alloc().
|
---|
141 | * @param alignment Alignment used to call mem_alloc().
|
---|
142 | */
|
---|
143 | static void mem_free(void *ptr, size_t alignment, size_t size)
|
---|
144 | {
|
---|
145 | if (!ptr)
|
---|
146 | return;
|
---|
147 |
|
---|
148 | _check_sizes(&alignment, &size);
|
---|
149 |
|
---|
150 | if (size > (1 << SLAB_MAX_MALLOC_W)) {
|
---|
151 | // TODO: Allocate big objects directly from coarse allocator.
|
---|
152 | assert(size <= (1 << SLAB_MAX_MALLOC_W));
|
---|
153 | }
|
---|
154 |
|
---|
155 | return slab_free(cache_for_size(size), ptr);
|
---|
156 | }
|
---|
157 |
|
---|
158 | static const size_t _offset = ALIGN_UP(sizeof(size_t), alignof(max_align_t));
|
---|
159 |
|
---|
160 | void *malloc(size_t size)
|
---|
161 | {
|
---|
162 | void *obj = mem_alloc(alignof(max_align_t), size + _offset) + _offset;
|
---|
163 |
|
---|
164 | /* Remember the allocation size just before the object. */
|
---|
165 | ((size_t *) obj)[-1] = size;
|
---|
166 | return obj;
|
---|
167 | }
|
---|
168 |
|
---|
169 | void free(void *obj)
|
---|
170 | {
|
---|
171 | /*
|
---|
172 | * We don't check integrity of size, so buffer over/underruns can
|
---|
173 | * corrupt it. That's ok, it ultimately only serves as a hint to
|
---|
174 | * select the correct slab cache. If the selected cache is not correct,
|
---|
175 | * slab_free() will detect it and panic.
|
---|
176 | */
|
---|
177 | size_t size = ((size_t *) obj)[-1];
|
---|
178 | mem_free(obj - _offset, alignof(max_align_t), size + _offset);
|
---|
179 | }
|
---|
180 |
|
---|
181 | void *realloc(void *old_obj, size_t new_size)
|
---|
182 | {
|
---|
183 | if (!old_obj)
|
---|
184 | return malloc(new_size);
|
---|
185 |
|
---|
186 | size_t old_size = ((size_t *) old_obj)[-1];
|
---|
187 |
|
---|
188 | if (cache_for_size(old_size + _offset) ==
|
---|
189 | cache_for_size(new_size + _offset))
|
---|
190 | return old_obj;
|
---|
191 |
|
---|
192 | void *new_obj = malloc(new_size);
|
---|
193 | if (!new_obj)
|
---|
194 | return NULL;
|
---|
195 |
|
---|
196 | memcpy(new_obj, old_obj, min(old_size, new_size));
|
---|
197 | free(old_obj);
|
---|
198 | return new_obj;
|
---|
199 | }
|
---|